
Range Selection and Median:

Tight Cell Probe Lower Bounds and Adaptive Data Structures

Allan Grønlund Jørgensen Kasper Green Larsen∗

MADALGO†, Department of Computer Science,
Aarhus University, Denmark

E-mail: {jallan,larsen}@cs.au.dk

Abstract
Range selection is the problem of preprocessing an input
array A of n unique integers, such that given a query (i, j, k),
one can report the k’th smallest integer in the subarray
A[i], A[i+ 1], . . . , A[j]. In this paper we consider static data
structures in the word-RAM for range selection and several
natural special cases thereof.

The first special case is known as range median, which
arises when k is fixed to b(j − i + 1)/2c. The second
case, denoted prefix selection, arises when i is fixed to 0.
Finally, we also consider the bounded rank prefix selection
problem and the fixed rank range selection problem. In
the former, data structures must support prefix selection
queries under the assumption that k ≤ κ for some value
κ ≤ n given at construction time, while in the latter, data
structures must support range selection queries where k
is fixed beforehand for all queries. We prove cell probe
lower bounds for range selection, prefix selection and range
median, stating that any data structure that uses S words
of space needs Ω(logn/ log(Sw/n)) time to answer a query.

In particular, any data structure that uses n logO(1) n space
needs Ω(logn/ log log n) time to answer a query, and any
data structure that supports queries in constant time, needs
n1+Ω(1) space. For data structures that uses n logO(1) n
space this matches the best known upper bound.

Additionally, we present a linear space data structure
that supports range selection queries in O(log k/ log log n+
log logn) time. Finally, we prove that any data struc-
ture that uses S space, needs Ω(log κ/ log(Sw/n)) time
to answer a bounded rank prefix selection query and
Ω(log k/ log(Sw/n)) time to answer a fixed rank range se-
lection query. This shows that our data structure is optimal
except for small values of k.

1 Introduction

Range selection is the problem of preprocessing an input
array A of n unique integers, such that given a query
(i, j, k), one can report the k’th smallest integer in
the subarray A[i], A[i + 1], . . . , A[j]. In this paper we
consider both range selection and several natural special

∗Kasper Green Larsen (has previously published as Kasper
Dalgaard Larsen) is a recipient of the Google Europe Fellowship

in Search and Information Retrieval, and this research is also
supported in part by this Google Fellowship.
†Center for Massive Data Algorithmics, a Center of the Danish

National Research Foundation.

cases thereof. The first special case is known as range
median, which arises when k is fixed to b(j − i+ 1)/2c.
The second case, denoted prefix selection, arises when i
is fixed to 0. These problems have obvious application
in statistical analysis, and have been studied extensively
in the last few years, see e.g. [5, 16, 18, 21, 27, 28, 4,
15, 7]. Actually, prefix selection is the inverse of two-
dimensional dominance counting which has also been
studied extensively; see e.g. [24, 20, 8]. Given an input
point set in the plane, a dominance counting query (x, y)
returns the number of points in the two sided rectangle
(−∞, x]×(−∞, y]; a prefix selection query (x, k) returns
how large y must be for the two-sided rectangle to
contain k points. Finally, we also consider the bounded
rank prefix selection problem and the fixed rank range
selection problem. In the former, data structures must
support prefix selection queries under the assumption
that k ≤ κ for some value κ ≤ n given at construction
time, while in the latter, data structures must support
range selection queries where k is fixed beforehand for
all queries. For fixed rank range selection we assume
k ≤ n/2, since otherwise we can enforce this restriction
by negating all array entries and fixing the query rank
to n− k.

The main results of this paper are tight lower
bounds for range selection, prefix selection and range
median. Surprisingly our lower bounds show that all
three variants are equally hard. These results naturally
leads us to investigate under what conditions one can
improve on these bounds. Specifically we provide a
new data structure for range selection where the query
time is a function of k instead of n, i.e. the data
structure is adaptive to k. Finally, we prove lower
bounds for bounded rank prefix selection and fixed
rank range selection. These bounds not only show that
our adaptive data structure is optimal except for very
small values of k, but moreover they have interesting
implications for generalizing range minimum queries.

1.1 Previous Results. All upper bound results are
in the word-RAM model of computation. In the word-
RAM model the memory consists of words of w bits and
we can access any word in constant time. Standard word
operations like arithmetic, shifts, and logical operations
can be performed in constant time. We use the standard
assumption in the word-RAM that w = Θ(log n). The
lower bounds we consider are all in the cell probe model.
This is the word-RAM where the complexity of an
algorithm is the number of memory cells the algorithm
accesses. All other computations are free. Clearly
lower bounds in the cell probe model applies to data
structures in the word-RAM.

The upper bounds for range selection and the
special cases thereof achieved so far divide naturally
into two categories, data structures using near-linear
space and with polylogarithmic query time, and data
structures using close to n2 space but with constant
query time.

Polynomial Space. A data structure support-
ing range median queries in constant time using
O(n2 log log n/ log n) words of space was presented
in [21]. The space bound was later improved to

O(n2 log(k) n/ log n), where log(k) n is the logarithm ap-
plied k times, for any constant k [27], and then to
O(n2(log log n/ log n)2) space [28]. Finally, a data struc-
ture that supports range median queries in expected
constant time with expected O(n3/2) space, under the
assumption that all inputs are equally likely was pre-
sented in [16].

Near-Linear Space. In [21], the authors present
an O(n log2 n/ log log n) space data structure that an-
swers range median queries in O(log n) time. A linear
space data structure capable of answering range me-
dian queries in O(nε) time for any constant ε > 0 was
also given. These results were later improved to lin-
ear space and O(log n) query time by data structures
in [16, 15], which also supports range selection queries in
the same bound. Finally, a linear space data structure
with O(log n/ log log n) query time for range selection
was developed [5], where it was also shown how to aug-
ment the range selection data structure to support 2-d
dominance counting queries in the same query bound.
In fact, the same approach can easily be applied to the
data structure of [16], thus, it seems there is a strong
connection between these two problems.

Lower Bounds. In the word-RAM there are no
known lower bounds for any of the selection problems.
However, in [24, 25] a cell probe lower bound was shown
for the related problem of 2-d dominance counting.
This lower bounds states that any data structure that
uses S words of space needs Ω(log n/ log(Sw/n)) time
to answer a query. The two papers proves the lower

bound with radically different approaches. Given that
the current range selection data structures also support
2-d dominance queries, one might conjecture this lower
bound also applies to range selection. However, such
a lower bound does not follow from either of the two
approaches, and perhaps a completely different strategy
to designing range selection data structures could give
query bounds below the lower bound for 2-d dominance
counting.

1.2 Our Results. We settle the complexity of range
selection, prefix selection and range median for near-
linear space (n logO(1) n) data structures by providing
cell probe lower bounds that match the best previous
upper bounds. Surprisingly, our lower bounds show
that all three variants are equally hard, thus, noth-
ing is gained by restricting attention to the seemingly
easier special cases of range selection. Specifically, we
prove that any data structure that uses S space needs
Ω(log n/ log(Sw/n)) time to answer a prefix selection
query. In particular, any data structure that uses
n logO(1) n space needs Ω(log n/ log log n) time to an-
swer a prefix selection query, and any data structure
that supports prefix selection queries in constant time,
needs n1+Ω(1) space. This proves that there is an in-
herent separation between near-linear space and poly-
nomial space data structures for prefix selection. It also
shows that the linear space range selection data struc-
ture from [5] is optimal. Interestingly, we prove our
lower bound by using a classic hard instance for orthog-
onal range queries. Our approach is to consider the
data structure problem as a communication game be-
tween the query algorithm and the data structure. We
prove the same lower bound for range median queries
by an elegant reduction from prefix selection.

Given that we have settled the complexity of range
selection it is natural to investigate under what condi-
tions one can improve on the tight bounds. We con-
sider data structures that are adaptive in the sense that
their query time depends on k. This adaptive measure
has never been applied to range selection data struc-
tures, but it has been considered for more than twenty
years for several strongly related problems, such as se-
lection in an unsorted array [13] and selection in a carte-
sian sum X + Y [14]. We give the first adaptive data
structure for range selection. We present a linear space
data structure that supports range selection queries in
O(log k/ log logn + log log n) time. Our approach is
an interesting new application of shallow cuttings [22]
which are usually applied to reporting problems.

An obvious question is whether our upper bounds
are the best that we can hope for. We prove that
it essentially is. More specifically, for data struc-

Table 1: Overview of results proved in this paper
Problem Space Query Time
Prefix selection S Ω(log n/ log(Sw/n))
Range median S Ω(log n/ log(Sw/n))
Bounded rank prefix selection S Ω(log κ/ log(Sw/n))
Fixed rank range selection S Ω(log k/ log(Sw/n))
Range selection O(n) O(log k/ log log n+ log log n)

tures that uses S space we prove a lower bound of
Ω(log κ/ log(Sw/n)) for bounded rank prefix selection
queries. This proves that our adaptive data structure
for range selection is optimal for k = 2Ω(log2 logn), and
at most an additive term of O(log log n) away from op-
timal otherwise.

This leads us to study one final intriguing question.
For range median queries, k is fixed to a specific
function of the query interval. It is not clear what
happens if we fix k to some specific value for all
queries independent of the query interval, i.e. the fixed
rank selection problem. The existence of linear space
data structures that support range minimum queries
(k fixed to 1) in constant time has been known for
many years [19]. Recently there has been extensive work
reinvestigating this problem and extending it to two and
more dimensions, see [12, 2, 3]. There seems to be no
reason to believe that this could not be generalized to
give data structures with linear (or near-linear) space
and constant query time that works for any fixed k.
We prove that data structures using S space needs
Ω(log k/ log(Sw/n)) time to answer a fixed rank range

selection query. This implies that for any k = logω(1) n,
any data structure that supports range selection queries
for the k’th smallest element in constant time needs
nkΩ(1) space even when k is fixed for all queries. This
final result shows that it is not possible to generalize
range minimum data structures to fixed rank range
selection.

We have summarized our results in Table 1.

1.3 Preliminaries. Throughout the paper we will
often think of the input array for all the problems
considered as a point set in rank space, i.e. we have
one point (i, A[i]) for each element in A, and we assume
each A[i] is a unique integer in [n] = {0, 1, . . . , n− 1}.

2 Lower Bounds

In this section we prove lower bounds for prefix selec-
tion, range median, bounded rank prefix selection and
fixed rank range selection data structures, in this order.

The idea follows a current trend (or framework) in
data structure lower bounds in the cell probe model

initiated in [23] and developed to its current state
by Pǎtraşcu and Thorup [26, 25, 24]. The strategy
is to define hard input sets of size Θ(n) and hard

query sets of b = n/ logO(1) n queries and consider a
communication game between two players, Alice and
Bob. Alice receives a query set and Bob an input set.
Bob builds a data structure on the input he receives and
Alice simulates a query algorithm for all of her queries
in parallel. Assume that the data structure problem
has a solution with S space and query time t in the cell
probe model. Then there is a communication protocol
where Alice sends t log

(
S
b

)
= O(tb log(S/k)) bits and

Bob sends btw bits. The lower bound then comes
from providing non-trivial lower bounds on the amount
of communication needed by Alice and/or Bob. This
strategy has been successfully applied several times. We
know of [25, 24, 26, 17, 29].

2.1 Lower Bounds For Prefix Selection. This
lower bound proof follows the strategy of Pǎtraşcu
in [24], where a lower bound is proved for data structures
supporting dominance counting queries. It seems natu-
ral to use this approach given the relationship to domi-
nance counting. For consistency we have used the same
notation where possible. The hard input set is basically
a modification of the classic bit-reversal permutation
which has been used numerous times before [24, 9, 10, 1].
The query sets are essentially evenly spread queries with
uniformly random chosen rank k. Similar to [24], the
hardness of the query set is shown by considering linear
constraints over the input set imposed by queries and
their answers. The main difference lies in the way we
force the number of linearly independent constraints to
be high.

In this proof we think of the input as a point set
in rank space. Our construction will use a parameter
B where n = Bh. We define an input set I that
has between n and 2n points and a set Q of n/B2

queries. For the queries we are only interested in the
y-coordinate of the answer.

Input Set. The input set consists of two parts.
The first part is a simple diagonal, D = {(−i, i− 0.5) |
1 ≤ i ≤ n} and the second part is a uniformly at

random chosen subset R of the bit-reversal permutation
P = {(i, rev(i)) | i ∈ [n]}, where rev(i) reverses the
bits of i including leading zeroes. The reason for the
diagonal will become clear later. The input set becomes
I = D ∪ R. Note that this input is not technically in
rank space, but we choose this representation for ease
of notation.

Query Set. The query set Q consists of n/B2

prefix selection queries, qi = (xi, ki+1), where xi = iB2

and ki is chosen uniformly at random from [n]. We think
of each value ki as a number in base B with h digits,
i.e. each ki is a vector in [B]h.

We split the query set into h levels, one level for each
digit. Level `, for ` = 0, . . . , h−1, consists of B` buckets,
and with the i’th bucket we associate the Bh−`−2

queries with x coordinate in [iBh−`, (i+ 1)Bh−` − 1].
A query qi is well separated at level ` if for every

other query qj in the same bucket at level `, we have
|ki− kj | ≥ 2B`+1. A query is well separated if it is well
separated on all levels. The set of well separated queries
we denote Q∗. The following lemma is (essentially)
proved in [24].

Lemma 2.1. Assume that B ≥ 20000h. Then with
probability at least 99/100, |Q∗| ≥ 99/100|Q|.

Digit Sets. To capture the relative ordering of
close queries we define digit sets Γi for i = 0, . . . , h− 1.
These are similar in spirit to the interleave patterns
from [24]. Γ` contains a set for each of the B` buckets
of level `. Each set stores the x-coordinate and the h−`
most significant digits of k for each query from Q in the
corresponding bucket. Clearly the digit sets encode Q
and have the following simple property (H(·) denotes
entropy).

Lemma 2.2. H(Γ` | Γ`+1, . . . ,Γh−1) ≤ |Q| logB

Proof. The only difference between Γ`+1 and Γ` is one
digit per query, and each digit has at most logB bits of
entropy.

Linear Constraints. Assume that we fix the an-
swer to all queries. Every query q = (x, k) and the corre-
sponding answer y defines a rectangle (−∞, x]×(−∞, y].
We say that a point p ∈ D ∪ P (not necessarily in I)
is contained in query q if p is contained in the rectan-
gle defined by q. The crucial observation is that the
answer to q puts a linear constraint on the input, i.e.∑
p∈(P∪D)∩(−∞,x]×(−∞,y] wI(p) = k where wI(p) = 1

if p ∈ I and zero otherwise. Thus, a set of queries
and a set of corresponding answers define a set of lin-
ear constraints on I, and it makes sense to talk about
the rank of these linear constraints. Consider the linear
constraints as a matrix A, where we associate a column

in A for each point in D ∪ P and a row in A for each
query. We set Ai,j to one if the point associated to col-
umn j is contained in the query associated with row i
and zero otherwise. Clearly rank(A) equals the number
of linearly independent constraints imposed on I.

We define Q[E] as the set of all queries that are still
possible given an event E. Let E be an event such that
|Q∗| ≥ 9/10|Q|. The important property of our queries
and point set is captured in the following lemma.

Lemma 2.3. If the answers to all queries in Q[E] are
fixed, and there exists an index ` where h/2 < ` < h− 2
such that H(Γ` | E,Γ`+1, . . . ,Γh−1) ≥ 9/10|Q| logB
then we get at least 1/85|Q|B3/4 linearly independent
constraints on I.

Proof. First, we restrict our attention to a carefully
chosen subset of queries. This subset is similar to the
subset considered in [24]. We include the description of
how this subset is chosen for completeness. Then, we
prove that this subset imposes the required number of
linearly independent constraints on I. This is where our
proof differs notably from [24].

From Γ`+1 we learn for each query (x, k) the h−`−1
most significant digits of k, and we have thus determined
an interval of size B`+1 for k.

We eliminate all queries that are not well separated
on level ` + 1, . . . , h − 1. Furthermore, if two queries
qi = (xi, ki) and qj = (xj , kj) are in the same bucket at
level ` and the h− `−1 most significant digits of ki and
kj are the same we eliminate both queries. Note that if
this is the case then |ki − kj | < B` and thus they are
not well separated at level `. After these two steps, Q∗

is intact. Furthermore, we eliminate all queries where
the (h − ` − 1)’st digit of the x-coordinate is smaller
than B/16. These are the queries with x-coordinate in
the first 1/16’th fraction in its corresponding bucket at
level `. We still have at least 4/5|Q| queries left.

For every query from Q we have deleted we have lost
at most logB bits of the entropy (we loose one random
digit). Thus, we have 4/5|Q| queries left and the entropy
of these is at least 7/10|Q| logB. It follows that there
are at least 2/5|Q| queries that have at least 3/4 logB
bits of entropy each and thus for each of these we have
at least B3/4 choices for the `’th most significant digit.
This means that |Q[E]| ≥ 2/5|Q|B3/4.

Now we lower bound the number of linearly inde-
pendent constraints imposed by Q[E] when the answer
to each query is fixed. Consider the buckets b1, b2, . . .
of level ` ordered by x-coordinate and look at the con-
straint matrix A defined from the queries and the fixed
answers. Order the columns by x-coordinate of the as-
sociated points. This way, the range of x-coordinates
associated with each bucket defines a set of contigu-

ous columns in A. Observe that the rows correspond-
ing to queries in bj can only contain nonzero entries in
columns associated with b1, . . . , bj (ignoring the diago-
nal D). Thus we can lower bound rank(A) by consider-
ing the queries bucket-wise and sum up the results.

Consider the bucket bi. We let Pi be the points
from P where the x-coordinate is in the first 1/16’th
fraction of the range defined by bi. We lower bound the
rank of the linear constraints induced by the remaining
queries from bi by only considering the points from Pi.
Since each remaining query from bi has an x-coordinate
that is larger than the x-coordinates of all points in Pi,
the linear constraints depends only on the ordering of
the y-coordinates of the points and the answers to the
queries. Consider the points from Pi sorted by their
y-coordinate. Due to the structure of the bit-reversal
permutation, two consecutive points in this list differs
by precisely 16B` on the y-coordinate.

Sort the remaining queries in bi by their k value,
and pick every 34’th query from this list. Now consider
two remaining queries q1 = (x1, k1) and q2 = (x2, k2)
with answer y1 and y2 respectively. Assume wlog. that
k1 < k2. We show that there is at least one point in
Pi that is contained in q2 but not in q1. This is true if
y2 ≥ y1 + 16B`.

Since each k value is unique on the h − ` most
significant digits and we only use every 34’th query, we
have k2 − k1 > 33B`. There are at most k1 + Bh−` ≤
k1+B` points from I in the rectangle (−∞, t]×(−∞, y1]
where t = (i+1)Bh−`−1 is the right endpoint of bi, since
there are at most Bh−` points in bi and ` > h/2. Since
x2 ≤ t there must be at least 32B` points contained in
q2 that have y-coordinate larger than y1. Note that if
we did not include the diagonal in I, it could be the
case that there were not 32B` points left in I with y-
coordinate larger than y1. Since I contains at most
2α points in a y-range of length α we conclude that
y2 ≥ y1 + 16B`.

It follows that this imposes at least 1/85B3/4 lin-
early independent constraints on I.

Cell Probe Lower Bound. We are now ready to
use the general framework and consider a communica-
tion game between two players. The lower bound is
proved by combining the idea in [24] with Lemma 2.3.

Alice gets a query set Q and Bob an input I chosen
uniformly at random as described earlier. Bob builds a
data structure for his point set that uses S space, and
Alice simulates a query algorithm that uses t cell probes.
This gives a protocol where Alice sends t log

(
S
|Q|
)

=

O(t|Q| log(S/|Q|) bits and Bob sends O(t|Q|w) bits.
We fix each message in the protocol to its most

likely value. The inputs that would result in this fixed

communication defines a combinatorial rectangle where
we let the rows be the possible query sets of Alice and
the columns the possible input sets of Bob. Note that
this fixes the answers to all queries Alice could still ask
since Alice must be able to output the answer to all of
the remaining queries without further communication.
Denote the rows in this rectangle Φ and the columns Ψ.
We define the event E to be Q ∈ Φ.

We restrict our attention to query sets Q such that
|Q∗| ≥ 9/10|Q|. The information about Q revealed
by the communication is H(Q) − H(Q | Q ∈ Φ) =
O(t|Q| log(S/|Q|)) since we have fixed the most likely
message.

We now assume t < ε log n/ log(S/|Q|) for some
constant ε sufficiently small, and derive a contradiction.
Since the digit sets encode Q, and we have restricted our
attention to Q such that |Q∗| ≥ 9/10|Q|, we get from
Lemma 2.1 that H(Γ0, . . . ,Γh−1) ≥ 98/100|Q| log n.
We can now write

H(Γ0, . . . ,Γh−1 | E) =
h−1∑
i=0

H(Γi | Γi+1, . . . ,Γh−1, E) ≥

|Q| log n−O(t|Q| log(N/|Q|))

This is at least 97/100|Q| log n for ε small enough. We
can only apply Lemma 2.3 for levels h/2 < ` < h − 2,
thus, we eliminate the rest from consideration by upper
bounding the amount of entropy they may contain.
The sum of H(Γh−1 | E), H(Γh−2 | Γh−1, E) and
H(Γ` | Γ`+1, . . . ,Γh−1, E) for ` = 0, . . . , dh/2e is at
most (h/2 + 3)|Q| logB bits by Lemma 2.2. Since
h = log n/ logB, this is at most 51/100|Q| log n for
h ≥ 300, and we are left with 46/100|Q| log n bits of
entropy. By averaging over the remaining terms, there
must exist a level h/2 < ` < h − 2 for which H(Γ` |
Γ`+1, . . . ,Γh−1, E) is at least 92/100|Q| logB and we
can apply Lemma 2.3. This imposes 1/85|Q|B3/4

linearly independent constraints on Bobs input. It can
be shown by an encoding argument that this is only
possible if H(I) − H(I | I ∈ Ψ) = Ω(|Q|B3/4). Since
we fixed the most likely message, H(I) − H(I | I ∈
Ψ) = O(t|Q|w) by the bound on Bobs communication.
B is still an unspecified parameter and by setting
B = max{20000h, (tw)2} we get a contradiction to
our assumption that t < ε log n/ log(S/|Q|). Since

h, t = O(log n) = O(w), B = logO(1) n we get the
following theorem.

Theorem 2.1. Any data structure that uses S space on
an input of size n needs Ω(log n/ log(Sw/n)) time to
answer a prefix range selection query.

2.2 Reducing Prefix Selection to Range Me-
dian. For this reduction, we consider the input as an
array. Given an input array I to the prefix selection
problem, we provide an input array M for the range
median problem such that any prefix selection query in
I can be answered by one range median query in M .
Let n be the size of I, and set

M = [∞, . . . ,∞︸ ︷︷ ︸
2n times

,−∞, . . . ,−∞︸ ︷︷ ︸
n times

, I[0], . . . , I[n− 1]] .

Note that we can easily transform the elements of M
into rank space coordinates, since all we need is that
−∞ < I[i] <∞ for i ∈ [n]. The output of a prefix query
(x, k) in I is equal to the output of the range median
query (3n− 2(bx/2c − k), x+ 3n) in M if k ≤ x/2 and
the range median query (n−2(k−bx/2c), x+ 3n) in M
otherwise.

Corollary 2.1. Any data structure that uses S space
for an input of size n needs Ω(log n/ log(Sw/n)) time
to answer a range median query.

2.3 Lower Bound for Bounded Rank Prefix
Selection. For this lower bound we consider the input
as a point set in rank space. Given κ, we construct
an input point set of size Θ(n) that consists of Θ(n/κ)
disjoint point sets of size Θ(κ) and a set Q of Θ(n/B2)
queries each constructed as in Section 2.1.

Let Iκ be an input set defined as in Section 2.1 with
n = κ, i.e. a diagonal of size κ and a uniformly random
subset of the bit-reversal permutation on κ points. We

use n/κ such sets I1
κ, . . . , I

n/κ
κ where we translate the

points in Iiκ by subtracting iκ from each y-coordinate
and adding 2iκ to each x-coordinate. Again, note that
we can easily transform the point set into rank space.

As in Section 2.1, the query set Q consists of n/B2

prefix selection queries, constructed as κ/B2 queries in
each Iiκ. The j’th query in Iiκ is (i2n+jB2, k+1) where
k is chosen uniformly at random in [κ]. Now we can
basically copy the proof from Section 2.1. This time
there are only logB κ levels. The buckets of level ` is
constructed by taking the union of the level ` buckets
for each Iiκ each defined as in Section 2.1. Notice
that the diagonals included in each Iiκ ensures that the
linear constraints imposed by queries in different sets
Iiκ are linearly independent. The entropy of Q becomes
|Q| log κ and we get the following corollary.

Corollary 2.2. Any data structure that uses S space
on an input of size n takes Ω(log κ/ log(Sw/n)) time to
answer a bounded rank prefix selection query.

2.4 Lower Bound for Fixed Rank Range Selec-
tion. For this lower bound we consider the input as an

array. We reduce bounded rank prefix selection to fixed
rank range selection with k = κ. Let I and κ be the in-
put to the bounded rank prefix selection problem. We
make a new array M by prepending κ entries to I each
with value −∞. The output of a bounded rank prefix
selection query (x, k) on I is equal to the output of the
fixed rank range selection query (κ− (κ−k), x) = (k, x)
on M .

Corollary 2.3. Any data structure that uses S space
for an input of size n needs Ω(log k/ log(Sw/n)) time to
answer a fixed rank range selection query.

3 Adaptive Data Structure

In this section we describe an adaptive data structure
for range selection, that uses O(n) space and supports
range selection queries in O(log k/ log log n + log log n)
time. We will think of the input as a point set in rank
space. Our data structure use at its core the notion
of shallow cuttings [22]. Shallow cuttings have mainly
been used for reporting problems, but turns out to have
several desirable properties for range selection.

A shallow cutting for the `-level of I, or an `-shallow
cutting for short, is a set R of O(|I|/`) rectangles such
that for any query q that selects for the k ≤ ` smallest
element there exists a rectangle in r ∈ R such that q
can be answered by performing the same query only on
the points contained in r. In such a case we say that
r resolves q. Furthermore, any rectangle in R contains
O(`) points.

In the following we describe the overall idea behind
our data structure and in the next section we fill out
the details.

Overall Idea. Let I be the input point set. We
construct two predecessor data structures that maps
x and y-coordinates to rank space respectively, and
a static (non-adaptive) range selection data structure
on all the points in I with rank space coordinates.
Then, we subdivide I using an `-shallow cutting with
` = nε where ε < 1 is a constant. The points in
each rectangle in this shallow cutting are then stored
recursively (` = nε

i

at the i’th level of recursion).
To answer a query for the k’th smallest element we

start at the first level. We map the query coordinates
to rank space using the predecessor data structures and
compare k to `. If k > ` we query the (non-adaptive)
data structure stored for all the points. Otherwise, we
find a rectangle in the shallow cutting that resolves q
and answer the query recursively. Once the answer has
been determined, we use the predecessor data structures
on each level to remap the compressed answer into the
point it represents on the previous level until we have
finally remapped the answer to a point in I.

Note that if k > ` then the number of points left
is at most k

1
ε and thus the query on the non-adaptive

data structure takes O(log k/ log log n) time. Secondly,
the rank space reduction allows us to compress the
coordinates in the recursive subdivisions and save space.

For the non-adaptive data structure we use the
optimal range selection data structure from [5]. We
express their result a little different to expose the parts
that we need.

Theorem 3.1. ([5]) There is a data structure that
uses O(n log(n)/w) words of space and supports range
selection queries in O(log n/ logw) time.

Furthermore, we make extensive use of predecessor data
structures, specifically for rank space reductions, and we
need the following theorem.

Theorem 3.2. There exists a data structure that uses
O(n log(n)/w) words of space and supports predecessor
queries in O(log log n) time when the universe is of size
nO(1).

Proof. Take a y-fast [30] tree with bucket size w, and
store each bucket in a B-tree [11] with B = Θ(w).
Use table lookups to perform operations on blocks in
constant time.

Finally, we need the following recent result by Chan[6].

Theorem 3.3. ([6]) There exists a linear space data
structure that supports point location queries in a recti-
linear subdivision in O(log log n) time.

3.1 Adaptive Range Selection. In the following
we describe how to construct the `-shallow cuttings we
use in our adaptive range selection data structure and
how we locate a resolving rectangle.

Shallow Cuttings. Given ` and a point set I we
construct an `-shallow cutting for range selection as
follows. For the shallow cutting we use three-sided
rectangles on the form [x1, x2]×(−∞, y] each containing
at most 4` points. We associate a key to each rectangle
which we need to find a rectangle that resolves a query.
The keys are horizontal line segments (x1, x2, y).

Imagine sweeping a horizontal line from y = −∞
to ∞. While doing this, we maintain a sorted set of
split points X = {X1, X2, . . .} that partition the sweep
line into disjoint intervals (X1, X2], (X2, X3], Ini-
tially, X = {−∞,∞}. As we move the sweep line
we encounter points (x, y) from I. For each such
point we do the following. Let i be the index of the
predecessor of x in X. We consider the rectangle
R = [Xi, Xi+1] × (−∞, y]. If this rectangle contains
less than 2` points from I we continue with the next

point. If it contains exactly 2` points from I we com-
pute the median, m, of the x-coordinates amongst the
points from I in R. We then output two overlapping
rectangles, [Xi−1, Xi+1] × (−∞, y] with key (Xi,m, y)
and [Xi, Xi+2] × (−∞, y] with key (m,Xi+1, y). Fur-
thermore, we split the subinterval of the sweep line
(Xi, Xi+1] into two by inserting m into X. Notice that
this ensures that R never contains more than 2` points.

When all the points from I has been processed
we additionally output |X| − 2 rectangles [Xi, Xi+2] ×
(−∞,∞) for i = 1, . . . , |X|−2. These rectangles do not
have keys.

Locating a Resolving Rectangle. Given a query
q = (x1, x2, k) where k < `, it is not immediately clear
that the set of rectangles constructed always contain a
rectangle that resolves q.

Lemma 3.1. Let q = (x1, x2, k) be a range selection
query. If k < `, then the shallow cutting contains a
rectangle that resolves q.

Proof. Let (x̄1, x̄2, y) be the key (horizontal line seg-
ment) contained in the x-slab [x1, x2] × (−∞,∞) with
minimum y-coordinate, if any exists. Then the rect-
angle R associated with this key resolves q. To prove
this, we show that R contains at least ` points be-
tween x1 and x2 and that the x-range of R contains
[x1, x2]. Let XR be the set X just before the sweep
line encountered the point that triggered the output
of R. Now consider how the algorithm processed that
point. Wlog. assume that x̄2 is the median x-coordinate
computed. Then the x-range of R is [XR

i−1, X
R
i+1] and

x̄2 ≤ x2 < XR
i+1 since otherwise there would be a key

(XR
i , X

R
i+1, y

′) inside the slab with smaller y-coordinate.
Similarly, XR

i−1 < x1 ≤ x̄1. Since the algorithm
splits [XR

i , X
R
i+1] there is exactly ` points from I in

[XR
i , x̄2]× (−∞, y] ⊆ [x1, x2]× (−∞, y] ⊆ R.

If no such key exists, we consider the rectangles that
does not have keys. Let X be the final set of split points
produced by the algorithm. Since [x1, x2] × (−∞,∞)
does not contain any keys there can be at most one
split point in X between x1 and x2. Let Xi be
the predecessor of x1 in X then clearly the (keyless)
rectangle [Xi, Xi+2]× (−∞,∞) resolves q.

From this discussion it is clear that to find a rectangle
resolving q we must find the key with minimum y-
coordinate in the x-slab defined by q if any exists,
or determine the predecessor of x1 in X otherwise.
We transform the former problem to two-dimensional
point location in a rectilinear subdivision, that is, a
subdivision of the plane constructed from axis-aligned
line segments; We map each key (xa, xb, y) to the two-
dimensional point (xa, xb) with associated weight y.

Then given query q = (x1, x2, k) the point with smallest
weight in the dominance region [x1,∞) × (−∞, x2] is
the key we are looking for. From this weighted point
set we create a rectilinear subdivision as follows. We
sort the points by weights in ascending order. We scan
the points and for each point p we do the following.
Shoot a vertical ray upwards from p and stop once it
hits a previous ray. Shoot a ray leftwards until it hits
a previous ray. Then delete all remaining points that
are to the left of and above p and continue to the next
point.

For each cell in the subdivision we associate the
bottom right point. Given a query q = (x1, x2, k)
we find the cell containing (x1, x2) and return the
associated point. This is the point with minimum
weight in the dominance region [x1,∞)× (−∞, x2], and
thus the key with minimum y-coordinate in the x-slab
defined by q.

Data Structure. We use two data structures. The
first data structure answers queries where k > 2log3 logn

and the second handles the remaining queries. In the
data structure for queries with k > 2log3 logn we con-
struct an n1/16-shallow cutting on I and recursively
construct n1/162

-shallow cuttings for each rectangle and
so forth, until the number of points in each rectangle
decreases to 2log3 logn. We store a non-adaptive data
structure and two predecessor data structures for each
shallow cutting. Furthermore we store the point loca-
tion data structure of Theorem 3.3 on the keys defined
by the shallow cutting and a predecessor data structure
on the elements in the final version of X.

Similarly, for the queries where k ≤ 2log3 logn we
use an `-shallow cutting where ` = 2log3 logn in the first
step, and ` = 2log3 logn/16i

in the i’th step (including
the same data structures).

Query Algorithm. To answer a range selection
query q = (x1, x2, k) we first examine the query to

determine whether k > 2log3 logn. If this is the case
we query the first data structure, otherwise we query
the second. The queries are answered in the following
way in both cases.

First, we map the coordinates of the query to rank
space. On each level where k < `, we find a rectangle
that resolves q by querying the point location data
structure and the predecessor data structure on the
final version of X. We then recurse on the resolving
rectangle. When k ≥ ` we query the non-adaptive data
structure and remap the output to a point in I.

Analysis. In our `-shallow cutting we have 3n/`
rectangles each containing at most 4` points. We store
the n points in the range selection data structure from
Theorem 3.1 and the 2n/` keys in the point location
data structure from Lemma 3.3 and the n/` keys from

X in the predecessor data structure from Theorem 3.2.
Not counting the recursive shallow cuttings, the space
needed for an `-shallow cutting on a set of size n
is O(n log n/w + (n/`)1+ε). Since ` = n1/16 this is
O(n log n/w) for sufficiently small ε. Thus, the space,
S(n), needed for the data structure is bounded by
S(n) ≤ 3n15/16S(4n1/16) + O(n log(n)/w) which solves
to O(n) for w = Θ(log n).

To answer a query we perform one non-adaptive
range selection query in a data structure with O(k16)
elements which takes O(log k/ log log n) time. If

k > 2log3 logn we also perform O(log log n) predeces-
sor and point location queries each taking O(log log n)

time. Since k > 2log3 logn the total query time be-
comes O(log k/ log log n). If k < 2log3 logn we do
O(log log log n) predecessor and point location queries in

sets of size at most O(2log3 logn). In the first predecessor
query, the universe is of size n, while in the remaining
queries the universe is of size O(2log3 logn). In this case
we get a query time of O(log k/ log log n+ log log n).

Theorem 3.4. There exists a linear space data
structure that supports range selection queries in
O(log k/ log log n+ log log n) time.

References

[1] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In Pro-
ceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 149–158, 2009.

[2] M. J. Atallah and H. Yuan. Data structures for range
minimum queries in multidimensional arrays. In Pro-
ceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 150–160, 2010.

[3] M. J. Atallah and H. Yuan. Optimal succinctness for
range minimum queries. In Proceedings of the 9th Latin
American Theoretical Informatics Symposium, pages
150–160, 2010.

[4] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Ap-
proximate range mode and range median queries. In
Proceedings of the 22nd Symposium on Theoretical As-
pects of Computer Science, pages 377–388, 2005.

[5] G. S. Brodal and A. G. Jørgensen. Data structures for
range median queries. In Proceedings of the 20th Inter-
national Symposium on Algorithms and Computation,
pages 822–831, 2009.

[6] T. M. Chan. Persistent predecessor search and orthog-
onal point location in the word RAM. In Proceedings
of the 22nd ACM/SIAM Symposium on Discrete Algo-
rithms (SODA), 2011. to appear.

[7] T. M. Chan and M. Pǎtraşcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proceedings of the 21st ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 161–173, 2010.

[8] B. Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM
Journal of Computing, 17:427–462, 1988.

[9] B. Chazelle. Lower bounds for orthogonal range
searching: I. the reporting case. Journal of the ACM,
37(2):200–212, 1990.

[10] B. Chazelle. Lower bounds for off-line range search-
ing. Discrete & Computational Geometry, 17(1):53–65,
1997.

[11] D. Comer. Ubiquitous B-tree. ACM Computing
Survey, 11(2):121–137, 1979.

[12] E. D. Demaine, G. M. Landau, and O. Weimann.
On cartesian trees and range minimum queries. In
Proceedings of the 36th International Colloquium on
Automata, Languages and Programming, pages 341–
353, 2009.

[13] R. W. Floyd and R. L. Rivest. Expected time bounds
for selection. Communications of the ACM, 18(3):165–
172, 1975.

[14] G. N. Frederickson and D. B. Johnson. The complexity
of selection and ranking in X+Y and matrices with
sorted columns. Journal of Computer and System
Sciences, 24(2):197–208, 1982.

[15] T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile
queries: Another virtue of wavelet trees. In Proceedings
of the 16th String Processing and Information Retrieval
Symposium, pages 1–6, 2009.

[16] B. Gfeller and P. Sanders. Towards optimal range me-
dians. In Proceedings of the 36th International Col-
loquium on Automata, Languages and Programming,
pages 475–486, 2009.

[17] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Tru-
elsen. Cell probe lower bounds and approximations
for range mode. In Proceedings of the 37th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, pages 605–616, 2010.

[18] S. Har-Peled and S. Muthukrishnan. Range medians.
In Proceedings of the 16th Annual European Symposium
on Algorithms, pages 503–514, 2008.

[19] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM Journal of
Computing, 13(2):338–355, 1984.

[20] J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient
and fast algorithms for multidimensional dominance re-
porting and counting. In Proceedings of the 15th Inter-
national Symposium on Algorithms and Computation,
pages 558–568, 2004.

[21] D. Krizanc, P. Morin, and M. H. M. Smid. Range mode
and range median queries on lists and trees. Nordic
Journal of Computing, 12(1):1–17, 2005.

[22] J. Matoušek. Reporting points in halfspaces. Compu-
tational Geometry: Theory and Applications, 2(3):169–
186, 1992.

[23] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System Sciences,
57(1):37–49, 1998.

[24] M. Pǎtraşcu. Lower bounds for 2-dimensional range

counting. In Proceedings of the 39th ACM Symposium
on Theory of Computing, pages 40–46, 2007.

[25] M. Pǎtraşcu. (Data) STRUCTURES. In Proceedings
of the 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 434–443, 2008.

[26] M. Pǎtraşcu and M. Thorup. Higher lower bounds for
near-neighbor and further rich problems. In Proceed-
ings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 646–654, 2006.

[27] H. Petersen. Improved bounds for range mode and
range median queries. In Proceedings of the 34th
Conference on Current Trends in Theory and Practice
of Computer Science, pages 418–423, 2008.

[28] H. Petersen and S. Grabowski. Range mode and range
median queries in constant time and sub-quadratic
space. Information Processing Letters, 109(4):225–228,
2008.

[29] C. Sommer, E. Verbin, and W. Yu. Distance oracles
for sparse graphs. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 703–712, 2009.

[30] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Theta(n). Information
Processing Letters, 17(2):81–84, 1983.

