
Orthogonal Range Reporting: Query Lower Bounds,
Optimal Structures in 3-d, and Higher-dimensional

Improvements

Peyman Afshani∗ Lars Arge∗ Kasper Dalgaard Larsen∗

MADALGO†

Department of Computer Science
Aarhus University, Denmark.

{peyman,large,larsen}@madalgo.au.dk

ABSTRACT
Orthogonal range reporting is the problem of storing a set of
n points in d-dimensional space, such that the k points in an
axis-orthogonal query box can be reported efficiently. While
the 2-d version of the problem was completely characterized
in the pointer machine model more than two decades ago,
this is not the case in higher dimensions.

In this paper we provide a space optimal pointer ma-
chine data structure for 3-d orthogonal range reporting that
answers queries in O(log n + k) time. Thus we settle the
complexity of the problem in 3-d. We use this result to
obtain improved structures in higher dimensions, namely
structures with a log n/ log log n factor increase in space and
query time per dimension. Thus for d ≥ 3 we obtain a
structure that both uses optimal O(n(log n/ log log n)d−1)
space and answers queries in the best known query bound
O(log n(log n/ log log n)d−3 + k).

Furthermore, we show that any data structure for the
d-dimensional orthogonal range reporting problem in the
pointer machine model of computation that uses S(n) space

linear space must spend Ω((log n/ log(S(n)/n))⌊d/2⌋−1 + k)
time to answer a query. Thus, if S(n)/n is poly-logarithmic,

then the query time is at least Ω((log n/ log log n)⌊d/2⌋−1 +
k). This is the first known non-trivial query lower bound and
it has two important implications. First, it shows that the
query bound increases with dimension. Second, in combina-
tion with our upper bounds it shows that the optimal query
bound increases from Θ(logn+k) to Ω((log n/ log log n)2+k)
somewhere between three and six dimensions.

∗Work was supported in part by the Danish National Re-
search Foundation and the Danish Strategic Research Coun-
cil.
†Center for Massive Data Algorithmics—a center of the
Danish National Research Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’10, June 13–16, 2010, Snowbird, Utah, USA.
Copyright 2010 ACM 978-1-4503-0016-2/10/06 ...$10.00.

Finally, we show that our techniques also lead to improved
structures for point location in rectilinear subdivisions, that
is, the problem of storing a set of n disjoint d-dimensional
axis-orthogonal rectangles, such that the rectangle contain-
ing a query point q can be found efficiently.

Categories and Subject Descriptors
E.1 [Data Structures]: Miscellaneous

General Terms
Algorithms, Theory

Keywords
data structures, orthogonal range reporting, pointer ma-
chine, lower bounds

1. INTRODUCTION
Orthogonal range reporting is the problem of storing a set

of n points in d-dimensional space, such that the k points
in an axis-orthogonal query box can be reported efficiently.
This is a fundamental problem in several fields, including
spatial databases and computational geometry, and it has
been studied extensively [3, 4]. We study the problem in
the pointer machine model of computation [16]. While the
two-dimensional version of the problem was completely char-
acterized in this model more than two decades ago, this is
not the case in higher dimensions.

In this paper we consider orthogonal range reporting data
structures with poly-logarithmic query time in the pointer
machine model. We settle the complexity of the problem
in three dimensions by providing an optimal structure, and
show how this structure can be used to obtain improved
structures in higher dimensions. We also prove that a query
time of o((log n/ log log n)⌊d/2⌋−1) cannot be achieved with

O(n logO(1) n) space. This is the first non-trivial query lower
bound for orthogonal range reporting structures that use
at most a poly-logarithmic factor more than linear space,
showing that the query time must increase with dimension.

1.1 Previous orthogonal range reporting
results

In this section we review previous orthogonal range report-
ing results. For brevity we only review the structures most

Space Query Ref.

n(logn/ log logn)3 logn+ k [2]

n(logn/ log logn)2 logn(logn/ log logn) + k [2]

n(logn/ log logn)2 logn+ k *

Table 1: 3-d orthogonal range reporting results. *
indicates this paper.

relevant to our work, that is, static pointer machine struc-
tures with poly-logarithmic query bounds. Refer to surveys
for further results [3, 4].

In two dimensions the orthogonal range reporting problem
can be solved in O(log n+k) time using O(n log n/ log log n)
space [8]. This is optimal since Chazelle proved that any d-

dimensional structure with an O(logO(1) n+k) query bound
has to use Ω(n(log n/ log log n)d−1) space [9].

However, for dimensions d ≥ 3 no optimal O(log n + k)
time and O(n(log n/ log log n)d−1) space structure is known.
Until recently, the known optimal O(n(log n/ log log n)d−1)
space structure only answered queries in O(logd−1+ε n +
k) time [9]. Using O(n logd−1 n/ log log n) space another
structure could answer queries in O(logd−1 n + k) time [8].
A structure with an O(logd−2 n + k) query bound, that
is, an optimal query bound in 3-d, was also known but it
uses O(n logd n) space [7, 11]. Recently an improved op-
timal space structure was developed, answering queries in
O(log n(log n/ log log n)d−2 + k) time, just as an improved
O(logd−2 n + k) query time structure was developed, using
O(n logd n/(log log n)3) space [2]. These two structures are
the currently best known d-dimensional structures.

The lower bound of Chazelle discussed above provides a
space lower bound for poly-logarithmic query structures.
However, no non-trivial query lower bound is known for
super-linear space structures. It is not even known if the
query time increases with dimension; the existence of both
2-d and 3-d O(log n+k) query structures might suggest this
is not the case. Furthermore, since the two best known
structures answer 3-d queries in O(log n + k) time using
O(n(log n/ log log n)3) space and O(log n·(log n/ log log n)+
k) time using O(n(log n/ log log n)2) space, respectively, one
might also suspect that a log n/ log log n factor improvement
in query time (resp. space) is only possible with a corre-
sponding increase in space (resp. query time). In fact, in
a previous paper we conjectured that the space-query prod-
uct of any orthogonal range reporting structure has to be
Ω(n log2d−2 n/(log log n)2d−3) [2].

1.2 Our orthogonal range reporting results
In Section 2 of this paper we describe the first 3-d or-

thogonal range reporting data structure that both uses op-
timal O(n(log n/ log log n)2) space and answers queries in
optimal O(log n + k) time. Not only does this structure
settle the complexity of the problem in 3-d, but also dis-
proves the query-space product conjecture. Refer to Ta-
ble 1. The structure relies on a new O(n log n/ log log n)
space and O(log n+ k) query time structure for 3-d orthog-
onal range reporting where the query box is unbounded (in
one direction) in one of the three dimensions. This is opti-
mal (since the structure can be used to answer 2-d queries)
and (maybe surprisingly) the bounds match the bounds of
the known optimal structure for the case where the query
box is unbounded in two of the three dimensions [2].

Space Query Ref.

n logd n/(log logn)3 logd−2 n+ k [2]

n(log n/ log logn)d−1 logn(logn/ log logn)d−2 + k [2]

n(log n/ log logn)d−1 logn(logn/ log logn)d−3 + k *

Table 2: d-dimensional orthogonal range reporting
results. * indicates this paper.

In Section 2 we show how our 3-d structure can be ex-
tended to higher dimensions with a log n/ log log n factor
increase in both query time and space per dimension. For
d ≥ 3, the resulting d-dimensional data structure uses op-
timal O(n(log n/ log log n)d−1) space and answers queries in
O(log n(log n/ log log n)d−3 + k) time, which improves the
two best previous results. See Table 2.

In Section 3 we then show that any d-dimensional orthog-
onal range reporting data structure in the pointer machine
model that uses S(n) space and answers queries in Q(n) +

O(k) time must haveQ(n) = Ω((log n/ log(S(n)/n))⌊d/2⌋−1).
Thus, if S(n)/n is poly-logarithmic, then the query time

is at least Ω((log n/ log log n)⌊d/2⌋−1 + k). This is the first
non-trivial query lower bound and it has two important im-
plications. First, it shows that the query bound increases
with dimension. Second, in combination with our upper
bounds it shows that the optimal query bound increases
from Θ(log n + k) to Ω((log n/ log log n)2 + k) somewhere
between three and six dimensions.

1.3 Rectilinear subdivision point location
results

We also consider point location in rectilinear subdivisions,
since the ideas used in our orthogonal range reporting struc-
tures can be used to develop improved structures for this
problem as well. The point location in rectilinear subdivi-
sions problem is the problem of storing a set of n disjoint
d-dimensional axis-orthogonal rectangles, such that the rect-
angle (if any) containing a query point q can be found effi-
ciently. The previously best known pointer machine struc-
ture for this problem uses linear space and answers queries
in O(logd−1 n) time [12]. In Section 4, we design an im-
proved structure for d ≥ 3, that can answer queries in
O(log n(log n/ log log n)d−2) time using linear space.

2. ORTHOGONAL RANGE REPORTING
DATA STRUCTURES

In this section, we describe our new orthogonal range re-
porting data structures. Our structures rely on improved
solutions to various special cases of the problem, where the
query box can be unbounded or the points colored.

We use Q(d, k) to refer to the special case in which the
query boxes have finite ranges in k of the d dimensions, that
is, are unbounded in d− k dimensions. Refer to Fig. 1. The
Q(2, 1) and Q(d, 0) problems are often called 3-sided planar
range reporting and dominance reporting, respectively. We
then define the (more difficult) concurrent Q(d, k) problem
as follows: Let S be a set of n points in d-dimensional space,
A : S → C a function that assigns a color from a color set
C to each point, and P a set of color sets (that is, P ⊂ 2C).
The problem is to store S such that for any query tuple
(q, L) consisting of a Q(d, k) query q and a set L ∈ P of

z z z z

y

x

y

x

y

x

y

xQ(3,0) Q(3,1) Q(3,2) Q(3,3)

Figure 1: Three-dimensional queries.

colors, all points p ∈ S with p ∈ q and A(p) ∈ L can found
efficiently.

In Subsection 2.1 below we first show how to solve the
concurrent Q(3, 2) problem efficiently. In Subsection 2.2 we
then use this solution to obtain efficient solutions for the
Q(3, 3) and Q(d, d) problems, that is, for orthogonal range
reporting.

2.1 Solving Concurrent Q(3, 2)

In this section we show how to solve the concurrent Q(3, 2)
problem efficiently. To do so we first solve the concurrent
Q(3, 0) problem.

Throughout the section, we use the following notations:
Given two points p and q, we say p dominates q if and only
if all the coordinates of p are greater than those of q. For
a set S of points we let DomS(q) denote the subset of S
dominated by q. A shallow cutting for the k-level of S, or
a k-shallow cutting for short, is a set R of O(|S|/k) points
such that any 3-d point p that dominates at most k points
of S is dominated by a point in R, and such that every point
of R dominates O(k) points of S. The existence of this kind
of shallow cuttings is known [1], and more general shallow
cuttings have been used extensively in the computational
geometry literature (see e.g. [15]).

The following lemma and its proof plays an important role
in our concurrent Q(3, 0) data structure.

Lemma 1. (Makris and Tsakalidis [14]) Let S be a set of
n points in 3-d. It is possible to construct a subdivison AS of
the plane of size O(n) using orthogonal line segments, such
that for any query point q in 3-d, one can use the result of
a point location query on AS to find a point that dominates
q or to conclude that no such point exists.

p1
p2

p3
p4

p5

p6

p7

p8

p9
p10

(a) (b) (c)

Figure 2: (a) The projection of the 3-d points sorted
by the z-coordinate. (b) The arrangement AS. (c)
The trapezoid decomposition of AS.

Proof. Let p1, . . . , pn be the points in S projected onto
the xy-plane, sorted decreasingly by their z-coordinates (Fig-
ure 2(a)). Now consider the process of shooting two rays
from pi, starting with i = 1, one vertical towards y = −∞
and another horizontal towards x = −∞, until they intersect
any pre-existing ray. Next, remove all the points pj , j > i,
that are dominated by pi and continue with the next point.

It is easy to realise that the resulting planar arrangement,
AS , is of size O(n). Refer to Figure 2(b).

Now let q′ be the projection of q onto the xy-plane and let
p ∈ S be the point at the top-right corner of the region of AS

containing q′. Observe that p has the largest z-coordinate
among all the points that dominate q′ in the xy-plane. Thus
if the z-coordinate of p is greater than that of q then p
dominates q. Otherwise, no point dominates q. Therefore
the domination query q can easily be answered once q′ is
located in AS .

Lemma 2. There exists an O(n) space structure for the
concurrent Q(3, 0) problem that answers queries in
O(|C| log log n+ log n+ k) time.

Proof. Our concurrent Q(3, 0) structure is constructed
as follows. For every color c ∈ C, we build a (logn)-shallow
cutting Rc for the set Sc := {p ∈ S|A(p) = c}. For every
point v ∈ Rc, we store DomSc(v) in a dominance reporting
data structure and also store Sc in the dominance reporting
structure of [1] (that is, a Q(3, 0) structure). Furthermore,
using Lemma 1, we build the arrangement Ac for the set
Rc. We apply trapezoid decomposition on Ac (that is, we
shoot vertical rays towards y = ∞ from every vertex; refer
to Figure 2(c)) and obtain a set of O(|Rc|) boxes. Then we
construct a point enclosure data structure [8] on the union of
the boxes obtained from Ac for all c ∈ C, that is, a structure
that can be used to find all boxes containing a given query
point.

That the above structure uses linear space can be seen
as follows. Each point in the shallow cutting Rc dominates
O(log n) points, so |Rc| = O(|Sc|/ log n). By the properties
of the shallow cutting, we know that |DomSc(v)| = O(log n)
for every v ∈ Rc. Since the dominance data structure of [1]
uses linear space, it follows that the combined space usage of
all the dominance data structures is O(n). Finally, the total
number of boxes in the arrangements Ac over all c ∈ C is
O(n/ log n). Thus, since the point enclosure structure of [8]
also uses linear space, the space usage of the point enclosure
data structure is O(n/ log n).

Now consider a query tuple (q, L). With a little abuse
of notation we let q denote the point defining the Q(3, 0)
query q. For a color c, we let kc = |DomSc(q)|. Clearly,
∑

c∈L kc = k. For every c ∈ L, we want to perform a point
location query with q on Ac. Since the boxes defined from
Ac are disjoint, we can do so in O(log n + |C|) time sim-
ply by querying the point enclosure data structure with q
and this way obtain a box for each of the |C| colors. By
Lemma 1, having the point location result for Ac enables
us to determine if (i) there is a point v ∈ Rc that dom-
inates q or (ii) no point of Rc dominates q. In case (i),
it follows that DomSc(q) ⊆ DomSc(v) and thus DomSc(q)
can be reported by querying the dominance reporting data
structure on DomSc(v); this takes O(log |DomSc(v)|+kc) =
O(log log n+ kc) time. In case (ii), it follows from the prop-
erties of the shallow cutting that kc > log n. In this case, we
query the dominance data structure implemented on Sc us-
ing O(log |Sc|+ kc) = O(kc) time. Summing the query time
over all c ∈ L we obtain a total query time of O(log n+ |C|+
|L| log log n+ k) = O(|C| log log n+ log n+ k).

Below we show how Lemma 2 combined with a grid build-
ing technique can be used to solve the concurrent Q(3, 2)
problem. Our strategy is inspired by the previous grid build-

ing techniques [5], in particular the work of Karpinski and
Nekrich [13]. We need the following technical observation.

Observation 1. Define f(n) =
√
nt, f (1)(n) = f(n) and

f (k)(n) = f(f (k−1)(n)). Let f∗(n) be the minimum inte-

ger k s.t., f (k)(n) ≤ t log n. We have f∗(n) ≤ ⌈log log n −
log log log n⌉.

Proof. It is easy to check that f (i)(n) = t(2
i−1)/2in1/2i ≤

tn1/2i . Thus, f (⌈log log n−log log log n⌉) ≤ tnlog logn/ log n =
t log n.

We are now ready to describe our concurrentQ(3, 2) struc-
ture, assuming without loss of generality that the query
boxes are unbounded towards −∞ along the z-axis.

Structure: Let t := |P||C| log2 n. Consider the projection

of the points in S on the xy-plane and a (
√

n/t) × (
√

n/t)
grid such that each vertical or horizontal slab contains the
projection of

√
nt points. In each slab we construct a concur-

rent Q(3, 0) queries structure (Lemma 2). We also construct
a grid data structure on all the points in S. We will de-
scribe this structure below. Finally we recurse on the points
in each slab. Note that in the recursions, the grid size and
the value of t vary according to the size of the subproblem.
We stop the recursion when a subproblem contains less than
(|C||P|)2

√
log n points.

The grid data structure is defined as follows. First con-
sider altering the x- and y-coordinates of the points in S
such that if the projection of a point p lies in a cell c of
the grid, then the x- and y-coordinates of p are changed
to those of the bottom-left vertex of c. Let S′ denote the
set of modified points. The modification ensures that the
points of S′ lie on the grid vertices when projected onto the
xy-plane. For every grid vertex p and every color c, we use
S′
p,c to denote the points of S′ that have color c and lie on p

when projected onto the xy-plane. The grid data structure
now consists of a number of linked lists, combined denoted
by Dg, and a number of query optimal Q(3, 2) structures by
Chazelle and Guibas [11] called D. Dg consists of a list on
the points in each S′

p,c, sorted by increasing z-coordinate.
D consists of a Q(3, 2) structure for each colorset L ∈ P ,
constructed on a set S′

L consisting of the points with the
smallest z-coordinate for every set S′

p,c with c ∈ L. Note
that |S′

L| = O(n|L|/t) = O(n|C|/t).
Space use: The combined size of the Q(3, 0) data struc-

tures is O(n) by Lemma 2. We claim that the grid data
structures take O(n) space as well. Clearly this is true
for Dg, as each point is stored only once. This is also
true for D since the Q(3, 2) data structure for S′

L takes
O(|S′

L| log2 |S′
L|) = O(n/|P|) space [11] and there are |P|

such sets. Thus, the space use, S(n), of the data structure
is given by the recurrance

S(n) = 2

√

n

t
S(

√
nt) +O(n), t = |C||P| log2 n.

This solves to S(n) = 2rO(n) where r is the number of re-
cursion steps. By Observation 1, after f∗(n) steps of recur-
sion the size of the subproblems are reduced to O(t log n) =
O(|C||P| log3 n). Note that in these subproblems the value
of t is O(|C||P| log2(|C||P| log3 n)). It is easily verified that
three more recursion steps reduce the size of the subproblem
to O(|C||P| log3/8 n logO(1)(|C||P| log n)) < (|C||P|)2√log n.
Thus, the number of recursions is bounded by r = log log n−
log log log n+O(1) and we get S(n) = O(n log n/ log log n).

(a) (b) (c) (d)

Figure 3: (a) The projection of the Q(3, 2) query on
the xy-plane. (b) The two vertical queries. (c) The
two horizontal queries. (d) The grid query.

Queries: Consider a query tuple (q, L). If the projection
of q on the xy-plane is completely contained in a horizon-
tal or vertical slab, then we answer the query recursively in
that slab; at the bottom of the recursions where the num-
ber of points is less than (|C||P|)2√log n we simply answer
the query brute-force. Otherwise, q can be decomposed into
two “vertical” Q(3, 1) queries (Figure 3(b)), two “horizon-
tal” Q(3, 1) queries (Figure 3(c)), and one “grid” query, qg,
(Figure 3(d)).

We use Dg to answer the grid query. Note that as the
grid query completely spans all the grid cells it intersects,
answering the grid query on S′ yields the same result as
answering it on S. We first query DL with qg . This takes
O(log n + k) time since all the reported points have colors
from L and are contained in qg. For every output point, we
go to the corresponding list in Dg , and traverse the list until
the z-coordinate of the points exceed that of qg . It is easy to
see that this procedure answers qg correctly in O(log n+ k)
time.

Now, consider a vertical Q(3, 1) query q1 (the horizontal
queries can be answered in a similar fashion). We answer q1
recursively on the corresponding slab. One step down in the
recursion, q1 will be decomposed into one vertical Q(3, 1)
query, two horizontal Q(3, 0) queries, and one grid query.
The grid query is answered as before, the Q(3, 0) queries
are answered using the Q(3, 0) data structures built in each
slab, and the Q(3, 1) query is answered recursively. Thus,
the query time for a Q(3, 1) query is given by the recurrance

Q(n) = Q(
√
nt) +O(|C| log log n+ log n)

which solves to Q(n) = O(|C|(log log n)2 + log n). Overall,
the query time is O(|C|(log log n)2+(|C||P|)2

√
log n+logn+

k) = O((|C||P|)2
√
log n + log n + k). Thus, we obtain the

following:

Theorem 1. There exists an O(n log n/ log log n) space
structure for the concurrent Q(3, 2) problem that answers
queries in O((|C||P|)2

√
log n+ log n+ k) time.

Corollary 1. There exists an O(n log n/ log log n) space
structure for the Q(3, 2) problem that can answer queries in
O(log n+ k) time. This is optimal.

Proof. A Q(3, 2) problem is a concurrent Q(3, 2) prob-
lem with |C| = |P| = 1 and thus the bounds follow from
Theorem 1. Since a data structure for Q(3, 2) problem
solves Q(2, 2), the optimality of the space bound follows
from [9].

2.2 Solving Q(3, 3) and Q(d, d)

Having solved the concurrent Q(3, 2) problem efficiently,
we can now obtain our efficient structures for theQ(3, 3) and

Q(d, d) problems in a simple way using the following lemma,
where QA,C,P(d, k) denotes a concurrent Q(d, k) problem.

Lemma 3. (Afshani et al. [2]) Assume for any S, C,A,
and P in which S is a set of n points in d-dimensional
space, C is a set of colors, A : S → C and P ⊂ 2C , that
there exists a data structure that solves the QA,C,P(d, k)
problem using S(n, |C|, |P|) space and with Q(n, |C|, |P|) +
O(k) query time. Then a QA′,C′,P′(d + 1, k + 1) problem
(respectively a QA′,C′,P′(d, k + 1) problem) can be solved

using O(
∑logα n

i=1 αiS(n/αi, |C′|α, |P ′|α)) space and with the
query time of O(logα n ·Q(n, |C′|α, |P ′|α) + k) (respectively
O(Q(n, |C′|α, |P ′|α) + k)) for any parameter α.

Theorem 2. There exists an O(n(log n/ log log n)2) space
data structure for the concurrent Q(3, 3) problem that can

answer queries in O((|C||P|)2 log3/4 n+ log n+ k) time.

Proof. Apply Lemma 3 with α = log1/16 n to Theo-
rem 1.

Corollary 2. There exists an O(n(log n/ log log n)2)
space structure for the orthogonal range reporting problem in
three-dimensional space that can answer queries in O(log n+
k) time. This is optimal.

Corollary 3. There exists an O(n(log n/ log log n)d−1)
space data structure for the orthogonal range reporting prob-
lem in d-dimensional space that can answer queries in
O(log n(log n/ log log n)d−3 + k) time.

Proof. We get a data structure with the claimed bounds
after d − 3 applications of Lemma 3 to Theorem 2 with
α = logε n for a sufficiently small constant ε > 0.

3. LOWER BOUND
In this section, we prove a query lower bound for the or-

thogonal range reporting problem in d dimensions. Like the
previous lower bounds, we use Chazelle’s general machinery
on the complexity of navigation in a pointer machine [9].
However, unlike the previous attempts, we apply the lower
bound techniques to the seemingly “dual” problem of point
enclosure, and obtain a query lower bound rather than a
space lower bound. Then we reduce point enclosure to or-
thogonal range reporting.

In the point enclosure problem, we are to preprocess a
set of axis-aligned boxes in d-dimensional space such that
we can report the boxes that contain a query point. Our
lower bound is inspired by the lower bound of Arge et al. [6]
for the 2-d point enclosure problem in the I/O-model. The
following theorem is the main result of this section.

Theorem 3. Any structure that solves the d-dimensional
point enclosure problem in the pointer machine model us-
ing S(n) space and with Q(n) +O(k) query time must have
Q(n) = Ω((log n/ log(S(n)/n))d−1).

To prove Theorem 3, we will use the following result.

Theorem 4. (Chazelle [9]) Consider a reporting problem
on a set S of n input elements and assume a data structure
of size S(n) achieves the query time of Q(n) + O(k) for
the problem where k is the output size. If there exists a set
Q ⊂ 2S such that

(i) for every q ∈ Q there exists a query that outputs q

(ii) for every q ∈ Q, |q| = Ω(Q(n))

(iii) for every two q1, q2 ∈ Q, |q1 ∩ q2| = O(1)

then S(n) = Ω(|Q|Q(n)).

In our proof, the input set S will be a set of boxes in d-
dimensional space, and each of the sets q ∈ Q, will be a set of
boxes corresponding to the output of a point enclosure query
on S for some query point p. With an abuse of notation, we
will refer to the elements of Q as queries. We thus prove our
lower bound by constructing two sets S and Q that satisfies
the conditions of Theorem 4.

Our input set and query set are almost identical to sev-
eral previous lower bound constructions for orthogonal range
reporting. However, we use different parameters and points
and boxes play different roles; boxes are the input and points
are the queries.

The input set. Let M,α and t be parameters that will
be fixed later. Consider a d-dimensional box B with side
lengths M . All the input boxes will have fixed volume of
αMd−1 and will be contained in B. For every combination of
indices i1, . . . , id−1 ∈ {1, . . . , ⌊(1/d) logt M⌋}, we build a box
of dimensions M/ti1 ×M/ti2 ×· · ·×M/tid−1 ×αti1+···+id−1

and place it in a set of boxes R. We refer to the set R as the
set of box types, and say that a box has type (i1, . . . , id−1) if
its dimensions equal that of the box in R constructed from
those indices. It is easy to see that |R| = Θ(logd−1

t M). Our
input set S is now obtained by selecting each type r ∈ R,
and then placing Θ(M/α) boxes of type r inside B. The
boxes are placed by tiling them from the lower corner of
B, so that the boxes of the same type are disjoint. Two
boxes of different type can intersect however. For simplicity,
we assume the boxes of each type completely cover B (this
assumption can be removed with more details).

The query set. The query set can be constructed through a
variety of techniques. Essentially, what we need is a point set
of size Θ(M) with the property that any orthogonal box that
contains k ≥ 2 points has volume Ω(kMd−1). Intuitively,
this models a point set placed uniformly at random inside B
as such a randomized point set will have this property “on
average” [9]. However, such a set can also be constructed
deterministically [10].
The number of boxes in the input set is Θ((M/α) logd−1

t M).
We thus have:

n = Θ((M/α) logd−1
t M). (C-1)

We are now ready assign values to M,α and t that satisfy
conditions (i) and (ii) of Theorem 4. Because of the tiling,
any given query point is contained in precisely Θ(logd−1

t M)
boxes, one for each type. To satisfy condition (i) of Theo-
rem 4, we therefore require that

logd−1
t M ≥ Q(n). (C-2)

Now consider two query points p1 and p2. To ensure
condition (ii) of Theorem 4, we need to select M,α and t
such that only a constant number of input boxes can con-
tain both p1 and p2. By the property of the point set, the
box b spanned by p1 and p2 has volume Ω(Md−1). Letting
w1 × w2 × · · · × wd be the dimensions of b, this translates
to Πd

i=1wi = Ω(Md−1). Clearly any input box that contains
both p1 and p2 must also contain b. Since only one box of

each type can contain b, we simply need to bound the maxi-
mum number of different types that can potentially contain
b. A box of type (i1, . . . , id−1) can contain b only if

M/tij ≥ wj for 1 ≤ j ≤ d− 1 and (1)

αti1+···+id−1 ≥ wd (2)

By multiplying all the inequalities of (1) we obtain that
Md−1/ti1+···+id−1 ≥ w1 . . . wd−1 = Ω(Md−1/wd), which re-
sults in the requirement wd = Ω(ti1+···+id−1). Combined
with (2) we get that a box of type (i1, . . . , id−1) can con-
tain b only if c1 · wd ≥ ti1+···+id−1 ≥ wd/α for some con-
stant c1. Thus there are only O(logt α) different values of
s := i1 + · · ·+ id−1 that satisfy (1) and (2), and these val-
ues are consecutive integers. By (1) we get that the lowest
value of s satisfying the requirements is obtained by letting
ij = ⌈logt(M/wj)⌉ for all j. It follows that ij must satisfy
logt(M/wj) ≤ ij ≤ logt(M/wj) + O(logt α), which means
the total number of different choices of indices, and thus
types possibly containing b, is bounded by O(logd−1

t α). To
satisfy condition (ii) of Theorem 4 we therefore must have

logd−1
t α = O(1). (C-3)

Any choice of parameters M,α and t that satisfy con-
ditions (C-1),(C-2), and (C-3) will give us a space lower
bound of Ω(|Q|Q(n)). To satisfy (C-3), we set t = α, to
satisfy (C-2) we pick α such that logd−1

α M = Q(n), and a
slightly more complicated formula gives a value for M that
satisfies (C-1). These values give the space lower bound of
Ω(|Q|Q(n)) = Ω(MQ(n)) = Ω(M logd−1

α M) = Ω(nα). It
can be easily verified that with this choice of parameters
logM = Θ(logn) and thus logd−1

α M = Θ(logd−1
α n); com-

bined with (C-2) this gives logd−1
α n = Θ(Q(n)). We solve

this for α and obtain that logα = Θ(log n/Q(n)1/(d−1)).
Substituting this value in the space lower bound we obtain
that

Q(n) = Ω





(

log n

log S(n)
n

)d−1


 .

This concludes the proof of Theorem 3.

Corollary 4. Any structure that solves the d-dimensional
orthogonal range reporting problem in the pointer machine
model using S(n) space and with Q(n) + O(k) query time

must have Q(n) = Ω((log n/ log(S(n)/n))⌊d/2⌋−1).

Proof. It is easy to see that d-dimensional point enclo-
sure reduces to (2 · d)-dimensional orthogonal range report-
ing: an input box [a1, b1] × · · · × [ad, bd] is mapped to an
input point (a1, b1, . . . , ad, bd) and a query point (q1, . . . , qd)
is mapped to a query box [−∞, q1]× [q1,∞]× . . . [−∞, qd]×
[qd,∞].

4. POINT LOCATION IN RECTILINEAR
SUBDIVISIONS

In this section we consider point location in d-dimensional
rectilinear subdivisions. We improve the bounds for this
problem using an approach similar to the one employed in
Section 2.

The input to the concurrent version of the problem is a
set S of n boxes in d dimensions and a color assignment
A : S → C. The color assignment has the property that all

the boxes mapped to the same color are disjoint. A query
consists of a point q and a set of colors L ⊆ C. The task is
to preprocess the input, such that given a query (q, L), we
can report the boxes r in S for which q ∈ r and A(r) ∈ L.
We use PA,C(d) to denote this problem.

First we solve the concurrent 2-d point location in recti-
linear subdivisions problem.

Lemma 4. There exists an O(n) space structure for PA,C(2)
that answers queries in O(|C|2 + log n) time.

Proof. We construct a linear-space 2-d point enclosure
data structure on all the input boxes [8]. To answer a query
(q, L), we query the point enclosure data structure with q.
This returns a set R of all boxes in S that contain q and
takes O(log n+|R|) time. We output each r ∈ R if A(r) ∈ L.
The total time is then bounded by O(|R||C| + log n). Since
the boxes with the same color are disjoint, at most one box
of each color can contain q, thus |R| ≤ |C| and the result
follows.

To obtain our high dimensinal point location data struc-
ture we need an analogous of Lemma 3. Let Xd+1 be a
sorted set containing the 2n values of the coordinates of the
last dimension of boxes in S. Build a balanced tree T of
fanout t on Xd+1 and associate each box r ∈ S with the
least common ancestor of the two leaf nodes containing the
coordinates of r in the last dimension. Thus, every node v
in T is associated with a set Sv ⊆ S of input boxes. We
project Sv into the first d dimensions and implement a data
structure for PAv ,Cv (d) on the projected points in which Av

and Cv are defined as follows: Let c1, . . . , ct be the children
of v. Define Cv = C × {1, . . . , t} × {1, . . . , t}, and for a box
r ∈ Sv, we define Av(r) = (A(r), i, j), in which where i is
the index of the child whose subtree contains the smallest of
r’s coordinates in the last dimension, and j is the index of
the child containing the largest.

Answering Queries. Let (q, L) be a PA,C(d+1) query. We
start out at the root node v in T , and compute the index i of
the child ci of v containing the last coordinate of q. We then
query the PAv ,Cv (d) data structure stored in v with (q′, L′)
as the query, in which L′ = L × {1, . . . , i} × {i, . . . , t} and
q′ is the projection of q onto the first d dimensions. This
returns a set R ⊆ Sv of boxes. For each box r ∈ R, we
check whether q is inside r in the last dimension, and if so
we report r. Finally, we recurse on child ci.

Analysis. First we argue that our color assignments satisfy
the disjointness requirement: Consider two d-dimensional
boxes r1 and r2 in Sv such that Av(r1) = Av(r2) = (c, i, j).
Let r′1 and r′2 be the (d + 1)-dimensional boxes whose pro-
jection onto the first d dimensions is r1 and r2, respectively.
Since A(r′1) = A(r′1) = c, we know r′1 and r′2 are disjoint.
Furthermore, in the last dimension, both r′1 and r′2 contain
the coordinate separating ci and ci+1. This implies r1 and
r2 are disjoint. That the query algorithm returns the correct
boxes when querying for (q, L) follows from the definition of
(q′, L′). Thus, we get the following lemma.

Lemma 5. Assume for any S, C, and A there exists a data
structure that solves PA,C(d + 1) using S(n, |C|) space and
with Q(n, |C|) query time. Then, PA′,C′(d+1) can be solved
using S(n, |C′|α) space and with the query time of O(logα n ·
Q(n, |C′|α)) for any parameter α.

Combining Lemma 5 and Lemma 4 gives us the following
result.

Theorem 5. There exists an O(n) space data structure
for point location in d-dimensional rectilinear subdivisons
that answers queries in O(log n(log n/ log log n)d−2) time.

Proof. We get a data structure with the claimed bounds
after d − 2 applications of Lemma 5 to Lemma 4 with α =
logε n for a sufficiently small constant ε > 0.

5. CONCLUSION
In this paper we described a space optimal pointer ma-

chine data structure for 3-d orthogonal range reporting that
answers queries in O(log n+ k) time. We also described im-
proved higher-dimensional structure and gave the first non-
trivial query lower bound for the problem. One important
implication of our results is that the optimal query bound
increases from O(log n+k) to Ω((log n/ log log n)2+k) some-
where between three and six dimensions. One intriguing
open problem is of course to pinpoint the dimension where
the optimal query bound jumps. We conjecture that it hap-
pens in four dimensions. Our query upper bound increases
by a log n/ log log n factor every dimension while the increase
in the lower bound happens every other dimension. Another
interesting question is therefore which of the two is closer to
the behavior of the optimal query bound. In this context, it
is worth noting that many other bounds in computational
geometry, such as the worst case convex hull complexity,
and halfspace range reporting query bounds, increase every
other dimension.

6. REFERENCES
[1] P. Afshani. On dominance reporting in 3D. In Proc.

European Symposium on Algorithms, pages 41–51,
2008.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In
Proc. IEEE Symposium on Foundations of Computer
Science, pages 149–158, 2009.

[3] P. K. Agarwal. Range searching. In J. E. Goodman
and J. O’Rourke, editors, CRC Handbook of Discrete
and Computational Geometry. CRC Press, Inc., 2004.

[4] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle,
E. Goodman, and R. Pollack, editors, Discrete and
Computational Geometry: Ten Years Later.
Mathematical Society Press, 1997.

[5] S. Alstrup, G. S. Brodal, and T. Rauhe. New data
structures for orthogonal range searching. In Proc.
41st Annual Symposium on Foundations of Computer
Science, pages 198–207, 2000.

[6] L. Arge, V. Samoladas, and K. Yi. Optimal external
memory planar point enclosure. In Proc. European
Symposium on Algorithms, LNCS 3221, pages 40–52,
2004.

[7] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis.
New results on intersection query problems. The
Computer Journal, 40:22–29, 1997.

[8] B. Chazelle. Filtering search: a new approach to
query-answering. SIAM J. Comput., 15(3):703–724,
1986.

[9] B. Chazelle. Lower bounds for orthogonal range
searching: I. the reporting case. Journal of the ACM,
37(2):200–212, Apr. 1990.

[10] B. Chazelle. Lower bounds for off-line range searching.
In STOC ’95: Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing,
pages 733–740, New York, NY, USA, 1995. ACM.

[11] B. Chazelle and L. J. Guibas. Fractional cascading:
II.Applications. Algorithmica, 1:163–191, 1986.

[12] H. Edelsbrunner, G. Haring, and D. Hilbert.
Rectangular point location in d dimensions with
applications. The Computer journal, 29:76–82, 1986.

[13] M. Karpinski and Y. Nekrich. Space efficient
multi-dimensional range reporting. In COCOON ’09:
Proceedings of the 15th Annual International
Conference on Computing and Combinatorics, pages
215–224, 2009.

[14] C. Makris and A. Tsakalidis. Algorithms for
three-dimensional dominance searching in linear space.
Information Processing Letters, 66(6):277 – 283, 1998.

[15] J. Matoušek. Reporting points in halfspaces.
Computational Geometry: Theory and Applications,
2(3):169–186, 1992.

[16] R. E. Tarjan. A class of algorithms that require
nonlinear time to maintain disjoint sets. Journal of
Computer and System Sciences, 18:110–127, 1979.

