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Abstract

Sorting extremely large datasets is a frequently occuring task in practice. These datasets
are usually much larger than the computer’s main memory; thus external memory sorting algo-
rithms, first introduced by Aggarwal and Vitter [2] (1988), are often used. The complexity of
comparison based external memory sorting has been understood for decades by now, however
the situation remains elusive if we assume the keys to be sorted are integers. In internal memory,
one can sort a set of n integer keys of Θ(lg n) bits each in O(n) time using the classic Radix Sort
algorithm, however in external memory, there are no faster integer sorting algorithms known
than the simple comparison based ones. Whether such algorithms exist has remained a central
open problem in external memory algorithms for more than three decades.

In this paper, we present a tight conditional lower bound on the complexity of external
memory sorting of integers. Our lower bound is based on a famous conjecture in network
coding by Li and Li [15], who conjectured that network coding cannot help anything beyond
the standard multicommodity flow rate in undirected graphs.

The only previous work connecting the Li and Li conjecture to lower bounds for algorithms
is due to Adler et al. [1]. Adler et al. indeed obtain relatively simple lower bounds for oblivious
algorithms (the memory access pattern is fixed and independent of the input data). Unfortu-
nately obliviousness is a strong limitations, especially for integer sorting: we show that the Li
and Li conjecture implies an Ω(n lg n) lower bound for internal memory oblivious sorting when
the keys are Θ(lg n) bits. This is in sharp contrast to the classic (non-oblivious) Radix Sort
algorithm. Indeed going beyond obliviousness is highly non-trivial; we need to introduce several
new methods and involved techniques, which are of their own interest, to obtain our tight lower
bound for external memory integer sorting.
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1 Introduction

Sorting is one of the most basic algorithmic primitives and has attracted lots of attention from the
beginning of the computing era. Many classical algorithms have been designed for this problem
such as Merge Sort, Bubble Sort, Insertion Sort, etc. As sorting extremely large data has become
essential for many applications, there has been a strong focus on designing more efficient algorithms
for sorting big datasets [2]. These datasets are often much larger than the computer’s main memory
and the performance bottleneck changes from the being the number of CPU instructions executed,
to being the number of accesses to slow secondary storage. In this external memory setting,
one usually uses the external memory model to analyse the performance of algorithms. External
memory algorithms are designed to minimize the number of input/output (I/O)s between the
internal memory and external memory (e.g. hard drives, cloud storage, etc.), and we measure the
complexity of an algorithm in terms of the number of I/Os it performs.

Formally, the external memory model consists of a main memory that can hold M words of w
bits each (the memory has a total of m = Mw bits), and an infinite (random access) disk partitioned
into blocks of B consecutive words of w bits each (a block has a total of b = Bw bits). The input
to an external memory algorithm is initially stored on disk and is assumed to be much larger than
M . An algorithm can then read blocks into memory, or write blocks to disk. We refer jointly to
these two operations as an I/O. The complexity of an algorithm is measured solely in terms of the
number of I/Os it makes.

Aggarwal and Vitter [2] considered the sorting problem in the external memory model. A
simple modification to the classic Merge Sort algorithm yields a comparison based sorting algo-
rithm that makes O((n/B) lgM/B(n/B)) I/Os for sorting an array of n comparable records (each
storable in a word of w bits). Notice that O(n/B) would correspond to linear I/Os, as this is the
amount of I/Os needed to read/write the input/output. Aggarwal and Vitter [2] complemented
their upper bound with a matching lower bound, showing that comparison based external mem-
ory sorting algorithms must make Ω((n/B) lgM/B(n/B)) I/Os. In the same paper, Aggarwal and
Vitter also showed that any algorithm treating the keys as indivisible atoms, meaning that keys
are copied to and from disk blocks, but never reconstructed via bit tricks and the like, must make
Ω(min{n, (n/B) lgM/B(n/B)}) I/Os. This lower bound does not assume a comparison based al-
gorithm, but instead makes an indivisibility assumption. Notice that the lower bound matches
the comparison based lower bound for large enough B (B > lg n suffices). The comparison and
indivisibility settings have thus been (almost) fully understood for more than three decades.

However, if the input to the sorting problem is assumed to be w bit integers and we allow
arbitrary manipulations of the integers (hashing, XOR tricks etc.), then the situation is completely
different. In the standard internal memory computational model, known as the word-RAM, one
can design integer sorting algorithms that far outperform comparison based algorithms regardless
of w. More concretely, if the word size and key size is w = Θ(lg n), then Radix Sort solves the
problem in O(n) time, and for arbitrary w, one can design sorting algorithms with a running time of
O(n
√

lg lg n) in the randomized case [8] and O(n lg lgn) in the deterministic case [7] (both bounds
assume that the word size and key size are within constant factors of each other). In external
memory, no integer sorting algorithms faster than the comparison based O((n/B) lgM/B(n/B))
bound are known! Whether faster integer sorting algorithms exist was posed as an important open
problem in the original paper by Aggarwal and Vitter [2] that introduced the external memory
model. Three decades later, we still do not know the answer to this question.

In this paper, we present tight conditional lower bounds for external memory integer sorting
via a central conjecture by Li and Li [15] in the area of network coding. Our conditional lower
bounds show that it is impossible to design integer sorting algorithms that outperform the optimal
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comparison based algorithms, thus settling the complexity of integer sorting under the conjecture
by Li and Li.

1.1 Network Coding

The field of network coding studies the following communication problem over a network: Given
a graph G with capacity constraints on the edges and k data streams, each with a designated
source-sink pair of nodes (si, ti) in G, what is the maximum rate at which data can be transmitted
concurrently between the source-sink pairs? A simple solution is to forward the data as indivisible
packages, effectively reducing the problem to Multicommodity Flow (MCF). The key question in
network coding, is whether one can achieve a higher rate by using coding/bit-tricks. This question
is known to have a positive answer in directed graphs, where the rate increase may be as high as a
factor Ω(|G|) (by sending XOR’s of carefully chosen input bits), see e.g. [1]. However the question
remains wide open for undirected graphs where there are no known examples for which network
coding can do anything better than the Multicommodity Flow rate. The lack of such examples
resulted in the following central conjecture in network coding:

Conjecture 1 (Undirected k-pairs Conjecture [15]) The coding rate is equal to the Multi-
commodity Flow rate in undirected graphs.

Despite the centrality of this conjecture, it has so forth resisted all attempts at either proving or
refuting it. Adler et al. [1] made an exciting connection between the conjecture and lower bounds
for algorithms. More concretely, they proved that if Conjecture 1 is true, then one immediately
obtains non-trivial lower bounds for all of the following:

• Oblivious external memory algorithms.

• Oblivious word-RAM algorithms.

• Oblivious two-tape Turing machines.

In the above, oblivious means that the memory access pattern of the algorithm (or tape moves of
the Turing machine) is fixed and independent of the input data. Thus proving Conjecture 1 would
also give the first non-trivial lower bounds for all these classes of algorithms. One can view this
connection in two ways: Either as exciting conditional lower bounds for (restricted) algorithms, or
as a strong signal that proving Conjecture 1 will be very difficult.

In this paper, we revisit these complexity theoretic implications of Conjecture 1. Our results
show that the restriction to oblivious algorithms is unnecessary. In more detail, we show that
Conjecture 1 implies non-trivial (and in fact tight) lower bounds for external memory sorting of
integers and for external memory matrix transpose algorithms. We also obtain tight lower bounds
for word-RAM sorting algorithms when the word size is much larger than the key size, as well
as tight lower bounds for transposing a b × b matrix on a word-RAM with word size b bits. The
striking thing is that our lower bounds hold without any extra assumptions such as obliviousness,
indivisibility, comparison-based or the like. Thus proving Conjecture 1 is as hard as proving super-
linear algorithm lower bounds in the full generality word-RAM model, a barrier far beyond current
lower bound techniques! Moreover, we show that the assumption from previous papers about
algorithms being oblivious makes a huge difference for integer sorting: We prove an Ω(n lg n) lower
bound for sorting Θ(lg n) bit integers using an oblivious word-RAM algorithm with word size
Θ(lg n) bits. This is in sharp contrast to the classic (non-oblivious) Radix Sort algorithm, which
solves the problem in O(n) time. Thus the previous restriction to oblivious algorithms may be very
severe for some problems.
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1.2 Lower Bounds for Sorting

Our main result for external memory integer sorting is the following connection to Conjecture 1:

Theorem 2 Assuming Conjecture 1, any randomized algorithm for the external memory sorting
problem with w = Ω(lg n) bit integers, having error probability at most 1/3, must make an expected

Ω
(

min
{
n,
n

B
· lg2M/B

n

B

})
I/Os.

Thus if we believe Conjecture 1, then even for randomized algorithms, there is no hope of
exploiting integer input to improve over the simple external memory comparison based algorithms
(when B ≥ lg n such that the latter term in the lower bound is the min).

Now observe that since our lower bound only counts I/Os, the lower bound immediately holds
for word-RAM algorithms when the word size is some b = Ω(lg n) by setting m = O(b) and B = b/w
in the above lower bound (the CPU’s internal state, i.e. registers, can hold only a constant number
of words). Thus we get the following lower bound:

Corollary 3 Assuming Conjecture 1, any randomized word-RAM algorithm for sorting w = Ω(lg n)
bit integers, having error probability at most 1/3 and word size b ≥ w bits, must spend

Ω
(

min
{
n,
nw

b
· lg nw

b

})
time.

We note that the a standard assumption in the word-RAM is a word size and key size of b, w =
Θ(lg n) bits. For that choice of parameters, our lower bound degenerates to the trivial t = Ω(n).
This has to be the case, as Radix Sort gives a matching upper bound. Nonetheless, our lower bound
shows that when the key size is much smaller than the word size, one cannot sort integers in linear
time (recall linear is O(nw/b) as this is the time to read/write the input/output).

Finally, we show that the obliviousness assumption made in the previous paper by Adler et al. [1]
allows one to prove very strong sorting lower bounds that even surpass the known (non-oblivious)
Radix Sort upper bound:

Theorem 4 Assuming Conjecture 1, any oblivious randomized word-RAM algorithm for sorting
Θ(lg n) bit integers, having error probability at most 1/3 and word size Θ(lg n), must spend Ω(n lg n)
time.

Thus at least for the natural problem of integer sorting, being oblivious has a huge impact on the
possible performance of algorithms. Our results are therefore not just an application of the previous
technique to a new problem, but a great strengthening. Moreover, as we discuss in Section 3,
removing the obliviousness assumption requires new and deep ideas that result in significantly
more challenging lower bound proofs.

1.3 Lower Bounds for Matrix Transpose

We also reprove an analog of the lower bounds by Adler et al. [1] for the matrix transpose problem,
this time without any assumptions of obliviousness. In the matrix transpose problem, the input is
an n×n matrix A with w-bit integer entries. The matrix is given in row-major order, meaning that
each row of A is stored in n/B blocks of B consecutive entries each. The goal is to compute AT ,
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i.e. output the column-major representation of A which stores n/B disk blocks for each column of
A, each containing a consecutive range of B entries from the column.

Based on Conjecture 1, Adler et al. [1] proved an Ω(B lgB) lower bound on the number of I/Os
needed for this problem when n = B, assuming that M = 2B and that the algorithm is oblivious.
We strengthen the lower bound to the following:

Theorem 5 Assuming Conjecture 1, any randomized algorithm for the external memory matrix
transpose problem with w bit integer entries, having error probability at most 1/3, must make an
expected

Ω

(
min

{
n2 lg2M/B B

B
,

n2w

lg(n2w)

})
I/Os.

Notice that the first term in the min corresponds to their lower bound when n = B (they have
M = 2B), but our new lower bound does not require the algorithm to be oblivious (and allows
randomization). It is unclear whether the second term in the min is just an artifact of our proof,
but we remark that it can only be the minimum when B is very small.

Consider now the matrix transpose problem on the word-RAM with word size b bits (and thus
memory size m = O(b)). Given an n × n matrix A with w-bit integer entries, the lower bound in
Theorem 5 implies (by setting B = b/w):

Corollary 6 Assuming Conjecture 1, any randomized word-RAM algorithm for computing the
transpose of an n× n matrices with w-bit integer entries, having error probability at most 1/3 and
word size b bits, must spend

Ω

(
min

{
n2w lg(b/w)

b
,

n2w

lg(n2w)

})
time.

The above corollary in particular implies that for b × b bit matrices and word size b bits, one
needs Ω(b lg b) time to transpose, whereas linear time would have been O(b) as this is the time to
read/write the input/output.

1.4 Other Related Work

Proving lower bounds for external memory algorithms and data structures without assumptions
such as indivisibility and comparison based has been the focus of a number of recent papers. Quite
surprisingly, Iacono and Pătraşcu [11] showed that for the dictionary problem, one can indeed
exploit integer input to beat the comparison based bounds. This is in sharp contrast to our new
results for integer sorting. Iacono and Pătraşcu [11] complemented their upper bound by a matching
unconditional lower bound proved in a version of the cell probe model of Yao [18] adapted to the
external memory setting. Their lower bound improved over previous work by Yi and Zhang [19]
and Verbin and Zhang [17]. In other very recent work, Jiang and Larsen [13] showed how to exploit
integer input to develop external memory priority queues with DecreaseKeys that outperform their
comparison based counterparts. Their upper bound almost matches an unconditional lower bound
by Eenberg et al. [6] (also proved in the cell probe model).

Another active line of research has studied the benefits of network coding over the traditional
routing-based solutions. Research on the network coding started by the work of Ahlswede et al.
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[3]. They provided some examples which represent the benefits of network coding in the directed
graphs. Later, the benefit of network coding in directed graph is considered in a sequence of works
[14, 9, 10]. It is known that there exists a family of directed graphs G in which the gap between
the coding rate and the MCF rate could be as large as Ω(|G|).

Unlike directed graphs, it is conjectured by Li and Li [15] (Conjecture 1) that in undirected
graphs, the coding rate is equal to the MCF rate. Despite the persistent effort, this conjecture has
been remained open for almost two decades. However, it has been shown that the conjecture holds
in various classes of graphs. Specifically, it is known that the conjecture holds when the sparsity of
the graph is equal to the MCF rate. Additionally, it is known that the coding rate cannot exceed
the flow rate by more than a factor lg |G|. This follows by relating the flow rate and coding rate
to the sparsest cut. Other work by [9, 12] showed the correctness of the conjecture for an infinite
family of bipartite graphs. Also, in a recent paper by Braverman et al. [5], it is shown that if there
is a graph where the coding rate exceeds the flow rate by a factor of (1 + ε) for any constant ε > 0,
then one can find an infinite family of graphs {G} where the gap is a factor of (lg |G|)c, where
0 < c < 1 is a positive constant. It is also worth mentioning that a study by Li et al. [16] gives
empirical support for the conjecture and the paper [20] uses exhaustive computer search to prove
the conjecture for networks of up to six nodes.

2 Preliminaries

We now give a formal definition of the k-pairs communication problem and the Multicommodity
Flow problem.

k-pairs communication problem. To keep the definition as simple as possible, we restrict
ourselves to directed acyclic communication networks/graphs and we assume that the demand
between every source-sink pair is the same. This will be sufficient for our proofs. For a more
general definition, we refer the reader to [1].

The input to the k-pairs communication problem is a directed acyclic graph G = (V,E) where
each edge e ∈ E has a capacity c(e) ∈ R+. There are k sources s1, . . . , sk ∈ V and k sinks
t1, . . . , tk ∈ V . Typically there is also a demand di between each source-sink pair, but for simplicity
we assume di = 1 for all pairs. This is again sufficient for our purposes.

Each source si receives a message Ai from a predefined set of messages A(i). It will be convenient
to think of this message as arriving on an in-edge. Hence we add an extra node Si for each source,
which has a single out-edge to si. The edge has infinite capacity.

A network coding solution specifies for each edge e ∈ E an alphabet Γ(e) representing the set
of possible messages that can be sent along the edge. For a node v ∈ V , define In(u) as the set of
in-edges at u. A network coding solution also specifies, for each edge e = (u, v) ∈ E, a function
fe :

∏
e′∈In(u) Γ(e′)→ Γ(e) which determines the message to be sent along the edge e as a function

of all incoming messages at node u. Finally, a network coding solution specifies for each sink ti
a decoding function σi :

∏
e∈In(ti) Γ(e) → M(i). The network coding solution is correct if, for all

inputs A1, . . . , Ak ∈
∏
iA(i), it holds that σi applied to the incoming messages at ti equals Ai, i.e.

each source must receive the intended message.
In an execution of a network coding solution, each of the extra nodes Si starts by transmitting

the message Ai to si along the edge (Si, si). Then, whenever a node u has received a message ae
along all incoming edges e = (v, u), it evaluates fe′(

∏
e∈In(u) ae) on all out-edges and forwards the

message along the edge e′.
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Following Adler et al. [1] (and simplified a bit), we define the rate of a network coding solution
as follows: Let each source receive a uniform random and independently chosen message Ai from
A(i). For each edge e, let Ae denote the random variable giving the message sent on the edge e
when executing the network coding solution with the given inputs. The network coding solution
achieves rate r if:

• H(Ai) ≥ rdi = r for all i.

• For each edge e ∈ E, we have H(Ae) ≤ c(e).

Here H(·) denotes binary Shannon entropy. The intuition is that the rate is r, if the solution can
handle upscaling the entropy of all messages by a factor r compared to the demands.

Multicommodity Flow. A multicommodity flow problem in an undirected graph G = (V,E)
is specified by a set of k source-sink pairs (si, ti) of nodes in G. We say that si is the source
of commodity i and ti is the sink of commodity i. Each edge e ∈ E has an associated capacity
c(e) ∈ R+. In addition, there is a demand di between every source-sink pair. For simplicity, we
assume di = 1 for all i as this is sufficient for our needs.

A (fractional) solution to the multicommodity flow problem specifies for each pair of nodes (u, v)
and commodity i, a flow fi(u, v) ∈ [0, 1]. Intuitively fi(u, v) specifies how much of commodity i
that is to be sent from u to v. The flow satisfies flow conservation, meaning that:

• For all nodes u that is not a source or sink, we have
∑

w∈V fi(u,w)−∑w∈V fi(w, u) = 0.

• For all sources si, we have
∑

w∈V fi(si, w)−∑w∈V fi(w, si) = 1.

• For all sinks we have
∑

w∈V fi(w, ti)−
∑

w∈V fi(ti, w) = 1.

The flow also satisfies that for any pair of nodes (u, v) and commodity i, there is only flow in one
direction, i.e. either fi(u, v) = 0 or fi(v, u) = 0. Furthermore, if (u, v) is not an edge in E, then
fi(u, v) = fi(v, u) = 0. A solution to the multicommodity flow problem achieves a rate of r if:

• For all edges e = (u, v) ∈ E, we have r ·∑i di(fi(u, v)+fi(v, u)) = r ·∑i(fi(u, v)+fi(v, u)) ≤
c(e).

Intuitively, the rate is r if we can upscale the demands by a factor r without violating the capacity
constraints.

The Undirected k-pairs Conjecture. Conjecture 1 implies the following for our setting: Given
an input to the k-pairs communication problem, specified by a directed acyclic graph G with edge
capacities and a set of k source-sink pairs with a demand of 1 for every pair, let r be the best
achievable network coding rate for G. Similarly, let G′ denote the undirected graph resulting from
making each directed edge in G undirected (and keeping the capacities, source-sink pairs and a
demand of 1 between every pair). Let r′ be the best achievable flow rate in G′. Conjecture 1
implies that r ≤ r′.

Having defined coding rate and flow rate formally, we also mention that the result of Braverman
et al. [5] implies that if there exists a graph G where the network coding rate r, and the flow rate
r′ in the corresponding undirected graph G′, satisfies r ≥ (1 + ε)r′ for a constant ε > 0, then there
exists an infinite family of graphs {G∗} for which the corresponding gap is at least (lg |G∗|)c for a
constant c > 0. So far, all evidence suggest that no such gap exists, as formalized in Conjecture 1.
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3 Proof Overview

In this section, we give an overview of the main ideas in our proof and explain the barriers we
overcome in order to remove the assumption of obliviousness. To prove our lower bound for external
memory sorting, we focus on the easier problem of permuting. In the permutation problem, we are
given an array A of n entries. The i’th entry of A stores a w-bit data item di and a destination
π(i). The destinations π(i) form a permutation π of {1, . . . , n}. The goal is to produce the output
array C where di is stored in entry C[π(i)]. The arrays A and C are both stored in disk blocks,
such that each disk block of A stores (lg n + w)/b entries, and each disk block of C stores w/b
entries (the maximum number of entries that can be packed in a block). A sorting algorithm that
can sort (lg n+w) bit integer keys can be used to solve the permutation problem by replacing each
entry (π(i), di) with the integer π(i) · 2w + di (in the addition, we think of di as an integer in [2w]).
Thus it suffices to prove lower bounds for permuting.

Consider now an algorithm A for permuting, and assume for simplicity that it is deterministic
and always correct. As in the previous work by Adler et al. [1], we define a graph G(A) that captures
the memory accesses of A on an input array A. The graph G has a node for every block in the input
array, a node for every block in the output and a node for every intermediate block written/read by
A. We call these block nodes. Moreover, the graph has a memory node that represent the memory
state of A. The idea is that whenever A reads a block into memory, then we add a directed edge
from the corresponding block node to the memory node. When A writes to a block, we create a new
node (that replaces the previous version of the block) and add a directed edge from the memory
node to the new node. The algorithm A can now be used to send messages between input and
output block nodes as follows: Given messages X1, . . . , Xn of w bits each and an intended output
block node (storing C[π(i)]) for each message i, we can transmit the message Xi from the input
block node representing the array entry A[i] to the output block node representing the array entry
C[π(i)] simply by simulating the algorithm A: Each block node of the network always forward any
incoming message to the memory node along its outgoing edge. The memory node thus receives the
contents of all blocks that it ever reads. It can therefore simulate A. Whenever it performs a write
operation, it sends the contents along the edge to the designated block node. By the correctness
of A, this results in every output block node knowing the contents of all array entries C[π(i)] that
should be stored in that output block. Examining this simulation, we see that we need a capacity
of b bits on all edges for the simulation to satisfy capacity constraints. Moreover, by the definition
of network coding rate (Section 2), we see that the coding rate is w bits.

The idea is that we want to use Conjecture 1 to argue that the graph G must be large (i.e.
there must be many I/Os). To do so, we would like to argue that if we undirect G, then there
is a permutation π such that for many pairs A[i] and C[π(i)], there are no short paths between
the block nodes storing A[i] and C[π(i)]. If we could argue that for n/2 pairs (A[i], C[π(i)]),
there must be a distance of at least ` steps in the undirected version of G, then to achieve a
flow rate of w, it must be the case that the sum of capacities in G is at least `wn/2. But each
I/O adds only 2b bits of capacity to G. Thus if A makes t I/Os, then it must be the case that
tb = Ω(`wn)⇒ t = Ω((nw/b) · `) = Ω((n/B) · `).

Unfortunately, we cannot argue that there must be a long path between many pairs in the
graph G we defined above. The problem is that the memory node is connected to all block nodes
and thus the distance is never more than 2. To fix this, we change the definition of G slightly:
After every m/b I/Os, we deactivate the memory node and create a new memory node to replace
it. Further I/Os insert edges to and from this new memory node. In order for the new memory
node to continue the simulation of A, the new memory node needs to know the memory state of
A. Hence we insert a directed edge from the old deactivated memory node to the new memory
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node. The edge has capacity m bits. Thus in the simulation, when the current memory node has
performed m/b I/Os, it forwards the memory state of A to the next memory node who continues
the simulation. The m/b I/Os between the creation of new memory nodes has been chosen such
that the amortized increase in capacity due to an I/O remains O(b).

We have now obtained a graph G where the degrees of all nodes are bounded by 2m/b. Thus for
every node G, there are at most (2m/b)` nodes within a distance of `. Thus intuitively, a random
permutation π should have the property that for most pairs (A[i], C[π(i)]), there will be a distance
of ` = Ω(lg2m/b n/B) between the corresponding block nodes. This gives the desired lower bound
of t = Ω((n/B) · `) = Ω((n/B) · lg2m/b n/B).

If we had assumed that the algorithm A was oblivious as in previous work, we would actually
be done by now. This is because, under the obliviousness assumption, the graph G will be the
same for all input arrays. Thus one can indeed find the desired permutation π where there is
a large distance between most pairs (A[i], C[π(i)]). Moreover, all inputs corresponding to that
permutation π and data bit strings d1, . . . , dn can be simulated correctly using A and the graph G.
Hence one immediately obtains a network coding solution. However, when A is not constrained to
be oblivious, there can be a large number of distinct graphs G resulting from the execution of A.

To overcome this barrier, we first argue that even though there can be many distinct graphs,
the number of such graphs is still bounded by roughly (nw/b + t)t (each I/O chooses a block to
either read or write and there are t I/Os). This means that for t = o(n), one can still find a
graph G that is the result of running A on many different input arrays A. We can then argue that
amongst all those inputs A, there are many that all correspond to the same permutation π, and
that permutation π has the property from before that, for most pairs (A[i], C[π(i)]), there will be
a distance of ` = Ω(lg2m/b n/B) between the corresponding block nodes. Thus we would like to fix
such a permutation and use A to obtain a network coding solution. The problem is that we can
only argue that there are many data bit strings d1, . . . , dn that together with π result in an array A
for which A uses the graph G. Thus we can only correctly transmit a large collection of messages,
not all messages. Let us call this collection F ⊆ {{0, 1}w}n and let us assume |F| ≥ 2nw−o(nw).
Intuitively, if we draw a uniform random input from F , then we should have a network coding
solution with a rate of w−o(w). The problem is, that the definition of network coding requires the
inputs to the nodes to be independent. Thus we cannot immediately say that we have a network
coding solution with rate w − o(w) by solving a uniform random input from F . To remedy this,
we instead take the following approach: We let each data bit string di be a uniform random and
independently chosen w-bit string. Thus if we can solve the network coding problem with these
inputs, then we indeed have a network coding solution. We would now like to find an efficient
way of translating the bit strings d1, . . . , dn to new bit strings d′1, . . . , d

′
n with d′1, . . . , d

′
n ∈ F . The

translation should be such that each input block node can locally compute the d′i, and the output
block nodes should be able to revert the transformation, i.e. compute from d′i the original bit string
di. To achieve this, we need to modify G a bit. Our idea is to introduce a coordinator node that
can send short descriptions of the mappings between the dis and d′is. We accomplish this via the
following lemma that we prove in Section 4.1:

Lemma 7 Consider a communication game with a coordinator u, a set F ⊆ {0, 1}nw and n players.
Assume |F| ≥ 2nw−r for some r. The coordinator receives as input n uniform random bit strings
Xi of w bits each, chosen independently of the other Xj. The coordinator then sends a prefix-free
message Ri to the i’th player for each i. From the message Ri alone (i.e. without knowing Xi),
the i’th player can then compute a vector τi ∈ {0, 1}w with the property that the concatenation
q := (τ1 ⊕X1) ◦ (τ2 ⊕X2) ◦ · · · ◦ (τn ⊕Xn) satisfies q ∈ F , where ⊕ denotes bit wise XOR. There
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exists such a protocol where ∑
i

E[|Ri|] = O
(
n+
√
nwr lg(nw/r)

)
.

In particular, if r = o(nw) and w = ω(1) then the communication satisfies:∑
i

E[|Ri|] = o(nw).

We use the lemma as follows: We create a coordinator node u that is connected to all input block
nodes and all output block nodes. In a simulation of A, the input block nodes start by transmitting
their inputs to the coordinator node u. The coordinator then computes the messages in the lemma
and sends Ri back to the input block node storing A[i] as well as to the output block node storing
the array entry C[π(i)]. The input block nodes can now compute d′i = τi ⊕ di to obtain an input
d′1, . . . , d

′
n ∈ F . We can then run the algorithm A since this is an input that actually results in the

graph G. Finally, the output block nodes can revert the mapping by computing di = τi ⊕ d′i. Thus
what the lemma achieves, is an efficient way of locally modifying the inputs of the nodes, so as to
obtain an input for which the algorithm A works. We find this contribution very novel and suspect
it might have applications in other lower bound proofs.

The introduction of the node u of course allows some flow to traverse paths not in the original
graph G. Thus we have to be careful with how we set the capacities on the edges to and from u.
We notice that edges from the input nodes to u need only a capacity of w bits per array entry (they
send the inputs), and edges out of u need E[|Ri|] capacity for an input di (one such edge to the
input block node for array entry A[i] and one such edge to the output block node for array entry
C[π(i)]). The crucial observation is that any flow using the node u as an intermediate node, must
traverse at least two edges incident to u. Hence only (nw + 2

∑
i E[|Ri|])/2 flow can traverse such

paths. If |F| ≥ 2nw−o(nw) then Lemma 7 says that this is no more than nw/2 + o(nw) flow. There
therefore remains nw/2 − o(nw) flow that has to traverse the original length ` = Ω(lg2m/b n/B)
paths and the lower bound follows.

One may observe that our proof uses the fact that the network coding rate is at most the flow
rate in a strong sense. Indeed, the introduction of the node u allows a constant fraction of the flow
to potentially use a constant length path. Thus it is crucial that the network coding rate r and
flow rate r′ is conjectured to satisfy r ≤ r′ and not e.g. r ≤ 3r′. Indeed we can only argue that
a too-good-to-be-true permutation algorithm yields a graph in which r ≥ ar′ for some constant
a > 1. However, as pointed out in Section 1.4, Braverman et al. [5] recently proved that if there is a
graph where r ≥ (1+ε)r′ for a constant ε > 0, then there is an infinite family of graphs {G′} where
the gap is Ω((lg |G′|)c) for a constant c > 0. Thus a too-good-to-be-true permutation algorithm
will indeed give a strong counter example to Conjecture 1.

Our proof of Lemma 7 is highly non-trivial and is based on the elegant proof of the
√
IC bound

by Barak et al. [4] for compressing interactive communication under non-product distributions.
Our main idea is to argue that for a uniform random bit string in {0, 1}nw (corresponding to the
concatenation X = X1 ◦ · · · ◦Xn of the Xi’s in the lemma), it must be the case that the expected
Hamming distance to the nearest bit string Y in F is O(

√
nwr). The coordinator thus finds Y and

transmits the XOR X ⊕ Y to the players. The XOR is sparse and thus the message can be made
short by specifying only the non-zero entries. Proving that the expected distance to the nearest
vector is O(

√
nwr) is the main technical difficulty and is the part that uses ideas from protocol

compression.
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4 External Memory Lower Bounds

As mentioned in the proof overview in Section 3, we prove our lower bound for external memory
sorting via a lower bound for the easier problem of permuting: An input to the permutation problem
is specified by a permutation π of {1, 2, . . . , n} as well as n bit strings d1, . . . , dn ∈ {0, 1}w. We
assume w ≥ lg n such that all bit strings may be distinct. The input is given in the form of an
array A where the i’th entry A[i] stores the tuple (π(i), di). We assume the input is given in the
following natural way: Each π(i) is encoded as a dlg ne-bit integer and the di’s are given as they
are - using w bits for each.

The array A is presented to an external memory algorithm as a sequence of blocks, where each
block contains bb/(w+lg n)c consecutive entries of A (the blocks have b = Bw bits). For simplicity,
we henceforth assume (w + lg n) divides b.

The algorithm is also given an initially empty output array C. The array C is represented as a
sequence of n words of w bits each, and these are packed into blocks containing b/w words each.
The goal is to store dπ−1(i) in C[i]. That is, the goal is to copy the bit string di from A[i] to C[π(i)].
We say that an Algorithm A has an error of ε for the permutation problem, if for every input to
the problem, it produces the correct output with the probability at least 1− ε.

The best known upper bounds for the permutation problem work also under the indivisibility
assumption. These algorithms solve the permutation problem in

O
(

min
{
n,
nw

b
· lgm/b(nw/b)

})
= O

(
min

{
n,
n

B
· lgM/B(n/B)

})
I/Os [2]. Moreover, this can easily be shown to be optimal under the indivisibility assumption by
using a counting argument [2]. The n bound is the bound obtained by running the naive “internal
memory” algorithm that simply puts each element into its correct position one at a time. The
other term is equivalent to the optimal comparison-based sorting bound (one thinks of di as an
integer in [2w] and concatenates π(i) ◦ di = π(i) · 2w + di and sorts the sequence). Thus any sorting
algorithm that handles (lg n + w)-bit keys immediately yields a permutation algorithm with the
same number of I/Os. We thus prove lower bounds for the permutation problem and immediately
obtain the sorting lower bounds as corollaries.

We thus set out to use Conjecture 1 to provide a lower bound for the permutation problem in
the external memory model. Throughout the proof, we assume that nw/b = n/B is at least some
large constant. This is safe to assume, as otherwise we only claim a trivial lower bound of Ω(1).

Let A be a randomized external memory algorithm for the permutation problem on n integers
of w bits each. Assume A has error probability at most 1/3 and let b denote the disk block size in
number of bits. Let m denote the memory size measured in number of bits. Finally, let t denote
the expected number of I/Os made by A (on the worst input).

I/O-Graphs. For an input array A representing a permutation π and bit strings d1, . . . , dn, and
an output array C, define the (random) I/O-graph G of A as follows: Initialize G to have one node
per disk block in A and one node per disk block in C. Also add one node to G representing the
initial memory of A. We think of the nodes representing the disk blocks of A and C as block nodes
and the node representing the memory as a memory node (see Figure 1a). We will add more nodes
and edges to G by observing the execution of A on A. To simplify the description, we will call
nodes of G either dead or live. We will always have at most one live memory node. Initially all
nodes are live. Moreover, we label the block nodes by consecutive integers starting at 0. Thus the
block nodes in the initial graph are labeled 1, 2, . . . , n(w + lg n)/b+ nw/b.
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Now run the algorithm A on A. Whenever it makes an I/O, do as follows: If this is the first
time the block is being accessed and it is not part of the input or output (a write operation to
an untouched block), create a new live block node in G and add a directed edge from the current
live memory node to the new block node (see Figure 1e). Label the new node by the next unused
integer label. Otherwise, let v be the live node in G corresponding to the last time the disk block
was accessed. We add a directed edge from v to the live memory node, mark v as dead, create a
new live block node v′ and add a directed edge from the live memory node to v′. We give the new
node the same label as v (Figure 1b and Figure 1c). Finally, once for every m/b I/Os, we mark
the memory node as dead, create a new live memory node and add an directed edge from the old
memory node to the new live memory node (Figure 1d).

To better understand the definition of G, observe that all the nodes with the same label repre-
sent the different versions of a disk block that existed throughout the execution of the algorithm.
Moreover, there is always exactly one live node with any fixed label, representing the current ver-
sion of the disk block. Also observe that at the end of the execution, there must be a live disk
block node in G representing each of the output blocks in C, and these have the same labels as the
original nodes representing the empty disk blocks of C before the execution of A.

Fixing the Randomness of A. Consider the execution of A on an input A representing a
uniform random permutation π as well as independent and uniform random bit strings d1, . . . , dn ∈
{0, 1}w. Since A makes an expected t I/Os, it follows by Markov’s inequality that A makes more
than 6t I/Os with probability less than 1/6. If we simply abort in such cases, we obtain an algorithm
with worst case O(t) I/Os and error probability at most 1/3 + 1/6 = 1/2. Now fix the random
choices of A to obtain a deterministic algorithm A∗ with error probability 1/2 over the random
choice of π and d1, . . . , dn. A∗ makes t∗ = 6t I/Os in the worst case. Observe that for A∗, we get
a fixed I/O graph G(A) for every input array A since A∗ is deterministic.

Finding a Popular I/O-Graph. We now find an I/O-graph G which is the result of running
A∗ on a large number of different inputs. For notational convenience, let t denote the worst case
number of I/Os made by A∗ (instead of using t∗ or 6t). Observe that the total number of different
I/O-graphs one can obtain as the result of running A∗ is small:

Lemma 8 There are no more than

(t+ n(w + lg n)/b+ nw/b+ 1)t+1

I/O graphs that may result from the execution of A∗.

Proof. There are at most t + 1 choices for the number of I/Os performed by A∗ on an input
(0 through t). Moreover, for each I/O performed, either one of at most t + n(w + lg n)/b + nw/b
live disk blocks is read, or a new untouched disk block is created, resulting in at most t + n(w +
lg n)/b+ nw/b+ 1 different possible changes to G for each I/O. Thus the total number of possible
I/O-graphs is at most (t+ 1)(t+n(w+ lg n)/b+nw/b+ 1)t ≤ (t+n(w+ lg n)/b+nw/b+ 1)t+1. �

This means that we can find an I/O-graph, which correspond to the execution of A∗ on many
different inputs, and moreover, we can even assume that A∗ is correct on many such inputs:

Lemma 9 There exists a set Γ containing at least (n!2nw)/(2(t + n(w + lg n)/b + nw/b + 1)t+1)
different input arrays A, such that A∗ is correct on all inputs A ∈ Γ and the I/O-graph is the same
for all A ∈ Γ.
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Figure 1: I/O-graph for an array A consisting of 3-bit strings d1, · · · , d8 . In this example, each
disk block contains two words of w = 3 bits, i.e., B = 2 (and b = Bw = 6). Also, the main memory
holds M = 6 words (m = 18). Figure (a) shows the initial I/O graph. For each disk block, we have
initially one block node which is illustrated underneath them. Black nodes are dead, and white
nodes are live. Figure (b) shows the updated I/O-graph after making an I/O to access the first disk
block. Figure (c) is the I/O graph after accessing the block containing C[1] and C[2]. Figure (d)
shows the graph after making another I/O on the first disk block. Also, we create a new memory
node after every m/b = M/B = 3 I/Os and mark the old memory node as dead. Figure (e) shows
the updated graph after accessing some block other than the input or output.
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Proof. There are n!2wn different input arrays A and A∗ had error probability at most 1/2 over
a uniform random choice of such an input array. By Lemma 8, we get that there must be some
I/O-graph shared by at least (n!2nw/2)/(t+ n(w + lg n)/b+ nw/b+ 1)t+1 of the inputs that A∗ is
correct on. �

Data Must Travel Far. The key idea in our lower bound proof, is to argue that there is a
permutation for which most data bit strings di are very far away from output entry C[π(i)] in the
corresponding I/O-graph. This would require the data to “travel” far. By Conjecture 1, this is
impossible unless the I/O-graph is large. Thus we start by arguing that there is a fixed permutation
where data has to travel far on the average, and where it also holds that there are many different
data values that can be sent using the same I/O-graph. To make this formal, let dist(π, i,G) denote
the distance between the block node in G representing the input block storing A[i] (the initial node,
before any I/Os were performed) and the node in G representing the output block storing C[π(i)]
in the undirected version of G (undirect all edges).

We prove the following:

Lemma 10 If (t+ n(w + lg n)/b+ nw/b+ 1)t+1 ≤ (nw/b)(1/30)n, then there exists a permutation
π, a collection of values F ⊆ {{0, 1}w}n and an I/O-graph G such that the following holds:

1. For all (d1, . . . , dn) ∈ F it holds that the algorithm A∗ executed on the input array A corre-
sponding to inputs π and d1, . . . , dn results in the I/O-graph G and A∗ is correct on A.

2. |F| ≥ 2nw

4(t+n(w+lgn)/b+nw/b+1)t+1 .

3. There are at least (4/5)n indices i ∈ {1, . . . , n} for which dist(π, i,G) ≥ (1/2) lg2m/b(nw/b).

Proof. We start by using Lemma 9 to obtain a set Γ and an I/O-graph G such that

|Γ| ≥ n!2nw

2(t+ n(w + lg n)/b+ nw/b+ 1)t+1
.

Γ has the property that A∗ is correct on all arrays A ∈ Γ and G is the I/O-graph corresponding to
the execution of A∗ on A for every A ∈ Γ. For each permutation π, define Γπ to be the subset of
arrays in Γ for which the corresponding permutation is π. We have |Γπ| ≤ 2nw for all π. We now
argue that there must be many Γπ’s that are large: Let k be the number of permutations π such
that

|Γπ| ≥
2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1
.

We must have

k2nw + (n!− k) · 2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1
≥ |Γ| ⇒

k

(
2nw − 2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1

)
≥ n!2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1
⇒

k2nw ≥ n!2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1
⇒

k ≥ n!

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1
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If we assume (t+ n(w + lgn)/b+ nw/b+ 1)t+1 ≤ (nw/b)(1/30)n as in the statement of the lemma,
then we get

k ≥ n!

4(nw/b)(1/30)n
.

We have now argued that there are many permutations π, all having many arrays A corresponding
to π with some data bit strings d1, . . . , dn, and where the the I/O-graph of A∗ on A is G. We will
use this to conclude that for at least one of those permutations, it must be the case that dist(π, i,G)
is large for many i. For this, observe that the number of distinct permutations π for which there
are less than (4/5)n indices i ∈ {1, . . . , n} with dist(π, i,G) ≥ (1/2) lg2m/b(nw/b) is bounded by:(

n

n/5

)
n(4/5)n(2m/b)(n/5)·(1/2) lg2m/b(nw/b)(b/w)n/5.

To see this, observe that any such permutation π can be uniquely specified by first specifying a
set I of n/5 indices i with dist(π, i,G) < (1/2) lg2m/b(nw/b). There are

(
n
n/5

)
possible choices for

I. Then, for all indices i with i /∈ I, there are at most n choices for π(i). Finally, for indices
i ∈ I we argue as follows: Every node in G has degree at most 2m/b by construction. Hence
any node has at most (2m/b)` nodes within distance ` in the undirected version of G. Since
dist(π, i,G) < (1/2) lg2m/b(nw/b) for all i ∈ I, it must be the case that the output node containing

C[π(i)] can be specified as one amongst (2m/b)(1/2) lg2m/b(nw/b) nodes. Finally, the output node
containing C[π(i)] represents exactly b/w array entries and thus another (b/w) factor specifies π(i).
Assuming nw/b is at least some large constant, we can upper bound the above quantity using
Stirling’s approximation:(

n

n/5

)
n(4/5)n(2m/b)(n/5)·((1/2) lg2m/b(wn/b)(b/w)n/5 ≤

(5e)n/5n(4/5)n(nw/b)n/10(b/w)n/5 =

(5e)n/5nn(nw/b)−n/10 ≤
n!en√
2πnnn

(5e)n/5nn(nw/b)−n/10 ≤

n!en(5e)n/5

(nw/b)n/10
≤

n!

(nw/b)n/20
.

In the last inequality, we assumed nw/b ≥ (5e)4 (a constant). We can safely assume this, as
otherwise nw/b = n/B = O(1) and the lower bound we claim is trivially true (an Ω(1) lower
bound). The number n!

(nw/b)n/20 is smaller than k for nw/b bigger than some constant, hence there

must exist a permutation π with

|Γπ| ≥
2nw

4(t+ n(w + lg n)/b+ nw/b+ 1)t+1

and where there are at least (4/5)n indices with dist(π, i,G) ≥ (1/2) lg2m/b(nw/b). Letting F
consist of the bit strings d1, . . . , dn corresponding to the arrays A ∈ Γπ completes the proof. �
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Reduction to Network Coding. We are now ready to make our reduction to network coding.
The basic idea in our proof is to use Lemma 10 to obtain an I/O-graph G and permution π with
large distance between the node containing A[i] and the node containing C[π(i)] for many i. We
will then create a source si at the node representing A[i] and a corresponding sink ti at the node
corresponding to C[π(i)]. These nodes are far apart, but using the external memory permutation
algorithm A∗, there is an algorithm for transmitting di from si to ti. Since the distance between
si and ti is at least (1/2) lg2m/b(nw/b) for (4/5)n of the pairs (si, ti), it follows from Conjecture 1
that the sum of capacities in the network must be at least Ω(nw lg2m/b(nw/b)) (we can transmit
w bits between each of the pairs). However, running the external memory algorithm results in
a network/graph G with only O(t) edges, each needing to transmit only b bits (corresponding to
the contents of block on a read or write). Thus each edge needs only have capacity b bits for the
reduction to go through. Hence the sum of capacities in the network is O(tb). This means that
t = Ω((nw/b) lg2m/b(nw/b)) as desired.

However, the reduction is not as straightforward as that. The problem is that Lemma 10 leaves
us only with a subset F of all the possible values d1, . . . , dn that one wants to transmit. For other
values of d1, . . . , dn, we cannot use the algorithm A∗ to transmit the data via the network/graph
G. We could of course try to sample (d1, . . . , dn) uniformly from F and then have a network
coding solution only for such inputs. The problem is that for such a uniform (d1, . . . , dn) ∈ F , it
no longer holds that the inputs to the sources in the coding network are independent! Network
coding rate only speaks of independent sources, hence we need a way to break this dependency.
We do this by adding an extra node u and some edges to the coding network. This extra node
u serves as a coordinator that takes the independent sources X1, . . . , Xn and replaces them with
an input (d1, . . . , dn) ∈ F in such a way that running A∗ on (d1, . . . , dn) and using a little extra
communication from u allows the sinks to recover Xπ−1(i) from dπ−1(i). We proceed the give the
formal construction.

Let G be the I/O-graph, π the permutation and F ⊆ {{0, 1}w}n the values promised by
Lemma 10. From G, construct a coding network G∗ as follows (see Figure 2):

1. Add source and sink nodes s1, . . . , sn and t1, . . . , tn to G∗.

2. For each source si, add an additional node pi.

3. Add all nodes of G to G∗.

4. Add all edges of G to G∗. Edges between a block node and a memory node has capacity b
bits. Edges between two memory nodes have capacity m bits.

5. Remove all block nodes that have an incoming and outgoing edge to the same memory node
(this makes the graph acyclic).

6. Add a directed edge with capacity w bits from each source si to pi, and add a directed edge
with capacity w bits from each pi to the input block node containing A[i].

7. Add an edge with capacity w bits from the output block node containing C[π(i)] to the sink
ti.

8. Add a special node u to G∗. Add an edge of capacity w bits from each source si to u. Also
add a directed edge from u to each pi having capacity ρi for parameters ρi > 0 to be fixed
later. Also add an edge from u to sink ti with capacity ρi.
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Figure 2: Construction of the coding network G∗ from the I/O graph G. Figure (a) shows the I/O
graph G for an array A consisting of 3-bit strings d1, · · · , d8 with w = 3 and B = 2. Figure (b)
shows the coding network G∗ derived from G. All pink edges have the capacity of w bits and all
blue edges have the capacity of b bits. Capacity of other edges are specified by their labels. In this
example we assume that π(7) = 1 and π(5) = 2. Therefore, the output block containing C[π(7)]
and C[π(5)] is the first output block which is the node 9, and we added an edge with the capacity
w from the node 9 to the sinks t7 and t5.
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We argue that for sufficiently large choices of ρi, one can use A∗ to efficiently transmit w bits of
information between every source-sink pair (si, ti). Our protocol for this problem uses Lemma 7
from Section 3 as a subroutine. We defer the proof of Lemma 7 to Section 4.1 and proceed to show
how we use it together with A∗ to transmit data through the network G∗.

Transmitting Data. Let X1, . . . , Xn ∈ {0, 1}w be independent uniform random sources of data
for which we need to transmit Xi from si to ti in G∗ for every i. Our protocol is as follows:

1. The sources si send their inputs Xi to u via the directed edge from si to u. They also send
their input to pi via the directed edge from si to pi.

2. The coordinator node u runs the protocol from Lemma 7 (the coordinator knows the Xi’s).
Let Ri be the message that the coordinator wishes to send to player i based on Lemma 7.
The node u sends Ri to both pi and ti. We fix the parameters ρi such that ρi = E[|Ri|]. From
Lemma 7, we know that if |F| ≥ 2nw−o(nw) then

∑
i ρi = o(nw).

3. Each node pi now knows Xi and a vector τi such that (τ1⊕X1)◦ · · · ◦ (τn⊕Xn) ∈ F . Node pi
now computes di = τi⊕Xi and sends di to the node in G∗ representing the input block node
containing A[i]. Each input block node in G∗ thus knows the contents of the corresponding
block on the input array A corresponding to π with data (d1, . . . , dn).

4. Since A is an input array for which A∗ results in the I/O-graph G, the network can now run
the algorithm A∗ as follows: The memory nodes will be simulating the algorithm A∗ and the
block nodes will simply serve as forwarding nodes that receive the contents that are written
to the corresponding block by A∗ and which sends it to the next memory node that reads the
block. Ignoring the output block nodes for now, the network does as follows:

• The input block nodes forward their data as soon as they have received data from all
the associated sources (they are connected to at most one memory node).

• Internal block nodes (neither input or output) are connected to two (distinct) memory
nodes. When they receive data from one, they forward it to the other.

• The first memory node v starts running A∗, maintaining its m bit memory state at all
times. Whenever A∗ accesses a disk block we do one of the following: If this is the first
time the disk block is being accessed (a write to an untouched disk block), v sends the
contents to be written to the block to the corresponding block node in G∗. Otherwise,
the contents of the accessed block has already been sent to A∗ by the corresponding
block node. The node v now sends the new contents of the block to the block node in
G∗ that was created due to the access (the contents may be the same if this was a read
operation, or different if it was a write operation). When A∗ has made m/b I/Os, v
sends the memory state of A∗ to the next memory node and becomes inactive. The next
memory node now continues the simulation of A∗ for another m/b I/Os and so forth. As
a technical detail, recall that we deleted block nodes where the two adjacent edges both
go to the same memory node (to keep the graph acyclic). When a memory node wants
to access such a block, it simply remembers itself what the contents would be. This is
sufficient since no other memory node will access the block.

5. When the above terminates (with all memory nodes inactive), A∗ has finished processing the
array A and we had (d1, . . . , dn) ∈ F (meaning that A∗ is correct on A). Therefore, it now
must be the case that the output block node containing the array entry C[π(i)] knows the
value di. Thus for all i, we let the output block node containing C[π(i)] send di to ti.
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6. Finally, each sink ti knows di and the vector τi (from the data sent by u). Each ti now
computes τi ⊕ di and recovers Xi as required (since di = Xi ⊕ τi).

The above protocol is clearly a correct protocol for transmitting X1, . . . , Xn and it satisfies all
capacity constraints of the network G∗. We have chosen to describe the protocol in the intuitive
language above, but remark that it fits the more formal definition in Section 2, i.e. each message
sent along an edge is a deterministic function of all incoming messages and there is a set of possible
messages that can be sent on each edge.

Deriving the Lower Bound. We observe that the for all edges, except those with capacity ρi,
the above protocol always sends a fixed number of bits. Thus messages on such edges are prefix-
free. For the edges with capacity ρi, the protocol sends a message with expected length ρi. Since
all messages on all edges are prefix-free, it follows from Shannon’s Source Coding theorem that
the expected length of each message is an upper bound on its entropy. Since the expected lengths
are at most the capacity of the corresponding edges, we get by the definition of network coding
rate from Section 2, that the above solution achieves a rate of w bits. Hence from Conjecture 1,
it follows that if we undirected G∗, then the multicommodity flow rate must be at least w bits.
From the definition of multicommodity flow rate in Section 2, we see that this implies that there is
a (possibly fractional) way of sending w units of flow between each source-sink pair.

We first examine the amount of flow that can be transported between pairs (si, ti) along paths
that visit u. We observe that any such flow must use at least two edges incident to u. But the
sum of capacities of edges incident to u is nw + 2

∑
i ρi. Hence the amount of flow that can be

transmitted along paths using u as an intermediate node is no more than (nw + 2
∑

i ρi)/2 =
nw/2 +

∑
i ρi. If |F| ≥ 2nw−o(nw), then this is no more than nw/2 + o(nw). From Lemma 10, we

know that there are at least (4/5)n indices i for which dist(π, i,G) ≥ (1/2) lg2m/b(nw/b), provided

that (t+ n(w + lg n)/b+ nw/b+ 1)t+1 ≤ (nw/b)(1/30)n. The total flow that must be sent between
such pairs is (4/5)nw. This means that there is at least (4/5)nw−nw/2−o(nw) = Ω(nw) flow that
has to traverse (1/2) lg2m/b(nw/b) = Ω(lg2m/b(nw/b)) edges of G∗ (the flow must use a path in the
undirected version of G since it cannot shortcut via u). Hence the sum of capacities corresponding
to edges in G must be Ω(nw lg2m/b(nw/b)), assuming that |F| ≥ 2nw−o(nw). Every I/O made by A∗
increases the capacity of the edges by O(b) bits (two edges of b bit capacity when a new block node is
added to G, and an amortized b bits capacity to pay for the m bit edge between memory nodes after
everym/b I/Os). Thus ifA∗ makes at most t I/Os, it must be the case that tb = Ω(nw lg2m/b(nw/b))

if |F| ≥ 2nw−o(nw). But |F| ≥ 2nw/4(t + n(w + lg n)/b + nw/b + 1)t+1. Therefore, we must
have either t = Ω((nw/b) lg2m/b(nw/b)) or t lg(tn(w + lg n)/b) = Ω(nw). Finally, Lemma 10 also

required (t+n(w+ lg n)/b+nw/b+ 1)t+1 ≤ (nw/b)(1/30)n. Combining all of this means that either
t = Ω((nw/b) lg2m/b(nw/b)), or t = Ω(nw/ lg(nw)) or t = Ω(n lg(nw/b)/ lg(n lg(nw/b))) = Ω(n).

We have thus proved:

Theorem 11 Assuming Conjecture 1, any randomized algorithm for the external memory permu-
tation problem, having error probability at most 1/3, must make an expected

Ω
(

min
{
n,

nw

lg(nw)
,
n

B
· lg2M/B

n

B

})
I/Os.

For w = Ω(lg n), we may use the reduction to sorting and we immediately obtain Theorem 2 as
a corollary. We have restated it here for convenience:
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Theorem 2 Assuming Conjecture 1, any randomized algorithm for the external memory sorting
problem with w = Ω(lg n) bit integers, having error probability at most 1/3, must make an expected

Ω
(

min
{
n,
n

B
· lg2M/B

n

B

})
I/Os.

4.1 Finding Vectors with a Coordinator

In the following we prove Lemma 7. The coordinator wishes to specify (prefix-free) bit strings
τ1, . . . , τn ∈ {0, 1}w to the n players such that (τ1 ⊕ X1) ◦ · · · ◦ (τn ⊕ Xn) ∈ F . The algorithm is
straightforward: The coordinator searches for the bit string y ∈ F with the least Hamming distance
to X = X1 ◦ · · · ◦Xn. The coordinator then computes τ = y ⊕X and breaks τ into w-bit pieces
τ1, . . . , τn. The coordinator then sends τi to player i as follows:

1. The coordinator computes the number of 1’s in τi. Let us denote this by ki. The coordinator
then sends a prefix-free encoding of ki using O(lg ki) bits. This is done as follows: First send
a unary encoding of dlg kie by sending dlg kie 0’s, followed by a 1. Then send dlg kie bits
specifying ki in binary.

2. If ki ≥ 1, the coordinator now sends dlg
(
w
ki

)
e bits specifying the positions of the 1’s.

The number of bits send to player i is thus O(lg(ki + 2) + ki lg(w/ki)) and the messages are clearly
prefix-free. Summing over all players, we get that the total amount of communication is:

O

(
n∑
i=1

lg(ki + 2) + ki lg(w/ki)

)
.

Define Y to be the random variable taking the value ki with probability 1/n for every i. Then the
above equals:

O (n · E[lg(Y + 2) + Y lg(w/Y )]) .

Using that lg(x+ 2) and x lg(w/x) are concave functions, we get from Jensen’s inequality that this
is bounded by:

O (n · (lg(E[Y ] + 2) + E[Y ] lg(w/E[Y ]))) .

But E[Y ] = (
∑

i ki)/n. Thus if we define K =
∑

i ki, we get that the amount of communication is
no more than

O (n lg(K/n+ 2) +K lg(nw/K)) .

Taking expectation and again using that lg(x/n+ 2) and (x/n) lg(nw/x) are concave functions in
x, we get that the expected amount of communication is:

O (n lg(E[K]/n+ 2) + E[K] lg(nw/E[K])) .

Thus what remains is to argue that E[K] is small. That is, we have to show that the Hamming
distance between the uniform random X and the nearest y in F is small in expectation.

We prove this by considering a concrete distribution over pairs (Z, Y ) where Z is uniform
random in {0, 1}nw, Y is uniform random in F and the expected Hamming distance between Z
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and Y is small. This is of course requires that the joint distribution of (Z, Y ) is far from a product
distribution. If we use T denote the expected Hamming distance between Z and Y , then it must
be the case that E[K] ≤ T since X and Z have the same distribution and K gives the distance to
the nearest vector in F (not just to the random vector Z).

We now argue that T is small for the right joint distribution on Z and Y . Our choice of joint
distribution and our proof is inspired by the

√
IC protocol compression algorithm for non-product

distributions given in the seminal work of Barak et al. [4].
Pick uniform random numbers κ1, . . . , κnw between 0 and 1. For each i, we let the i’th bit of

Z, denoted Zi equal 1 if κi ≤ 1/2 and 0 otherwise. Thus Z is uniform random in {0, 1}nw. For
Y , we choose each bit Yi one at a time. Assume we have already chosen values y1, . . . , yi−1 for
the preceeding bits and let D be uniform random in F . We choose Yi to be 1 if κi ≤ Pr[Di =
1 | Di−1 = yi−1, . . . , D1 = y1] and 0 otherwise. Hence Y is uniform random in F . Thus, if
we have already chosen values y1, . . . , yi−1, then the probability that Zi and Yi are distinct is
|1/2 − Pr[Yi = 1 | Yi−1 = yi−1, . . . , Y1 = y1]|. For ease of notation, use Y<i to denote Yi−1, . . . , Y1
and y<i to denote yi−1, . . . , y1, i.e. we have Pr[Zi 6= Yi | Y<i = y<i] = |1/2−Pr[Yi = 1 | Y<i = y<i]|.

Let U denote the uniform distribution on 1 bit and let P denote the distribution of Yi conditioned
on Y<i = y<i. The probability that Zi 6= Yi is thus equal to ‖U − P‖1. Using Pinsker’s inequality,
this means that

DKL(U ||P ) ≥ 2‖U − P‖21 = 2 (Pr[Zi 6= Yi | Y<i = y<i])
2 .

But the KL-divergence from the uniform random distribution over a bit simply equals 1 −H(Yi |
Y<i = y<i), that is:

1−H(Yi | Y<i = y<i) ≥ 2 (Pr[Zi 6= Yi | Y<i = y<i])
2

We can now bound E[K] as follows:

E[K] =
nw∑
i=1

∑
y<i

Pr[Y<i = y<i] · Pr[Zi 6= Yi | Y<i = y<i]

≤
nw∑
i=1

∑
y<i

Pr[Y<i = y<i] ·
√

(1−H(Yi | Y<i = y<i))/2

Using Cauchy-Schwartz, we further conclude that:

E[K] ≤
nw∑
i=1

∑
y<i

√
Pr[Y<i = y<i] ·

√
Pr[Y<i = y<i](1−H(Yi | Y<i = y<i))/2

≤

√√√√( nw∑
i=1

∑
y<i

Pr[Y<i = y<i]

)
·
(
nw∑
i=1

∑
y<i

Pr[Y<i = y<i](1−H(Yi | Y<i = y<i))/2

)

=

√√√√(nw) ·
(
nw∑
i=1

∑
y<i

Pr[Y<i = y<i](1−H(Yi | Y<i = y<i))/2

)
=

√
(nw) · ((nw −H(Y ))/2)

But Y was uniform random in F , i.e. H(Y ) = lg |F| ≥ nw − r so we get:

E[K] = O(
√
nwr).
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The total expected communication therefore becomes:

O
(
n lg(

√
rw/n+ 2) +

√
nwr lg(

√
nw/r)

)
= O

(
n lg(

√
rw/n+ 2) +

√
nwr lg(nw/r)

)
.

Observe now that
√
rw/n ≥ 2 ⇒ r ≥ n/w. For such r, it also holds that

√
nwr ≥ n. Moreover,

lg(nw/r) = Ω(lg(
√
rw/n)) for all choices of r ≤ nw (which is the maximum possible r). Therefore,

the whole expression simplifies to:

O
(
n+
√
nwr lg(nw/r)

)
.

4.2 Oblivious Sorting and Permuting

In this section we prove Theorem 4, i.e. that there is an Ω(n lg n) lower bound for oblivious
word-RAM sorting algorithms when the integers and word size are Θ(lg n) bits. In fact, we prove
something slightly stronger, namely an I/O lower bound of Ω((n/B) lg2M/B(n/B)) for oblivious
permuting (with error probability 1/3). Theorem 4 follows by setting B = Θ(1) and M = Θ(B) =
Θ(1).

Observe that for an oblivious algorithm A, the memory access pattern is always the same. This
means that the I/O-graph G corresponding to an execution of A is the same for all inputs. We can
now fix the randomness of A to obtain a deterministic algorithm A∗ that is correct on at least a
(2/3)-fraction of all possible inputs. Re-executing the argument in the proof of Lemma 10, we get:

Lemma 12 There exists a permutation π and a collection of values F ⊆ {{0, 1}w}n such that in
the I/O-graph G corresponding to A’s execution, the following holds:

1. For all (d1, . . . , dn) ∈ F it holds that the algorithm A executed on the input array A corre-
sponding to inputs π and d1, . . . , dn results in the I/O-graph G and A∗ is correct on A.

2. |F| ≥ 2nw−1.

3. There are at least (4/5)n indices i ∈ {1, . . . , n} for which dist(π, i,G) ≥ (1/2) lg2m/b(nw/b).

Proof. We only sketch the proof as it follows the proof of Lemma 10 uneventfully. First ob-
serve that by Markov’s inequality, there are at least n!/3 permutations π′ for which A∗ errs on
at most (1/3)(3/2)2nw = 2nw−1 of the input arrays corresponding to π′ and a set of bit strings
(d1, . . . , dn). In the proof of Lemma 10, we saw that there are no more than n!/(nw/b)n/20 per-
mutations with more than n/5 indices i such that dist(π, i,G) < (1/2) lg2m/b(nw/b). The lemma
follows immediately. �

Re-executing the proof of Theorem 2 using Lemma 12 instead of Lemma 10, we see that the
constraint |F| ≥ 2nw−o(nw) is trivially satisfied. Moreover, Lemma 12 has no constraints on t
like there was in Lemma 10. Thus the only constraint we get is t = Ω((nw/b) lg2m/b(nw/b)) =
Ω(n/B lg2M/B(n/B)) as claimed. We have thus shown:

Theorem 13 Assuming Conjecture 1, any oblivious randomized algorithm for the external memory
permutation problem, having error probability at most 1/3, must make an expected

Ω
( n
B
· lg2M/B

n

B

)
I/Os.

We note that Theorem 4 follows as an immediate corollary by setting B = Θ(1) and M = Θ(B).
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4.3 Matrix Transpose

In this subsection, we reprove the lower bound of Adler et al. [1] for external memory matrix
transpose algorithms, however this time without an assumption of obliviousness. Let the input to
the matrix transpose problem be an n × n matrix A, with w-bit integer entries. The matrix A is
stored in row-major order, meaning that we have n/B disk blocks for each input row of A. The
first such disk block stores the first B entries of the row and so on. The goal is to compute AT , i.e.
output n/B blocks per column of A, containing the corresponding entries in order.

Let A be a randomized algorithm for transposing an n×n matrix in expected O(t) I/Os, having
error probability at most 1/3. By aborting A when it spends more than 6t I/Os, we obtain an
algorithm with worst case t∗ = O(t) I/Os and error probability 1/2. We re-define t to equal this
new worst case number of I/O’s (to avoid having to write t∗ or 6t in all places). As in our proof of
the external memory sorting lower bound, we can again define the I/O-graph G corresponding to
an execution of A on a matrix A. This graph again has an input block node for each block in the
rows of A and an output block node for each block in the rows of AT (columns of A).

Consider the execution of A on a uniform random matrix A (each entry is chosen independently
as a w-bit integer). We now fix the random choices of this algorithm to obtain a deterministic
algorithm A∗ with the same error probability over the random input matrix A. As in our proof
of the sorting lower bound, we now fix an I/O-graph which is the result of running A∗ on many
different matrices:

Lemma 14 There exists a set Γ containing at least

2n
2w

2(t+ 2n2/B + 1)t+1

different input matrices A, such that A∗ is correct on all matrices A ∈ Γ and the I/O-graph is the
same for all A ∈ Γ.

Proof. First we bound the number of different I/O graphs that may result from the execution of
A∗ (equivalent of Lemma 9). There are 2n2/B initial block nodes, hence each I/O accesses one of
at most t + 2n2/B + 1 nodes (the plus one to account for the creation of a new node). There are
t+ 1 choices for the number of I/Os. Thus the number of distinct I/O-graphs that may result from
the execution of A∗ is no more than (t + 1)(t + 2n2/B + 1)t ≤ (t + 2n2/B + 1)t+1. The lemma
follows by observing that A∗ is correct on at least 2n

2w/2 input matrices. �

We can again define the distance that an entry of an input matrix A has to travel in an I/O-
graph G. Formally, define dist(i, j, G) to be the distance from the input block node in G storing
the entry (i, j), to the output block node in G storing the entry (i, j) after the transpose. We have
the following equivalent of Lemma 10:

Lemma 15 For any I/O-graph G, there are at least (4/5)n2 entries (i, j) for which dist(i, j, G) ≥
(1/2) lg2m/bB.

Proof. The degree of nodes in G is at most 2m/b. Thus for any input block node, there can be
at most (2m/b)d output block nodes in G within distance d. But all entries of an input block node
have distinct destination output block nodes. This is true since all entries in an input block node
resides in the same row of A and hence reside in distinct columns. Thus there can be at most

√
B

indices j among the B indices in an input block for which dist(i, j, G) ≤ (1/2) lg2m/bB. The lemma
follows immediately. �
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Reduction to Network Coding. We are ready to make the reduction to network coding. We
basically re-execute the reduction we did for sorting. Let Γ be the set of input matrices promised
by Lemma 14 and let G be the corresponding I/O-graph.

We create a new graph G∗ from G by adding all nodes and edges from G to G∗. The edges be-
tween block nodes and memory nodes have capacity b bits. The edges between memory nodes have
capacity m bits. We also create n2 sources s1,1, . . . , si,j , . . . , sn,n and n2 sinks t1,1, . . . , ti,j , . . . , tn,n.
We create the coordinator node u and extra nodes p1,1, . . . , pn,n. We add a directed edge from the
si,j ’s to u with capacity w. We add a directed edge from si,j to pi,j also with capacity w. We also
add a directed edge from each pi,j to the input block node representing entry (i, j), having capacity
w bits. Similarly, we add a directed edge from the the output block node representing entry (i, j)
to sink ti,j for every i. These edges also have capacity w bits. Finally, we add edges with capacity
ρi,j from u to both ti,j and pi,j where the parameters ρi,j > 0 will be fixed later.

As in the proof for sorting, we obtain a network coding solution for G∗ as follows: Each source
si,j thinks of its w-bit input Xi,j as the entry (i, j) of an input matrix to the matrix transpose
problem. The sources start by transmitting their input to the special coordinator node u. The
node u invokes Lemma 7 to obtain a (prefix-free) message Ri,j for each (i, j). The coordinator
sends this message Ri,j to pi,j and ti,j . The sources si,j also forward their input to the nodes pi,j .
From Lemma 7, the nodes pi,j can now compute a vector vi,j such that, if each pi,j replaces Xi,j by
Xi,j ⊕ vi,j , then the resulting inputs correspond to a matrix A ∈ Γ. The nodes pi,j thus compute
Ai,j = Xi,j⊕vi,j and sends it to the corresponding input block node. We therefore fix ρi = E[|Ri,j |].
The input block nodes now knows the contents of the input blocks when the input matrix is A.
Thus the network can simulate the entire algorithm A∗ (see the proof for sorting), which results in
the output block nodes knowing the values Ai,j (A∗ is correct on all matrices in Γ and uses the same
fixed I/O-graph G). The output block nodes forward Ai,j to ti,j . The sink nodes ti,j compute vi,j
from the message from u and replaces Ai,j with Xi,j = Ai,j ⊕ vi,j . This completes the simulation.
We refer the reader to the proof of the sorting lower bound for a more detailed description.

Deriving the Lower Bound. The network coding solution we obtained for G∗ achieves a net-
work coding rate of w bits as all capacity contraints are respected (again, see the proof for sorting
for more details). From Conjecture 1, it follows that the multicommodity flow rate has to be at
least w for the undirected version of G∗.

We can again examine how much flow that can be transmitted from the sources to the sinks
via a path that uses the node u. Since any flow using u as an intermediate node must traverse at
least two edges incident to u, we conclude that the total amount of flow that can use the node u as
an intermediate node on the path to a sink is at most n2w/2 +

∑
i ρi. From Lemma 7, we get that

if |Γ| ≥ 2n
2w−o(n2w), then

∑
i ρi = o(n2w). Combining this with Lemma 15, we get that there is at

least (4/5)n2w− n2w/2− o(n2w) = Ω(n2w) flow that has to traverse a path of length Ω(lg2m/bB)
in G∗ (the flow must use a path in the undirected version of G). Thus the sum of capacities in G∗

must be Ω(n2w lg2m/bB) if |Γ| ≥ 2n
2w−o(n2w). Every I/O made by A∗ adds O(b) bits of capacity to

G∗, thus we get a lower bound of t = Ω(n2w/b · lg2m/bB) = Ω(n2/B · lg2M/B B) I/Os, provided that

|Γ| ≥ 2n
2w−o(n2w). From Lemma 14, we know that |Γ| ≥ 2n

2w/2(t+2n2/B+1)t+1 hence we conclude
that either t = Ω(n2/B · lg2M/B B) or t lg(t+ 2n2/B + 1) = Ω(n2w)⇒ t = Ω(n2w/ lg(n2w)). This
concludes the proof of Theorem 5.
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