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Abstract

For any n > 1 and 0 < ε < 1/2, we show the existence of an nO(1)-point subset X of `n2 such that
any linear map from X to `m2 with distortion at most 1 + ε must have m = Ω(min{n, ε−2 logn}). This
improves a lower bound of Alon [Alo03], in the linear setting, by a log(1/ε) factor. Our lower bound
matches the upper bounds provided by the identity matrix and the Johnson-Lindenstrauss lemma [JL84].

1 Introduction

The Johnson-Lindenstrauss lemma [JL84] states the following.

Theorem 1 (JL lemma [JL84, Lemma 1]). For any N -point subset X of Euclidean space and any 0 < ε <
1/2, there exists a map f : X → `m2 with m = O(ε−2 logN) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (1)

We henceforth refer to f satisfying (1) as having the ε-JL guarantee for X (often we drop mention of ε
when understood from context). The JL lemma has found applications in computer science, signal processing
(e.g. compressed sensing), statistics, and mathematics. The main idea in algorithmic applications is that
one can transform a high-dimensional problem into a low-dimensional one such that an optimal solution to
the lower dimensional problem can be lifted to a nearly optimal solution to the original problem. Due to the
decreased dimension, the lower dimensional problem requires fewer resources (time, memory, etc.) to solve.
We refer the reader to [Ind01, Vem04, Mat08] for a list of further applications.

All known proofs of the JL lemma with target dimension as stated above in fact provide such a map f
which is linear. This linearity property is important in several applications. For example in the turnstile
model of streaming [Mut05], a vector x ∈ Rn receives a stream of coordinate-wise updates each of the form
xi ← xi+∆, where ∆ ∈ R. The goal is to process x using some m� n memory. Thus if one wants to perform
dimensionality reduction in a stream, which occurs for example in streaming linear algebra applications
[CW09], this can be achieved with linear f since f(x + ∆ · ei) = f(x) + ∆ · f(ei). In compressed sensing,
another application where linearity of f is inherent, one wishes to (approximately) recover (approximately)
sparse signals using few linear measurements [Don06, CT05]. The map f sending a signal to the vector
containing some fixed set of linear measurements of it is known to allow for good signal recovery as long as f
satisfies the JL guarantee for the set of all k-sparse vectors [CT05]. Linear f is also inherent in model-based
compressed sensing, which is similar but where one assumes the sparsity pattern cannot be an arbitrary one
of
(
n
k

)
sparsity patterns, but rather comes from a smaller, structured set [BCDH10].

Given the widespread use of dimensionality reduction across several domains, it is a natural and often-
asked question whether the JL lemma is tight: does there exist some X of size N such that any such map
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f must have m = Ω(min{n, ε−2 logN})? The paper [JL84] introducing the JL lemma provided the first
lower bound of m = Ω(logN) when ε is smaller than some constant. This was improved by Alon [Alo03],
who showed that if X = {0, e1, . . . , en} ⊂ Rn is the simplex (thus N = n + 1) and 0 < ε < 1/2, then
any JL map f must embed into dimension m = Ω(min{n, ε−2 log n/ log(1/ε)}). Note the first term in the
min is achieved by the identity map. Furthermore, the log(1/ε) term cannot be removed for this particular
X since one can use Reed-Solomon codes to obtain embeddings with m = O(1/ε2) (superior to the JL
lemma) once ε ≤ n−Ω(1) [Alo03] (see [NNW14] for details). Specifically, for this X it is possible to achieve
m = O(ε−2 min{logN, ((logN)/ log(1/ε))2}). Note also for this choice of X we can assume that any f is
in fact linear. This is because first we can assume f(0) = 0 by translation. Then we can form a matrix
A ∈ Rm×n such that the ith column of A is f(ei). Then trivially Aei = f(ei) and A0 = 0 = f(0).

The fact that the JL lemma is not optimal for the simplex for small ε begs the question: is the JL lemma
suboptimal for all point sets? This is a major open question in the area of dimensionality reduction, and it
has been open since the paper of Johnson and Lindenstrauss 30 years ago.

Our Main Contribution: For any n > 1 and 0 < ε < 1/2, there is an nO(1)-point subset X of `n2
such that any embedding f : X → `m2 providing the JL guarantee, and where f is linear, must have
m = Ω(min{n, ε−2 log n}). In other words, the JL lemma is optimal in the case where f must be linear.

Our lower bound is optimal: the identity map achieves the first term in the min, and the JL lemma the
second. It carries the restriction of only being against linear embeddings, but we emphasize that since the
original JL paper [JL84] 31 years ago, every known construction achieving the JL guarantee has been linear.
Thus, in light of our new contribution, the JL lemma cannot be improved without developing ideas that are
radically different from those developed in the last three decades of research on the problem.

It is worth mentioning there have been important works on non-linear embeddings into Euclidean space,
such as Sammon’s mapping [JWS69], Locally Linear Embeddings [RS00], ISOMAP [TdSL00], and Hessian
eigenmaps [DG03]. None of these methods, however, is relevant to the current task. Sammon’s mapping
minimizes the average squared relative error of the embedded point distances, as opposed to the maximum
relative error (see [JWS69, Eqn. 1]). Locally linear embeddings, ISOMAP, and Hessian eigenmaps all assume
the data lies on a d-dimensional manifoldM in Rn, d� n, and try to recover the d-dimensional parametriza-
tion given a few points sampled fromM. Furthermore, various other assumptions are made about the input,
e.g. the analysis of ISOMAP assumes that geodesic distance onM is isometrically embeddable into `d2. Also,
the way error in these works is meausured is again via some form of average squared error and not worst
case relative error (e.g. [RS00, Eqn. 2]). The point in all these works is then not to show the existence of a
good embedding into low dimensional Euclidean space (in fact these works study promise problems where
one is promised to exist), but rather to show that a good embedding can be recovered, in some squared loss
sense, if the input data is sampled sufficiently densely from M. There has also been other work outside the
manifold setting on providing good worst case distortion via non-linear embeddings in the TCS community

[GK11], but this work (1) provides an embedding for the snowflake metric `
1/2
2 and not `2, and (2) does not

achieve 1 + ε distortion. Furthermore, differently from our focus, [GK11] assumes the input has bounded
doubling dimension D, and the goal is to achieve target dimension and distortion being functions of D.

Remark 1. It is worth noting that the JL lemma is different from the distributional JL (DJL) lemma that
often appears in the literature, sometimes with the same name (though the lemmas are different!). In the
DJL problem, one is given an integer n > 1 and 0 < ε, δ < 1/2, and the goal is to provide a distribution F
over maps f : `n2 → `m2 with m as small as possible such that for any fixed x ∈ Rn

P
f←F

(‖f(x)‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2]) < δ.

The existence of such F with small m implies the JL lemma by taking δ < 1/
(
N
2

)
. Then for any z ∈ X −X,

a random f ← F fails to preserve the norm of z with probability δ. Thus the probability that there exists
z ∈ X −X which f fails to preserve the norm of is at most δ ·

(
N
2

)
< 1, by a union bound. In other words,
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a random map provides the desired JL guarantee with high probability (and in fact this map is chosen
completely obliviously of the input vectors).

The optimal m for the DJL lemma when using linear maps is understood. The original paper [JL84]
provided a linear solution to the DJL problem with m = O(min{n, ε−2 log(1/δ)}), and this was later shown
to be optimal for the full range of ε, δ ∈ (0, 1/2) [JW13, KMN11]. Thus when δ is set as above, one obtains
the m = O(ε−2 logN) guarantee of the JL lemma. However, this does not imply that the JL lemma is tight.
Indeed, it is sometimes possible to obtain smaller m by avoiding the DJL lemma, such as the Reed-Solomon
based embedding construction for the simplex mentioned above (which involves zero randomness).

It is also worth remarking that DJL is desirable for one-pass streaming algorithms, since no properties
of X are known when the map f is chosen at the beginning of the stream, and thus the DJL lower bounds of
[JW13, KMN11] are relevant in this scenario. However when allowed two passes or more, one could imagine
estimating various properties of X in the first pass(es) then choosing some f more efficiently based on these
properties to perform dimensionality reduction in the last pass. The approach of using the first pass(es)
to estimate characteristics of a stream to then more efficiently select a linear sketch to use in the last pass
is in fact a common technique in streaming algorithms. For example, [KNW10] used such an approach to
design a nearly optimal two-pass algorithm for L0-estimation in turnstile streams, which consumes nearly
a logarithmic factor less memory than the one-pass lower bound for the same problem. In fact all known
turnstile streaming algorithms, even those using multiple passes, maintain linear maps applied to the input
stream (with linear maps in subsequent passes being functions of data collected from applying linear maps
in previous passes). It is even reasonable to conjecture that the most space-efficient algorithm for any multi-
pass turnstile streaming problem must be of this form, since a recent work of [LNW14] gives evidence in this
direction: namely that if a multi-pass algorithm is viewed as a sequence of finite automata (one for each pass),
where the ith automaton is generated solely from the output of the (i − 1)st automaton, and furthermore
one assumes that each automata must be correct on any stream representing the same underlying vector as
the original stream (a strong assumption), then it can be assumed that all automata represent linear maps
with at most a logarithmic factor loss in space. Our new lower bound thus gives evidence that one cannot
improve dimensionality reduction in the streaming setting even when given multiple passes.

1.1 Proof overview

For any n > 1 and ε ∈ (0, 1/2), we prove the existence of X ⊂ Rn, |X| = N = O(n3), s.t. if for A ∈ Rm×n

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 for all x ∈ X, (2)

then m = Ω(ε−2 log n) = Ω(ε−2 logN). Providing the JL guarantee on X ∪ {0} implies satisfying (2), and
therefore also requires m = Ω(ε−2 logN). We show such X exists via the probabilistic method, by letting X
be the union of all n standard basis vectors together with several independent gaussian vectors. Gaussian
vectors were also the hard case in the DJL lower bound proof of [KMN11], though the details were different.

We now give the idea of the lower bound proof to achieve (2). First, we include in X the vectors e1, . . . , en.
Then if A ∈ Rm×n for m ≤ n satisfies (2), this forces every column of A to have roughly unit norm. Then
by standard results in covering and packing (see Eqn. (5.7) of [Pis89]), there exists some family of matrices

F ⊂ ∪nt=1Rt×n, |F| = eO(n2 logn), such that

inf
Â∈F∩Rm×n

‖A− Â‖F ≤
1

nC
(3)

for C > 0 a constant as large as we like, where ‖ · ‖F denotes Frobenius norm. Also, by a theorem of Lata la
[Lat99], for any Â ∈ F and for a random gaussian vector g,

P
g
(|‖Âg‖22 − tr(ÂT Â)| ≥ Ω(

√
log(1/δ) · ‖ÂT Â‖F )) ≥ δ/2 (4)

for any 0 < δ < 1/2, where tr(·) is trace. This is a (weaker version of the) statement that for gaussians, the
Hanson-Wright inequality [HW71] not only provides an upper bound on the tail of degree-two gaussian chaos,
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but also is a lower bound. (The strong form of the previous sentence, without the parenthetical qualifier,
was proven in [Lat99], but we do not need this stronger form for our proof – essentially the difference is that
in stronger form, (4) is replaced with a stronger inequality also involving the operator norm ‖ÂT Â‖.)

It also follows by standard results that for δ > 1/poly(n) a random gaussian vector g satisfies

P
g
(|‖g‖22 − n| > C

√
n log(1/δ)) < δ/2 (5)

Thus by a union bound, the events of (4), (5) happen simultaneously with probability Ω(δ). Thus if we
take N random gaussian vectors, the probability that the events of (4), (5) never happen simultaneously for
any of the N gaussians is at most (1−Ω(δ))N = e−Ω(δN). By picking N sufficiently large and δ = 1/poly(n),
a union bound over F shows that for every Â ∈ F , one of the N gaussians satisfies the events of (4) and (5)
simultaneously. Specifically, there exist N = O(n3) vectors {v1, . . . , vN} = V ⊂ Rn such that

• Every v ∈ V has ‖v‖22 = n±O(
√
n lg n)

• For any Â ∈ F there exists some v ∈ V such that |‖Âv‖22 − tr(ÂT Â)| = Ω(
√

lg n · ‖Â‖F ).

The final definition of X is {e1, . . . , en}∪V . Then, using (2) and (3), we show that the second bullet implies

tr(ÂT Â) = n±O(εn), and |‖Av‖22 − n| = Ω(
√

lnn · ‖ÂT Â‖F )−O(εn). (6)

where ±B represents a value in [−B,B]. But then by the triangle inequality, the first bullet above, and (2),∣∣‖Av‖22 − n∣∣ ≤ ∣∣‖Av‖22 − ‖v‖22∣∣+
∣∣‖v|‖22 − n∣∣ = O(εn+

√
n lg n). (7)

Combining (6) and (7) implies

tr(ÂT Â) =

n∑
i=1

λ̂i ≥ (1−O(ε))n, and ‖ÂT Â‖2F =

n∑
i=1

λ̂2
i = O

(
ε2n2

log n
+ n

)

where (λ̂i) are the eigenvalues of ÂT Â. With bounds on
∑
i λ̂i and

∑
i λ̂i

2
in hand, a lower bound on

rank(ÂT Â) ≤ m follows by Cauchy-Schwarz (this last step is also common to the proof of [Alo03]).

Remark 2. It is not crucial in our proof that N be proportional to n3. Our techniques straightforwardly
extend to show that N can be any value which is Ω(n2+γ) for any constant γ > 0, or even Ω(n1+γ/ε2).

2 Preliminaries

Henceforth a standard gaussian random variable g ∈ R is a gaussian with mean 0 and variance 1. If we say
g ∈ Rn is standard gaussian, then we mean that g is a multivariate gaussian with identity covariance matrix
(i.e. its entries are independent standard gaussian). Also, the notation ±B denotes a value in [−B,B]. For
a real matrix A = (ai,j), ‖A‖ is the `2 → `2 operator norm, and ‖A‖F = (

∑
i,j a

2
i,j)

1/2 is Frobenius norm.
In our proof we depend on some previous work. The first theorem is due to Lata la [Lat99] and says that,

for gaussians, the Hanson-Wright inequality is not only an upper bound but also a lower bound.

Theorem 2 ([Lat99, Corollary 2]). There exists universal c > 0 such that for g ∈ Rn standard gaussian and
A = (ai,j) an n× n real symmetric matrix with zero diagonal,

∀t ≥ 1, P
g

(
|gTAg| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t}

Theorem 2 implies the following corollary.
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Corollary 1. Let g,A be as in Theorem 2, but where A is no longer restricted to have zero diagonal. Then

∀t ≥ 1, P
g

(
|gTAg − tr(A)| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t}

Proof. Let N be a positive integer. Define g̃ = (g̃1,1, g̃1,2, . . . , g̃1,N , . . . , g̃n,1, g̃n,2, . . . , g̃n,N ) a standard gaus-

sian vector. Then gi is equal in distribution to N−1/2
∑N
j=1 g̃i,j . Define ÃN as the nN × nN matrix formed

by converting each entry ai,j of A into an N ×N block with each entry being ai,j/N . Then

gTAg − tr(A) =

n∑
i=1

n∑
j=1

ai,jgigj − tr(A)
d
=

n∑
i=1

n∑
j=1

N∑
r=1

N∑
s=1

ai,j
N

g̃i,r g̃j,s − tr(A)
def
= g̃T ÃN g̃ − tr(ÃN )

where
d
= denotes equality in distribution (note tr(A) = tr(ÃN )). By the weak law of large numbers

∀λ > 0, lim
N→∞

P
(
|g̃T ÃN g̃ − tr(ÃN )| > λ

)
= lim
N→∞

P
(
|g̃T (ÃN − D̃N )g̃| > λ

)
(8)

where D̃N is diagonal containing the diagonal elements of ÃN . Note ‖ÃN‖ = ‖A‖. This follows since if
we have the singular value decomposition A =

∑
i σiuiv

T
i (where the {ui} and {vi} are each orthonormal,

σi > 0, and ‖A‖ is the largest of the σi), then ÃN =
∑
i σiu

(N)
i (v

(N)
i )T where u

(N)
i is equal to ui but

where every coordinate is replicated N times and divided by
√
N . This implies |‖ÃN − D̃N‖ − ‖A‖| ≤

‖D̃N‖ = maxi |ai,i|/N = oN (1) by the triangle inequality. Therefore limN→∞ ‖ÃN − D̃N‖ = ‖A‖. Also

limN→∞ ‖ÃN − D̃N‖F = ‖A‖F . Our corollary follows by applying Theorem 2 to the right side of (8).

The next lemma follows from gaussian concentration of Lipschitz functions [Pis86, Corollary 2.3]. It also
follows from the Hanson-Wright inequality [HW71] (which is the statement of Corollary 1, but with the
inequality reversed). Ultimately we will apply it with t ∈ Θ(log n), in which case the e−t term will dominate.

Lemma 1. For a universal c > 0, and g ∈ Rn standard gaussian, ∀t > 0 P(|‖g‖22−n| > c
√
nt) < e−t+e−

√
nt.

The following corollary summarizes the above in a form that will be useful later.

Corollary 2. For A ∈ Rd×n let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA. Let g(1), . . . , g(N) ∈ Rn be
independent standard gaussian vectors. For some universal constants c1, c2, δ0 > 0 and any 0 < δ < δ0

P

6 ∃j ∈ [N ] :

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2}
∧

{
|‖g(j)‖22 − n| ≤ c2

√
n ln(1/δ)

} ≤ e−Nδ.
(9)

Proof. We will show that for any fixed j ∈ [N ] it holds that

P

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2}
∧

{
‖g(j)‖22 ≤ n+ c2

√
n ln(1/δ)

} > δ (10)

Then, since the gj are independent, the left side of (9) is at most (1− δ)N ≤ e−δN .
Now we must show (10). It suffices to show that

P
(
|‖g(j)‖22 − n| ≤ c2

√
n ln(1/δ)

)
> 1− δ/2 (11)

and

P

∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2
 > δ/2 (12)

since (10) would then follow from a union bound. Eqn. (11) follows immediately from Lemma 1 for c2
chosen sufficiently large. For Eqn. (12), note ‖Ag(j)‖22 = gTATAg. Then

∑
i λi = tr(ATA) and (

∑
i λ

2
i )

1/2 =
‖ATA‖F . Then (12) frollows from Corollary 1 for δ smaller than some sufficiently small constant δ0.
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We also need a standard estimate on entropy numbers (covering the unit `mn∞ ball by `mn2 balls).

Lemma 2. For any parameter 0 < α < 1, there exists a family Fα ⊆
⋃n
m=1 Rm×n of matrices with the

following two properties:

1. For any matrix A ∈
⋃n
m=1 Rm×n having all entries bounded in absolute value by 2, there is a matrix

Â ∈ Fα such that A and Â have the same number of rows and B = A− Â satisfies tr(BTB) ≤ α/100.

2. |Fα| = eO(n2 ln(n/α)).

Proof. We construct Fα as follows: For each integer 1 ≤ m ≤ n, add all m × n matrices having entries of

the form i
√
α

10n for integers i ∈ {−20n/
√
α, . . . , 20n/

√
α}. Then for any matrix A ∈

⋃n
m=1 Rm×n there is a

matrix Â ∈ Fα such that A and Â have the same number of rows and every entry of B = A− Â is bounded

in absolute value by
√
α

10n . This means that every diagonal entry of BTB is bounded by nα/(100n2) and thus

tr(BTB) ≤ α/100. The size of Fα is bounded by n(40n/
√
α)n

2

= eO(n2 ln(n/α)).

3 Proof of main theorem

Lemma 3. Let Fα be as in Lemma 2 with 1/ poly(n) ≤ α < 1. Then there exists a set of N = O(n3) vectors
v1, . . . , vN in Rn such that for every matrix A ∈ Fα, there is an index j ∈ [N ] such that

(i) |‖Avj‖22 −
∑
i λi| = Ω

(√
lnn

∑
i λ

2
i

)
.

(ii) |‖vj‖22 − n| = O(
√
n lnn).

Proof. Let g(1), . . . , g(N) ∈ Rn be independent standard gaussian. Let A ∈ Fα and apply Corollary 2 with

δ = n−1/4 = N−1/12. With probability 1− e−Ω(n3−1/4), one of the g(j) for j ∈ [N ] satisfies (i) and (ii) for A.

Since |Fα| = eO(n2 ln(n/α)), the claim follows by a union bound over all matrices in Fα.

Theorem 3. For any 0 < ε < 1/2, there exists a set X ⊂ Rn, |X| = N = n3 +n, such that if A is a matrix
in Rm×n satisfying ‖Avi‖22 ∈ (1± ε)‖vi‖22 for all vi ∈ X, then m = Ω(min{n, ε−2 lg n}).

Proof. We can assume ε > 1/
√
n since otherwise an m = Ω(n) lower bound already follows from [Alo03].

To construct X, we first invoke Lemma 3 with α = ε2/n2 to find n3 vectors w1, . . . , wn3 such that for all
matrices Ã ∈ Fε2/n2 , there exists an index j ∈ [n3] for which:

1. |‖Ãwj‖22 −
∑
i λ̃i| ≥ Ω

(√
(lnn)

∑
i λ̃

2
i

)
.

2. |‖wj‖22 − n| = O(
√
n lnn).

where λ̃1 ≥ · · · ≥ λ̃n ≥ 0 denote the eigenvalues of ÃT Ã. We let X = {e1, . . . , en, w1, . . . , wn3} and claim
this set of N = n3 + n vectors satisfies the theorem. Here ei denotes the i’th standard unit vector.

To prove this, let A ∈ Rm×n be a matrix with m ≤ n satisfying ‖Av‖22 ∈ (1± ε)‖v‖22 for all v ∈ X. Now
observe that since e1, . . . , en ∈ X, A satisfies ‖Aei‖22 ∈ (1± ε)‖ei‖22 = (1± ε) for all ei. Hence all entries ai,j
of A must have a2

i,j ≤ (1 + ε) < 2 (and in fact, all columns of A have `2 norm at most
√

2). This implies

that there is an m × n matrix Â ∈ Fε2/n2 such that B = A − Â = (bi,j) satisfies tr(BTB) ≤ ε2/(100n2).
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Since tr(BTB) = ‖B‖2F , this also implies ‖B‖F ≤ ε/(10n). Then by Cauchy-Schwarz,

n∑
i=1

λ̂i = tr(ÂT Â)

= tr((A−B)T (A−B))

= tr(ATA) + tr(BTB)− tr(ATB)− tr(BTA)

=

n∑
i=1

‖Aei‖22 + tr(BTB)− tr(ATB)− tr(BTA)

= n± (O(εn) + 2n ·max
j

(
∑
i

b2i,j)
1/2 ·max

k
(
∑
i

a2
i,k)1/2)

= n± (O(εn) + 2n · ‖B‖F ·
√

2)

= n±O(εn).

Thus from our choice of X there exists a vector v∗ ∈ X such that

(i) |‖Âv∗‖22 − n| ≥ Ω

(√
(lnn)

∑
i λ̂

2
i

)
−O(εn).

(ii) |‖v∗‖22 − n| = O(
√
n lnn).

Note ‖B‖2 ≤ ‖B‖2F = tr(BTB) ≤ ε2/(100n2) and ‖Â‖2 ≤ ‖Â‖2F ≤ (‖A‖F + ‖B‖F )2 = O(n2). Then by (i)

(iii)

|‖Av∗‖22 − n| = |‖Âv∗‖22 + ‖Bv∗‖22 + 2〈Âv∗, Bv∗〉 − n|

≥ Ω

√(lnn)
∑
i

λ̂2
i

− ‖Bv∗‖22 − 2|〈Âv∗, Bv∗〉| −O(εn)

≥ Ω

√(lnn)
∑
i

λ̂2
i

− ‖B‖2 · ‖v∗‖22 − 2‖B‖ · ‖A‖ · ‖v∗‖22 −O(εn)

= Ω

√(lnn)
∑
i

λ̂2
i

−O(εn).

We assumed |‖Av∗‖22 − ‖v∗‖22| = O(ε‖v∗‖22) = O(εn). Therefore by (ii),∣∣‖Av∗‖22 − n∣∣ ≤ ∣∣‖Av∗‖22 − ‖v∗‖22∣∣+
∣∣‖v∗‖22 − n∣∣

= O(εn+
√
n lnn),

which when combined with (iii) implies

n∑
i=1

λ̂2
i = O

(
ε2n2

lnn
+ n

)
.

To complete the proof, by Cauchy-Schwarz since exactly rank(ÂT Â) of the λ̂i are non-zero,

n2

2
≤

(
n∑
i=1

λ̂i

)2

≤ rank(ÂT Â) ·

(
n∑
i=1

λ̂i
2

)
≤ m ·O

(
ε2n2

lnn
+ n

)
Rearranging gives m = Ω(min{n, ε−2 lnn}) = Ω(min{n, ε−2 lnN}) as desired.
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4 Discussion

One obvious future goal is to obtain an m = Ω(min{n, ε−2 logN}) lower bound that also applies to non-linear
maps. Unfortunately, such a lower bound cannot be obtained by using the hard set X from Theorem 3. If
X is the union of {e1, . . . , en} with nO(1) independent gaussian vectors normalized to each have squared unit
norm in expectation, then it is not hard to show (e.g. via a decoupled Hanson-Wright inequality) that X will
be ε-incoherent with high probability for any ε ∈ Ω(

√
log n/n), where we say a set X is ε-incoherent if (1)

for all x ∈ X, ‖x‖2 = 1±ε, and (2) for all x 6= y ∈ X, |〈x, y〉| ≤ ε. It is known that any ε-incoherent set of N
vectors can be non-linearly embedded into dimension O(ε−2(logN/(log logN + log(1/ε)))2) by putting each
vector in correspondence with a Reed-Solomon codeword (see [NNW14] for details). This upper bound is

o(ε−2 logN) for any ε ∈ 2−ω(
√

logN). Thus, one cannot prove an Ω(ε−2 logN) lower bound against non-linear
maps for our hard set X for the full range of ε ∈ [

√
(log n)/n, 1/2].

One potential avenue for generalizing our lower bound to the non-linear setting is to shrink |X|. Our
hard set X contains N = O(n3) points in Rn (though as remarked earlier, our techniques easily imply
N = O(n1+γ/ε2) points suffice). Any embedding f could be assumed linear without loss of generality if the
elements of X were linearly independent, at which point one would only need to prove a lower bound against
linear embeddings. However, clearly X ⊂ Rn cannot be linearly independent if N > n, as is the case for our
X. Thus a first step toward a lower bound against non-linear embeddings is to obtain a hard X with N as
small as possible. Alternatively, one could hope to extend the aforementioned non-linear embedding upper
bound for incoherent sets of vectors to arbitrary sets of vectors, though such a result if true seems to require
ideas very different from all known constructions of JL transforms to date.
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