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Abstract—For any d, n ≥ 2 and 1/(min{n, d})0.4999 < ε <
1, we show the existence of a set of n vectors X ⊂ Rd such
that any embedding f : X → Rm satisfying

∀x, y ∈ X, (1−ε)‖x−y‖22 ≤ ‖f(x)−f(y)‖22 ≤ (1+ε)‖x−y‖22
must have

m = Ω(ε−2 lgn).

This lower bound matches the upper bound given by the
Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower
bound holds for nearly the full range of ε of interest, since there
is always an isometric embedding into dimension min{d, n}
(either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold
against linear maps f , and not for such a wide range of
parameters ε, n, d [LN16]. The best previously known lower
bound for general f was m = Ω(ε−2 lgn/ lg(1/ε)) [Wel74],
[Alo03], which is suboptimal for any ε = o(1).

I. INTRODUCTION

In modern algorithm design, often data is high-
dimensional, and one seeks to first pre-process the data
via some dimensionality reduction scheme that preserves
geometry in such a way that is acceptable for particular
applications. The lower-dimensional embedded data has
the benefit of requiring less storage, less communication
bandwith to be transmitted over a network, and less time to
be analyzed by later algorithms. Such schemes have been
applied to good effect in a diverse range of areas, such
as streaming algorithms [Mut05], numerical linear algebra
[Woo14], compressed sensing [CRT06], [Don06], graph
sparsification [SS11], clustering [BZMD15], [CEM+15],
nearest neighbor search [HIM12], and many others.

A cornerstone dimensionality reduction result is the fol-
lowing Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1 (JL lemma). Let X ⊂ Rd be any set of size n,
and let ε ∈ (0, 1/2) be arbitrary. Then there exists a map
f : X → Rm for some m = O(ε−2 lg n) such that

∀x, y ∈ X, (1−ε)‖x−y‖22 ≤ ‖f(x)−f(y)‖22 ≤ (1+ε)‖x−y‖22.
(1)

Even though the JL lemma has found applications in a
plethora of different fields over the past three decades, its
optimality has still not been settled. In the original paper by

Johnson and Lindenstrauss [JL84], it was proven that for any
ε < 1/2, there exists n point sets X ⊂ Rn for which any em-
bedding f : X → Rm providing (1) must have m = Ω(lg n).
This was later improved in [Alo03], which showed the exis-
tence of an n point set X ⊂ Rn, such that any f providing
(1) must have m = Ω(min{n, ε−2 lg n/ lg(1/ε)}), which
falls short of the JL lemma for any ε = o(1). This lower
bound can also be obtained from the Welch bound [Wel74],
which states ε2k ≥ (1/(n − 1))(n/

(
m+k−1

k

)
− 1) for any

positive integer k, by choosing 2k = dlg n/ lg(1/ε)e. The
lower bound can also be extended to hold for any n ≤ ecε2d
for some constant c > 0.

Our Contribution: In this paper, we finally settle the
optimality of the JL lemma. Furthermore, we do so for
almost the full range of ε.

Theorem 2. For any integers n, d ≥ 2 and ε ∈
(lg0.5001 n/

√
min{n, d}, 1), there exists a set of points

X ⊂ Rd of size n, such that any map f : X → Rm providing
the guarantee (1) must have

m = Ω(ε−2 lg(ε2n)). (2)

Here it is worth mentioning that the JL lemma can be
used to give an upper bound of

m = O(min{n, d, ε−2 lg n}),
where the d term is obvious (the identity map) and the
n term follows by projecting onto the ≤ n-dimensional
subspace spanned by X . Thus a requirement of at least
ε = Ω(1/

√
min{n, d}) is certainly necessary for the lower

bound (2) to be true, which our constraint on ε matches up
to the lg0.5001 n factor.

We also make the following conjecture concerning the be-
havior of the optimal form of Euclidean dimension reduction
possible as ε → 1/

√
min{n, d}. Note the lg(ε2n) term as

opposed to lg n in the upper bound.

Conjecture 1. If f(n, d, ε) denotes the smallest m such that
all n-point subsets of `d2 can be embedded into `m2 with
distortion at most 1+ε, then for all n, d > 1 and 0 < ε < 1,
f(n, d, ε) = Θ(min{n, d, ε−2 lg(2 + ε2n)}).

It is worth mentioning that the arguments in previous
work [Wel74], [Alo03], [LN16] all produced hard point sets



P which were nearly orthogonal so that any embedding
into an incoherent collection provided low distortion under
the Euclidean metric. Recall P is ε-incoherent if every
x ∈ P has unit `2 norm, and ∀x 6= y ∈ P one has
|〈x, y〉| = O(ε). Unfortunately though, it is known that for
any ε < 2−ω(

√
lgn), an incoherent collection of n vectors in

dimension m = o(ε−2 lg n) exists, beating the guarantee of
the JL lemma. The construction is based on Reed-Solomon
codes (see for example [AGHP92], [NNW14]). Thus proving
Theorem 2 requires a very different construction of a hard
point set when compared with previous work.

A. Prior Work

Prior to our work, a result of the authors [LN16] showed
an m = Ω(ε−2 lg n) bound in the restricted setting where
f must be linear. This left open the possibility that the JL
lemma could be improved upon by making use of nonlinear
embeddings. Indeed, as mentioned above even the hard
instance of [LN16] enjoys the existence of a nonlinear em-
bedding into m = o(ε−2 lg n) dimension for ε < 2−ω(

√
lgn).

Furthermore, that result only provided hard instances with
n ≤ poly(d), and furthermore n had to be sufficiently large
(at least Ω(d1+γ/ε2) for any constant γ > 0).

Also related is the so-called distributional JL (DJL)
lemma. The original proof of the JL lemma in [JL84] is
via random projection, i.e. ones picks a uniformly random
rotation U then defines f(x) to be the projection of Ux onto
its first m coordinates, scaled by 1/

√
m in order to have the

correct squared Euclidean norm in expectation. Note that this
construction of f is both linear, and oblivious to the data
set X . Indeed, all known proofs of the JL lemma proceed
by instantiating distributions Dε,δ satisfying the guarantee
of the below distributional JL (DJL) lemma.

Lemma 1 (Distributional JL (DJL) lemma). For any integer
d ≥ 1 and any 0 < ε, δ < 1/2, there exists a distribution
Dε,δ over m × d real matrices for some m . ε−2 lg(1/δ)
such that

∀u ∈ Rd, P
Π∼Dε,δ

(|‖Πu‖2 − ‖u‖2| > ε‖u‖2) < δ. (3)

One then proves the JL lemma by proving the DJL lemma
with δ < 1/

(
n
2

)
, then performing a union bound over all u ∈

{x−y : x, y ∈ X} to argue that Π simultaneously preserves
all norms of such difference vectors simultaneously with
positive probability. It is known that the DJL lemma is tight
[JW13], [KMN11]; namely any distribution Dε,δ over Rm×n
satisfying (3) must have m = Ω(min{d, ε−2 lg(1/δ)}). Note
though that, prior to our current work, it may have been
possible to improve upon the JL lemma by avoiding the DJL
lemma. Our main result implies that, unfortunately, this is
not the case: obtaining (1) via the DJL lemma combined
with a union bound is optimal.

B. Subsequent Work

After the initial dissemination of this work, Alon and
Klartag asked the question of the optimal space complexity
for solving the static “approximate dot product” problem
on the sphere in d dimensions [AK17]. In this problem
one is given a set P of n points x1, . . . , xn in Sd−1

to preprocess into a data structure, as well as an error
parameter ε. Then in response to query(i, j), one must
output 〈xi, xj〉 with additive error at most ε. The work
[KOR00] provides a solution using space O(ε−2n lg n)
bits, which turns out to be optimal iff d = Ω(ε−2 lg n),
shown by [AK17]. In fact [AK17] was able to provide an
understanding of the precise asymptotic space complexity
s(n, d, ε) of this problem for all ranges of n, d, ε. This
understanding as a consequence provides an alternate proof
of the optimality of the JL lemma, since their work implies
s(n, n, 2ε) � s(n, cε−2 lg n, ε) for c > 0 a small constant
(and if dimension-reduction into dimension d′ were always
possible, one would have s(n, n, 2ε) ≤ s(n, d′, ε) by first
dimension-reducing the input!).

In terms of proof methods, unlike [Alo03], [Wel74], our
work uses an encoding argument. We proceed in a somewhat
ad hoc fashion, showing that one can use simple upper
bounds on the sizes of ε-nets of various convex bodies
to conclude that dimension reduction far below the JL
upper bound would imply an encoding scheme that is too
efficient to exist for some task, based on rounding vectors
to net points (see Section III for an overview). Interestingly
enough, the original m = Ω(lg n) lower bound of [JL84]
was via a volumetric argument, which is related to the
packing and covering bounds one needs to execute our
encoding argument! The work of [AK17] on understanding
s(n, d, ε) is also via an encoding argument. They observe
that the question of understanding s(n, d, ε) is essentially
equivalent to understanding the logarithm of the optimal size
of an ε-net under entrywise `∞ norm of n×n Gram matrices
of rank d, since P can be encoded as the name of the closest
point in the net to its Gram matrix. They then proceed to
provide tight upper and lower bounds on the optimal net
size for the full range of parameters.

The work [AK17] also made progress toward Conjec-
ture 1. In particular, they proved the lower bound for all
ranges of parameters, thus removing the “lg0.5001 n” term
in our requirement on ε in Theorem 2. As for the upper
bound, they made progress on a bipartite version of the
conjecture. In particular, they showed that for any 2n vectors
x1, . . . , xn, y1, . . . , yn ∈ Sd−1, one can find 2n vectors
a1, . . . , an, b1, . . . , bn ∈ Sm−1 for m = O(ε−2 lg(2 + ε2n))
so that for all i, j ∈ [n], |〈xi, yj〉 − 〈ai, bj〉| < ε. No
promise is given for dot product preservation amongst the
xi’s internally, or amongst the yj’s internally. Also note that
dot product preservation up to additive ε error does not
always imply norm preservation with relative error 1 + ε,



i.e. when distances are small.

II. PRELIMINARIES ON COVERING CONVEX BODIES

We here state a standard result on covering numbers. The
proof is via a volume comparison argument; see for example
[Pis89, Equation (5.7)].

Lemma 2. Let E be an m-dimensional normed space, and
let BE denote its unit ball. For any 0 < ε < 1, one can
cover BE using at most 2m lg(1+2/ε) translated copies of
εBE .

Corollary 1. Let T be an origin symmetric convex body in
Rm. For any 0 < ε < 1, one can cover T using at most
2m lg(1+2/ε) translated copies of εT .

Proof: The Minkowski functional of an origin symmet-
ric convex body T , when restricted to the subspace spanned
by vectors in T , is a norm for which T is the unit ball
(see e.g. [Tho96, Proposition 1.1.8]). It thus follows from
Lemma 2 that T can be covered using at most 2m lg(1+2/ε)

translated copies of εT .
In the remainder of the paper, we often use the notation

Bdp to denote the unit `p ball in Rd.

III. LOWER BOUND PROOF

In the following, we start by describing the overall strat-
egy in our proof. This first gives a fairly simple proof of a
sub-optimal lower bound. We then introduce the remaining
ideas needed and complete the full proof. The proof goes via
a counting argument. More specifically, we construct a large
family P = {P1, P2, . . . } of very different sets of n points
in Rd. We then assume all point sets in P can be embedded
into Rm while preserving all pairwise distances to within
(1 + ε). Letting f1(P1), f2(P2), . . . , denote the embedded
point sets, we then argue that our choice of P ensures that
any two fi(Pi) and fj(Pj) must be very different. If m is too
low, this is impossible as there are not enough sufficiently
different point sets in Rm.

In greater detail, the point sets in P are chosen as
follows: Let e1, . . . , ed denote the standard unit vectors
in Rd. For now, assume that d = n/ lg(1/ε) and ε ∈
(lg0.5001 n/

√
d, 1). We will later show how to generalize

the proof to the full range of d. For any set S ⊂ [d] of
k = ε−2/256 indices, define a vector yS :=

∑
j∈S ej/

√
k.

A vector yS has the property that 〈yS , ej〉 = 0 if j /∈ S and
〈yS , ej〉 = 16ε if j ∈ S. The crucial property here is that
there is a gap of 16ε between the inner products depending
on whether or not j ∈ S. Now if f is a mapping to Rm that
satisfies the JL-property (1) for P = {0, e1, . . . , ed, yS},
then first off, we can assume f(0) = 0 since pairwise
distances are translation invariant. From this it follows that f
must preserve norms of the vectors x ∈ P to within (1 + ε)

since

(1− ε)‖x‖22 = (1− ε)‖x− 0‖22 ≤ ‖f(x)− f(0)‖22
= ‖f(x)‖22 = ‖f(x)− f(0)‖22
≤ (1 + ε)‖x− 0‖22
= (1 + ε)‖x‖22.

We then have that f must preserve inner products 〈ej , yS〉
up to an additive of 4ε. This can be seen by the following
calculations, where v±X denotes the interval [v−X, v+X]:

‖f(ej)− f(yS)‖22 = ‖f(ej)‖22 + ‖f(yS)‖22
− 2〈f(ej), f(yS)〉 ⇒

2〈f(ej), f(yS)〉 ∈ (1± ε)‖ej‖22 + (1± ε)‖yS‖22
− (1± ε)‖ej − yS‖22 ⇒

2〈f(ej), f(yS)〉 ∈ 2〈ej , yS〉 ± ε(‖ej‖22 + ‖yS‖22
+ ‖ej − yS‖22)⇒

〈f(ej), f(yS)〉 ∈ 〈ej , yS〉 ± 4ε.

This means that after applying f , there remains a gap
of (16 − 8)ε = 8ε between 〈f(ej), f(yS)〉 depending on
whether or not j ∈ S. With this observation, we are ready
to describe the point sets in P (in fact they will not be point
sets, but rather ordered sequences of points, possibly with
repetition). Let Q = n− d− 1. For every choice of Q sets
S1, . . . , SQ ⊂ [d] of k indices each, we add a point set P to
P . The sequence P is simply (0, e1, . . . , ed, yS1

, . . . , ySQ).

This gives us a family P of size
(
d
k

)Q
. If we look at JL

embeddings for all of these point sets f1(P1), f2(P2), . . . ,
then intuitively these embeddings have to be quite different.
This is true since fi(Pi) uniquely determines Pi simply
by computing all inner products between the fi(ej)’s and
fi(yS`)’s. The problem we now face is that there are
infinitely many sets of n points in Rm that one can embed
to. We thus need to discretize Rm in a careful manner and
argue that there are not enough n-sized sets of points in this
discretization to uniquely embed each Pi when m is too low.

Encoding Argument: To give a formal proof that there
are not enough ways to embed the point sets in P into Rm
when m is low, we give an encoding argument. More specif-
ically, we assume that it is possible to embed every point set
in P into Rm while preserving pairwise distances to within
(1 + ε). We then present an algorithm that based on this
assumption can take any point set P ∈ P and encode it into a
bit string of length O(nm). The encoding guarantees that P
can be uniquely recovered from the encoding. The encoding
algorithm thus effectively defines an injective mapping g
from P to {0, 1}O(nm). Since g is injective, we must have
|P| ≤ 2O(nm). But |P| =

(
d
k

)Q
= (ε2n/ lg(1/ε))Ω(ε−2n)

and we can conclude m = Ω(ε−2 lg(ε2n/ lg(1/ε))). For
ε > 1/n0.4999, this is m = Ω(ε−2 lg n).



First Attempt: The difficult part is to design an en-
coding algorithm that yields an encoding of size O(nm)
bits. A natural first attempt would go as follows: recall
that any JL-embedding f for a point set P ∈ P (where f
may depend on P ) must preserve gaps in 〈f(ej), f(yS`)〉’s
depending on whether or not j ∈ S`. This follows simply
by preserving distances to within a factor (1 + ε) as argued
above. If we can give an encoding that allows us to recover
approximations f̂(ej) of f(ej) and f̂(yS`) of f(yS`) such
that ‖f̂(ej)−f(ej)‖22 ≤ ε and ‖f̂(yS`)−f(yS`)‖22 ≤ ε, then
by the triangle inequality, the distance ‖f̂(ej)− f̂(yS`)‖22 is
also a (1 + O(ε)) approximation to ‖ej − yS`‖22 and the
gap between inner products would be preserved. To encode
sufficiently good approximations f̂(ej) and f̂(yS`), one
could do as follows: since norms are roughly preserved by
f , we must have ‖f(ej)‖22, ‖f(yS`)‖22 ≤ 1 + ε. Letting Bm2
denote the `2 unit ball in Rm, we could choose some fixed
covering C2 of (1 + ε)Bm2 with translated copies of εBm2 .
Since f(ej), f(yS`) ∈ (1 + ε)Bm2 , we can find translations
c2(f(ej)) + εBm2 and c2(f(yS`)) + εBm2 of εBm2 in C2,
such that these balls contain f(ej) and f(yS`) respectively.
Letting f̂(ej) = c2(f(ej)) and f̂(yS`) = c2(f(yS`)) be
the centers of these balls, we can encode an approxima-
tion of f(ej) and f(yS`) using lg |C2| bits by specifying
indices into C2. Unfortunately, covering (1+ε)Bm2 by εBm2
needs |C2| = 2Ω(m lg(1/ε)) since the volume ratio between
(1 + ε)Bm2 and εBm2 is (1/ε)Ω(m). The lg(1/ε) factor
loss leaves us with a lower bound on m of no more than
m = Ω(ε−2 lg(ε2n/ lg(1/ε))/ lg(1/ε)), roughly recovering
the lower bound of Alon [Alo03] by a different argument.

Full Proof: The key idea to reduce the length of
the encoding to O(nm) is as follows: First observe that
we chose d = n/ lg(1/ε). Thus we can spend up to
O(m lg(1/ε)) bits encoding each f(ej)’s. Thus we simply
encode approximations f̂(ej) by specifying indices into a
covering C2 of (1 + ε)Bm2 by εBm2 as outlined above.

For the f(yS`)’s, we have to be more careful as we
cannot afford m lg(1/ε) bits for each. First, we define the
d × m matrix A having the f̂(ej) = c2(f(ej)) as rows
(see Figure 1). Note that this matrix can be reconstructed
from the part of the encoding specifying the f̂(ej)s. Now
observe that the j’th coordinate of v` = Af(yS`) is equal
to 〈f̂(ej), f(yS`)〉. This is within O(ε) of 〈ej , yS`〉. The
coordinates of v` thus determine S` due to the gap in inner
products depending on whether j ∈ S` or not. We therefore
seek to encode the v` efficiently. Since the v` are in Rd, this
seems quite hopeless to do in O(m) bits per v`. The key
observation is that they lie in an m-dimensional subspace
of Rd, namely in the column space of A. This observation
will allow us to get down to just O(m) bits. We are ready
to give the remaining details.

Let W denote the subspace of Rd spanned by the columns

A



f̂(e1)T

f̂(e2)T

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

f̂(ed)
T

· f̂i(yS`) =

〈
f̂(e1), f̂(yS`)

〉〈
f̂(e2), f̂(yS`)

〉
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·〈

f̂(ed), f̂(yS`)
〉



v`

Figure 1. Notation to describe a more efficient encoding of P ∈ P .

of A. We have dim(W ) ≤ m. Define T as the convex body

T := Bd∞ ∩W.

That is, T is the intersection of the subspace W with the
d-dimensional `∞ unit ball Bd∞. Now let C∞ be a minimum
cardinality covering of (22ε)T by translated copies of εT ,
computed by any deterministic procedure that depends only
on T . Since T is origin symmetric, by Corollary 1 it follows
that |C∞| ≤ 2m lg 45. To encode the vectors yS1

, . . . , ySQ we
make use of the following lemma, whose proof we give in
Section III-A:

Lemma 3. For every ej and yS` in P , we have

|〈f̂(ej), f(yS`)〉 − 〈ej , yS`〉| ≤ 6ε.

From Lemma 3, it follows that |〈f̂(ej), f(yS`)〉| ≤ 6ε +
〈ej , yS`〉 ≤ 22ε for every ej and yS` in P . Since the j’th
coordinate of Af(yS`) equals 〈f̂(ej), f(yS`)〉, it follows that
Af(yS`) ∈ (22ε)T . Using this fact, we encode each yS` by
finding some vector c∞(yS`) such that c∞(yS`) + εT is a
convex shape in the covering C∞ and Af(yS`) ∈ c∞(yS`)+
εT . We write down c∞(yS`) as an index into C∞. This costs
a total of Qm lg 45 = O(Qm) bits over all yS` . We now
describe our decoding algorithm.

Decoding Algorithm: To recover P =
{0, e1, . . . , ed, yS1

, . . . , ySQ} from the above encoding,
we only have to recover yS1 , . . . , ySQ as {0, e1, . . . , ed}
is the same for all P ∈ P . We first reconstruct the matrix
A. We can do this since C2 was chosen independently
of P and thus by the indices encoded into C2, we
recover c2(ej) = f̂(ej) for j = 1, . . . , d. These are the
rows of A. Then given A, we know T . Knowing T , we
compute C∞ since it was constructed via a deterministic
procedure depending only on T . This finally allows us to
recover c∞(yS1

), . . . , c∞(ySQ). What remains is to recover
yS1

, . . . , ySQ . Since yS` is uniquely determined from the
set S` ⊆ {1, . . . , d} of k indices, we focus on recovering
this set of indices for each yS` .



For ` = 1, . . . , Q recall that Af(yS`) is in c∞(yS`) + εT .
Observe now that:

Af(yS`) ∈ c∞(yS`) + εT ⇒
Af(yS`)− c∞(yS`) ∈ εT ⇒

‖Af(yS`)− c∞(yS`)‖∞ ≤ ε.

But the j’th coordinate of Af(yS`) is 〈f̂(ej), f(yS`)〉. We
combine the above with Lemma 3 to deduce |(c∞(yS`))j −
〈ej , yS`〉| ≤ 7ε for all j. We thus have that (c∞(yS`))j ≤ 7ε
for j /∈ Si and (c∞(yS`))j ≥ 9ε for j ∈ S`. We
finally conclude that the set S`, and thus yS` , is uniquely
determined from c∞(yS`).

Analysis: We finally analyse the size of the encod-
ing produced by the above procedure and derive a lower
bound on m. Recall that the encoding procedure produces
a total of dm lg(1 + 4/ε) + O(Qm) = O(nm) bits. But

|P| ≥
((

d
k

)
/2
)Q
≥ (d/(2k))kQ = (d/(2k))k(n−d−1) ≥

(d/(2k))kn/2. We therefore must have

nm = Ω(kn lg(d/k))⇒
m = Ω(ε−2 lg(ε2n/ lg(1/ε))).

Since we assume ε > lg0.5001 n/
√
d ≥ lg0.5001 n/

√
n, this

can be simplified to

m = Ω(ε−2 lg(ε2n)).

This shows that m = Ω(ε−2 lg(ε2n)) for d = n/ lg(1/ε)
and ε ∈ (lg0.5001 n/

√
d, 1). The following paragraph shows

how to handle the remaining values of d.
Handling Other Values of d: For d > n/ lg(1/ε), the

proof is easy: Simply repeat the above construction using
only the first n/ lg(1/ε) standard unit vectors in the point
sets of P . This reproves the above lower bound, with the
only further restriction that ε ∈ (lg0.5001 n/

√
min{d, n}, 1)

as opposed to ε ∈ (lg0.5001 n/
√
d, 1).

For d < n/ lg(1/ε) and ε ∈ (lg0.5001 n/
√
d, 1), assume

for the sake of contradiction that it is possible to embed
into o(ε−2 lg(ε2n)) dimensions. Now take any point set P
in Rd′ with d′ = n/ lg(1/ε) and apply a JL transform into d
dimensions on it, obtaining a point set P ′ in d dimensions.
This new point set has all distances preserved to within
(1 +O(

√
lg n/d)) (by the standard JL upper bound). Next

apply the hypothetical JL transform in d dimensions to
reduce the target dimension to o(ε−2 lg(ε2n)). Distances
are now preserved to within (1 + O(

√
lg n/d))(1 + ε).

Since we assumed ε > lg0.5001 n/
√
d, we have that

(1 + O(
√

lg n/d)) = (1 + o(ε)), which implies (1 +
O(
√

lg n/d))(1 + ε) = (1 + O(ε)). This contradicts the
lower bound for d′ = n/ lg(1/ε) dimensions.

A. Proof of Lemma 3

In this section, we prove the lemma:

Restatement of Lemma 3. For every ej and yS` in P , we
have

|〈f̂(ej), f(yS`)〉 − 〈ej , yS`〉| ≤ 6ε.

Proof: First note that:

〈f̂(ej), f(yS`)〉 =

〈c2(ej)− f(ej) + f(ej), f(yS`)〉 =

〈f(ej), f(yS`)〉+ 〈c2(ej)− f(ej), f(yS`)〉 ∈
〈f(ej), f(yS`)〉 ± ‖c2(ej)− f(ej)‖2‖f(yS`)‖2.

Since C2 was a covering with εBm2 , we have ‖c2(ej) −
f(ej)‖2 ≤ ε. Recall that ‖f(yS`)‖22 ≤ (1 + ε). This in
particular implies that ‖f(yS`)‖2 ≤ 2. We thus have:

〈f̂(ej), f(yS`))〉 ∈ 〈f(ej), f(yS`)〉 ± 2ε. (4)

To bound 〈f(ej), f(yS`)〉, observe that

‖f(ej)− f(yS`)‖22 =

‖f(ej)‖22 + ‖f(yS`)‖22 − 2〈f(ej), f(yS`)〉.

This implies that

2〈f(ej), f(yS`)〉 ∈
‖ej‖22(1± ε) + ‖yS`‖22(1± ε)− ‖ei − yS`‖22(1± ε) ⊆

2〈ej , yS`〉 ± ε(‖ej‖22 + ‖yS`‖22 + ‖ej − yS`‖22) ⊆
2〈ej , yS`〉 ± ε(4(‖ej‖22 + ‖yS`‖22))

That is, we have

〈f(ej), f(yS`)〉 ∈ 〈ej , yS`〉 ± 2ε(‖ej‖22 + ‖yS`‖22)

Both the ej’s and yS` ’s have unit norm, hence

〈f(ej), f(yS`)〉 ∈ 〈ej , yS`〉 ± 4ε

Inserting this in (4), we obtain

〈f̂(ej), f(yS`)〉 ∈ 〈ej , yS`〉 ± 6ε.
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Peralta. Simple construction of almost k-wise inde-
pendent random variables. Random Struct. Algorithms,
3(3):289–304, 1992.

[AK17] Noga Alon and Bo’az Klartag. Optimal compression
of approximate inner products and dimension reduc-
tion. In Proceedings of the 58th Annual Symposium
on Foundations of Computer Science (FOCS), 2017.

[Alo03] Noga Alon. Problems and results in extremal
combinatorics–I. Discrete Mathematics, 273(1-3):31–
53, 2003.

[BZMD15] Christos Boutsidis, Anastasios Zouzias, Michael W.
Mahoney, and Petros Drineas. Randomized dimension-
ality reduction for k-means clustering. IEEE Transac-
tions on Information Theory, 61(2):1045–1062, 2015.

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco,
Christopher Musco, and Mădălina Persu. Dimension-
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