
I/O-Efficient Spatial Data Structures for Range Queries

Lars Arge Kasper Green Larsen

MADALGO∗, Department of Computer Science, Aarhus University, Denmark
E-mail: large@madalgo.au.dk,larsen@madalgo.au.dk

1 Introduction

Range reporting is a one of the most fundamental topics in spatial databases and
computational geometry. In this class of problems, the input consists of a set of
geometric objects, such as points, line segments, rectangles etc. The goal is to
preprocess the input set into a data structure, such that given a query range, one
can efficiently report all input objects intersecting the range. The ranges most
commonly considered are axis-parallel rectangles, halfspaces, points, simplices and
balls.

In this survey, we focus on the planar orthogonal range reporting problem in
the external memory model of Aggarwal and Vitter [2]. Here the input consists
of a set of N points in the plane, and the goal is to support reporting all points
inside an axis-parallel query rectangle. We use B to denote the disk block size in
number of points. The cost of answering a query is measured in the number of I/Os
performed and the space of the data structure is measured in the number of disk
blocks occupied, hence linear space is O(N/B) disk blocks.

Outline. In Section 2, we set out by reviewing the classic B-tree for solving one-
dimensional orthogonal range reporting, i.e. given N points on the real line and
a query interval q = [q1, q2], report all T points inside q. In Section 3 we present
optimal solutions for planar orthogonal range reporting, and finally in Section 4, we
briefly discuss related range searching problems.

2 The B-tree

A B-tree [10] is constructed in the following manner from a sequence of N points on
the real line: First sort the points according to their coordinates and partition them

∗Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation.

1



into N/B groups of B consecutive points each. Each group is stored in one disk
block and we think of these blocks as the leaves of the B-tree. Each leaf node v is
naturally associated to an x-range Xv = (x1v, x

2
v] where x1v is the largest coordinate

stored in the leaf preceding v (x1v = −∞ for the first leaf) and x2v is the largest
coordinate of a point in v (we let x2v =∞ for the last leaf). We call the coordinates
defining these intervals “splitter” values and we assume without loss of generality
that all coordinates are distinct.

To guide searches, we construct a B-ary tree on top of the sorted sequence of
leaves. Each internal node v is again associated to an x-range Xv, which is the union
of the x-ranges of the leaves in the subtree rooted at v. We augment each internal
node with the O(B) splitter values of its children and store the splitter values in
O(1) disk blocks.

To answer a query q = [q1, q2], we start at the root node of the B-tree and traverse
the two paths towards the leaves whose x-ranges contain q1 and q2, respectively.
These paths are easily determined from the splitter values stored in the nodes along
the paths. For each node v on the paths we do the following: We examine the
x-range of all children of v, and for each child with an x-range completely inside q,
we traverse all the leaves of the corresponding subtree and report all points stored
there. Clearly this procedure correctly reports all points in the query range.

Following the two paths towards the leaves containing q1 and q2 costs O(logB N)
I/Os. For every subtree that is traversed because its x-range is inside q, we charge
the traversal to the output size, i.e. this costs at most O(T/B) I/Os. Hence we
conclude that the B-tree uses linear space and answers queries in O(logB N + T/B)
I/Os.

When solving higher-dimensional orthogonal range reporting, the aim is to ob-
tain a performance that is comparable to that of the B-tree, i.e. O(logB N + T/B)
query cost and as close to linear space as possible.

3 Orthogonal Range Queries

Solutions for planar orthogonal range reporting are typically obtained by first ob-
taining a solution for a restricted type of query ranges, known as 3-sided queries. A
3-sided query q = (q1, q2, q3) asks to report all input points (x, y) with q1 ≤ x ≤ q2
and y ≥ q3. In Section 3.1, we show how to answer these 3-sided queries in exter-
nal memory. In Section 3.2 we then extend these results to standard query ranges,
which we refer to as 4-sided queries.

3.1 Three-Sided Queries

In the following, we present a data structure for solving 3-sided planar range report-
ing : Preprocess a set S of point in the plane such that given a 3-sided query q, we
can report all points in S that are inside q.

2



A solution to the 3-sided range query problem can be obtained using an external
priority search tree [5]. A basic building block in the external priority search tree is
an efficient solution for 3-sided range queries when the number of input points is only
O(B2). More specifically, we assume for now that for a set of K = O(B2) points,
one can construct a linear space data structure such that 3-sided range queries can
be answered in O(1 + T/B) I/Os. We refer to such a base data structure as a
“B2–structure”. In the following, we first describe the external priority search tree
simply assuming the availability of this B2–structure. We then move on to describe
the B2–structure at the end of the section.

Structure. An external priority search tree consists of a base B-tree T on the
x-coordinates of the points in S. Recall from Section 2 that T stores all points in the
leaves and that internal nodes store only splitter values. For the external priority
search tree, we keep the splitter values in the internal nodes, but also move the
points from the leaves into the internal nodes by the following recursive procedure:
Start at the root node v of T and collect for each child vi of v, the B points with
highest y-coordinates (if existing) amongst all points stored in the leaves of the
subtree rooted at vi. We move these points out of their leaves and store the O(B2)
points collected for all children of v in a B2–structure. This B2–structure is stored
at v. We finally recurse on all O(B) children of v. Observe that when this procedure
terminates at the leaves, all points stored in the subtree rooted at a node v still have
an x-coordinate in the x-range of v. Overall the external priority search tree uses
linear space since T uses linear space and since each point is stored in precisely one
B2–structure.

Query. To answer a 3-sided query q = (q1, q2, q3) we start at the root of T and
proceed recursively to the appropriate subtrees: When visiting a node v we first
query the B2–structure and report the relevant points. Then we advance the search
to some of the children of v. The search is advanced to a child vi if it is either
along the search path for q1 or q2, or if the entire set of points corresponding to vi
in the B2–structure were reported. The query procedure reports all points in the
query range, since if we do not visit a child vi with an x-range completely contained
in the interval [q1, q2], it means that at least one of the points in the B2–structure
corresponding to vi is not in q. Since all points corresponding to vi have an x-
coordinate in the query range, there must be at least one of the points that have
a y-coordinate smaller than q3. This in turn means that none of the points in the
subtree rooted at vi can be in q since they all have even smaller y-coordinates.

That we use O(logB N + T/B) I/Os to answer a query can be seen as follows.
In each internal node v of T visited by the query procedure we spend O(1 + Tv/B)
I/Os, where Tv is the number of points reported at v. There are O(logB N) nodes
visited on the search paths in T to the leaf containing q1 and the leaf containing q2,
and thus the number of I/Os used in these nodes adds up to O(logB N+T/B). Each
remaining visited internal node v in T is not on the search paths but it is visited
because Θ(B) points corresponding to v were reported in its parent. Thus the cost

3



of visiting these nodes adds up to O(T/B).

Theorem 1. An external priority search tree on a set of N points in the plane uses
linear space and answers 3-sided range queries in O(logB N + T/B) I/Os.

Three-Sided Queries on O(B2) Points. In the following, we describe the B2–
structure. The data structure is based on a sweep line approach commonly used in
solving geometric problems.

Structure. We start by sorting the K = O(B2) input points according to their
x-coordinates. We then partition this sequence into O(K/B) groups of Θ(B) con-
secutive points. We store the points of each group in one disk block. We think of
the blocks as being ordered in the natural way (i.e. according to the x-coordinates
of the points inside). Then we conceptually sweep a horizontal line from y = −∞
to∞ and merge the groups as the sweep line passes through the input points. More
specifically, we start by marking all groups as active. We then raise the sweep line
from y = −∞ and each time it passes through a point we check whether there
are any two consecutive active groups for which both groups contain less than B/2
points above the sweep line. If this is the case, we form a new active group and fill
it with the (at most B) points that are above the sweep line in the two groups. We
then store the points in the newly formed group in one disk block and mark the
two old groups as inactive. This process continues until no point remains above the
sweep line. Since we start out with O(K/B) active groups, and we reduce the total
number of active groups by one each time we create one new group, it follows that
the total number of groups formed is O(K/B). Thus the stored disk blocks occupy
only linear space.

Each group g formed by the above procedure, including the initial groups, have a
natural associated active y-interval [y1, y2] where y1 is the y-coordinate of the point
that caused g to be formed (we let y1 = −∞ for the initial groups) and y2 is the
y-coordinate of the point that caused g to be inactive (y2 = −∞ for the last group).
Each group also has an associated x-range, which is simply the range containing the
x-coordinates of the points in the group.

Query. To answer the 3-sided query q = (q1, q2, q3), we consider the groups
whose active y-interval include q3, that is, the groups that were active when the
sweep line was at y = q3. To answer the query, we assume for now that we can
find the subset of these groups whose x-ranges intersect the interval [q1, q2]. If there
are k such groups, we know that at least k − 2 of them have an x-range completely
inside [q1, q2]. Since we merge two consecutive groups when both have less than B/2
points above the sweep line, it follows that the query range contains Ω((k − 2)B)
points. Thus we can afford to spend O(1) I/Os for each intersected group to retrieve
the corresponding disk block and report the subset of points that are also in the
query range.

What remains is to describe how we find the intersected groups. For this, recall
that the total number of groups formed is only O(K/B) = O(B). Thus we can

4



store O(1) “catalog” blocks containing the active y-intervals and x-ranges of all the
groups plus pointers to the corresponding disk blocks. We thus answer the query
by first reading these catalog blocks to find the desired groups. We then follow the
stored pointers to the corresponding disk blocks and finish as described above. This
completes the description of the B2–structure.

3.2 Four-Sided Queries

In this section we show how the results for 3-sided queries can be extended to solve
4-sided queries. This extension is based on the classic data structures known as
range trees [8].

Structure. The data structure consists of a balanced binary tree T with the
N input points stored in sorted order of x-coordinates in the leaves. Each node is
naturally associated to an x-range as in Section 2. For each internal node v of T ,
we store two data structures for answering 3-sided queries on the points stored in
the leaves of the subtree rooted at v, one for query ranges of the form [q1,∞) ×
[q2, q3] and one for query ranges of the form (−∞, q1]× [q2, q3]. Note that such data
structures can be obtained from the data structure presented in Section 3.1 by a
simple geometric transformation of the input points. Since each point is stored in
at most two linear space 3-sided data structures for each node on a root-to-leaf path
in T , we conclude that the space usage is O(N/B · logN).

Queries. To answer a 4-sided query q = [q1, q2] × [q3, q4] we start at the root
node v of T . If q1 and q2 are contained in the x-range of the same child of v, we
recursively visit that child. If this procedure ends in a leaf node, we answer the
query simply by examining the associated point. Otherwise, let v be the internal
node for which q1 and q2 lies in the x-range of different children. At v, the query
decomposes into two 3-sided queries, one of the form [q1,∞)× [q3, q4] on the 3-sided
data structure stored for the left child of v, and one of the form (−∞, q2] × [q3, q4]
on the 3-sided data structure stored for the right child of v. By blocking the tree
T appropriately, finding the node v can be done in O(logB N) I/Os, hence the total
query cost is at most O(logB N + T/B) I/Os.

Space Improvements. The solution for 4-sided queries presented above can be
slightly improved. The idea is to change from a binary range tree, to a tree of degree
α for a parameter α > 2. This decreases the height of the tree to logN/ logα and
thus the space becomes O(N/B · logN/ logα). Increasing the degree raises another
problem however; at the node v where q1 and q2 lie in the x-range of two different
children there might be up to α children whose x-range is intersected by [q1, q2].
Thus the query decomposes into two 3-sided queries and up to α one-dimensional
queries. By elegant ideas, the one-dimensional queries can be solved jointly in
O(α + T/B) I/Os [5]. Thus by setting α = logB N one arrives at a data structure
using O(N/B · logN/ log logB N) space and answering queries in O(logB N + T/B)
I/Os. Surprisingly, this space bound has been shown to be optimal for any query
time of the form O(logcB N + T/B), where c > 0 is any arbitrary constant [12, 5].

5



Theorem 2. There exists a data structure that uses O(N/B · logN/ log logB N)
space and answers 4-sided range queries in O(logB N + T/B) I/Os on a set of N
points in the plane.

Linear Space. There also exists a number of linear space solutions for 4-sided
queries. The simplest solution is a generalization of the kd-tree [9] structure to
external memory [7]. This data structure stores each input point exactly once and
answers queries in O(

√
N/B + T/B) I/Os. This query time has been shown to be

optimal when each point can be stored only once [13].

Dynamization. In the above, we have only focused on a static set of input points
that we must preprocess into a data structure. If insertions and deletions of points
are also to be supported, several new ideas are needed to make the above solutions
efficient.

For 3-sided queries, Arge et al. [5] showed how to dynamize the external priority
search tree such that insertions and deletions can be supported in O(logB N) I/Os
while maintaining the same space and query cost. Using the range tree idea, this
also gave a dynamic data structure for 4-sided queries, which supports insertions
and deletions in O(logB N logN/ log logB N) I/Os.

The external memory kd-tree can be dynamized to support insertions and dele-
tions in O(log2B N) I/Os, while maintaining O(

√
N/B + T/B) query I/Os and still

storing each point exactly once. This update cost can be improved to O(logB N)
using the O-tree structure [13].

3.3 Higher Dimensions

For d-dimensional orthogonal range reporting, i.e. d-dimensional points and d-
dimensional axis-parallel query rectangles, one can adapt the O-tree such that it
answers queries in O((N/B)1−1/d + T/B) I/Os. This is optimal if points can be
stored only once [13]. If one is willing to spend super-linear space, the best known
data structure uses O(N/B · (logN/ log logB N)d−1) space and answers queries in
O(logB N(logN/ log logB N)d−2 +T/B) I/Os [1]. The space bound is optimal if the
query cost is O(logcB N+T/B), where c > 0 is any arbitrary constant [1]. For three-
dimensions, there is also another tradeoff with optimal O(logB N+T/B) query cost,
using O(N(logN/ log logB N)3) space [1].

4 Other Range Searching Problems

In many applications, the input data set does not consist of points, but rather of line
segments, axis-parallel rectangles etc. Here we mention two fundamental problems
where the input consists of a set of two-dimensional axis-parallel rectangles.

6



In the rectangle stabbing problem, we are to support reporting all rectangles
containing a query point. Very surprisingly, it has been shown that this problem
cannot be solved in near-linear space and O(logB N +T/B) query cost. In fact, the
best possible query time with O(N/B·logcN) space is just O(logN/ log logN+T/B)
I/Os, where c > 0 is an arbitrary constant [6]. This is an interesting example where
it is not possible to take advantage of blocking.

In the rectangle-rectangle reporting problem, a query is specified by an axis-
parallel rectangle and the goal is to report all rectangles intersecting it. The PR-
tree [4] is a data structure that stores each input rectangle exactly once and supports
queries in O(

√
N/B+T/B) I/Os. Since a point is a special case of a rectangle, this

bound is obviously optimal when rectangles can be stored only once.
For further details and discussion of other range searching problems, we refer

the reader to surveys [3, 11, 14, 7].

References

[1] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting in three
and higher dimensions. In Proc. 50th IEEE Symposium on Foundations of
Computer Science, pages 149–158, 2009.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31:1116–1127, 1988.

[3] L. Arge. External memory geometric data structures, 2005. ”Lecture notes
available at http://www.cs.au.dk/˜large/ioS06/ionotes.pdf”.

[4] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree: A practi-
cally efficient and worst-case optimal r-tree. ACM Transactions on Algorithms,
4(1):9:1–9:30, 2008.

[5] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and
optimal range search indexing. In Proc. 18th ACM Symposium on Principles
of Database Systems, pages 346–357, 1999.

[6] L. Arge, V. Samoladas, and K. Yi. Optimal external-memory planar point
enclosure. In Proc. 12th European Symposium on Algorithms, pages 40–52,
2004.

[7] M. J. Atallah and M. Blanton, editors. Algorithms and theory of computation
handbook: general concepts and techniques. Chapman & Hall/CRC, 2 edition,
2010.

[8] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the
ACM, 23(4):214–229, 1980.

7



[9] M. de Berg and O. Cheong and M. van Kreveld and M. Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition,
2008. Chapter 10.

[10] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137,
1979.

[11] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

[12] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and
V. Samoladas. On a model of indexability and its bounds for range queries.
Journal of the ACM, 49(1):35–55, 2002.

[13] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. International Conference on Database
Theory, pages 257–276, 1997.

[14] J. S. Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305–474, 2008.

8


