
Fully Understanding the Hashing Trick

Casper Benjamin Freksen∗ Lior Kamma∗ Kasper Green Larsen †

May 22, 2018

Abstract

Feature hashing, also known as the hashing trick, introduced by Weinberger et al.
(2009), is one of the key techniques used in scaling-up machine learning algorithms.
Loosely speaking, feature hashing uses a random sparse projection matrix A : Rn → Rm

(where m� n) in order to reduce the dimension of the data from n to m while approxi-
mately preserving the Euclidean norm. Every column of A contains exactly one non-zero
entry, equals to either −1 or 1.

Weinberger et al. showed tail bounds on ‖Ax‖22. Specifically they showed that for
every ε, δ, if ‖x‖∞/‖x‖2 is sufficiently small, and m is sufficiently large, then

Pr[ | ‖Ax‖22 − ‖x‖22 | < ε‖x‖22 ] ≥ 1− δ .
These bounds were later extended by Dasgupta et al. (2010) and most recently re-
fined by Dahlgaard et al. (2017), however, the true nature of the performance of
this key technique, and specifically the correct tradeoff between the pivotal parameters
‖x‖∞/‖x‖2,m, ε, δ remained an open question.

We settle this question by giving tight asymptotic bounds on the exact tradeoff between
the central parameters, thus providing a complete understanding of the performance of
feature hashing. We complement the asymptotic bound with empirical data, which shows
that the constants “hiding” in the asymptotic notation are, in fact, very close to 1, thus
further illustrating the tightness of the presented bounds in practice.

1 Introduction

Dimensionality reduction that approximately preserves Euclidean distances is a key tool used
as a preprocessing step in many geometric, algebraic and classification algorithms, whose
performance heavily depends on the dimension of the input. Loosely speaking, a distance-
preserving dimensionality reduction is an (often random) embedding of a high-dimensional
Euclidean space into a space of low dimension, such that the distance between every two points
is approximately preserved (with high probability). Its applications range upon nearest neigh-
bor search [AC09, HIM12], classification and regression [RR08, MM09, PBMID14], manifold
learning [HWB08] sparse recovery [CT06] and numerical linear algebra [CW09, MM13, Sár06].
For more applications see, e.g. [Vem05].

One of the most fundamental results in the field was presented in the seminal paper by
Johnson and Lindenstrauss [JL84].

∗Computer Science Department. Aarhus University. Supported by a Villum Young Investigator Grant.
{cfreksen, lior.kamma}@cs.au.dk.
†Computer Science Department. Aarhus University. Supported by a Villum Young Investigator Grant and

an AUFF Starting Grant. larsen@cs.au.dk.

1



Lemma 1 (Distributional JL Lemma). For every n ∈ N and ε, δ ∈ (0, 1), there exists a
random m× n projection matrix A, where m = Θ(ε−2 lg 1

δ ) such that for every x ∈ Rn

Pr[ | ‖Ax‖22 − ‖x‖22 | < ε‖x‖22 ] ≥ 1− δ (1)

The target dimension m in the lemma is known to be optimal [JW13, LN17].

Running Time Performances. Perhaps the most common proof of the lemma (see, e.g.
[DG03, Mat08]) samples a projection matrix by independently sampling each entry from a
standard Gaussian (or Rademacher) distribution. Such matrices are by nature very dense,
and thus a näıve embedding runs in O(m‖x‖0) time, where ‖x‖0 is the number of non-zero
entries of x.

Due to the algorithmic significance of the lemma, much effort was invested in finding tech-
niques to accelerate the embedding time. One fruitful approach for accomplishing this goal
is to consider a distribution over sparse projection matrices. This line of work was initiated
by Achlioptas [Ach03], who constructed a distribution over matrices, in which the expected
fraction of non-zero entries is at most one third, while maintaining the target dimension. The
best result to date in constructing a sparse Johnson-Lindenstrauss matrix is due to Kane and
Nelson [KN14], who presented a distribution over matrices satisfying (1) in which every col-
umn has at most s = O(ε−1 lg(1/δ)) non-zero entries. Conversely Nelson and Nguy˜̂en [NN13]
showed that this is almost asymptotically optimal. That is, every distribution over n × m
matrices satisfying (1) with m = Θ(ε−2 lg(1/δ)), and such that every column has at most s
non-zero entries must satisfy s = Ω((ε lg(1/ε))−1 lg(1/δ)).

While the bound presented by Nelson and Nguy˜̂en is theoretically tight, we can provably
still do much better in practice. Specifically, the lower bound is attained on vectors x ∈ Rn for
which, loosely speaking, the “mass” of x is concentrated in few entries. Formally, the ratio
‖x‖∞/‖x‖2 is large. However, in practical scenarios, such as the term frequency - inverse
document frequency representation of a document, we may often assume that the mass of
x is “well-distributed” over many entries (That is, ‖x‖∞/‖x‖2 is small). In these common
scenarios projection matrices which are significantly sparser turn out to be very effective.

Feature Hashing. In the pursuit for sparse projection matrices, Weinberger et al.
[WDL+09] introduced dimensionality reduction via Feature Hashing, in which the projection
matrix A is, in a sense, as sparse as possible. That is, every column of A contains exactly one
non-zero entry, randomly chosen from {−1, 1}. This technique is one of the most influencial
mathematical tools in the study of scaling-up machine learning algorithms, mainly due to its
simplicity and good performance in practice [Dal13, Sut15]. More formally, for n,m ∈ N+,
the projection matrix A is sampled as follows. Sample h ∈R [n]→ [m], and σ = 〈σj〉j∈[n] ∈R
{−1, 1}n independently. For every i ∈ [m], j ∈ [n], let aij = aij(h, σ) := σj · 1h(j)=i (that is,
aij = σj iff h(j) = i and 0 otherwise). Weinberger et al. additionally showed exponential
tail bounds on ‖Ax‖22 when the ratio ‖x‖∞/‖x‖2 is sufficiently small, and m is sufficiently
large. These bounds were later improved by Dasgupta et al. [DKS10] and most recently by
Dahlgaard, Knudsen and Thorup [DKT17] improved these concentration bounds. Conversely,
a result by Kane and Nelson [KN14] implies that if we allow ‖x‖∞/‖x‖2 to be too large, then
there exist vectors for which (1) does not holds.

Finding the correct tradeoffs between ‖x‖∞/‖x‖2, and m, ε, δ in which feature hashing
performs well remained an open problem. Our main contribution is settling this problem,

2



and providing a complete and comprehensive understanding of the performance of feature
hashing.

1.1 Main results

The main result of this paper is a tight tradeoff between the target dimension m, the ap-
proximation ratio ε, the error probability δ and ‖x‖∞/‖x‖2. More formally, let ε, δ > 0
and m ∈ N+. Let ν(m, ε, δ) be the maximum ν ∈ [0, 1] such that for every x ∈ Rn, if
‖x‖∞ ≤ ν‖x‖2 then (1) holds. Our main result is the following theorem, which gives tight
asymptotic bounds for the performance of feature hashing, thus closing the long-standing gap.

Theorem 2. There exist constants C ≥ D > 0 such that for every ε, δ ∈ (0, 1) and m ∈ N+

the following holds. If
C lg 1

δ
ε2
≤ m < 2

ε2δ
then

ν(m, ε, δ) = Θ



√
ε ·min





lg εm
lg 1
δ

lg 1
δ

,

√√√√ lg ε2m
lg 1
δ

lg 1
δ






 .

Otherwise, if m ≥ 2
ε2δ

then ν(m, ε, δ) = 1. Moreover if m <
D lg 1

δ
ε2

then ν(m, ε, δ) = 0.

While the bound presented in the theorem may strike as surprising, due to the intricacy
of the expressions involved, the tightness of the result shows that this is, in fact, the correct
and “true” bound. Moreover, the proof of the theorem demonstrates how both branches in
the min expression are required in order to give a tight bound.

Experimental Results. Our theoretical bounds are accompanied by empirical results that
shed light on the nature of the constants in Theorem 2. Our empirical results show that in
practice the constants inside the Theta-notation are significantly tighter than the theoretical
proof might suggest, and in fact feature hashing performs well for a larger scope of vectors.

Specifically, our main result implies that whenever
4 lg 1

δ
ε2
≤ m < 2

ε2δ
,

ν(m, ε, δ) ≥ 0.725
√
ε ·min





lg εm
lg 1
δ

lg 1
δ

,

√√√√ lg ε2m
lg 1
δ

lg 1
δ





,

(except for very sparse vectors, i.e. ‖x‖0 ≤ 7) whereas the theoretical proof provides a
smaller constant 2−6 in front of

√
ε. Since feature hashing satisfies (1) whenever ‖x‖∞ ≤

ν(m, ε, δ)‖x‖2, this implies that feature hashing works well on even a larger range of vectors
than the theory suggests.

Proof Technique As a fundamental step in the proof of Theorem 2 we prove tight asymp-
totic bounds for high-order norms of the approximation factor.1 More formally, for every
x ∈ Rn \ {0} let X(x) = |‖Ax‖22 − ‖x‖22|. The technical crux of our results is tight bounds on
high-order moments of X(x). Note that by rescaling we may restrict our focus without loss
of generality to unit vectors.

1Given a random variable X and r > 0, the rth norm of X (if exists) is defined as ‖X‖r := r
√

E(|X|r).

3



Notation 1. For every m, r, k > 0 denote

Λ(m, r, k) =





√
r
m , k ≥ mr

max

{√
r
m ,

r2

k ln2( emrk )

}
, mr > k ≥ √mr

max

{
√

r
m ,

r2

k ln2( emrk )
, r

k ln
(
emr
k2

)
}
,

√
mr > k

.

In these notations our main technical lemmas are the following.

Lemma 3. For every even r ≤ m/4 and unit vector x ∈ Rn, ‖X(x)‖r = O(Λ(m, r, ‖x‖−2∞ )).

Lemma 4. For every k ≤ n and even r ≤ min{m/4, k}, ‖X(x(k))‖r = Ω (Λ(m, r, k)), where
x(k) ∈ Rn is the unit vector whose first k entries equal 1√

k
.

While it might seem at a glance that bounding the high-order moments of X(x) is merely
a technical issue, known tools and techniques could not be used to prove Lemmas 3, 4.
Particularly, earlier work by Kane and Nelson [KN14, CJN18] and Freksen and Larsen [FL17]
used high-order moments bounds as a step in proving probability tail bounds of random
variables. The existing techniques, however, can not be adopted to bound high-order moments
of X(x) (see also Section 1.2), and novel approaches were needed. Specifically, our proof
incorporates a novel combinatorial scheme for counting edge-labeled Eulerian graphs.

Previous Results. Weinberger et al. [WDL+09] showed that if m = Ω(ε−2 lg(1/δ)), then
ν(m, ε, δ) = Ω(ε · (lg(1/δ) lg(m/δ))−1/2). Dasgupta et al. [DKS10] showed that under similar
conditions ν(m, ε, δ) = Ω(

√
ε · (lg(1/δ) lg2(m/δ))−1/2). These bounds were recently improved

by Dahlgaard et al. [DKT17] who showed that ν(m, ε, δ) = Ω
(√

ε ·
√

lg(1/ε)
lg(1/δ) lg(m/δ)

)
. Con-

versely, Kane and Nelson [KN14] showed that for the restricted case of m = Θ(ε−2 lg(1/δ)),

ν(m, ε, δ) = O
(√

ε · lg(1/ε)lg(1/δ)

)
, which matches the bound in Theorem 2 if, in addition, lg(1/ε) ≤

√
lg(1/δ).

Key Tool : Counting Labeled Eulerian Graphs. Our proof presents a new combinato-
rial result concerning Eulerian graphs. Loosely speaking, we give asymptotic bounds for the
number of labeled Eulerian graphs containing a predetermined number of nodes and edges.
Formally, let α, β, r be integers such that 1 ≤ β ≤ α/2 ≤ min{n/2, r/2}. Let Gα,β,r denote
the family of all edge-labeled Eulerian multigraphs G = ([α], EG, πG), such that

1. G has no isolated vertices;

2. |EG| = r, and πG : EG → [r] is a bijection, which assigns a label in [r] to each edge; and

3. the number of connected components in G is β.

Notation 2. Denote ∆ = ∆(α, β) := α2αβ−β
[
(α− 2β)2 + 4(α− β)

]r−α
.

Theorem 5. 2−O(r) ·∆(α, β) ≤ |Gα,β,r| ≤ 2O(r) ·∆(α, β).

4



1.2 Related Work

The CountSketch scheme, presented by Charikar et al. [CCF04], was shown to satisfy (1) by
Thorup and Zhang [TZ12]. The scheme essentially samples O(lg(1/δ)) independent copies of
a feature hashing matrix with m = O(ε−2) rows, and applies them all to x. The estimator for
‖x‖22 is then given by computing the median norm over all projected vectors. The CountSketch
scheme thus constructs a sketching matrix A such that every column has O(lg(1/δ)) non-zero
entries. However, this construction does not provide a norm-preserving embedding into a
Euclidean space (that is, the estimator of ‖x‖22 cannot be represented as a norm of Ax),
which is essential for some applications such as nearest-neighbor search [HIM12].

Kane and Nelson [KN14] presented a simple construction for the so-called sparse Johnson
Lindenstrauss transform. This is a distribution of m × n matrices, for m = Θ(ε−2 lg(1/δ)),
where every column has s non-zero entries, randomly chosen from {−1, 1}. Note that if s = 1,
this distribution yields the feature hashing one. Kane and Nelson showed that for s = Θ(εm)
this construction satisfies (1). Recently, Cohen et al. [CJN18] presented two simple proofs for
this result. While their proof methods give (simple) bounds for high-order moments similar to
those in Lemmas 3 and 4, they rely heavily on the fact that s is relatively large. Specifically,
for s = 1 the bounds their method or an extension thereof give are trivial.

2 Counting Labeled Eulerian Graphs

In this section we prove Theorem 5. In order to upper bound |Gα,β,r|, we give an encoding
scheme and show that every graph G ∈ Gα,β,r can be encoded in a succinct manner, thus
bounding |Gα,β,r|.

Encoding Argument. Fix a graphG ∈ Gα,β,r, and let 〈{jp, `p}〉p∈[r] be its ordered sequence
of edges. In what follows, we give an encoding algorithm that, given G, produces a “short”
bit-string E that encodes G. The string E is a concatenation of three strings ET , EEu, ER,
encoded as follows.

Let CC(G) = {C1, . . . , Cβ} be the set of connected components ofG ordered by the smallest
labeled node in each component, and for every j ∈ [β], denote the graph induced by Cj in G
by G[Cj ] = (Cj , Ej). For every j ∈ [β] the encoding algorithm chooses a set Tj ⊆ Ej of edges
of a spanning tree in Cj . Denote by ET the union of all trees in G.

Proposition 6. |ET | = α− β.

Proof. For every j ∈ [β], |Ej | = |Cj | − 1. Therefore |ET | =
∑

j∈[β] |Ej | = α− β.

Let e1, . . . , eα−β be the ordering of ET induced by πG. The algorithm encodes ET to be

the list of α−β edges in
(
V
2

)
, followed by an encoding of πG(ET ) as a set in

( [r]
α−β
)
. Next, since

every connected component is Eulerian, for every j ∈ [β], there is an edge ej ∈ Ej \ ET . Let
EEu denote the set of all β such edges, and let ej1 , . . . , ejβ be the ordering of EEu induced by

πG. For every i ∈ [β], the algorithm encodes a pair (ji, (xi, yi)) ∈ [β]×
(Cji

2

)
, and appends them

in order together with πG(EEu) to encode EEu. Finally, the algorithm encodes EG\(ET ∪EEu)
in the ordering induced by πG as a list of length r − α in

⋃
j∈[β]

(Cj
2

)
. Denote this list of the

rest of the edges by ER.

Lemma 7. E can be encoded using at most lg ∆(α, β) +O(r) bits.

5



Proof. In order to bound the length of E we shall bound each of the three strings separately.
One can encode an ordered list of α−β distinct unordered pairs in V using at most (α−β) lg

(
α
2

)

bits. Therefore ET can be encoded using at most

(α− β) lg

(
α

2

)
+ lg

(
r

α− β

)
≤ 2(α− β) lgα+ r (2)

bits.
Next, for every i ∈ [β], (ji, (xi, yi)) can be encoded using lg β

(|Cji |
2

)
bits. Therefore EEu

can be encoded using at most

∑

i∈[β]

lg β

(|Cji |
2

)
+ lg

(
r − α
β

)
≤ β lg β + 2 lg

∏

i∈[β]

|Cji |+ r ≤ β lg β + 2β lg
α

β
+ r (3)

bits, where the last inequality follows from the AM-GM inequality, since
∑

i∈β |Cji | = α.

Finally, note that ER can be encoded using (r−α) lg
(∑

j∈β
(Cj
2

))
≤ (r−α) lg

(∑
j∈β |Cj |2

)

bits. Since

max




∑

j∈[β]

x2j :
∑

j∈[β]

xj = α ≥ 2β and ∀j ∈ [β]. xj ≥ 2



 = (α− 2(β − 1))2 + 4(β − 1) ,

we get that ER can be encoded using

(r − α) lg
[
(α− 2(β − 1))2 + 4(β − 1)

]
= (r − α) lg

[
(α− 2β)2 + 4(α− β)

]
(4)

bits. Summing over (2), (3) and (4) implies the lemma.

Lemma 8. Given E, one can reconstruct G.

Proof. In order to prove the lemma, we give a decoding algorithm that receives E and con-
structs G. The algorithm first reads the first list of α− β elements of

(
V
2

)
from ET , followed

by πG(ET ), to decode ET , and the restriction πG|ET of πG to ET . Given the set of spanning
trees, the algorithm constructs CC(G) = {C1, . . . , Cβ} (note that the ordering on CC(G) is
inherent in the components themselves, and does not depend on πG). Next, the algorithm
reads EEu and recovers the set EEu of edges, along with the restriction πG|EEu of πG to EEu.
Finally, the algorithm reads ER and reconstructs the remaining r−α edges, with their induced
ordering. Since πG(EG \ (ET ∪ EEu)) = [r] \ πG(ET ∪ EEu), the algorithm can reconstruct
the restriction πG|ER of πG to ER, thus reconstructing πG.

Corollary 9. |Gα,β,r| ≤ 2O(r)∆(α, β).

Next we turn to lower bound |Gα,β,r|. To this end, we construct a subset of |Gα,β,r| of size
at least 2−O(r)∆(α, β), thus lower bounding |Gα,β,r|.

Consider the following family Hα,β,r of labeled multigraphs over the vertex set [α]. For
every H = ([α], EH , πH) ∈ Hα,β,r, H contains β connected components, where β − 1 compo-
nents, referred to as small are composed of 2 vertices each, and one large component contains
the remaining α−2(β−1) nodes. The first α edges (according to πH) are a union of β simple
cycles, where each cycle contains the entire set of nodes of one connected component.

6



Claim 10. |Hα,β,r| ≥ 2−O(r)∆(α, β).

Proof. The number of possible ways to choose the partition of [α] into β connected com-
ponents such that all but one contain exactly 2 vertices is 1

β!

(
α

2,2,...,2,α−2(β−1)
)
. Each small

component has exactly one spanning cycle, while the large component has (α− 2(β− 1)− 1)!
spanning cycles. Once the cycles are chosen, there are at least 2−βα! ways to order the
edges. The number of possible edges in H is (β − 1) ·

(
2
2

)
+
(
α−2(β−1)

2

)
. Therefore there are[(

α−2(β−1)
2

)
+ (β − 1)

]r−α
ways to choose the ordered sequence of r−α remaining edges. We

conclude that

|Hα,β,r| ≥
1

β!

(
α

2, . . . , 2, α− 2(β − 1)

)
(α− 2β + 1)!2−βα!

[(
α− 2(β − 1)

2

)
+ 2(β − 1)

]r−α

≥ 2−O(r)β−β · (α!)2 ·
[
(α− 2β + 2)2 + 4(β − 1)

]r−α ≥ 2−O(r)∆(α, β) .

Lemma 11. PrH∈RHα,β,r [H ∈R Gα,β,r] ≥ 2−O(r).

Proof. Every H ∈ Hα,β,r contains r labeled edges, no isolated vertices and β connected
components. Therefore, H ∈ Gα,β,r if and only if the degree of every node in H is even.
Let Eλ be the set the last r − α edges in H, then since E \ Eλ is a union of disjoint cycles
spanning all vertices, for every v ∈ V , degEH (v) = degEH\Eλ(v) + degEλ(v) = 2 + degEλ(v).
Hence H ∈ Gα,β,r if and only if for every v ∈ V , degEλ(v) is even. Consider the set of

all possible
[
(α− 2β + 2)2 + 4(β − 1)

](r−α)/2
sequences of (r − α)/2 edges in H. For every

such sequence s, let the signature of s be the indicator vector σ(s) ∈ {0, 1}V , where for
every v ∈ V , σ(s)v = 1 if and only if degs(v) is odd. Let s1, s2 be of the same signature,
and let Eλ be the edge sequence of length r − α, which is the concatenation of s1 and s2.
Then degEλ(v) is even. Since the number of possible signatures is 2α, there exists a set
S of edge sequences of length (r − α)/2 that all have the same signature such that |S| ≥
2−α

[
(α− 2β + 2)2 + 4(β − 1)

](r−α)/2
. Therefore

Pr
H∈RHα,β,r

[H ∈R Gα,β,r] ≥ Pr[Eλ ∈ S × S] ≥ 2−O(r) .

We therefore conclude the following, which finishes the proof of Theorem 5.

Corollary 12. |Gα,β,r| ≥ 2−O(r)∆(α, β).

3 Bounding ν(m, ε, δ)

In this section we prove Theorem 2, assuming Lemmas 3 and 4, whose proof is deferred to
section 4. Fix ε, δ ∈ (0, 1) and an integer m. We first address the case where m ≥ 2

ε2δ
. Let

x ∈ Rn be a unit vector. Then

E
[∣∣‖Ax‖22 − 1

∣∣2
]

= E




 ∑

j 6=`∈[n]

1h(j)=h(`) · σjσ` · xjx`




2


= E


2

∑

j 6=`∈[n]

1h(j)=h(`)x
2
jx

2
`


 ≤ 2

m

7



Therefore by Chebyshev’s inequality Pr
[ ∣∣‖Ax‖22 − 1

∣∣ ≥ ε
]
≤ δ.

We therefore continue assuming m < 2
ε2δ

. From Lemmas 3 and 4 there exist C1, C2 > 0
such that for every r, k, if r ≤ m/4 then for every unit vector x, ‖X(x)‖r ≤ 2C2Λ(m, r, k).
Moreover, if r ≤ k then

2−C1Λ(m, r, k) ≤ ‖X(x(k))‖r ≤ 2C2Λ(m, r, k) .

Note that in addition Λ(m, 2r, k) ≤ 4Λ(m, r, k). Denote Ĉ = 2C2+2, and C = 2C1 + 2C2 + 5.

Lemma 13. If m <
log 1

δ
4Cε2

then ν(m, ε, δ) = 0.

Proof. Let r = 1
C lg 1

δ , and let k ≥ 2r be some integer. Then

E
[(
X(x(k))

)]
= ‖X(x(k))‖rr ≥

( r
m

)r/2
≥ 2εr .

Applying the Paley-Zygmund inequality

Pr
[ ∣∣∣‖Ax(k)‖22 − 1

∣∣∣ > ε
]

= Pr
[ ∣∣∣Ax(k) − 1

∣∣∣
r
> εr

]

≥ Pr
[(
X(x(k))

)r
> 2−1E[X(x(k))r]

]

≥ E2[X(x(k))r]

4E[X(x(k))2r]
=
‖X(x(k))‖2rr
4‖X(x(k))‖2r2r

≥ 1

4

(
2−C1Λ(m, r, k)

2C2Λ(m, 2r, k)

)2r

≥ 1

4

(
2−C1

2C2+2

)2r

= 2−(2C1−2C2−4)r−2 ≥ δ

(5)

Therefore ν(m, ε, δ) ≤ ‖x(k)‖∞ = 1√
k

for every k ≥ 2r, which implies ν(m, ε, δ) = 0.

For the rest of the proof we assume that
Ĉ log 1

δ
ε2

≤ m < 2
ε2δ

, and we start by proving a
lower bound on ν.

Lemma 14. ν(m, ε, δ) = Ω


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

Proof. Let r = lg 1
δ , let x ∈ Rn be a unit vector such that ‖x‖∞ ≤ min

{
√
ε ln eεm

r√
2C2er

,

√
ε lg eε

2m
r

2C2er

}
,

and let k := 1
‖x‖2∞

≥ max

{
2C2er2

ε ln2 eεm
r

, 2C2er

ε lg eε
2m
r

}
. If k ≤ mr, then since r2

k ln2 emr
k

is convex as a

function of k ∈
[

2C2er2

ε ln2 eεm
r

,mr
]

then

2C2
r2

k ln2 emr
k

≤ max




r

m
,


 ε ln2 eεm

r

e ln2 eεm ln2 eεm
r

r





 < ε/2 .

Moreover, if k ≤ √mr then since r
k ln emr

k2
is convex as a function of k ∈

[
2C2er

ε ln eε2m
r

,
√
mr

]
, then

2C2
r

k ln emr
k2
≤ max





√
r

m
,


 ε ln eε2m

r

e ln
ε2m ln2 eε

2m
r

r





 ≤ ε/2 .

8



Since clearly,
√

22C2r
m ≤ ε/2, then by Lemma 3 we have ‖X(x)‖rr ≤ (ε/2)r, and thus

Pr
[ ∣∣‖Ax‖22 − 1

∣∣ > ε
]

= Pr
[ ∣∣‖Ax‖22 − 1

∣∣r > εr
]

≤ Pr [(X(x))r > 2rE[X(x)r] ] ≤ 2−r = δ .
(6)

Hence ν(m, ε, δ) ≥ min

{
√
ε ln eεm

r√
2C2er

,

√
ε lg eε

2m
r

2C2er

}
= Ω


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

Lemma 15. ν(m, ε, δ) = O


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

To this end, let r = 1
C lg 1

δ , and denote

t = min





√
eε

r
ln
eεm

r
,

√
eε ln eε2m

r

r



 = O


min





√
ε

lg 1
δ

lg
εm

lg 1
δ

,

√√√√ε lg ε2m
lg 1
δ

lg 1
δ






 .

Assume first that t ≤ 1√
r
, and let k = 1

t2
. We will show that E

[(
X(x(k))

)r] ≥ 2εr. Since

t ≤ 1√
r
, then k ≥ r. If

√
eε
r ln eεm

r ≤
√

eε ln eε2m
r

r , then k = r2

e ln2 eεm
r

. Since eεm
r > e, then

k ≤ mr. Therefore

E
[(
X(x(k))

)r]
= ‖X(x(k))‖rr ≥

(
r2

k ln2 emr
k

)r
=


 eε ln2 eεm

r

ln2 e
2εm ln2 eεm

r
r



r

≥ 2εr .

Otherwise, k = r

eε ln eε2m
r

. Moreover, since ε2m
r > 1, then k ≤ r/ε ≤ √mr. Therefore

E
[(
X(x(k))

)r]
= ‖X(x(k))‖rr ≥

(
r

k ln emr
k2

)r
=


 eε ln eε2m

r

ln
e3ε2m ln2 eε

2m
r

r



r

≥ 2εr .

Applying the Paley-Zygmund inequality we get that similarly to (5)

Pr
[ ∣∣∣‖Ax(k)‖22 − 1

∣∣∣ > ε
]
≥ Pr

[(
X(x(k))

)r
> 2−1E[X(x(k))r]

]
≥ δ

Therefore ν(m, ε, δ) ≤ ‖x(k)‖∞ = t.

Assume next that 1√
r
< t <

√
ε
4 , and note that since

√
eε
r ln eεm

r ≥ 1√
r
, then m > e

√
r/(eε),

and since

√
eε ln eε2m

r
r ≥ 1√

r
then m > e1/(eε). Let k = 1

t2
, and consider independent h ∈R

[n] → [m], and σ = (σ1, . . . , σm) ∈R {−1, 1}m. Let y ∈ Rn be defined as follows. For every

j ∈ [n], yj = x
(k)
j if and only if h(j) = 1, and yj = 0 otherwise. Denote z = x(k) − y.

Then ‖x(k)‖22 = ‖y‖22 + ‖z‖22, and moreover, ‖Ax(k)‖22 = ‖Ay‖22 + ‖Az‖22, where A = A(h, σ).
Let Efirst denote the event that |h−1({1})| = 2

√
εk, and that for all j ∈ [n], if h(j) = 1

9



then σj = 1, and let Erest denote the event that
∣∣‖Az‖22 − ‖z‖22

∣∣ < ε‖z‖22. By Chebyshev’s

inequality, Pr[Erest | Efirst] = Ω(1). Note that if k = r2

eε ln2 eεm
r

, then

2
√
εk =

r√
e ln eεm

r

≤ lg 1
δ

C
√
e ln eεm

r

≤ lg 1
δ

C
√
e(ln em− ln 1

ε − ln r)

≤ lg 1
δ

C
√
e(lnm− 3 ln lnm)

≤ lg 1
δ

2 lnm
,

where the inequality before last is due to the fact that m > max{e1/eε, e
√
r}, and otherwise,

k = r

eε ln eε2m
r

, and

2
√
εk ≤ εk =

lg 1
δ

eC ln eε2m
r

=
lg 1

δ

eC(ln em− 2 ln 1
ε − ln r)

≤ lg 1
δ

eC(ln em− 4 ln lnm)
≤ lg 1

δ

2 lnm
.

Therefore for small enough ε,

Pr[Efirst] =

(
k

2
√
εk

)
·
(

1

m

)2
√
εk

·
(

1− 1

m

)k−2√εk
· 2−2

√
εk

≥
(

1

m

)2
√
εk

·
(

1− 1

m

)r
· 2−r ≥

(
1

m

)2
√
εk

· 2− 2
C

lg 1
δ ≥ δ3/4 .

We conclude that for small enough δ, Pr[Efirst ∧ Erest] ≥ δ. Conditioned on Efirst ∧ Erest we
get that

‖Ax(k)‖22 = ‖Ay‖22 + ‖Az‖2 ≥
4εk

k
+ (1− ε)‖z‖22

= 4ε+ (1− ε) · k − 2
√
εk

k
≥ 4ε+ (1− ε)2 > 1 + ε ,

where the inequality before last is due to the fact that k ≥ 4
ε . Therefore ν(m, ε, δ) ≤ ‖x(k)‖∞ =

t.

Finally, assume t >
√

ε
4 . Since

√
eε ln eε2m

r
r ≥ t >

√
ε
4 , we get that m ≥ r

eε2
er/(4e) ≥

r
eε2δ1/(4eC) . Let k = 2

ε . Consider independent h ∈R [n] → [m], and σ = (σ1, . . . , σm) ∈R
{−1, 1}m, and let A = A(h, σ). Let Ecol denote the event that there are j 6= ` ∈ [k] such that
for every p 6= q ∈ [k], h(p) = h(q) if and only if {p, q} = {j, `}. Then for small enough ε, δ,

Pr[Ecol] =

(
k

2

)
· 1

m
·
∏

j∈[k−1]

(
1− j

m

)
≥ k2

2m
· (1− ε/2) ·

(
1− k

m

)k

≥ k2

2m
· (1− ε/2) ·

(
1− k2

m

)
≥ 2δ · (1− ε/2) ·

(
1− 4eδ1/(4Ce)

)
≥ δ .

Conditioned on Ecol we get that
∣∣‖Ax(k)‖22 − 1

∣∣ = 2
k = ε. Therefore ν(m, ε, δ) ≤

√
ε
2 ≤ O(t).

This completes the proof of Lemma 15, and thus of Theorem 2.

10



4 Bounding the Moments of |‖Ax‖2 − 1|
In this section we prove Lemmas 3 and 4. Recall that h ∈R [n] → [m], and σ1, . . . , σm ∈R
{1,−1} are independent. For every i ∈ [m], j ∈ [n], aij := σj · 1h(j)=i. For every unit vector
x ∈ Rn \{0} we let X = X(x) = |‖Ax‖22−1|. We start with providing a better understanding
of X.

‖Ax‖22 = 1 +
∑

j 6=`∈[n]

1h(j)=h(`) · σjσ` · xjx`

Denote I[n] = {(p, p) : p ∈ [n]}. Then

X =
∣∣‖Ax‖22 − 1

∣∣ =

∣∣∣∣∣∣
∑

(j,`)∈([n]×[n]\I[n])

1h(j)=h(`) · σjσ` · xjx`

∣∣∣∣∣∣
,

and therefore for every even r

‖X‖rr = E[Xr] =
∑

〈(jp,`p)〉p∈[r]∈([n]×[n]\I[n])r
E


∏

p∈[r]

1h(jp)=h(`p)σjpσ`pxjpx`p


 (7)

Every S = 〈(jp, `p)〉p∈[r] ∈ ([n] × [n] \ I[n])r defines a directed multigraph
−→
GS with r ordered

directed edges on vertex set [n]. Let GS denote the underlying undirected multigraph.

Definition 1. Let q ∈ [n]. The degree of q in S is the degree of q in GS. Namely dS(q) :=
|{p ∈ [r] : q ∈ {jp, `p}}|.

Notation 3. Given S ∈ ([n]× [n]\I[n])r, let CC(S) denote the set of all connected components
of GS that contain at least two nodes. Let β(S) := |CC(S)|, V (S) =

⋃
C∈CC(S)C and α(S) :=

|V (S)|.

Next, for every integer β and a subset V ⊆ [n], let SV,β ⊆ ([n] × [n] \ I[n])r be the set of
all sequences S ∈ ([n]× [n] \ I[n])r such that

1. For every q ∈ [n], dS(q) is even; and

2. V (S) = V and β(S) = β.

Lemma 16.

‖X‖rr ≤ ‖x‖2r∞
r/2∑

β=1

r∑

α=2β

mβ

(‖x‖2∞m)α
∑

V ∈([n]α )

|SV,β| ·
∏

q∈V
x2q , (8)

Moreover, if for all j ∈ supp(x), |xj | = ‖x‖∞, then equality holds.

11



Proof. Fix some S = 〈(jp, `p)〉p∈[r] ∈ ([n]× [n] \ I[n])r. Then

E


∏

p∈[r]

1h(jp)=h(`p)σjpσ`pxjpx`p


 = E


∏

p∈[r]

1h(jp)=h(`p) ·
∏

q∈V (S)

σdS(q)q ·
∏

q∈V (S)

xdS(q)q




=
∏

q∈V (S)

xdS(q)q · E


∏

p∈[r]

1h(jp)=h(`p)


 ·

∏

q∈V (S)

E
[
σdS(q)q

]
(9)

where the last equality follows from independence. Assume first that for some q ∈ V (S),

dS(q) is odd. Then E
[
σ
dS(q)
q

]
= 0, and therefore (9) equals 0. Otherwise, E

[
σ
dS(q)
q

]
= 1

for all q ∈ V (S). We therefore assume hereafter that dS(q) is even for all q ∈ V (S). For
every C ∈ CC(S), C contains an edge of GS , thus there exists p ∈ [r] such that jp, `p ∈ C.
Conversely, for every p ∈ [r] there exists a unique connected component C ∈ CC(S) such that
jp, `p ∈ C. Therefore

E


∏

p∈[r]

1h(jp)=h(`p)


 = E


 ∏

C∈CC(S)

∏

p∈[r]:jp∈C

1h(jp)=h(`p)


 =

∏

C∈CC(S)

E


 ∏

p∈[r]:jp∈C

1h(jp)=h(`p)


 ,

where the last equality is due to independence. Next, let C = {v1, . . . , v|C|} ∈ CC(S), then

E
[∏

p∈[r]:jp∈C 1h(jp)=h(`p)

]
= E

[
1h(v1)=...=h(v|C|)

]
= 1

m|C|−1 . We thus conclude that

∏

C∈CC(S)

E


 ∏

p∈[r]:jp∈C

1h(jp)=h(`p)


 =

∏

C∈CC(S)

1

m|C|−1
=

1

mα(S)−β(S) .

For every sequence S that donates a non-zero summand to the sum, since dS(q) is even for
all q ∈ V (S) every C ∈ CC(S) is Eulerian, and therefore contains at least two nodes and two
edges. Therefore 1 ≤ β(S) ≤ r/2 and 2β(S) ≤ α(S) ≤ r. Plugging this into (7) we get that

‖X‖rr =
∑

S∈([n]×[n]\I[n])r
∀q∈V (S). dS(q)∈Neven

1

mα(S)−β(S)

∏

q∈V (S)

xdS(q)q

=

r/2∑

β=1

r∑

α=2β

∑

V ∈([n]α )

∑

S∈SV,β

1

mα−β

∏

q∈V
xdS(q)q

(10)

For every q ∈ V (S), dS(q) is a positive even integer, and therefore dS(q)− 2 ≥ 0 is also even.

Hence for every q ∈ V (S), x
dS(q)−2
q = |xq|dS(q)−2 ≤ ‖x‖dS(q)−2∞ . Since

∑
q∈V (S) dS(q) = 2r,

then
∏
q∈V x

dS(q)
q ≤ ‖x‖2r−2α∞

∏
q∈V x

2
q . Moreover, equality holds if for all j ∈ supp(x), |xj | =

‖x‖∞. Plugging this in (10) we get that

‖X‖rr ≤ ‖x‖2r∞
r/2∑

β=1

r∑

α=2β

mβ

(‖x‖2∞m)α
∑

V ∈([n]α )

∑

S∈SV,β

∏

q∈V
x2q

= ‖x‖2r∞
r/2∑

β=1

r∑

α=2β

mβ

(‖x‖2∞m)α
∑

V ∈([n]α )

|SV,β| ·
∏

q∈V
x2q

12



4.1 Upper Bounding ‖X‖r
We start by proving Lemma 3. To this end, denote k = ‖x‖−2∞ , and for every 1 ≤ β ≤ α/2 ≤
r/2, denote

M(α, β) =
(
mβ−1

)β
(
kα

m

)α
(α− 2β)2r−2α

N(α, β) =
(
mβ−1

)β
(
kα

m

)α
(α− β)r−α .

Applying Theorem 5 to the expression in Lemma 16 we can conclude the following.

Claim 17. ‖X‖rr ≤ 2O(r)

kr

r/2∑
β=1

r∑
α=2β

(M(α, β) +N(α, β)).

Proof. Let 1 ≤ β ≤ α/2 ≤ r/2. Then for every V ∈
(
[n]
α

)
, every sequence in SV,β defines a

directed edge-labeled multigraph
−→
GS on V , whose underlying undirected graph GS is Eulerian

and has β connected components. Invoking the notation used in Theorem 5, GS is isomorphic
to some graph in Gα,β,r, and moreover, it defines at most 2r sequences in SV,β. Thus |SV,β| ≤
2r|Gα,β,r| ≤ 2O(r)∆(α, β). Plugging this in the (8) we get that

‖X‖rr ≤
2O(r)

kr

r/2∑

β=1

r∑

α=2β

mβ

(
k

m

)α
∆(α, β)

∑

V ∈([n]α )

∏

q∈V
x2q . (11)

For every V ∈
(
[n]
α

)
, the coefficient of

∏
q∈V x

2
q in the expansion of

(∑
q∈[n] x

2
q

)α
is α!. There-

fore

1 =


∑

q∈[n]

x2q



α

≥ α!
∑

V ∈([n]α )

∏

q∈V
x2q .

Plugging this in (11) we get

‖X‖rr ≤
2O(r)

kr

r/2∑

β=1

r∑

α=2β

mβ

(
k

m

)α ∆(α, β)

α!

≤ 2O(r)

kr

r/2∑

β=1

r∑

α=2β

(
mβ−1

)β
(
kα

m

)α [
(α− 2β)2 + 4(α− β)

]r−α

≤ 2O(r)

kr

r/2∑

β=1

r∑

α=2β

(M(α, β) +N(α, β)) .

13



Lemma 18. For all 1 ≤ β ≤ α/2 ≤ r/2, then if k ≥ mr, then M(α, β) ≤ 2O(r)
(
k2r
m

)r/2
.

Otherwise, M(α, β) ≤ 2O(r) max

{(
r

ln 2emr
k

)2r
,
(
k2r
m

)r/2}
.

Proof. Let 1 ≤ β ≤ α/2 ≤ r/2. First note that

αα ≤ 2O(r)α! = 2O(r)(α− 2β)! · (2β)! ·
(
α

2β

)
≤ 2O(r)(α− 2β)α−2ββ2β ,

and therefore M(α, β) ≤ 2O(r)(mβ)β ·
(
k
m

)α
(α− 2β)2r−α−2β.

Next, we fix some β ∈ [r/2]. Define f, f̂ : (2β,+∞)→ R by f(α) =
(
k
m

)α ·(α−2β)2r−α−2β,

and f̂(α) = ln k
m − ln(α − 2β) + 2r−4β

α−2β − 1 for all α > 2β. Then f ′(α) = f(α) · f̂(α), and

f̂ ′(α) = − 1
α−2β −

2(r−2β)
(α−2β)2 < 0 for all α > 2β.

Assume first that β ≥ r
2 − ek

2m , then f̂(r) = ln k
m − ln(r− 2β) + 1 ≥ 0. Therefore f̂(α) ≥ 0,

thus f ′(α) ≥ 0 and f(α) ≤ f(r) for all α ∈ (2β, r]. It follows that

M(α, β) ≤ 2O(r) (mβ)β
(
k

m

)r
(r− 2β)r−2β ≤ 2O(r)

(
m

r/2

)r/2(kr
m

)r
≤ 2O(r)

(
k2r

m

)r/2
,

(12)

where the inequality before last follows from the fact that m ≥ r and β ≤ r/2.
To prove the first part of the lemma, note that if k ≥ mr

e , then for all β ∈ (0, r/2],

β ≥ r
2 − ek

2m .

To prove the second part of the lemma, we next assume that k < mr
e and β < r

2 − ek
2m ,

and note that this implies a tighter bound on k, namely k < 1
em(r − 2β). Let

α0 = 2β +
2(r − 2β)

ln 2em(r−2β)
k

, α1 = 2β +
2(r − 2β)

ln 2em(r−2β)
k ln

2em(r−2β)
k

.

Then 2β ≤ α0 < α1, and moreover

f̂(α0) = ln
k

m
− ln

2(r − 2β)

ln 2em(r−2β)
k

+
2(r − 2β)
2(r−2β)

ln
2em(r−2β)

k

− 1 = ln ln
2em(r − 2β)

k
> 0 ,

and similarly

f̂(α1) = ln ln
2em(r − 2β)

k ln 2em(r−2β)
k

− ln ln
2em(r − 2β)

k
< 0 .

Therefore there exists a unique α∗ ∈ (α0, α1) such that f̂(α∗) = 0, and thus k
em(α∗−2β) =

e
− 2r−4β
α∗−2β ≤ 1. Moreover, for every α > 2β,

f(α) ≤ f(α∗) =

(
k

m

)α∗
· (α∗ − 2β)2r−α

∗−2β ≤
(
k

m

)2β

(α∗ − 2β)2r−4β ,

14



and we get that

M(α, β) ≤ 2O(r)(mβ)β
(
k

m

)2β

(α∗ − 2β)2r−4β ≤ 2O(r)

(
k2β

m

)β
(α1 − 2β)2r−4β

≤ 2O(r)

(
k2β

m

)β

 r

ln 2emr
k ln 2emr

k




2r−4β (13)

where the last inequality follows from the fact that y = x
ln x

ln x
is monotonically increasing for

x > 1.
Finally, define g, ĝ : (0,+∞)→ R by

g(β) =

(
k2β

m

)β

 r

ln 2emr
k ln 2emr

k




2r−4β

and ĝ(β) = ln
k2

m
+ lnβ + 1− 4 ln


 r

ln 2emr
k ln 2emr

k




for all β > 0. Then g′(β) = g(β) · ĝ(β), and moreover g′′(β) = g(β) · ĝ2(β) + g(β)/β >
0. We thus conclude that g is convex as a function of β ∈ (0, r/2], and therefore g(β) ≤
max{ lim

β→0
g(β), g(r/2)} for all β ∈ (0, r/2].

lim
β→0

g(β) =


 r

ln 2emr
k ln 2emr

k




2r

, and g(r/2) ≤ 2O(r)

(
k2r

m

)r/2
.

Since k < mr
e , then 2emr

k > e2, and therefore ln 2emr
k ln 2emr

k

≥ 1
2 ln 2emr

k . Plugging into (13), we

thus get that since ln 2emr
k > 1,

M(α, β) ≤ 2O(r) max





(
r

ln 2emr
k

)2r

,

(
k2r

m

)r/2


 ,

and the proof of the lemma is now complete.

Lemma 19. Let 1 ≤ β ≤ α/2 ≤ `/2. Then if k2 > mr, then N(α, β) ≤
(
k2r
m

)r/2
and

otherwise, N(α, β) ≤ max
{
M(α, β),

(
r

ln emr
k2

)r}
.

Proof. Assume first that k2 ≥ mr. If k > m, then
(
kα
m

)α
(α−β)r−α is increasing as a function

of α over [2β, r], and therefore,

N(α, β) ≤
(
kr

m

)r
·
(
m

β

)β
≤ 2O(r)

(
k2r

m

)r/2
. (14)

Otherwise, since 2β ≤ α ≤ r,

N(α, β) ≤
(
k2

βm

)β
αα(α− β)r−α ≤ rr

(
k2

βm

)β
≤ 2O(r)

(
k2r

m

)r/2
. (15)

15



Next, we assume that k2 < rm, and note that whenever α > 4β, then (α − 2β)2 > (α − β),
and therefore N(α, β) ≤ M(α, β). Otherwise, αα(α − β)r−α ≤ 2O(r)βαβα−β ≤ 2O(r)βr, and
therefore

N(α, β) ≤
(
k2

mβ

)β
· βr (16)

Define next g, ĝ : (0,+∞) → R by g(β) = βr
(
k2

βm

)β
and ĝ(β) = r

β + ln k2

βm − 1 for every

β > 0. Then g′(β) = g(β)ĝ(β), g(β) > 0 and ĝ′(β) = − r
β2 − 1

β < 0 for every β > 0. Let

β0 =
r

ln emr
k2

, β1 =
r

ln emr
k2 ln emr

k2

.

Then 0 < β0 < β1 ≤ r, and moreover

ĝ(β0) =
r
r

ln emr
k2

+ ln
k2

r
ln emr

k2
m
− 1 = ln ln

emr

k2
≥ ln ln e = 0 ,

where the last inequality is due to the fact that k2 < mr. In addition,

ĝ(β1) =
r
r

ln emr
k2 ln emr

k2

+ ln
k2

r
ln emr
k2 ln emr

k2

m
− 1 = − ln ln

emr

k2
+ ln ln

emr

k2 ln emr
k2

< 0

Therefore there exists a unique β∗ ∈ (β0, β1) such that 0 = ĝ(β∗) = r
β∗ +ln k2

β∗m −1, which

in turn implies k2

β∗m = e1−r/β
∗
. Moreover, and for all β > 0,

g(β) ≤ g(β∗) = (β∗)r
(

k2

β∗m

)β∗
≤


 r

ln emr
k2 ln emr

k2



r

.

Since emr
k2

> e, ln ln emr
k2

< 1
2 ln emr

k2
, and we have N(α, β) ≤ 2O(r)

(
r

ln emr
k2

)r
.

We now turn to prove Lemma 3.

Proof of Lemma 3. Assume first that k ≥ mr. Then by Claim 17 and Lemmas 18, 19 we get
that

‖X‖rr ≤
2O(r)

kr

r/2∑

β=1

r∑

α=2β

(M(α, β) +N(α, β)) ≤ 2O(r)

kr

(
k2r

m

)r/2
,

and therefore ‖X‖r = O
(√

r
m

)
.

16



Next, assume that mr > k ≥ √mr. Once again by Claim 17 and Lemmas 18, 19 we get
that

‖X‖rr ≤
2O(r)

kr

r/2∑

β=1

r∑

α=2β

(M(α, β) +N(α, β))

≤ 2O(r)

kr

r/2∑

β=1

r∑

α=2β

max





(
r

ln 2emr
k

)2r

,

(
k2r

m

)r/2


+

(
k2r

m

)r/2

≤ 2O(r)

kr
max





(
r

ln 2emr
k

)2r

,

(
k2r

m

)r/2


 ,

(17)

and therefore ‖X‖r = O
(

max
{

r2

k ln2 2emr
k

,
√

r
m

})
.

Finally, assume that
√
mr > k. Once again by Claim 17 and Lemmas 18, 19 we get that

‖X‖rr ≤
2O(r)

kr

r/2∑

β=1

r∑

α=2β

(M(α, β) +N(α, β))

≤ 2O(r)

kr

r/2∑

β=1

r∑

α=2β

max





(
r

ln 2emr
k

)2r

,

(
k2r

m

)r/2


+ max

{
M(α, β),

(
r

ln emr
k2

)r}

≤ 2O(r)

kr
max





(
r

ln 2emr
k

)2r

,

(
k2r

m

)r/2


 ,

(18)

and therefore ‖X‖r = O
(

max
{

r
k ln emr

k2
, r2

k ln2 2emr
k

,
√

r
m

})
.

4.2 Lower Bounding ‖X(x(k))‖r
We finish this section by proving Lemma 4. To this end, let k ≤ n, and recall that by

Lemma 16, since for every j ∈ supp(x(k)), |x(k)j | = ‖x(k)‖∞, then

‖X(x(k))‖rr = ‖x(k)‖2r∞
r/2∑

β=1

r∑

α=2β

mβ

(
‖x(k)‖2∞m

)α
∑

V ∈([n]α )

|SV,β| ·
∏

q∈V
(x(k)q )2 .

17



For every V ⊆ [n], if V ⊆ [k], then
∏
q∈V (x

(k)
q )2 = ‖x(k)‖2|V |∞ , and otherwise

∏
q∈V (x

(k)
q )2 = 0.

Substituting ‖x(k)‖∞ = 1√
k
, and applying Theorem 5 we get that since r ≤ k then

‖X(x(k))‖rr =
1

kr

r/2∑

β=1

r∑

α=2β

mβkα

mα

∑

V ∈([k]α )

|SV,β| ·
1

kα

≥ 1

kr

r/2∑

β=1

r∑

α=2β

mβ

mα

∑

V ∈([k]α )

2−O(r)α2αβ−β
[
(α− 2β)2 + 4(α− β)

]r−α

=
2−O(r)

kr

r/2∑

β=1

r∑

α=2β

mβ

mα
·
(
k

α

)
· α2αβ−β

[
(α− 2β)2 + 4(α− β)

]r−α

≥ 2−O(r)

kr

r/2∑

β=1

r∑

α=2β

(
mβ−1

)β
(
kα

m

)α [
(α− 2β)2r−2α + (α− β)r−α

]
.

(19)

Setting α = r, β = r/2 we get that

‖X(x(k))‖r ≥ r

√
2−O(r)

kr
(mr−1)r/2

(
kr

m

)r
= Ω

(√
r

m

)
.

Assume next that k ≤ mr and let α = 2 + r
ln( emrk )

, β = 1. Then
(

k
m(α−2)

)α−2
≥ 2−O(r), and

therefore

‖X(x(k))‖rr ≥
2−O(r)

kr
·m ·

(
kα

m

)α
(α− 2)2r−2α

≥ 2−O(r)

kr
· (α− 2)2r · k

2

m
·
(
k

m

)α−2
· (α− 2)α · (α− 2)−2α

≥ 2−O(r)

kr
· (α− 2)2r · k

2

m
·
(

k

m(α− 2)

)α−2
≥
(

2−O(1)r2

k ln2
(
emr
k

)
)r

.

(20)

We conclude that

‖X(x(k))‖r = Ω

(
r2

k ln2
(
emr
k

)
)
.

Finally, assume that k ≤ √mr and let α = 2r
ln emr

k2
, β = r

ln emr
k2

. Then
(
k2

mβ

)β
≥ 2−O(r) and

therefore

‖X(x(k))‖r ≥ r

√
2−O(r)

kr

(
k2

mβ

)β
βr = Ω

(
r

k ln
(
emr
k2

)
)
,

and the proof of Lemma 4 is now complete.

18



5 Empirical Analysis

The goal of the experiments is to give bounds on some of the constants hidden in the main

theorem. From our experiments we conclude that for
4 lg 1

δ
ε2
≤ m < 2

ε2δ
the constant inside the

Θ-notation in Theorem 2 is at least 0.725 except for very sparse vectors (‖x‖0 ≤ 7), where
the constant is at least 0.6. Furthermore, we confirm that ν(m, ε, δ) = 1 when m ≥ 2

ε2δ
and

that there exists data points where ν(m, ε, δ) < 1 while m = 2−γ
ε2δ

, for some small γ.

5.1 Experiment Setup and Analysis

To arrive at the results, we ran experiments and analysed the data in several phases. In the
first phase we varied the target dimension m over exponentially spaced values in the range
[26, 212], and a parameter k which controls the ratio between the `∞ and the `2 norm. The
values of k varied over exponentially spaced values in the range [21, 213]. Then for all m and k,
we generated 224 vectors x with entries in {0, 1} such that ‖x‖2 =

√
k‖x‖∞, and for any given

m and k the supports of the vectors were pairwise disjoint. We then hashed the generated
vectors using feature hashing, and recorded the `2 norm of the embedded vectors.

The second phase then calculated the distortion between the original and the embedded
vectors, and computed the error probability δ̂. Loosely speaking, δ̂(m, k, ε) is the ratio of the
224 vectors for a given m and k that have distortion greater than ε. Formally, δ̂ is calculated
using the following formula

δ̂(m, k, ε) =

∣∣∣
{
x : ‖x‖2 =

√
k‖x‖∞,

∣∣‖Amx‖22 − ‖x‖22
∣∣ ≥ ε‖x‖22

}∣∣∣
∣∣{x : ‖x‖2 =

√
k‖x‖∞}

∣∣ ,

where ε was varied over exponentially spaced values in the range [2−10, 2−1]. Note that δ̂
tends to the true error probability as the number of vectors tends to infinity. Computing δ̂
yielded a series of 4-tuples (m, k, ε, δ̂) which can be interpreted as given target dimension m,
`∞/`2 ratio 1/

√
k, distortion ε, we have measured that the failure probability is at most δ̂.

In the third phase, we varied δ over exponentially spaced values in the range [2−20, 20], and
calculated a value ν̂. Intuitively, ν̂(m, ε, δ) is the largest `∞/`2 ratio such that for all vectors
having at most this `∞/`2 ratio the measured error probability δ̂ is at most δ. Formally,

ν̂(m, ε, δ) = max
{ 1√

k
: ∀k′ ≥ k, δ̂(m, k′, ε) ≤ δ

}
.

Note once more that ν̂ tends to the true ν value as the number of vectors tends to infinity.
To find a bound on the constant of the Θ-notation in Theorem 2, we truncated data

points that did not satisfy
4 lg 1

δ
ε2
≤ m < 2

ε2δ
, and for the remaining points we plotted ν̂ over

the theoretical bound in Figure 1:

ν̂(m, ε, δ)

min

{√
ε lg εm

lg 1
δ

lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ

} .

From this plot we conclude that the constant is at least 0.6 on the large range on parameters
we tested. However, the smallest values seem to be outliers and come from a combination of

19



1 2 3 4 5

lg 1/ε

0.4

0.6

0.8

1.0

1.2

ν̂

m
in
{
√
ε

lg
1
/δ

lg
εm

lg
1
/δ
,√

ε
lg

ε2
m

lg
1
/δ

lg
1
/δ

}

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

lg 1/δ

0.4

0.6

0.8

1.0

1.2

Figure 1: This plot shows the measured ν̂ values over the theoretical bound (abbreviated here):
min{left, right}. This ratio corresponds to the constant in the Θ-notation in Theorem 2. The
points are marked with blue circles if left < right, otherwise they are marked with green ×’s.
The horizontal line at 0.725 is there to ease comparisons with Figure 2. The data points
below the line come from very sparse vectors (k = 7) with high target dimension (m = 214).

very sparse vectors (k = 7) and high target dimension (m = 214). For the rest of the data
points the constant is at least 0.725. While there are data points where the constant is larger
(i.e. feature hashing performs better), there are data points close to 0.725 over the entire
range of ε and δ.

In Figure 2 we show that we indeed need both terms in the minimum in Theorem 2, by
plotting the measured ν̂ values over both terms in the minimum in the theoretical bound
separately. For both terms there are points whose value is significantly below 0.725.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

lg 1/δ

0.4

0.6

0.8

1.0

1.2

ν̂
√
ε

lg
1
/δ

lg
εm

lg
1
/δ

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

lg 1/δ

0.4

0.6

0.8

1.0

1.2

ν̂
√

ε
lg

ε2
m

lg
1
/δ

lg
1
/δ

Figure 2: This plot shows the measured ν̂ values over each of the two terms in the minimum
in the theoretical bound (abbreviated here): min{left, right}. In the left subfigure the y-axis
of the blue circles is ν̂

left , while the y-axis of the green ×’s in the right subfigure is ν̂
right . Note

that the x-axis (values of lg(1/δ) ) is the same in both subfigures, and the same as in the right
subfigure of Figure 1. As in Figure 1, the horizontal line at 0.725 is there to ease comparison
between the figures.

To find a bound on m where ν̂(m, ε, δ) = 1 we took the untruncated data and recorded

20



2 4 6 8 10

lg 1/ε

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
ε2
δ

0 2 4 6 8 10

lg 1/δ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 3: This plot shows the constant border where ν̂(m, ε, δ) becomes 1 for the first time.
The theory states that if 2 ≤ mε2δ then ν̂(m, ε, δ) = 1. The distinct curves in the left plot
correspond to distinct values of m.

the maximal δ̂ for each m and ε. We then plotted mε2δ̂ in Figure 3. From Figure 3 it is
clear that ν̂(m, ε, δ) = 1 when m ≥ 2

ε2δ
. Furthermore, the figure also shows that there are

data points where ν̂(m, ε, δ) < 1 while m = 2−γ
ε2δ

, for some small γ. Therefore we conclude
the bound m ≥ 2

ε2δ
is tight.

5.2 Implementation Details

As random number generators, we used degree 20 polynomials modulo the Mersenne prime
261 − 1, where the coefficients were random data from random.org. The random data was
independent between experiments with diffent values of m, and between the random number
generator used for vector generation and hashing.

Feature hashing was done using double tabulation hashing [Tho14] on 64 bit numbers.
The tables in our implementation of double tabulation hashing were filled with numbers from
the aforementioned random number generator. Double tabulation hashing has been proven
to behave fully randomly with high probability [DKRT15].

References

[AC09] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and ap-
proximate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.

[Ach03] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss
with binary coins. J. Comput. Syst. Sci., 66(4):671–687, June 2003.

[CCF04] M. Charikar, K. C. Chen, and M. Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[CJN18] M. B. Cohen, T. S. Jayram, and J. Nelson. Simple analyses of the sparse Johnson-
Lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms, SOSA
2018, January 7-10, 2018, New Orleans, LA, USA, pages 15:1–15:9, 2018.

21

random.org


[CT06] E. J. Candès and T. Tao. Near-optimal signal recovery from random projec-
tions: Universal encoding strategies? IEEE Transactions on Information The-
ory, 52(12):5406–5425, 2006.

[CW09] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, pages 205–214. ACM, 2009.

[Dal13] B. Dalessandro. Bring the noise: Embracing randomness is the key to scaling up
machine learning algorithms. Big Data, 1(2):110–112, 2013.

[DG03] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[DKRT15] S. Dahlgaard, M. B. T. Knudsen, E. Rotenberg, and M. Thorup. Hashing for
statistics over k-partitions. In Proceedings of the 2015 IEEE 56th Annual Sympo-
sium on Foundations of Computer Science (FOCS), FOCS ’15, pages 1292–1310.
IEEE Computer Society, 2015.

[DKS10] A. Dasgupta, R. Kumar, and T. Sarlós. A sparse Johnson-Lindenstrauss trans-
form. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, STOC ’10, pages
341–350, 2010.

[DKT17] S. Dahlgaard, M. Knudsen, and M. Thorup. Practical hash functions for similar-
ity estimation and dimensionality reduction. In Advances in Neural Information
Processing Systems 30, pages 6615–6625. Curran Associates, Inc., 2017.

[FL17] C. B. Freksen and K. G. Larsen. On using toeplitz and circulant matrices for
Johnson-Lindenstrauss transforms. In 28th International Symposium on Algo-
rithms and Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand,
pages 32:1–32:12, 2017.

[HIM12] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of Computing, 8(1):321–350, 2012.

[HWB08] C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learn-
ing. In Advances in Neural Information Processing Systems 20, pages 641–648.
Curran Associates, Inc., 2008.

[JL84] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. In Conference in modern analysis and probability (New Haven,
Conn., 1982), volume 26 of Contemporary Mathematics, pages 189–206. Ameri-
can Mathematical Society, 1984.

[JW13] T. S. Jayram and D. P. Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error. ACM Trans. Algo-
rithms, 9(3):26:1–26:17, 2013.

[KN14] D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM,
61(1):4:1–4:23, January 2014.

22



[LN17] K. G. Larsen and J. Nelson. Optimality of the Johnson-Lindenstrauss lemma.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 633–638, 2017.

[Mat08] J. Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random Struct.
Algorithms, 33(2):142–156, 2008.

[MM09] O. Maillard and R. Munos. Compressed least-squares regression. In Advances in
Neural Information Processing Systems 22, pages 1213–1221. Curran Associates,
Inc., 2009.

[MM13] X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, STOC ’13, pages 91–100, 2013.

[NN13] J. Nelson and H. L. Nguyen. Sparsity lower bounds for dimensionality reducing
maps. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pages 101–110. ACM, 2013.

[PBMID14] S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas. Random projections
for linear support vector machines. ACM Trans. Knowl. Discov. Data, 8(4):22:1–
22:25, 2014.

[RR08] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1177–1184. Curran Associates, Inc.,
2008.

[Sár06] T. Sárlos. Improved approximation algorithms for large matrices via random
projections. In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science, pages 143–152. IEEE Computer Society, 2006.

[Sut15] S. Suthaharan. Machine Learning Models and Algorithms for Big Data Clas-
sification: Thinking with Examples for Effective Learning. Springer Publishing
Company, Incorporated, 1st edition, 2015.

[Tho14] M. Thorup. Simple tabulation, fast expanders, double tabulation, and high inde-
pendence. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science(FOCS), pages 90–99. IEEE Computer Society, 2014.

[TZ12] M. Thorup and Y. Zhang. Tabulation-based 5-independent hashing with appli-
cations to linear probing and second moment estimation. SIAM J. Comput.,
41(2):293–331, April 2012.

[Vem05] S. S. Vempala. The random projection method. DIMACS : series in discrete
mathematics and theoretical computer science. American Mathematical Society,
2005.

[WDL+09] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML ’09, pages 1113–1120, 2009.

23


	Introduction
	Main results
	Related Work

	Counting Labeled Eulerian Graphs
	Bounding k
	Bounding the Moments of Bounding Moments
	Upper Bounding Xrr
	Lower Bounding Xrr

	Empirical Analysis
	Experiment Setup and Analysis
	Implementation Details


