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Abstract

A secret sharing scheme allows a dealer to distribute shares of a secret among a set of n
parties P = {p1, . . . , pn} such that any authorized subset of parties can reconstruct the secret,
yet any unauthorized subset learns nothing about it. The familyA ⊆ 2P of all authorized subsets
is called the access structure. Classic results show that if A contains precisely all subsets of
cardinality at least t, then there exists a secret sharing scheme where the length of the shares is
proportional to lg n bits plus the length of the secret. However, for general access structures, the
best known upper bounds have shares of length exponential in n, whereas the strongest lower
bound shows that the shares must have length at least n/ lg n. Beimel conjectured that the
exponential upper bound is tight, but proving it has so far resisted all attempts. In this paper
we make progress towards proving the conjecture by showing that there exists an access structure
A, such that any secret sharing scheme for A must have either exponential share length, or the
function used for reconstructing the secret by authorized parties must have an exponentially long
description. As an example corollary, we conclude that if one insists that authorized parties can
reconstruct the secret via a constant fan-in boolean circuit of size polynomial in the share length,
then there exists an access structure that requires a share length that is exponential in n.

1 Introduction

A secret sharing scheme allows a dealer to distribute shares of a secret among a set of parties
P = {p1, . . . , pn} such that any authorized subset A ⊆ P can reconstruct the secret, yet any
unauthorized subset learns nothing about it. The family A ⊆ 2{p1,...,pn} of all authorized subsets
is called the access structure. Secret sharing was introduced independently by Shamir [Sha79] and
Blakley [Bla79], who presented constructions for threshold access structures that contains all subsets
with a cardinality larger than some threshold t. The first construction for general (monotone) access
structures was presented by Ito, Saito, and Nishizeki [ISN89].

The main measure of efficiency for secret sharing schemes is the share size. For threshold access
structures it is known that Shamir’s secret sharing, which has a share size of Θ(lg n), is optimal
up to additive constants [BGK16]. This stands in stark contrast to the smallest share sizes we can
achieve for general monotone access structures. The construction of Ito, Saito, and Nishizeki has
a share size of O(2n/

√
n) and 29 years later the best known upper bound on the share size, due to
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Applebaum et al. [ABF+19] is still 20.892n. A widely believed conjecture suggests that these upper
bounds are, up to constants, the best ones one can hope for. More concretely, Beimel conjectured:

Conjecture 1 ([Bei96, Bei11]). There exists an ε > 0 such that for every integer n there exists an
access structure with n parties for which every secret sharing scheme distributes shares of length
exponential in the number of parties, that is, 2εn.

Proving this conjecture is a major open problem in the research area of secret sharing schemes.
Karnin, Greene, and Hellman [KGH83] initiated a line of works [CDGV92, BDGV93, Csi95, Csi96]
that proved different lower bounds on the share size using tools from information theory. The best of
those lower bounds is due to Csirmaz [Csi95, Csi96], who uses Shannon information inequalities to
prove that there exists an explicit access structure that requires shares of size Ω(n/ lg n). Csirmaz
himself and subsequent works [BO09, MPY13] indicate that it is unlikely that one can prove a
super-polynomial lower bound on the share size using such information inequalities.

A different line of works focuses on linear secret sharing schemes, where the shared secret is
a linear combination of the shares. Many of the existing schemes, e.g. [Sha79], are linear and
applications like multiparty computation [BGW88, CCD88, RB89] crucially rely on this property.
Karchmer and Wigderson [KW93] introduce monotone span programs and show that these are
closely related to linear secret sharing schemes. Through the lens of monotone span programs, a
series of works obtained increasingly stronger lower bounds. Karchmer and Wigderson prove the
first super-linear lower bound on the share size. Babai, Gál, and Wigderson [BGW99] prove the
first super-polynomial lower bound. Finally, Pitassi and Robere [PR18] prove an exponential lower
bound, however, the gap between the constants in the exponent of the lower and upper bound
remain far apart.

Several works consider different flavors of the original secret sharing notion. Beimel and
Franklin [BF07] consider a relaxed security notion of weak privacy, which only requires that any
unauthorized subset can not exclude any secret value with certainty. The unauthorized subset can,
however, conclude that some secret is more probable than another one. The authors show that
this notion is strictly weaker than the original notion of secret sharing by constructing schemes
with share sizes that are impossible for secret sharing schemes with perfect privacy. Among other
results, the authors construct a weakly-private secret sharing scheme for the threshold access struc-
tures, where the share size is independent of n. The authors conclude that any sensible lower
bound proof has to make use of the privacy requirement of secret sharing schemes. Applebaum et
al. [AARV17, AA18] consider the efficiency of secret sharing schemes for large secrets. The authors
show that, for a certain class of access structures, one can construct secret sharing schemes, where
the share size does not grow with an increasing number n of parties. Their approach requires the
secrets to be exponentially large in n.

A different line of works, which is closely related to secret sharing, deals with the conditional
disclosure of secrets (CDS) problem [GIKM98]. In this setting, n parties have a common secret
s, some common randomness r and separate inputs xi. The goal of the parties is to each send a
single message to a referee, who should learn the secret s iff the inputs xi satisfy some publicly
known predicate F , i.e. if F (x1, . . . , xn) = 1. Beimel et al. [BIKK14] show that any predicate F
can be realized with communication complexity O(2n/2) and subsequently Liu, Vaikuntanathan and

Wee [LVW17] improve this upper bound to 2Õ(
√
n). Gay, Kerenidis, and Wee [GKW15] prove a lower

bound for CDS schemes, which, very roughly speaking, shows that the communication complexity
of any CDS is at least as large as the one-way communication complexity of the underlying predicate
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F . The techniques in this work are similar to some of the techniques in their work and our lower
bound proof can be seen as a non-trivial generalization of their initial proof strategy to the case of
secret sharing schemes. In contrast to their linear lower bound, our lower bound here is exponential.

Apart from being an interesting primitive on its own, CDS is also the main building block
underlying the secret sharing scheme of Liu and Vaikuntanathan [LV18] described above. All of
the CDS schemes mentioned above run in time exponential in n for certain predicates F .

Despite all progress that was made towards understanding the complexity of secret sharing, a
lower bound on the share size of secret sharing schemes for general access structures remained out
of reach.

1.1 Our Contribution

In this work we make some progress towards proving Beimel’s conjecture. Informally, we show
that either the total share size or the computational effort for reconstructing the secret has to be
exponential in n. A bit more formally, let us consider a secret sharing scheme Σ for some access
structure A that takes a 1-bit secret as input and outputs n shares, which are at most k bits long in
total. Let F be some family of reconstruction functions. We require that for any authorized subset
of parties A ⊆ A, there exists at least one function in F that these parties can use to reconstruct
the correct secret with probability at least 3/4. For any A /∈ A, we require that all functions
in F reconstruct the correct secret with probability at most 1/4. These correctness and privacy
requirements are very weak. Neither do we require perfect correctness, nor do we require privacy
against an unauthorized set of parties that may use some function outside of F to reconstruct the
secret. Proving a lower bound for such a secret sharing scheme makes our result only stronger,
since any lower bound we can prove here also applies to any secret sharing scheme with better
correctness and privacy guarantees. In this work we prove:

Theorem 1 (Informal). For any secret sharing scheme Σ for general access structures, with domain
of secrets {0, 1} and total share length k, then there exists an access structure A such that

lg(|F|) · k = Ω(2n/
√
n).

Our result does not prove Beimel’s conjecture, but it tells us that any secret sharing scheme for
1-bit secrets for general access structures, which has a reconstruction function whose description is
sub-expontially large in n, must have a share size that is exponential in n. In particular, this holds
even if the secret sharing itself runs in time exponential in n.

To get a better feeling of what F is, one can, for example, imagine it to be the set of all
functions from {0, 1}k → {0, 1} that are computable by a constant fan-in boolean circuit of some
size t(k) ≥ k. Any one circuit can compute exactly one function, there are a constant amount of
different gates types, and for any gate with constant fan-in, there are t(k)O(1) choices for the input
wires. It follows that there are at most t(k)O(t(k)) different reconstruction functions in F . Now, if
for example t(k) ≤ kc for a constant c ≥ 1 (decoding by a circuit of size polynomial in the secret
share length), then our theorem says that there exists an access structure A for which the share
length k must be exponential in n. On the other hand, if k is for example polynomial in n, then
our theorem tells us that there exists some access structure A which requires an exponentially large
reconstruction circuit.

We prove Theorem 1 via a counting argument, meaning that we do not explicitly provide an
access structure A that is affected by the lower bound. The high-level idea of our proof is as
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follows. Assume that there exists some secret sharing scheme ΣA for every access structure A with
the desired correctness and privacy properties and a total share size of kA ≤ k. In the first step,
we construct a family D that contains all access structures A of a certain type and we show that
the size of this family is 2Ω(2n/

√
n). By the pingeon-hole principle, we know that the description

of any A ∈ D is at least lg |D| = Ω(2n/
√
n) bits long. On the other hand, we show that for any

A ∈ D one can use ΣA to construct a O(lg |F| · k)-bit long lossless encoding from which A can be
uniquely recovered. Combining the two observations directly yields the theorem stated above. The
main challenge in realizing this proof idea lies in the construction of an appropriate encoding (and
decoding) algorithm with the desired efficiency. Our encoding algorithm proceeds in two steps.
First, we exploit the correctness and privacy properties of our secret sharing scheme to construct a
randomized lossless encoding algorithm that works well for 99% of the sets A in any given A and
encodes them into O(lg |F| · k) bits. A careful analysis reveals that we can simply write out the
remaining 1% of A ∈ A as part of the encoding and still obtain a lower bound on lg |F| · k.

Proving lower bounds via such encoding arguments has been done quite extensively in the
area of data structure lower bounds, see e.g. [PD06, PV10, Lar12a, Lar12b, VZ13, CKL18] and
was also used recently to prove optimality of the Johnson-Lindenstrauss lemma in dimensionality
reduction [LN17] and to prove optimality of ORAMs without balls-in-bins assumptions [LN18].

Remark At first sight it may seem that the reconstruction function must take the access struc-
ture as input to be able to reconstruct. If this was the case, then our lower bound would be
meaningless, since we can construct exponentially large access structures. This, however, is not
the case. Consider the following trivial secret sharing scheme for some bitstring x among parties
p1, . . . , pn for any access structure A. For each authorized set A = {pi1 , . . . , pim} ∈ A, we pick
uniformly random si1 , . . . , sim such that x = si1 ⊕· · ·⊕ sim and give (A, sij ) to pij . If a set A wants
to reconstruct a secret, they check whether they have a share corresponding to A and xor their
corresponding shares together if this is the case. If they do not have a share corresponding to A,
they conclude that they are not an authorized set. Note that reconstruction function only takes
the shares as input and not the access structure itself.

2 Formal Model and Result

In this section, we formally define secret sharing schemes and the precise conditions under which
our lower bounds holds. Except for the security requirements, we define a secret sharing scheme
precisely as in [Bei11].

Definition 1. Let {p1, . . . , pn} be a set of parties. A collection A ⊆ 2{p1,...,pn} is monotone if
B ∈ A and B ⊆ C imply C ∈ A. An access structure is a monotone collection A ⊆ 2{p1,...,pn} of
non-empty subsets of {p1, . . . , pn}. Sets in A are called authorized, and sets not in A are called
unauthorized.

Definition 2. Let {p1, . . . , pn} be a set of parties. A distribution scheme Σ = (Π, µ) with domain
of secrets {0, 1} is a pair, where µ is a probability distribution on some finite set R called the set
of random strings and Π is a mapping from {0, 1}×R to a set of n-tuples {0, 1}k1 × · · · × {0, 1}kn,
where {0, 1}kj is called the domain of shares of pj. A dealer distributes a secret b ∈ {0, 1} according
to Σ by first sampling a random string r ∈ R according to µ, computing a vector of shares Π(b, r) =
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(s1, . . . , sn) and privately communicating each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we
denote Π(b, r)A as the restriction of Π(b, r) to its A-entries.

When designing secret sharing schemes, one would typically consider larger domains of secrets
than just a single bit as in Definition 2. In this paper we are proving a lower bound, so focusing
on the simplest possible setting of a secret consisting of a single bit only makes our lower bound
stronger and the proof simpler. The lower bound we prove in this paper holds for secret sharing
schemes that are computationally more efficient when authorized parties reconstruct the secret
than when unauthorized parties attempt to. We define this formally in the following:

Definition 3. Let {p1, . . . , pn} be a set of parties, let A ⊆ 2{p1,...,pn} be an access structure and
Σ = (Π, µ) a distribution scheme with domain of secrets {0, 1} and domain of shares {0, 1}k1 ×
· · ·× {0, 1}kn. Let F be a family of functions from ∪∞i=1

(
{0, 1}i → {0, 1}

)
and let U be the uniform

distribution on {0, 1}. We say that (F ,A,Σ) is an efficient secret sharing scheme if it satisfies the
following two conditions:

• For any A ∈ A, there exists a function fA ∈
(
F ∩

(
{0, 1}

∑
j∈A kj → {0, 1}

))
such that∣∣∣∣ Pr

b∼U ,r∼µ
[fA(Π(b, r)A) = b]− Pr

b∼U ,r∼µ
[fA(Π(b, r)A) 6= b]

∣∣∣∣ ≥ 3/4.

• For any A /∈ A, it holds for all functions f ∈
(
F ∩

(
{0, 1}

∑
j∈A kj → {0, 1}

))
that∣∣∣∣ Pr

b∼U ,r∼µ
[f(Π(b, r)A) = b]− Pr

b∼U ,r∼µ
[f(Π(b, r)A) 6= b]

∣∣∣∣ ≤ 1/4.

For intuition on Definition 3, consider as an example instantiating F to be the set that contains
for each i, the set of all functions from {0, 1}i → {0, 1} that are computable by a constant fan-in
boolean circuit of size t(i) ≤ ic for a constant c > 1, i.e. F contains functions computable by
polynomially sized circuits. With this choice of F , consider an access structure A. A distribution
scheme Σ gives an efficient secret sharing scheme (F ,A,Σ) precisely if any authorized set of parties
A ∈ A can recover the secret using some constant fan-in boolean circuit with size polynomial in
the share length, whereas no unauthorized set of parties can recover the secret using any constant
fan-in boolean circuit with size polynomial in the share length. We can thus think of F as defining
the computational resources with which authorized parties can recover the secret, but unauthorized
parties cannot. For ease of notation, define F≤k as

F≤k := F ∩
(
∪ki=1

(
{0, 1}i → {0, 1}

))
and define

F=k := F ∩
(
{0, 1}k → {0, 1}

)
.

in the remainder of the paper.

Discussion 1. When designing secret sharing schemes, one would typically insist that authorized
parties can reconstruct the secret with probability 1 − negl(n). Similarly, one would insist that
unauthorized parties cannot reconstruct the secret except with probability negl(n). Since we are
proving a lower bound, using the constants 3/4 and 1/4 in Definition 3 only makes our results
stronger.
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Discussion 2. One could consider allowing randomization in the algorithms used for reconstruct-
ing the secret, both for the authorized and unauthorized parties. That is, a natural extension of Defi-

nition 3 would say that there exists a distribution γA over functions in
(
F ∩

(
{0, 1}

∑
j∈A kj → {0, 1}

))
such that Prb∼U ,r∼µ,fA∼γA [· · · . We remark that the definition would be equivalent to Definition 3
since one can always fix the randomness in fA to achieve the same guarantees (equivalent to one
direction of Yao’s minimax principle).

Discussion 3. Our definition may seem superficially similar to the definition of weakly-private se-
cret sharing schemes by Beimel and Franklin [BF07]. Their definition states that any unauthorized
set cannot exclude any potential secret with probability 1. It does, however, allow the adversary
to guess the secret correctly with a probability that is arbitrarily close to 1. In contrast to their
definition, ours is strictly stronger, since it requires a sharp upper bound on the probability that
an unqualified set of parties guesses the correct secret.

We are ready to present our main theorem in its full generality:

Theorem 2. Let F be a family of functions from ∪∞i=1

(
{0, 1}i → {0, 1}

)
and let {p1, . . . , pn} be a

set of parties. There exists an access structure A ⊆ 2{p1,...,pn} such that any efficient secret sharing
scheme (F ,A,Σ) with domain of secrets {0, 1} and domain of shares {0, 1}k1 × · · · × {0, 1}kn with
k =

∑
j kj, satisfies

lg(|F≤k|) · k = Ω(2n/
√
n).

To appreciate Theorem 2, consider instantiating F to be the set that contains for each i, the set
of all functions from {0, 1}i → {0, 1} that are computable by a constant fan-in boolean circuit of size
t(i) (with t(i) ≥ i). A simple counting argument shows that |F≤k| ≤ t(k)O(t(k)) (A circuit computes
only one function and there are t(k)O(1) choices for the input wires to each gate, there are O(1)
choices for the function computed by each gate, and there are t(k) gates). Theorem 2 thus gives us
that there must exist an access structure A such that any efficient secret sharing scheme (F ,A,Σ)
with domain of shares {0, 1}k1×· · · {0, 1}kn with k =

∑
j kj must satisfy t(k) lg(t(k))k = Ω(2n/n1/2).

If we plug in polynomially sized constant fan-in boolean circuits, i.e. t(i) ≤ ic for a constant c ≥ 1,
this gives us that kc+2 = Ω(2n/n1/2) ⇒ k = 2Ω(n), i.e. any secret sharing scheme for A must
have shares with exponential length if decoding can be done by constant fan-in boolean circuits
with size polynomial in the share length. Moreover, the lower bound holds even if we only require
that unauthorized parties cannot reconstruct the secret using a polynomially sized constant fan-in
boolean circuit (polynomial in the length of the shares). Notice that since this is a lower bound,
it only makes the result stronger than if we e.g. required that a computationally unbounded set
of parties cannot reconstruct the secret. We can also deduce from Theorem 2 that the size of the
decoding circuit must be exponential in n, regardless of the share length.

Another interesting instantiation of Theorem 2 is to let F consist of all functions computable by
a Turing machine with at most 106 states and alphabet {0, 1} (or some other constant number of
states). Then |F ∩ ({0, 1}i → {0, 1})| = O(1) and the lower bound says that there exists an access
structure A for which any efficient secret sharing scheme (F ,A,Σ) must satisfy k2 = Ω(2n/

√
n)⇒

k = 2Ω(n), i.e. shares must have exponential length if the secret can be reconstructed by authorized
parties using a Turing machine with at most 106 states and binary alphabet. The lower bound
holds as long as we require that unauthorized parties cannot recover the secret using a Turing
machine with at most 106 states and alphabet {0, 1}.

6



An even more exotic instantiation of Theorem 2 follows by letting F contain, for every i, the
set of functions from {0, 1}i → {0, 1} that are computable by a C-program with up to t ASCII
characters. A counting argument shows that |F≤k| ≤ k2O(t) (there are 2O(t) sequences of t ASCII
characters, and any program computes at most one function from {0, 1}i → {0, 1}) and we conclude
that it must be the case that there exists an access structure A such that any efficient secret sharing
(F ,A,Σ) must have (t+ lg k) · k = Ω(2n/

√
n). This means that either the length of the C-program

has to grow exponentially with the number of parties n, or the length of the shares has to grow
exponentially with n. Thus if we insist on short shares, then the C-programs for reconstructing
the secret have to be extremely non-uniform, and if we insist on reconstructing secrets using C-
programs of any constant length t independent of n, then the shares must have exponential length.
This lower bound holds as long as we require that unauthorized parties cannot recover the secret
via a C-program of length t or less.

Finally, if one insist that authorized parties can efficiently reconstruct the secret via a C-program
of length at most t ASCII characters, then the previous lower bound is strengthened. That is, we
can now let F contain, for every i, the set of functions from {0, 1}i → {0, 1} that are computable
by a C-program with up to t ASCII characters that terminates in at most h steps. If we insist that
authorized parties can reconstruct the secret by running such a C-program, then the lower bound
(t+lg k) ·k = Ω(2n/

√
n) holds even if we only require that unauthorized parties cannot reconstruct

the secret via a C-program of length t and running time at most h steps.

3 Lower Bound Proof

To prove Theorem 2, let {p1, . . . , pn} be a set of parties and let F be a family of functions from
∪∞i=1

(
{0, 1}i → {0, 1}

)
. Assume that there is a parameter k such that it holds for all access struc-

tures A ⊆ 2{p1,...,pn}, that there exists an efficient secret sharing scheme (F ,A, (ΠA, µA)) with

domain of secrets {0, 1} and domain of shares {0, 1}kA1 × · · · × {0, 1}kAn with
∑

j k
A
j = kA ≤ k.

We will prove a lower bound on lg(|F≤k|) ·k via a counting argument. The high level intuition is
that two distinct access structuresA1 andA2 must be different either in terms of the shares they use,
or in terms of the procedures used for reconstructing the secrets. Since there are overwhelmingly
many distinct access structures, this gives a lower bound on either the share length (a lower bound
on k), or on the descriptional size of the procedures used for reconstructing secrets (a lower bound
on lg(|F≤k|)).

More formally, let D be the family containing all access structures A ⊆ 2{p1,...,pn} such that A
contains no sets A of cardinality less than bn/2c and A contains all sets A of cardinality more than

bn/2c. We claim that |D| = 2( n
bn/2c) = 2Ω(2n/

√
n). To see this, observe that A is monotone for any

choice of subsets with cardinality bn/2c that we might include in it. Since there are
(

n
bn/2c

)
subsets

of cardinality bn/2c, we conclude that there are 2( n
bn/2c) ways of choosing which subsets to include

in A.
We will show that we can encode any A ∈ D into

λ = O(lg(|F≤k|) · k) + 0.1 ·
(

n

bn/2c

)
bits and still uniquely recover A from the encoding alone. The encoding procedure thus defines an

7



injective mapping from D to {0, 1}λ. By the pigeon-hole principle, this implies that

λ ≥ lg |D| ⇒

O(lg(|F≤k|) · k) ≥ 0.9 ·
(

n

bn/2c

)
⇒

lg(|F≤k|) · k = Ω(2n/
√
n).

We are now ready to describe our encoding and decoding procedures.

Encoding. Let A ∈ D. Our procedure for uniquely encoding A is as follows:

1. For i = 1, . . . , T for a parameter T to be fixed, consider sampling bi ∼ U as a uniform random
bit, and sample ri ∼ µA. Let A ⊆ {p1, . . . , pn} be an arbitrary set of cardinality bn/2c and
define kAA =

∑
j∈A k

A
j . By Definition 3, it holds that:

• If A ∈ A, then there exists a function fA ∈ F=kAA
such that∣∣∣∣Pr

bi,ri
[fA(ΠA(bi, ri)A) = bi]− Pr

bi,ri
[fA(ΠA(bi, ri)A) 6= bi]

∣∣∣∣ ≥ 3/4.

• If A /∈ A, then for all functions f ∈ F=kAA
, it holds that∣∣∣∣Pr

bi,ri
[f(ΠA(bi, ri)A) = bi]− Pr

bi,ri
[f(ΠA(bi, ri)A) 6= bi]

∣∣∣∣ ≤ 1/4.

We use this observation as follows: We set T = c lg |F≤k| for a sufficiently large constant
c > 1. If A /∈ A, then since |F=kAA

| ≤ |F≤k|, we can use a Chernoff bound and a union bound

over all f ∈ F=kAA
to conclude that with probability at least 99/100, it holds simultanously

for all f ∈ F=kAA
that

||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) 6= bi}|| < T/3.

At the same time, if A ∈ A and we have T = c lg |F≤k|, then with overwhelming probability,
we will have that there exists at least one function f ∈ F=kAA

such that

||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) 6= bi}|| > T/3.

Thus intuitively, the variables b1, . . . , bT and r1, . . . , rT reveal whether A is in A or not, i.e.
they carry information about A. We exploit this as follows: Let χA be the random variable
taking the value 1 if the test

∃f ∈ F=kAA
: ||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) 6= bi}|| > T/3?

correctly predicts whether A ∈ A. Then Pr[χA = 1] ≥ 99/100. Let S be the family of all
subsets of {p1, . . . , pn} that have cardinality bn/2c. It follows by linearity of expectation that
E[
∑

A∈S χA] ≥ 99|S|/100. This means that there must exist a choice values b̂1, . . . , b̂T and

r̂1, . . . , r̂T such that the test ∃f ∈ F=kAA
: ||{i : f(ΠA(b̂i, r̂i)A) = b̂i}| − |{i : f(ΠA(b̂i, r̂i)A) 6=

b̂i}|| > T/3? correctly predicts whether A ∈ A for at least 99|S|/100 sets A ∈ S. Fix such
values.
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2. Write down lg k bits specifying kA, followed by k bits specifying kA1 , . . . , k
A
n (this can be done

by writing a length k bit string, where positions
∑j

i=1 k
A
i are set to 1 for all j = 1, . . . , n).

Then write down the bits b̂1, · · · , b̂T and ΠA(b̂1, r̂1)), · · · ,ΠA(b̂T , r̂T )) for a total of at most
lg k + k + T (1 + k) bits.

3. Let S̄ be the subset of sets from S where the prediction is incorrect. Encode S̄ as a subset of

S using lg
(

n
bn/2c

)
≤ n bits to specify |S̄| and lg

(|S|
|S̄|
)
≤ |S̄| lg(e|S|/|S̄|) ≤ (|S|/100) lg(100e) <

0.1 ·
(

n
bn/2c

)
bits to specify the subset.

Next we argue how to recover A from the above encoding:

Decoding.

1. Read the first lg k + k bits to recover kA and kA1 , . . . , k
A
n . Then use the following T (k + 1)

bits to recover b̂1, . . . , b̂T and ΠA(b̂1, r̂1), . . . ,ΠA(b̂T , r̂T ).

2. For each A ∈ S, iterate over all f ∈ F=kAA
and compute the value

∆f :=
∣∣∣|{i : f(ΠA(b̂i, r̂i)A) = b̂i}| − |{i : f(ΠA(b̂i, r̂i)A) 6= b̂i}|

∣∣∣ .
Observe that the decoder can extract ΠA(b̂i, r̂i)A from ΠA(b̂i, r̂i) since the decoder knows
kA1 , . . . , k

A
n . Thus the decoder can indeed compute ∆f . If there is at least one f with

∆f ≥ T/3, we initially predict that A ∈ A and otherwise, we predict that A /∈ A. These
predictions are correct, except for A ∈ S̄.

3. Finally we read the last part of the encoding to determine which sets A that were predicted
incorrectly in step 2. Together with the correct predictions from step 2., this recovers A.

Analysis. Finally we derive the lower bound. We have just argued that we can give a unique
encoding of each A ∈ D, hence the length of the encoding must be at least lg |D| =

(
n
bn/2c

)
bits.

But the above encoding uses at most:

lg k + k + T (1 + k) + n+ 0.1 ·
(

n

bn/2c

)
bits. Thus we must have

lg k + k + T (1 + k) + n+ 0.1 ·
(

n

bn/2c

)
≥

(
n

bn/2c

)
⇒

Tk = Ω

((
n

bn/2c

))
= Ω(2n/

√
n).

But T = c lg |F≤k| and we conclude:

lg |F≤k| · k = Ω(2n/
√
n).
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