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Abstract6

In discrepancy minimization problems, we are given a family of sets S = {S1, . . . , Sm}, with each7

Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is to find a coloring8

χ : U → {−1,+1} of the elements of U such that each set S ∈ S is colored as evenly as possible. Two9

classic measures of discrepancy are `∞-discrepancy defined as disc∞(S, χ) := maxS∈S |
∑

ui∈S
χ(ui)|10

and `2-discrepancy defined as disc2(S, χ) :=
√

(1/|S|)
∑

S∈S

(∑
ui∈S

χ(ui)
)2

. Breakthrough work11

by Bansal [FOCS’10] gave a polynomial time algorithm, based on rounding an SDP, for finding12

a coloring χ such that disc∞(S, χ) = O(lgn · herdisc∞(S)) where herdisc∞(S) is the hereditary13

`∞-discrepancy of S. We complement his work by giving a clean and simple O((m + n)n2) time14

algorithm for finding a coloring χ such disc2(S, χ) = O(
√

lgn · herdisc2(S)) where herdisc2(S) is the15

hereditary `2-discrepancy of S. Interestingly, our algorithm avoids solving an SDP and instead relies16

simply on computing eigendecompositions of matrices. To prove that our algorithm has the claimed17

guarantees, we also prove new inequalities relating both herdisc∞ and herdisc2 to the eigenvalues of18

the incidence matrix corresponding to S. Our inequalities improve over previous work by Chazelle19

and Lvov [SCG’00] and by Matousek, Nikolov and Talwar [SODA’15+SCG’15]. We believe these20

inequalities are of independent interest as powerful tools for proving hereditary discrepancy lower21

bounds. Finally, we also implement our algorithm and show that it far outperforms random sampling22

of colorings in practice. Moreover, the algorithm finishes in a reasonable amount of time on matrices23

of sizes up to 10000× 10000.24
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1 Introduction31

Combinatorial discrepancy minimization is an important field with numerous applications in32

theoretical computer science, see e.g. the excellent books by Chazelle [9] and Matousek [16]. In33

discrepancy minimization problems, we are typically given a family of sets S = {S1, . . . , Sm},34

with each Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is35

to find a red-blue coloring of the elements of U such that each set S ∈ S is colored as36

evenly as possible. More formally, if we define the m× n incidence matrix A with ai,j = 1 if37

uj ∈ Si and ai,j = 0 otherwise, then we seek a coloring x ∈ {−1,+1}n minimizing either the38

`∞-discrepancy disc∞(A, x) := ‖Ax‖∞ or the `2-discrepancy disc2(A, x) = (1/
√
m)‖Ax‖2.39

We say that the `∞-discrepancy of A is disc∞(A) := minx∈{−1,+1}n disc∞(A, x) and the40

`2-discrepancy of A is disc2(A) := minx∈{−1,+1}n disc2(A, x). With this matrix view, it is41

clear that discrepancy minimization makes sense also for general matrices and not just ones42

arising from set systems.43
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Much research has been devoted to understanding both the `∞- and `2-discrepancy of44

various families of set systems and matrices. In particular set systems corresponding to45

incidences between geometric objects such as axis-aligned rectangles and points have been46

studied extensively, see e.g. [17, 15, 1, 11]. Another fruitful line of research has focused47

on general matrices, including the celebrated “Six Standard Devitations Suffice” result by48

Spencer [21], showing that any n× n matrix with |ai,j | ≤ 1 admits a coloring x ∈ {−1,+1}n
49

such that disc∞(A, x) = O(
√
n). Finding low discrepancy colorings for set systems where50

each element appears in at most t sets (the matrix A has at most t non-zeroes per column,51

all bounded by 1 in absolute value) has also received much attention. Beck and Fiala [7] gave52

a deterministic algorithm that finds a coloring x with disc∞(A, x) = O(t). Banaszczyk [2]53

improved this to O(
√
t lgn) when t ≥ lgn. Determining whether a discrepancy of O(

√
t) can54

be achieved remains one of the biggest open problems in discrepancy minimization.55

Constructive Discrepancy Minimization. Many of the original results, like Spen-56

cer’s [21] and Banaszczyk’s [2] were purely existential and it was not clear whether polynomial57

time algorithms finding such colorings were possible. In fact, Charikar et al. [8] presented58

very strong negative results in this direction. More concretely, they proved that it is NP-hard59

to even distinguish whether the `∞- or `2-discrepancy of an n× n set system is 0 or Ω(
√
n).60

The first major breakthrough on the upper bound side was due to Bansal [3], who amongst61

others gave a polynomial time algorithm for finding a coloring matching the bounds by Spen-62

cer. Brilliant follow-up work by Lovett and Meka [14] gave simpler randomized algorithms63

achieving the same. A deterministic algorithm for Spencer’s result was later given by Levy64

et al. [12]. A number of constructive algorithms were also given for the “sparse” set system65

case, finally resulting in polynomial time algorithms [4, 6, 5] matching the existential results66

by Banaszczyk.67

Another very surprising result in Bansal’s seminal paper [3] shows that, given a matrix A,68

one can find in polynomial time a coloring x achieving an `∞-discrepancy roughly bounded69

by the hereditary discrepancy of A. Hereditary discrepancy is a notion introduced by Lovász70

et al. [13] in order to prove discrepancy lower bounds. The hereditary `∞-discrepancy of71

a matrix A is defined herdisc∞(A) := maxB disc∞(B), where B ranges over all matrices72

obtained by removing a subset of the columns in A. In the terminology of set systems,73

the hereditary discrepancy is the maximum discrepancy over all set systems obtained by74

removing a subset of the elements in the universe. We also have an analogous definition75

for hereditary `2-discrepancy: herdisc2(A) := maxB disc2(B). Based on rounding an SDP,76

Bansal gave a polynomial time algorithm for finding a coloring x achieving disc∞(A, x) =77

O(lgnherdisc∞(A)). This is quite surprising in light of the strong negative results by78

Charikar et al. [8], since it shows that is is in fact possible to find a low discrepancy coloring79

of an arbitrary matrix as long as all its submatrices have low discrepancy.80

Our Results Overview. Our main algorithmic result is an `2 equivalent of Bansal’s81

algorithm with hereditary guarantees. More concretely, we give a polynomial time algorithm82

for finding a coloring x such that disc2(A, x) = O(
√

lgn · herdisc2(A)). We note that neither83

our result nor Bansal’s approximately imply the other: In one direction, the coloring x we84

find might have very low `2 discrepancy, but a very large value of ‖Ax‖∞. In the other85

direction, herdisc∞(A) may be much larger than herdisc2(A), thus Bansal’s algorithm does86

not give any guarantees wrt. herdisc2(A).87

Our algorithm takes a very different approach than Bansal’s in the sense that we com-88

pletely avoid solving an SDP. Instead, we first prove a number of new inequalities relating89

herdisc2(A) and herdisc∞(A) to the eigenvalues of ATA. Relating hereditary discrepancy to90

the eigenvalues of ATA was also done by Chazelle and Lvov [10] and by Matoušek et al. [18].91
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However the result by Chazelle and Lvov is too weak for our applications as it degenerates92

exponentially fast in the ratio between m and n. The result of Matoušek et al. could be used,93

but can only show that we find a coloring such that disc2(A, x) = O(lg3/2 n ·herdisc2(A)). We94

believe our new inequalities are of independent interest as strong tools for proving discrepancy95

lower bounds.96

With these inequalities established, we design a simple and efficient deterministic al-97

gorithm, inspired by Beck and Fiala’s [7] algorithm for sparse set systems. Our key idea is98

to find a coloring x that is almost orthogonal to all the eigenvectors of ATA corresponding99

to large eigenvalues. This in turn means that ‖Ax‖2 becomes bounded by herdisc2(A).100

We now proceed to present the previous results for proving lower bounds on the hereditary101

discrepancy of matrices in order to set the stage for presenting our new results.102

Previous Hereditary Discrepancy Bounds. One of the most useful tools in proving103

lower bounds for hereditary discrepancy is the determinant lower bound proved in the original104

paper introducing hereditary discrepancy:105

I Theorem 1 (Determinant Lower Bound (Lovász et al. [13])). For an m× n real matrix A it
holds that

herdisc∞(A) ≥ max
k

max
B

1
2 |det(B)|1/k,

where k ranges over all positive integers up to min{n,m} and B ranges over all k × k106

submatrices of A.107

While it is easier to bound the max determinant of a submatrix B than it is to bound the108

discrepancy of a matrix directly, it still requires one to argue that we can find some B where109

all eigenvalues are non-zero. Chazelle and Lvov demonstrated how it suffices to bound the110

k’th largest eigenvalue of a matrix in order to derive hereditary discrepancy lower bounds:111

I Theorem 2 (Chazelle and Lvov [10]). For an m × n real matrix A with m ≤ n, let
λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of ATA. For any integer k ≤ m, it holds that

herdisc∞(A) ≥ 1
218−n/k

√
λk.

The result of Chazelle and Lvov has two substantial caveats. First, it requires m ≤ n. Since112

we will be using the partial coloring framework, we will end up with matrices having very113

few columns but many rows. This completely rules out using the above result for analysing114

our new algorithm. Since k ≤ m, the lower bound also goes down exponentially fast in the115

gap between m and n (we note that Chazelle and Lvov didn’t explicitly state that one needs116

k ≤ m, but since rank(A) ≤ m, we have λk = 0 whenever k > m).117

Chazelle and Lvov used their eigenvalue bound to prove the following trace bound which118

has been very useful in the study of set systems corresponding to incidences between geometric119

objects:120

I Theorem 3 (Trace Bound (Chazelle and Lvov [10])). For an m × n real matrix A with
m ≤ n, let M = ATA. Then:

herdisc∞(A) ≥ 1
4324−n tr M2/ tr2 M

√
trM/n.

Matoušek et al. [18] presented an alternative to the result of Chazelle and Lvov, relating121

herdisc∞(A) and herdisc2(A) to the sum of singular values of A, i.e. they proved:122

STACS 2019
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I Theorem 4 (Matoušek et al. [18]). For an m × n real matrix A, let λ1 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. Then

herdisc∞(A) ≥ herdisc2(A) = Ω
(

1
lgn

n∑
k=1

√
λk

mn

)
.

which for all positive integers k ≤ min{m,n} implies:

herdisc∞(A) ≥ herdisc2(A) = Ω
(

k

lgn

√
λk

mn

)
.

Comparing the bound to the result of Chazelle and Lvov, we see that the loss in terms of the123

ratio between k and n is much better. However for k,m and n all within a constant factor of124

each other, Chazelle and Lvov’s bound implies herdisc∞(A) = Ω(
√
λk) whereas the bound125

of Matoušek et al. loses a lgn factor and gives herdisc∞(A) ≥ herdisc2(A) = Ω(
√
λk/ lgn)126

(strictly speaking, the bound in terms of the sum of
√
λk’s is incomparable, but the bound127

only in terms of the k’th largest eigenvalue does lose this factor).128

Our Results. We first give a new inequality relating herdisc∞(A) to the eigenvalues129

of ATA, simultaneously improving over the previous bounds by Chazelle and Lvov, and by130

Matoušek et al.:131

I Theorem 5. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

Notice that our lower bound goes down as k/
√
mn whereas Chazelle and Lvov’s goes down132

as 18−n/k and requires m ≤ n. Thus our loss is exponentially better than theirs. Compared133

to the bound by Matoušek et al., we avoid the lgn loss (at least compared to the bound134

of Matoušek et al. that is only in terms of the k’th largest eigenvalue and not the sum of135

eigenvalues).136

Re-executing Chazelle and Lvov’s proof of the trace bound with the above lemma in137

place of theirs immediately gives a stronger version of the trace bound as well:138

I Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .

In establishing lower bounds on herdisc2(A) in terms of eigenvalues, we need to first prove139

an equivalent of the determinant lower bound for non-square matrices (and for `2-discrepancy140

rather than `∞):141

I Theorem 7. For an m× n real matrix A, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√

n

8πem det(ATA)1/2n.

We remark that proving Theorem 7 for the `∞-case appears as an exercise in [16] and we142

make no claim that the proof of Theorem 7 requires any new or deep insights (we suspect143

that it is folklore, but have not been able to find a mentioning of the above theorem in the144

literature). We finally arrive at our main result for lower bounding hereditary `2-discrepancy:145
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I Corollary 8. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc2(A) ≥ k

e

√
λk

8πmn.

We note that Theorem 5 actually follows (up to constant factors) from Corollary 8 using146

the fact that herdisc∞(A) ≥ herdisc2(A), but we will present separate proofs of the two147

theorems since the direct proof of Theorem 5 is very short and crisp.148

The exciting part in having established Corollary 8, is that it hints the direction for giving149

an efficient algorithm for obtaining colorings x with disc2(A, x) being bounded by some150

function of herdisc2(A). More concretely, we give an algorithm that is based on computing151

an eigendecomposition of ATA and using this to perform partial coloring that is orthogonal152

to the eigenvectors corresponding to the largest eigenvalues. Via Corollary 8, this gives a153

coloring with hereditary `2 guarantees. The precise guarantees of our algorithm are given in154

the following:155

I Theorem 9. There is an O((m + n)n2) time algorithm that given an m × n matrix A,156

computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(
√

lgn · herdisc2(A)).157

We implemented our algorithm and performed various experiments to examine its practical158

performance. Section 4 shows that the algorithm far outperforms random sampling a coloring159

x ∈ {−1,+1}n. In fact, it far outperforms random sampling, even if we repeatedly sample160

vectors for as long time as our algorithm runs and use the best one sampled. Moreover,161

the algorithm is efficient enough that it can be run on 1000 × 1000 matrices in less than162

10 seconds and on matrices of sizes up to 10000 × 10000 in about 4 hours on a standard163

laptop. While it is conceivable that Bansal’s SDP based approach can be modified to give `2164

guarantees with a polynomial running time, it seems highly unlikely that it can process such165

large matrices in a reasonable amount of time. Moreover, our algorithm is much simpler to166

analyse and implement.167

2 Eigenvalue Bounds for Hereditary Discrepancy168

In this section, we prove new results relating the hereditary discrepancy of a matrix A to the169

eigenvalues of ATA. The section is split in two parts, one studying hereditary `∞-discrepancy170

and one studying hereditary `2-discrepancy.171

2.1 Hereditary `∞-discrepancy172

Our first result concerns hereditary `∞-discrepancy and is a strengthening of the previous173

bound due to Chazelle and Lvov [10] (see Section 1). The simplest formulation is the174

following:175

B Restatement of Theorem 5. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

Theorem 5 is an immediate corollary of the following slightly more general result:176

STACS 2019
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I Theorem 10. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the
eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ 1
2

(∏k
i=1 λi(

n
k

)(
m
k

) )1/2k

Theorem 5 follows from Theorem 10 by using that
(

n
k

)
≤ (en/k)k and that

∏k
i=1 λi ≥ λk

k.177

Thus our goal is to prove Theorem 10. The first step of our proof uses the following linear178

algebraic fact:179

I Lemma 11. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues180

of ATA. For all positive integers k ≤ n, there exists an m× k submatrix C of A such that181

det(CTC) ≥ (
∏k

i=1 λi)/
(

n
k

)
.182

Proof. The k’th symmetric function of λ1, . . . , λn is defined as (see e.g. the textbook [19] p.183

494): sk =
∑

1≤i1<···<ik≤n λi1 · · ·λik
. Since all λi are non-negative, we have sk ≥

∏k
i=1 λi. If184

we let Sk(ATA) denote the set of all k × k principal submatrices of ATA, then it also holds185

that (see e.g. the textbook [19] p. 494): sk =
∑

B∈Sk(AT A) det(B). Since |Sk(ATA)| =
(

n
k

)
186

there must be a B ∈ Sk(ATA) for which det(B) ≥
(∏k

i=1 λi

)
/
(

n
k

)
. Since B is a k × k187

principal submatrix of ATA, it follows that there exists an m × k submatrix C of A such188

that B = CTC and thus det(CTC) ≥
(∏k

i=1 λi

)
/
(

n
k

)
. J189

With Lemma 11 established, we are ready to present the proof of Theorem 10:190

Proof of Theorem 10. Let A be a real m× n matrix and let λ1 ≥ · · · ≥ λn ≥ 0 denote the191

eigenvalues of ATA. From Lemma 11, it follows that for every k ≤ n, there is an m × k192

submatrix C of A such that det(CTC) ≥ (
∏k

i=1 λi)/
(

n
k

)
. If we also have k ≤ m, we can193

let Sk(C) denote the set of all k × k principal submatrices of C and use the Cauchy-Binet194

formula to conclude that: det(CTC) =
∑

D∈Sk(C) det(D)2. But Sk(C) ⊆ Sk(A) hence there195

must exist a k × k matrix D ∈ Sk(A) such that196

det(D)2 ≥ det(CTC)
|Sk(C)| ≥

∏k
i=1 λi(

n
k

)(
m
k

) ⇒ |det(D)| ≥

√∏k
i=1 λi(

n
k

)(
m
k

) .197

It follows from the determinant lower bound for hereditary discrepancy (Theorem 1) that

herdisc∞(A) ≥ 1
2 |det(D)|1/k ≥ 1

2

(∏k
i=1 λi(

n
k

)(
m
k

) )1/2k

.

J198

Having established a stronger connection between eigenvalues and hereditary discrepancy199

than the one given by Chazelle and Lvov [10], we can also re-execute their proof of the trace200

bound and obtain the following strengthening:201

B Restatement of Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .
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Proof. Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of M . Chazelle and Lvov [10] proved
that if we choose k = tr2 M/(2 trM2) then λk ≥ trM/(4n). Examining their proof, one can
in fact strengthen it slightly to λk ≥ trM/(4 min{m,n}) (their proof of ([10] Lemma 2.4)
considers a uniform random eigenvalue λ amongst λ1, . . . , λn and uses that trM = nE[λ].
However, one needs only λ to be uniform random amongst the non-zero eigenvalues and
there are at most min{m,n} such eigenvalues yielding trM = min{n,m}E[λ]). Inserting
these bounds in Theorem 5 gives us

herdisc∞(A) ≥ tr2 M

8e trM2

√
trM

mnmin{m,n} = tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .

J202

2.2 Hereditary `2-discrepancy203

This section proves the following determinant result for hereditary `2-discrepancy of m× n204

matrices:205

B Restatement of Theorem 7. For an m× n real matrix A with det(ATA) 6= 0, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√
nm

8πe det(ATA)1/2n.

The fact herdisc∞(A) ≥ herdisc2(A) is true for all A, thus the difficulty in proving206

Theorem 7 lies in establishing that herdisc2(A) ≥
√
nm/(8πe) det(ATA)1/2n. Our proof uses207

many of the ideas from the proof of the determinant lower bound (Theorem 1) in [13]. We208

start by introducing the linear discrepancy in the `2 setting and summarize known relations209

between linear discrepancy and hereditary discrepancy.210

I Definition 12. Let A be an m×n real matrix. Then its linear `2-discrepancy is defined as:

lindisc2(A) := max
c∈[−1,+1]

min
x∈{−1,+1}n

1√
m
‖A(x− c)‖2.

The linear `2-discrepancy has a clean geometric interpretation (this is a direct translation211

of the similar interpretation of linear `∞-discrepancy given e.g. in [13, 16]). For an m×n real212

matrix A, let: UA := {x : ‖Ax‖2 ≤
√
m}. For t > 0, place 2n translated copies U1, . . . , U2n213

of tUA such that there is one copy centered at each point in {−1,+1}n. Then lindisc2(A) is214

the least number t for which the sets Uj cover all of [−1,+1]n.215

We will need the following relationship between the hereditary and linear discrepancy:216

I Lemma 13 (Lovász et al. [13]). For all m× n real matrices A, it holds that lindisc2(A) ≤217

2 herdisc2(A).218

We remark that [13] proved Lemma 13 only for the `∞-discrepancy, but their proof only219

uses the fact that {x : ‖Ax‖∞ ≤ 1} is centrally symmetric and convex (see [13] Lemma 1).220

The same is true for the UA defined above.221

In light of Lemma 13, we set out to lower bound the linear discrepancy of an m × n222

matrix A in terms of det(ATA). We will prove the following lemma using an adaptation of223

the ideas in [13] (we have not been able to find a proof of this result elsewhere, but remark224

that the case of m = n should follow by adapting the proof in [13]):225

I Lemma 14. Let A be an m × n real matrix with det(ATA) 6= 0. Then lindisc2(A) ≥226 √
n/(2πem) det(ATA)1/2n.227

STACS 2019
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Proof. From the geometric interpretation given earlier, we know that if we place a copy of228

lindisc2(A)UA on each point in {−1,+1}n, then they cover all of [−1, 1]n hence vol(lindisc2(A)UA) ≥229

vol([−1, 1]n)/2n = 1. But230

vol(lindisc2(A)UA) = (lindisc2(A))n vol(UA)231

= (lindisc2(A))n vol({x : ‖Ax‖2 ≤
√
m})232

= (lindisc2(A))n vol({x : xTATAx ≤ m}).233

Observe now that {x : xTATAx ≤ m} = {x : xT (m−1ATA)x ≤ 1} is an ellipsoid. It is well-234

known that the volume of such an ellipsoid equals vn/
√

det(m−1ATA) = vn/
√
m−n det(ATA)235

where vn is the volume of the n-dimensional `2 unit ball. Since vn = πn/2/Γ(n/2 + 1) ≤236

(2πe/n)n/2, we conclude:237

1 ≤ (lindisc2(A))nvn√
m−n det(ATA)

⇒238

1 ≤ (lindisc2(A))n

(
2πem
n

)n/2 1√
det(ATA)

⇒239

lindisc2(A) ≥
√

n

2πem det(ATA)1/2n.240

J241

Combining Lemma 13 and Lemma 14 proves Theorem 7.242

Having establishes Theorem 7, we are ready to prove our last result on hereditary243

`2-discrepancy:244

B Restatement of Corollary 8. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote245

the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have herdisc2(A) ≥246

(k/e)
√
λk/(8πmn).247

Proof. Let A be an m × n real matrix and let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of248

ATA. From Lemma 11, we know that for all k ≤ n, there is an m × k submatrix C of249

A such that det(CTC) ≥ (
∏k

i=1 λi)/
(

n
k

)
≥ (kλk/(en))k. From Theorem 7, we get that250

herdisc2(C) ≥
√
k/(8πem) det(CTC)1/2k ≥ (k/e)

√
λk/(8πmn). Since C is obtained from A251

by deleting a subset of the columns, it follows that herdisc2(A) ≥ herdisc2(C), completing252

the proof. J253

3 Discrepancy Minimization with Hereditary `2 Guarantees254

This section gives our new algorithm for discrepancy minimization. The goal is to prove the255

following:256

B Restatement of Theorem 9. There is an O((m+n)n2) time algorithm that given an m×n257

matrix A, computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(
√

lgn ·herdisc2(A)).258

Our algorithm follows the same overall approach as several previous algorithms. The259

general setup is that we first give a procedure for partial coloring. This procedure takes a260

matrix A and a partial coloring x ∈ [−1,+1]n. We say that coordinates i of x such that261

|xi| < 1 are live. If there are k live coordinates prior to calling the partial coloring method,262

then upon termination we get a new vector γ such that the number of live coordinates in263

x̂ = x+ γ is no more than k/2. At the same time, all coordinates of x̂ are bounded by 1 in264

absolute value and ‖Ax̂‖2 is not much larger than ‖Ax‖2.265
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We start by presenting the partial coloring algorithm and then show how to use it to get266

the final coloring.267

3.1 Partial Coloring268

In this section, we present our partial coloring algorithm. The algorithm takes as input an269

m× n matrix A and a vector x ∈ [−1,+1]n. We think of the vector x as a partial coloring.270

We call a coordinate xi of x live if |xi| < 1 and we let k denote the number of live coordinates271

in x. For ease of notation, we let livex(i) denote the index of the i’th live coordinate in x272

and we define ⊕x : Rn × Rk → Rn as the function such that a⊕x b for a ∈ Rn and b ∈ Rk,273

is the vector obtained from a by adding the i’th coordinate of b to the coordinate of index274

livex(i) in a (where livex(i) refers to the i’th live coordinate in x).275

Upon termination, the algorithm returns another vector γ ∈ Rk. If we let x̂ = x⊕x γ be276

the vector in Rn obtained from x by adding γi to xlivex(i), then the partial coloring algorithm277

guarantees the following:278

1. There are at most k/2 live coordinates in x̂.279

2. For all i, we have |x̂i| ≤ 1.280

3. ‖Ax̂‖2
2 − ‖Ax‖2

2 = O(m(herdisc2(A))2).281

Thus upon termination, the new vector x̂ has half as many live coordinates, and the282

discrepancy did not increase by much. In particular the change is related to the hereditary283

`2-discrepancy of A.284

The main idea in our algorithm is to use the connection between eigenvalues and hereditary285

`2-discrepancy that we proved in Corollary 8. Our algorithm proceeds in iterations, where in286

each step it finds a vector v and adds it to γ. The way we choose v is roughly to find the287

eigenvectors of ATA and then pick v orthogonal to the eigenvectors corresponding to the288

largest eigenvalues. This bounds the difference ‖A(x⊕x (γ + v))‖2 − ‖A(x⊕x γ)‖2 in terms289

of the eigenvalues and thus hereditary `2-discrepancy. At the same time, we use the ideas by290

Beck and Fiala (and many later papers) where we include constraints forcing v orthogonal291

to ei for every coordinate i that is not live. The algorithm is as follows:292

PartialColor(A, x):293

1. Let k denote the number of live coordinates in x and let C denote the m × k matrix294

obtained from A by deleting all columns corresponding to coordinates that are not live.295

2. Initialize γ = 0 ∈ Rk.296

3. Compute an eigendecomposition of CTC to obtain the eigenvalues λ1 ≥ · · · ≥ λk ≥ 0297

and corresponding eigenvectors µ1, . . . , µk.298

4. While True:299

a. Compute the set S of coordinates i such that |γi + xlivex(i)| = 1. If |S| ≥ k/2, return300

γ.301

b. Find a unit vector v orthogonal to all ej with j ∈ S and to all µi with i ≤ k/4.302

c. Let σ = − sign(〈Ax,A(0⊕x v)〉). Compute the largest β > 0 such that all coordinates303

of x⊕x (γ + σβv) are less than or equal to 1 in absolute value. Update γ ← γ + σβv.304

Correctness. We prove that the vector γ returned by the above PartialColor algorithm305

satisfies the three claimed properties. First observe that in every iteration of the while loop,306

we find a vector v that is orthogonal to ei whenever |γi +xlivex(i)| = 1. Hence if |γi +xlivex(i)|307

becomes 1, it never changes again. Moreover, by maximizing β in each iteration, we guarantee308

that at least one more coordinate satisfies |γi + xlivex(i)| = 1 after every iteration. Thus the309

algorithm terminates after at most k/2 iterations of the while loop and no coordinate of310

x⊕x γ is larger than 1 in absolute value. What remains is to bound ‖A(x⊕x γ)‖2
2 − ‖Ax‖2

2.311
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Let v(i) denote the vector v found during the i’th iteration of the while loop. Upon312

termination, we have that γ = σ1β1v
(1) + · · ·+ σrβrv

(r) where σi = − sign(〈Ax, v(i)〉) and313

each v(i) is orthogonal to µ1, . . . , µk/4. Thus γ is also orthogonal to µ1, . . . , µk/4. We therefore314

have:315

‖A(x⊕x γ)‖2
2 = ‖A(x+ (0⊕x γ))‖2

2316

≤ ‖Ax‖2
2 + ‖A(0⊕x γ)‖2

2 + 2〈Ax,A(0⊕x γ)〉317

= ‖Ax‖2
2 + ‖Cγ‖2

2 + 2
r∑

i=1
〈Ax,A(0⊕x σiβiv

(i))〉318

≤ ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1
sign(〈Ax,A(0⊕x v

(i))〉)〈Ax,A(0⊕x βiv
(i))〉319

= ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1
sign(〈Ax,A(0⊕x v

(i))〉)2|〈Ax,A(0⊕x βiv
(i))〉|320

≤ ‖Ax‖2
2 + ‖γ‖2

∞kλk/4 − 0321

≤ ‖Ax‖2
2 + 4kλk/4.322

We would like to use Corollary 8 to relate kλk/4 to the hereditary discrepancy of A. Since C
is an m× k submatrix of A, we have herdisc2(A) ≥ herdisc2(C). Using Corollary 8 we have
herdisc2(C) ≥ (k/4e)

√
λk/4/mk = (1/4e)

√
kλk/4/(8π)m. Hence we conclude that

‖Ax̂‖2
2 − ‖Ax‖2

2 ≤ 128e2πm(herdisc2(A))2 = O(m(herdisc2(A))2).

Running Time. Step 1. of PartialColor takes O(mk) time and step 2. takes O(k).323

Step 3. takes O(mk2) time to compute CTC (can be improved via fast matrix multiplication)324

and O(k3) time to compute the eigendecomposition. As argued above, each iteration of325

the while loop increases the size of S by at least one. Hence there are no more than k/2326

iterations of the loop. Computing S in step (a) takes O(k) time. Finding the unit vector v327

in step (b) can be done in O(k2) time as follows: Whenever adding a coordinate i to S, use328

Gram-Schmidt to compute the normalized (unit-norm) projection êi of ei onto the orthogonal329

complement of µ1, . . . , µk/4 and all previous vectors êj . This takes O(k2) time per i. To330

find v, sample a uniform random unit vector in Rk and run Gram-Schmidt to compute its331

projection onto the orthogonal complement of êj for j ∈ S and µ1, . . . , µk/4. The expected332

length of the projection is Ω(1) and we can scale it to unit length afterwards. This gives the333

desired vector. The Gram-Schmidt step takes O(k2) time. Computing A(0⊕x v) in step (c)334

takes O(mk) time and computing Ax can be done outside the while loop in O(mn) time.335

The inner product takes O(m) time to compute. Computing β and adding σβv to γ takes336

O(k) time. Overall, the PartialColor algorithm takes O(mn + mk2 + k3) time. If Ax is337

given as argument to the algorithm, the time is further reduced to O((m+ k)k2).338

3.2 The Final Algorithm339

Now that we have the PartialColor algorithm, getting to a low discrepancy coloring is340

straight forward. Given an m× n matrix A, we initialize x← 0. We then repeatedly invoke341

PartialColor(A, x). Each call returns a vector γ. We update x← x+ γ and continue. We342

stop once there are no live coordinates in x, i.e. all coordinates satisfy |xi| = 1.343

In each iteration, the number of live coordinates of i decreases by at least a factor two,344
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and thus we are done after at most lgn iterations. This means that the final vector x satisfies345

‖Ax‖2
2 ≤ lgn ·O(m(herdisc2(A))2)⇒346

‖Ax‖2 = O(
√
m lgn · herdisc2(A))⇒347

disc2(A, x) = O(
√

lgn · herdisc2(A)).348

For the running time, observe that after each call to PartialColor, we can compute A(x+γ)
from Ax in O(mk) time. Thus we can provide Ax as argument to PartialColor and thereby
reduce its running time to O((m+ k)k2). Since k halves in each iteration, we get a running
time of

O

( lg n∑
i=1

(m+ n/2i)(n/2i)2

)
= O((m+ n)n2).

This concludes the proof of Theorem 9.349

4 Experiments350

In this section, we present a number of experiments to test the practical performance of351

our discrepancy minimization algorithm. We denote the algorithm by L2Minimize in352

the following. We compare it to two base line algorithms Sample and SampleMany.353

Sample simply picks a uniform random {−1,+1} vector as its coloring. SampleMany354

repeatedly samples a uniform random {−1,+1} vector and runs for the same amount of time355

as L2Minimize. It returns the best vector found within the time limit.356

The algorithms were implemented in Python, using NumPy and SciPy for linear algebra357

operations. All tests were run on a MacBook Pro (15-inch, Late 2013) running macOS Sierra358

10.13.3. The machine has a 2 GHz Intel Core i7 and 8GB DDR3 RAM.359

We tested the algorithms on three different classes of matrices:360

Uniform matrices: Each coordinate is uniform random and independently chosen among361

−1 and +1.362

2D Corner matrices: Obtained by sampling two sets P = {p1, . . . , pn} and Q =363

{q1, . . . , qm} of n and m points in the plane, respectively. The points are sampled364

uniformly in the [0, 1]× [0, 1] unit square. The resulting matrix has one column per point365

pj ∈ P and one row per point qi ∈ Q. The entry (i, j) is 1 if pj is dominated by qi,366

i.e. qi.x > pj .x and qi.y > pj .y and it is 0 otherwise. Such matrices are known to have367

hereditary `2-discrepancy O(lg1.5 n) [20].368

2D Halfspace matrices: Obtained by sampling a set P = {p1, . . . , pn} of n points in the369

unit square [0, 1] × [0, 1], and a set Q of m halfspace. Each halfspace in Q is sampled370

by picking one point a uniformly on either the left boundary of the unit square or on371

the top boundary, and another point b uniformly on either the right boundary or the372

bottom boundary of the unit square. The halfspace is then chosen uniformly to be either373

everything above the line through a, b or everything below it. The resulting matrix has374

one column per point pj ∈ P and one row per halfspace hi ∈ Q. The entry (i, j) is 1 if pj375

is in the halfspace hi and it is 0 otherwise. Such matrices are known to have hereditary376

`2-discrepancy O(n1/4) [15].377

Each test is run 10 times and the average `2 discrepancy and average runtime is reported.378

The running times of the algorithms varied exclusively with the matrix size and not the type379

of matrix, thus we only show one time column which is representative of all types of matrices.380

The results are shown in Table 1.381
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Algorithm Matrix Size Disc Uniform Disc 2D Corner Disc 2D Halfspace Time (s)
L2Minimize 200× 200 7.2 1.8 1.6 < 1

Sample 200× 200 13.8 7.6 11.0 < 1
SampleMany 200× 200 11.6 2.3 2.7 < 1
L2Minimize 1000× 1000 15.7 1.9 2.3 9

Sample 1000× 1000 31.6 16.0 18.3 < 1
SampleMany 1000× 1000 28.9 4.9 5.5 9
L2Minimize 4000× 4000 31.0 2.1 2.6 717

Sample 4000× 4000 63.1 21.0 34.0 < 1
SampleMany 4000× 4000 60.3 9.5 10.7 717
L2Minimize 10000× 10000 48.3 2.1 3.1 15260

Sample 10000× 10000 99.9 51.4 96.8 < 1
SampleMany 10000× 10000 96.8 14.2 15.6 15260
L2Minimize 10000× 2000 35.9 2.1 2.7 535

Sample 10000× 2000 44.7 20.6 24.1 < 1
SampleMany 10000× 2000 43.4 6.7 8.0 535
L2Minimize 2000× 10000 21.4 1.8 2.0 5809

Sample 2000× 10000 99.9 40.8 70.8 < 1
SampleMany 2000× 10000 92.2 13.8 16.4 5809
Table 1 Results of experiments with our L2Minimize algorithm. The Matrix Size column gives

the size m × n of the input matrix. The Disc columns shows disc2(A, x) = ‖Ax‖2/
√
m for the

coloring x found by the algorithm on the given type of matrix. Time is measured in seconds. Each
entry is the average of 10 executions.

382

The table clearly shows that L2Minimize gives superior colorings for all types of matrices383

and all sizes. The tendency is particularly clear on the structured matrices 2D Corner and384

2D Halfspace where the coloring found by L2Minimize on 10000 × 10000 matrices is a385

factor 25-30 smaller than a single round of random sampling (Sample) and a factor 5-7386

better than random sampling for as long time as L2Minimize runs (SampleMany).387

The O((m + n)n2) running time makes the algorithm practical up to matrices of size388

about 10000× 10000, at which point the algorithm runs for 15260 seconds ≈ 4 hours and 15389

minutes.390
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