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Abstract

These lecture notes introduce the notion of secure multiparty computation. We in-

troduce the universal composition framework for phrasing and proving security about

protocols, and survey some known general results that describe when secure multi-

party computation is possible. We then look at some general techniques for building

secure multiparty protocols, including protocols for commitment and verifiable secret

sharing, and we show how these techniques together imply general secure multiparty

computation.

Our goal with these notes is to convey an understanding of some basic ideas and

concepts from this field, rather than to give a fully formal account of all proofs and

details. We hope the notes will be accessible to most graduate students in computer

science and mathematics with an interest in cryptography.
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1 WHAT IS MULTIPARTY COMPUTATION?

1 What is Multiparty Computation?

In this section we give an overview of some of the central concepts in multiparty compu-
tation.

1.1 The MPC and VSS Problems

Secure multiparty computation (MPC) can be defined as the problem of n players to com-
pute an agreed function of their inputs in a secure way, where security means guaranteeing
the correctness of the output as well as the privacy of the players’ inputs, even when some
players cheat. Concretely, we assume we have inputs x1, ..., xn, where player i knows xi,
and we want to compute f(x1, ..., xn) = (y1, ..., yn) such that player i is guaranteed to
learn yi, but can get nothing more than that. If all outputs are the same we often write
f(x1, ..., xn) = y. Sometimes parties need to learn a randomized function of their inputs.
In that case they evaluate a function f(x1, ..., xn; r) = (y1, ..., yn), where r is a uniformly
random value unknown by all parties.

As a toy example we may consider Yao’s millionaire’s problem: two millionaires meet in
the street and want to find out who is richer. Can they do this without having to reveal how
many millions they each own? The function computed in this case is a simple comparison
between two integers: f(x1, x2) = x1 <? x2 — here x1 <? x2 is a function which is 1 if
x1 < x2 and 0 otherwise. If the result is that the first millionaire is richer, then he knows
that the other guy has fewer millions than him, but this should be all the information he
learns about the other guy’s fortune.

Another example is an electronic voting scheme: here all players have an integer as
input, designating the candidate they vote for, and the goal is to compute how many votes
each candidate has received. We want to make sure that the correct result of the vote,
but only this result, is made public. If there are only two candidates and xi = 0 is a
vote on the first candidate and xi = 1 is a vote on the second candidate, and we let the
first candidate win if there is a draw, then the election should only leak the single bit
f(x1, . . . , xn) = (

∑n
i=1 xi) <? n/2 — here a <? b is a function which is 1 if a < b and 0

otherwise. If we want to know how many votes each candidate got the function would be
f(x1, . . . , xn) =

∑n
i=1 xi.

For a sealed-bid auction the function computed could be f(x1, . . . , xn) = (i, xi), where
xi = maxn

j=1 xj. If there are several parties Pj with xi = maxn
j=1 xj , then a random such

party could be elected by evaluating a randomized function.
In the above examples all players learn the same result, i.e, y1 = . . . = yn, but it can

also be useful to have different results for different players. Consider for example the case
of a blind signature scheme, which is useful in electronic cash systems. We can think of
this as a two-party secure computation where the signer enters his private signing key sk
as input, the user enters a message m to be signed, and the function f(sk,m) = (y1, y2),
where y1 = ǫ is for the signer and is always the empty string, and where y2 is for the user
and is the signature on m. Again, security means exactly what we want: the user gets the
signature and nothing else, while the signer learns nothing new. If the signature scheme
is randomized, the parties would have to evaluate f(sk,m; r), where r is used to compute
the signature.
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1.2 Adversaries and Their Powers 1 WHAT IS MULTIPARTY COMPUTATION?

It is clear that if we can compute any function securely, we have a very powerful tool.
However, some protocol problems require even more general ways of thinking. A secure
payment system, for instance, cannot naturally be formulated as secure computation of a
single function: what we want here is to continuously keep track of how much money each
player has available and avoid cases where for instance people spend more money than they
have. Such a system should behave like a secure general-purpose computer: it can receive
inputs from the players at several points in time and each time it will produce results
for each player computed in a specified way from the current inputs and from previously
stored values. Therefore, the definition we give later for security of protocols, will be for
this more general type, namely a variant of the Universally Composable security definition
of Canetti. Another remark is that although the general protocol constructions we give
are phrased as solutions to the basic MPC problem, they can in fact also handle the more
general type of problem.

A key tool for secure MPC, interesting in its own right, is verifiable secret sharing (VSS):
a dealer distributes a secret value s among the players, where the dealer and/or some of
the players may be cheating. It is guaranteed that if the dealer is honest, then the cheaters
obtain no information about s, and all honest players are later able to reconstruct s, even
against the actions of cheating players. Even if the dealer cheats, a unique such value s will
be determined already at distribution time, and again this value is reconstructable even
against the actions of the cheaters.

1.2 Adversaries and Their Powers

It is common to model cheating by considering an adversary who may corrupt some subset
of the players. For concreteness, one may think of the adversary as a hacker who attempts
to break into the players’ computers. When a player is corrupted, the adversary gets all
the data held by this player, including complete information on all actions and messages
the player has received in the protocol so far. This may seem to be rather generous to
the adversary, for example one might claim that the adversary will not learn that much, if
the protocol instructs players to delete sensitive information when it is no longer needed.
However, first other players cannot check that such information really is deleted, and second
even if a player has every intention of deleting for example a key that is outdated, it may
be quite difficult to ensure that the information really is gone and cannot be retrieved if the
adversary breaks into this player’s computer. Hence the standard definition of corruption
gives the entire history of a corrupted player to the adversary.

1.2.1 The Monolithic Adversary

The adversary cannot only model a hacker. It can also model that some of the parties
in the protocol are trying to cheat by running alternative programs from those suggested
by the protocol. In the case where an adversary e.g. models three separate parties which
do not follow the suggested protocol it might seem overly pessimistic to model them by
one adversary which controls these three parties, as this implicitly assumed that the three
deviators are coordinating their cheating. Since, however, the corrupted parties coordi-
nating their cheating is the worst-case seen from the point of view of the honest parties,
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1.2 Adversaries and Their Powers 1 WHAT IS MULTIPARTY COMPUTATION?

nothing is lost, security-wise, in considering one adversary which coordinates the actions
of all corrupted parties. This is sometimes called a monolithic adversary. The model uses
a monolithic adversary as it captures the worst case and makes the definition of security
simpler.

1.2.2 Passive versus Active

One can distinguish between passive and active corruption. Passive corruption means that
the adversary obtains the complete information held by the corrupted players, but the
players still execute the protocol correctly. Active corruption means that the adversary
takes full control of the corrupted players. One can think of passive corruption as a hacker
which is able to inspect the execution of some parties but not control it, maybe because of
an operating system with bad security. Alternatively it can be thought of as some of the
parties in the protocol getting together with all the messages they saw during the execution
of the protocol and trying to deduce more information about e.g. the inputs of the other
parties.

1.2.3 The Adversary Structure

It is (at least initially) unknown to the honest players which subset of players is corrupted.
However, no protocol can be secure if any subset can be corrupted. For instance, we cannot
even define security in a meaningful way if all players are corrupt. We therefore need a way
to specify some limitation on the subsets the adversary can corrupt. For this, we define an
adversary structure A, which is simply a family of subsets of the players. And we define an
A-adversary to be an adversary that can only corrupt a subset of the players if that subset
is in A. The adversary structure could for instance consist of all subsets with cardinality
less than some threshold value t. In order for this to make sense, we must require for any
adversary structure that if A ∈ A and B ⊂ A, then B ∈ A. The intuition is that if the
adversary is powerful enough to corrupt subset A, then it is reasonable to assume that he
can also corrupt any subset of A. We say that an adversary structure must be monotone.

If we allow the adversary to corrupt all subsets of the parties of size at most t for some
t < n, then we call it a threshold adversary and we call t the threshold.

1.2.4 Static versus Adaptive

Both passive and active adversaries may be static, meaning that the set of corrupted players
is chosen once and for all before the protocol starts, or adaptive meaning that the adversary
can at any time during the protocol choose to corrupt a new player based on all the
information he has at the time, as long as the total corrupted set is in A. A static adversary
is a good model of a situation where some of the parties before the execution of the protocol
get together and form a collusion against the other parties. Such a collusion could choose
to either pool their view of the protocol after the execution (passive corruption) or could
run some alternative coordinated programs (active corruption). Adaptive corruption is a
better model of, e.g., a hacker which is trying to learn information by breaking into some

6



1.3 Models of Communication 1 WHAT IS MULTIPARTY COMPUTATION?

parties. Such a hacker could pick the next party to try to hack based on the information
already collected.

1.3 Models of Communication

Two basic models of communication have been considered in the literature. In the crypto-

graphic model, the adversary is assumed to have access to all messages sent, however, he
cannot modify messages exchanged between honest players. This models a setting where
all parties share an authenticated but otherwise insecure channel. This means that security
can only be guaranteed in a cryptographic sense, i.e. assuming that the adversary cannot
solve some computational problem.

In the information-theoretic model, it is assumed that the players can communicate over
pairwise secure channels, in other words, the adversary gets no information at all about
messages exchanged between honest players (except that something was sent). Security
can then be guaranteed even when the adversary has unbounded computing power. In
the information theoretic model is sometimes called the i.t. model and the secure-channels

model.
For active adversaries, there is a further problem with broadcasting, namely if a protocol

requires a player to broadcast a message to everyone, it does not suffice to just ask him
to send the same message to all players. If he is corrupt, he may say different things
to different players, and it may not be clear to the honest players if he did this or not.
In the distributed computing literature the term broadcast is sometimes used to refer to
communication mechanisms which do not necessarily guarantee consistency if the sender is
corrupted. We want to avoid this possible confusion, and therefore use the term consensus

broadcast. In a consensus broadcast, all honest receivers are guaranteed to receive the same
message even if the sender and some of the other parties are corrupted. One therefore in
general has to make a distinction between the case where a consensus broadcast channel is
given for free as a part of the model, or whether such a channel has to be simulated by a
sub-protocol. We return to this issue in more detail later, and look at an implementation
of consensus broadcast in Section 9.

We assume throughout that communication is synchronous, i.e., processors have clocks
that are to some extent synchronized, and when a message is sent, it will arrive before some
time bound. In more detail, we assume that a protocol proceeds in rounds: in each round,
each player may send a message to each other player, and all messages are delivered before
the next round begins. We assume that in each round, the adversary first sees all messages
sent by honest players to corrupt players (or in the cryptographic scenario, all messages
sent). If he is adaptive, he may decide to corrupt some honest players at this point. And
only then does he have to decide which messages he will send on behalf of the corrupted
players. This fact that the adversary gets to see what honest players say before having to
act himself is sometimes referred to as a rushing adversary. Since communication in practice
are not atomic events, but are implemented using sub-protocols, corrupted parties often
has the ability to be last in practical networks — they can e.g. just fake that their TCP
connection is hanging until they received messages from the honest parties. It is therefore
important to assume a rushing adversary for the model to reflect reality.
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1.3 Models of Communication 1 WHAT IS MULTIPARTY COMPUTATION?

In an asynchronous model of communication where message delivery or bounds on
transit time is not guaranteed, it is still possible to solve most of the problems we consider
here. However, we stick to synchronous communication for simplicity, but also because
problems can only be solved in a strictly weaker sense using asynchronous communication.
As an example, assume that we want to tolerate that up to t of the n parties are corrupted.
If an honest party waits for messages from more than n−t parties, then it might potentially
be waiting for a message from a corrupted party. This corrupted party might not have
sent its message, and since no lower bound on message delivery is guaranteed, an unsent
message cannot be distinguished from a slow message.1 The party might therefore end up
waiting forever for the unsent message, and the protocol deadlocks. So, in an asynchronous
protocol which must tolerate t corruptions and must be dead-lock free, the honest parties
cannot wait for messages from more than n− t parties in each round. But this means that
some of the honest parties might not even be able to send their inputs to the other honest
parties, left alone having their inputs securely contribute to the result.

Exercise 1 Consider a setting where two parties P1 and P2 want to find out whether they
are both willing to cooperation in achieving some goal. This can be formalized as follows:
Each Pi has an input xi ∈ {0, 1}, where xi = 1 if and only if Pi wants to cooperate. They
want to compute y = f(x1, x2) = x1 ∧ x2, where x1 ∧ x2 = 1 if x1 = 1 and x2 = 1,
and x1 ∧ x2 = 0 otherwise. Note, in particular, that if P1 does not want to cooperate and
therefore inputs x1 = 0, then y = 0 no matter the input of P2. I.e., a party which does not
want to cooperate does not learn whether the other party wanted to cooperate or not. This
is sometimes called the marriage problem. Show that if the two parties already know how to
securely solve Yao’s millionaire’s problem, then they can also securely solve the marriage
problem. [Hint: From their inputs to the marriage problem they locally determine some
inputs for the millionaire’s problem and then solve that instance. From the result of the
millionaire’s problem they can determine the result of the marriage problem, and nothing
else.]

Exercise 2 Consider a setting where three parties want to cooperate if they desire the same
goal. They want to find out whether they desires the same goal or not, but in case they
do not desire the same goal, they do not want to leak their preferred goals to the other
parties. Let us assume there are g goals. Each Pi gives an input xi ∈ {1, . . . , g} indexing
which goal Pi wants to achieve. Then the parties want to learn f(x1, x2, x3) ∈ {0, 1}, where
f(x1, x2, x3) = 1 if and only if x1 = x2 = x3.

1. Express f(x1, x2, x3) as a function of x1, x2 and x3 using only the arithmetic operators
+, − and · and the special operator =?, where a =? b is 1 if a = b and 0 otherwise.

2. Replace the use of =? by a circuit using only the arithmetic operators. Assume that
the computation is done in the finite field K = Zp for a prime p > g, and try to get
a circuit of size at most O(log2(p)). [Hint: Fermat.]

1In fact, it is easy to see that the ability to distinguish an unsent message from a sent-but-slow message
is almost equivalent to knowing a bound on delivery time.

8



1.3 Models of Communication 1 WHAT IS MULTIPARTY COMPUTATION?

3. Since =? is more expensive than the arithmetic operators, when it has to be imple-
mented using these, it is desirable to use as few invocations of it as follows. Show how
to do with just one invocation of =? and a constant number of arithmetic operators.
You are allowed to assume that K = Zp for a prime p and that p is much larger than
g (say, you decide the value of p after seeing g).
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2 DEFINING SECURITY, A FIRST LOOK

2 Defining Security, a First Look

In this section we give a first idea of how security of MPC is defined. We will later denote
a separate section to fleshing out the details.

2.1 How to not do it

Defining security of MPC protocols is not easy, because the problem is so general. A good
definition must automatically lead to a definition, for instance, of secure electronic voting
because this is a special case of MPC. The classical approach to such definitions is to write
down a list of requirements: the inputs must be kept secret (except for what can be learned
from the output), the result must be correct, etc. However, apart from the fact that it
may be hard enough technically to formalize such requirements, it can be very difficult to
be sure that the list is complete. For instance, in a sealed-bid auction, we would clearly be
unhappy about a solution that allowed a cheating bidder to bid in a way that relates in
a particular way to an honest player’s bid. We do, e.g., not want player P1 to be able to
behave such that his vote is always one euro higher than that of honest player P2’s vote.
Yet a protocol with such a defect may well satisfy the demand that all inputs of honest
players are kept private (except for what can be learned from the output), and that all
submitted bids of the right form are indeed considered. Namely, it may be that a corrupt
P1 does not know how he bids, he just modifies P2’s "encrypted" bid in some clever way
and submits it as his own.2 So maybe we should demand that all players in a multiparty
computation know which input values they contribute? Probably yes, but can we then
be sure that there are no more requirements we should make in order to capture security
properly?

2.2 The Ideal vs. Real World Approach

To get around this seemingly endless series of problems, we will take a completely different
approach: in addition to the real world where the actual protocol and attacks on it take
place, we will define an ideal world which is basically a specification of what we would like
the protocol to do. The idea is then to say that a protocol is good if what it produces
cannot be distinguished from what we could get in the ideal scenario.

To be a little more precise, we will in the ideal world assume that we have access to
an incorruptible computer, a so-called ideal functionality F . All players can privately send
inputs to and receive outputs from F . The ideal functionality F is programmed to execute
a certain number of commands, and will, since it is incorruptible, always execute them
correctly according its (public) specification, without leaking any information other than
the outputs it is supposed to send to the players.

2Note that at least the seller should be unsatisfied with such a "feature". If there are only two bidders
and P1 knows that it values the sold good higher than P2 and therefore surely is going to win, the goal
of P1 is to bid as low as possible while still winning. The above feature would allow P1 to minimize the
prize in this case. Without the feature P1 would have to bid higher to be sure to win, which would give
the seller a larger pay off.
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2.2 The Ideal vs. Real World Approach 2 DEFINING SECURITY, A FIRST LOOK

As an example, the ideal functionality for secure function evaluation of f , let us call
it Ff

sfe, could be specified as follows: Wait for a message xi from each Pi; Compute
(y1, . . . , yn) = f(x1, . . . , xn); Securely send each yi to Pi. If each Pi is securely connected

to Ff
sfe and Ff

sfe is truly incorruptible, then secure function evaluation is trivial. The
parties just send their inputs to Ff

sfe and get back the results. Any other cryptographic
task, such as commitment schemes, VSS or payments systems can as easily be phrased as
ideal functionalities.

The goal of a protocol πf
sfe for secure function evaluation of f is then to create, without

help from trusted parties, and in presence of some adversary, a situation “equivalent” to the
case where we have Ff

sfe available. If this is the case, we say that πf
sfe securely implements

Ff
sfe.

By “equivalent” we mean that whatever information an adversary can collect in the real
world it could also have collected in the ideal world, by corrupting the same parties. This
shows that the protocol is no worse than the ideal setting.

As an example, let us consider an adversary which does a static, passive corruption of
some parties indexed by C ⊂ {1, . . . , n}. In the ideal world, where the parties send xi to

Ff
sfe and get back yi, a corruption of Pi leaks only xi and yi. I.e., in the ideal world an

adversary learns just

idealC(Ff
sfe

(x1, . . . , xn)) = {(i, xi, yi)}i∈C .

In the real world the adversary learns more, namely all the messages msgi sent by each
corrupted Pi plus the randomness ri used by Pi in the computation. I.e., in the real world
an adversary learns

realC(πf
sfe

(x1, . . . , xn)) = {(i, xi, yi, ri,msgi)}i∈C .

We call the protocol secure against an adversary structure A if for all C ∈ A it holds that
realC(πf

sfe(x1, . . . , xn)) contains no more information than idealC(Ff
sfe(x1, . . . , xn)).

As with zero-knowledge we define this via simulation. In the case of zero-knowledge we
requires that the entire transcript of the proof could be simulated. Here we require that
the transcript realC(πf

sfe(x1, . . . , xn)) can be simulated given idealC(Ff
sfe(x1, . . . , xn)).

Technically, we require that there exists a probabilistic poly-time (PPT) simulator S which
takes inputs of the form {(i, xi, yi)}i∈C and gives outputs of the form {(i, xi, yi, ri,msgi)}i∈C =

S({(i, xi, yi)}i∈C), and we require that S(idealC(Ff
sfe(x1, . . . , xn))) and realC(πf

sfe(x1, . . . , xn))

have the same distribution for all C ∈ A. If this is the case we call πf
sfe a perfectly secure

implementation of Ff
sfe. We also say that the protocol is secure in the sense of poly-time

simulation.
Note that S essentially just constructively shows that realC(πf

sfe(x1, . . . , xn)) contains

no more information than idealC(Ff
sfe(x1, . . . , xn)) simply by showing how to compute

realC(πf
sfe(x1, . . . , xn)) from idealC(Ff

sfe(x1, . . . , xn)). In particular, any PPT ideal-

world adversary which corrupts C and learns idealC(Ff
sfe(x1, . . . , xn)) could just run S

after the execution of the protocol to sample a value S(idealC(Ff
sfe(x1, . . . , xn))) which has

the exact same distribution as realC(πf
sfe(x1, . . . , xn)), the values it would have learned

by corrupting the parties C in the real-world protocol. So, for any PPT adversary there is

11



2.2 The Ideal vs. Real World Approach 2 DEFINING SECURITY, A FIRST LOOK

no advantage in attacking the real-world protocol over attacking the ideal world, and since
the ideal world is as good as it gets, the protocol is as good as it gets!

If S(idealC(Ff
sfe(x1, . . . , xn))) and realC(πf

sfe(x1, . . . , xn)) are only statistically close,

then we call πf
sfe a statistically secure implementation of Ff

sfe. If S(idealC(Ff
sfe(x1, . . . , xn)))

and realC(πf
sfe(x1, . . . , xn)) are only computationally indistinguishable, then we call πf

sfe

a computationally secure implementation of Ff
sfe.

12
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3 Results on MPC

In this section we list some important known results on MPC.

3.1 Results for Threshold Adversaries

The classical results for the information-theoretic model due to Ben-Or, Goldwasser and
Wigderson [5] and Chaum, Crépeau and Damgård [12] state that every function can be
securely computed with perfect security in presence of an adaptive, passive (adaptive,
active) adversary, if and only if the adversary corrupts less than n/2 (n/3) players. A lot
of worked soon followed, improving on the efficiency of the first protocols, like Gennaro,
Rabin and Rabin[28]. The currently fastest protocol is by Beerliova and Hirt[6].

When a broadcast channel is available, then every function can be securely computed
with statistical security in presence of an adaptive, active adversary if and only if the
adversary corrupts less than n/2 players. This was first shown by Rabin and Ben-Or[41].
Again the efficiency was soon improved, by e.g. Cramer, Damgård, Dziembowski, Hirt and
Rabin[14]. The currently fastest protocol is by Damgård and Nielsen[23].

The most general results for the cryptographic model are by Goldreich, Micali and
Wigderson [30] who showed that, assuming trapdoor one-way permutations exist, any
function can be securely computed with computational security in presence of a static,
active adversary corrupting less than n/2 players and by Canetti et al.[9] who showed that
security against adaptive adversaries in the cryptographic model can also be obtained,
although at the cost of a significant loss of efficiency. Under specific number theoretic
assumptions, Damgård and Nielsen have shown that adaptive security can be obtained
with a reasonable efficiency[22].

The following table summarizes which thresholds are obtainable for various qualities of
security, where all results are for adaptive security.

Passive Active with broadcast Active without broadcast

Perfect n/2 n/3 n/3
Statistical n/2 n/2 n/3
Computational n n/2 n/2

3.2 Results for General Adversaries

Hirt and Maurer [31] introduced the scenario where the adversary is restricted to corrupting
any set in a general adversary structure.

In the field of secret sharing we have a well-known generalization from threshold schemes
to secret sharing over general access structures. Hirt and Maurer’s generalization does the
same for multiparty computation. One may think of the sets in their adversary structure
as corresponding in secret sharing terminology to those subsets that cannot reconstruct
the secret.

Let Q2 (and Q3) be the conditions on a structure that no two (no three) of the sets
in the structure cover the full player set. The result of [31] can be stated as follows: In
the information-theoretic scenario, every function can be securely computed with perfect
security in presence of an adaptive, passive (adaptive, active) A-adversary if and only if

13
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A is Q2 (Q3). This is for the case where no broadcast channel is available. The threshold
results of [5], [12], [30] are special cases, where the adversary structure contains all sets of
size less than n/2 or n/3.

This general model leads to strictly stronger results. Consider, for instance, the follow-
ing infinite family of examples: Suppose our player set is divided into two groups X and
Y of m players each (n = 2m) where the players are on friendly terms within each group
but tend to distrust players in the other group. Hence, a coalition of active cheaters might
consist of almost all players from X or from Y , whereas a mixed coalition with players
from both groups is likely to be quite small. Concretely, suppose we assume that a group
of active cheaters can consist of at most 9m/10 players from only X or only Y , or it can
consist of less than m/5 players coming from both X and Y . This defines an adversary
structure satisfying Q3, and so multiparty computations are possible in this scenario. Nev-
ertheless, no threshold solution exists, since the largest coalitions of corrupt players have
size more than n/3.3 The intuitive reason why threshold protocols fail here is that they
will by definition have to attempt protecting against any coalition of size 9m/10 — an
impossible task. On the other hand this is overkill because not every coalition of this size
actually occurs, and therefore multiparty computation is still possible using more general
tools.

The protocols of [31] rely on quite specialized techniques. Cramer, Damgård and Mau-
rer [15] show that any linear secret sharing scheme can be used to build MPC protocols.
A linear secret sharing scheme is one in which each share is a fixed linear function (over
some finite field) of the secret and some random field elements chosen by the dealer. Since
all the most efficient general techniques for secret sharing are linear, this gives the fastest
known protocols for general adversary structures. They also show that the Q2 condition
is necessary and sufficient for MPC in the cryptographic scenario.

3.3 Unfair MPC

The research on MPC has considered a large number of different models, to try to find
either more secure protocols or more efficient protocols. We will mention just one of these
directions here. In [18] Canetti, Lindell Ostrovsky and Sahai, building on previous work,
show that it is possible to get some security even if up to t = n−1 parties can be corrupted.
A number of such protocols are known, but they are, however, all unfair in the sense that
a single corrupted party can force the protocol to fail in such a way that the corrupted
party itself learns the output of the computation, whereas the honest parties learns no
information from the computation at all. This is in contrast to the fair protocols we
mentioned above which guarantees that all parties learn the result. The bounds t < n/2
and t < n/3 mentioned above are known to be optimal for fair protocols. When the
adversary is passive, fairness is not an issue, as the adversary has to follow the protocol.
This is why the table says t = n for passive, computational adversaries.

3It can be shown that no weighted threshold solution exists either for this scenario, i.e., a solution using
threshold secret sharing, but where some players are given several shares.
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4 A Passive Secure Protocol

In this section we will sketch how to obtain a perfectly secure function evaluation protocol
in the i.t.-model when t < n/2. More precisely, we will look at how to implement Ff

sfe with
perfect security, where we assume a threshold adversary that can corrupt at most t < n/2
players.

4.1 Arithmetic Circuits

In the following we fix some finite field K. The only necessary restriction on K is that
|K| > n, but we will assume for concreteness and simplicity that K = Zp for some prime
p > n.

We will present a protocol which can securely evaluate an arithmetic function over
K. For notational convenience we construct a protocol for the case where each party has
exactly one input and one output from K. I.e., f : K

n → K
n, (x1, . . . , xn) → (y1, . . . , yn).

The mapping (y1, . . . , yn) = f(x1, . . . , xn) is described using an arithmetic circuit. There
are n input gates, each labeled by the party Pi which is going to supply the secret input
value xi for that gate. Then there are a number of internal addition and multiplication
gates. Finally there is for each Pi exactly one output gate labeled by i. The value of this
gate is going to be yi.

Considering arithmetic circuits is without loss of generality: Any function that is fea-
sible to compute at all can be specified as a poly-sizes Boolean circuit using and and
negation. But any such circuit can be simulated by operations in K: Boolean values true

or false can be encoded as 1 resp. 0. Then the negation of bit b is 1− b, and the and of
bits b and b′ is b · b′.

Exercise 3 Assume that you are given an ideal functionality Ff
sfe which allows to compute

any function f : K
n → K

n given by an arithmetic circuit. Show how it can be used
to securely implement an ideal functionality Fg

sfe for any function f : {0, 1}n → {0, 1}n,
where each party has a bit as input and g can be any poly-time computable function. Assume
that you have a poly-sized Boolean circuit for g. We argued how to do that above, but the
solution only works for passive security. If parties can deviate from the protocol there is the
problem that when the Boolean circuit is coded as an arithmetic circuit, it is important that
all parties input 0 or 1. There is, however, no guarantee that this happens, as a corrupted
party can input any xi ∈ K to Ff

sfe, and this can be a real problem: Consider a case with
three parties, each with an input xi ∈ {0, 1}. Assume that y1 = (1 − x1)x2 + x1x3. If
x1 = 0, then y1 = x2, and if x1 = 1, then y1 = x3. I.e., P1 can choose to learn either x2

or x3, but not both.

1. Argue that a cheating Pi which inputs x1 6∈ {0, 1} can learn both x2 and x3.

2. Give a general construction which prevents this type of attack. [Hint: Assume that
K is small and try to map all possible inputs xi ∈ K to an input x′

i ∈ {0, 1} and then
do the actual computation on (x′

1, . . . , x
′
n).]
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4.2 Secret Sharing

Our main tool to build the protocol will be secret sharing, in particular Shamir’s scheme,
which is based on polynomials over K. A value s ∈ K is shared by choosing a random
polynomial fs(X) ∈ K[X] of degree at most t such that fs(0) = s. And then sending
privately to player Pj the share sj = fs(j). The well known facts about this method are
that any set of t or fewer shares contain no information on s, whereas it can be reconstructed
from any t + 1 or more shares. Both of these facts are proved using Lagrange interpolation.

4.2.1 Lagrange Interpolation

If h(X) is a polynomial of degree at most l and if C is a subset of K with |C| = l + 1, then

h(X) =
∑

i∈C

h(i)δi(X) ,

where δi(X) is the degree l polynomial such that, for all i, j ∈ C, δi(j) = 0 if i 6= j and
δi(j) = 1 if i = j. In other words,

δi(X) =
∏

j∈C,j 6=i

X− j

i− j
.

We briefly recall why this holds. Since each δi(X) is a product of l monomials, it is a poly-
nomial of degree at most l. Therefore the right hand side

∑

i∈C h(i)δi(X) is a polynomial of
degree at most l that on input i evaluates to h(i) for i ∈ C. Therefore, h(X)−∑

i∈C h(i)δi(X)
is 0 on all points in C. Since |C| > l and only the zero-polynomial has more zeroes than
its degree (in a field), it follows that h(X) −∑

i∈C h(i)δi(X) is the zero-polynomial, from
which it follows that h(X) =

∑

i∈C h(i)δi(X).

Another consequence of Lagrange interpolation is that there exist easily computable
values r = (r1, ..., rn), such that

h(0) =

n
∑

i=1

rih(i) (1)

for all polynomials h(X) of degree at most n− 1. Note that the same r works for all h(X).
Namely, ri = δi(0). We call (r1, ..., rn) a recombination vector.

A final consequence is that for all secrets s ∈ K and all C ⊂ K with |C| = t and 0 6∈ C,
if we sample a uniformly random f of degree ≤ t and with f(0) = s then the distribution
of the t shares

(f(i))i∈C

is the uniform distribution on K
t. Since the uniform distribution on K

t clearly is indepen-
dent of s, it in particular follows that given only t shares one gets no information on the
secret.

One way to see that any t shares are uniformly distributed is as follows: One way
to sample a polynomial for sharing of a secret s is to sample a uniformly random a =
(a1, . . . , at) ∈ K

t and let fa(X) = s +
∑t

j=1 ajX
t (as clearly fa(0) = s.) For a fixed s and
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fixed C as above this defines an evaluation map from K
t to K

t by mapping a = (a1, . . . , at)
to (fa(i))i∈C . This map is invertible. Namely, given any (yi)i∈C ∈ K

t, we know that
we seek fa(X) with fa(i) = yi for i ∈ C. We furthermore know that fa(0) = s. So, we
know fa(X) on t + 1 points, which allows to compute fa(X) and a ∈ K

t, using Lagrange
interpolation. So, the evaluation map is invertible. Any invertible map from K

t to K
t maps

the uniform distribution on K
t to the uniform distribution on K

t.

4.2.2 Example Computations

We look at an example. Assume that we have five parties P1, . . . , P5 and that we want
to tolerate t = 2 corrupted parties. Assume that we work in K = Z11 and want to share
s = 7. We pick a1, a2 ∈R K uniformly at random, say they become a1 = 4 and a2 = 1, and
then we define

h(X) = s + a1X + a2X
2 = 7 + 4X + X2 . (2)

Then we compute s1 = h(1) = 7 + 4 + 1 mod 11 = 1, s2 = h(2) = 19 mod 11 = 8,
s3 = h(3) = 6, s4 = h(4) = 6, s5 = h(5) = 8. So, the sharing is

[s] = (1, 8, 6, 6, 8) .

We send si securely to Pi.
Assume now that someone is given just the shares s3, s4, s5. Since 3 > 2, she can use

Lagrange interpolation to compute the secret.
We first compute

δ3(X) =
∏

j=4,5

X− j

3− j
=

(X− 4)(X − 5)

(3− 4)(3 − 5)
= (X2 − 9X + 20)((3 − 4)(3− 5))−1 (mod 11) .

We have that (3 − 4)(3 − 5) = 2 and 2 · 6 mod 11 = 1, so ((3 − 4)(3 − 5))−1 mod 11 = 6.
So,

δ3(X) = (X2 − 9X + 20)6 = (X2 + 2X + 9)6 = 6X2 + 12X + 54 = 6X2 + X + 10 (mod 11) .

We check that
δ3(3) = 6 · 32 + 3 + 10 = 67 = 1 (mod 11) ,

δ3(4) = 6 · 42 + 4 + 10 = 110 = 0 (mod 11) ,

δ3(5) = 6 · 52 + 5 + 10 = 165 = 0 (mod 11) ,

as it should be.
We then compute

δ4(X) =
∏

j=3,5

X− j

4− j
=

(X− 3)(X− 5)

(4− 3)(4 − 5)

= (X2 − 8X + 15)(−1)−1

= (X2 + 3X + 4)10

= 10X2 + 8X + 7 .
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We can check that δ4(3) = 121 = 0 (mod 11), δ4(4) = 199 = 1 (mod 11), and δ4(5) =
297 = 0 (mod 11).

We then compute

δ5(X) =
∏

j=3,4

X− j

5− j
=

(X− 3)(X − 4)

(5− 3)(5 − 4)

= (X2 − 7X + 12)(2)−1

= (X2 + 4X + 1)6

= 6X2 + 2X + 6 .

We can check that δ5(3) = 66 = 0 (mod 11), δ5(4) = 110 = 0 (mod 11), and δ5(5) =
166 = 1 (mod 11).

It is now clear that if for any s3, s4, s5 we let

h(X) = s3 · δ3(X) + s4 · δ4(X) + s5 · δ5(X) ,

then h(3) = s3 · 1 + s4 · 0 + s5 · 0 = s3, h(4) = s3 · 0 + s4 · 1 + s5 · 0 = s4 and h(5) =
s3 · 0 + s4 · 0 + s5 · 1 = s5, which implies that if s3 = f(3), s4 = f(4) and s5 = f(5) for
some quadratic polynomial, then h(X) = f(X). This allows to compute h(X) from the three
shares.
More concretely, notice that

h(X) = s3δ3(X) + s4δ4(X) + s5δ5(X)

= (6s3 + 10s4 + 6s5)X
2 + (s3 + 8s4 + 2s5)X + (10s3 + 7s4 + 6s5) .

Since we consider h(X) of the form h(X) = s + a1X + a2X
2, where have that

s = 10s3 + 7s4 + 6s5 mod 11

a1 = s3 + 8s4 + 2s5 mod 11

a2 = 6s3 + 10s4 + 6s5 mod 11 ,

which is then the general formula for computing h(X) from the three shares s3 = h(3), s4 =
h(4), s5 = h(5).

In our concrete example we had the shares s3 = 6, s4 = 6 and s5 = 8. If we plug this
in we get

s = 10 · 6 + 7 · 6 + 6 · 8 mod 11 = 150 mod 11 = 7

a1 = 6 + 8 · 6 + 2 · 8 mod 11 = 70 mod 11 = 4

a2 = 6 · 6 + 10 · 6 + 6 · 8 mod 11 = 144 mod 11 = 1 ,

which gives exactly the polynomial in (2).

If we had only been interested in finding the secret s and not the entire polynomial we
would only need the equation s = 10s3 + 7s4 + 6s5 mod 11. We see that r = (10, 7, 6) is
the recombination vector for finding h(0) from h(3), h(4), h(5) when h(X) is a polynomial
of degree at most 2.
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Exercise 4 A useful first step to build MPC protocols is to design a secret sharing scheme
with the property that a secret can be shared among the players such that no corruptible set
has any information, whereas any non-corruptible set can reconstruct the secret. Shamir’s
scheme shows how to do this for a threshold adversary structure, i.e., where the corruptible
sets are those of size t or less. In this exercise we will build a scheme for the non-threshold
example we saw earlier. Here we have 2m players divided in subsets X,Y with m players
in each, and the corruptible sets are those with at most 9m/10 players from only X or
only Y , and sets of less than m/5 players with players from both X and Y (we assume
m is divisible by 10, for simplicity). More formally, A consists of all C with C ⊂ X and
|C| ≤ 9m/10 plus all C with C ⊂ Y and |C| ≤ 9m/10 plus all C with |C| < m/5.

1. Suppose we shared secrets using Shamir’s scheme, with t = 9m/10, or with t =
m/5− 1. What would be wrong with these two solutions in the given context?

2. Design a scheme that does work in the given context. [Hint: in addition to the secret
s, create a random element u ∈ K, and come up with a way to share it such that only
subsets with players from both X and Y can compute u. Also use Shamir’s scheme
with both t = 9m/10 and t = m/5− 1.]

4.3 The Protocol

We give a protocol for the i.t. scenario, where there are secure channels between all parties.
We assume a threshold adversary that can passively corrupt up to t players, where t < n/2.
Since the function we are to compute is specified as an arithmetic circuit over K, our task
is, loosely speaking to compute a number of additions and multiplications in K of the input
values (or intermediate results), while revealing nothing except for the final result(s).

The protocol starts by:

Input Sharing: Each player Pi holding input xi ∈ K secret shares xi using Shamir’s
secret sharing scheme: it chooses at random a polynomial xi(X) of degree ≤ t with
xi(0) = xi and sends a share to each player, i.e., it sends xi(j) to Pj, for j = 1, . . . , n.

We then work our way gate by gate through the given arithmetic circuit over K, main-
taining the following:

Invariant: All input values and all outputs from gates processed so far are secret shared,
i.e., each such value a ∈ K is shared into shares a1, ..., an, where Pi holds ai, and
where there exists a polynomial a(X) of degree at most t such that a(0) = a and
ai = a(i). From the start, no gates are processed, and only the inputs are shared.

To determine which gate to process next, we simply take an arbitrary gate for which both
of its inputs have been shared already.

Once a gate producing one of the final output values y has been processed, y can be
reconstructed in the obvious way:

Output Reconstruction: The output y is shared by a polynomial y(X) of degree ≤ t.
I.e., y(0) = y and Pi holds yi = y(i). Each Pi securely sends yi to the party that is
supposed to learn y. That party uses Lagrange interpolation to compute y = y(0)
from y(1), . . . , y(t + 1), or any other t + 1 points.
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Note that Pi actually only needs t + 1 shares for this, and therefore has almost twice the
number of shares needed. This is of course not a problem.

It is then sufficient to show how addition and multiplication gates are handled. Assume
the input values to a gate are a and b. Assume, by invariant, that a is shared using a
polynomial a(X) and that b is shared using a polynomial b(X), both with degree at most t.
I.e., a(0) = a and the parties hold shares a1 = a(1), ..., an = a(n), and b(0) = b and the
parties hold shares b1 = b(1), ..., bn = b(n).

Addition: For i = 1, . . . , n, Pi computes ci = ai + bi. The shares c1, . . . , cn determine
c = a + b as required by the invariant.

Multiplication: Multiplication proceeds as follows:

Local multiplication step: For i = 1, . . . , n, Pi computes di = ai · bi.

Resharing step: Pi secret shares di with threshold t, resulting in shares di1, ..., din,
and sends dij to player Pj .

Recombination step: For j = 1, . . . , n, player Pj computes cj =
∑n

i=1 ridij, where
(r1, . . . , rn) is the recombination vector for computing d(0) from d(1), . . . , d(n)
when d is a polynomial of degree at most n−1. The shares c1, . . . , cn determine
c = ab as required by the invariant.

Note that we can handle addition and multiplication by a constant c by using a default
sharing of c generated from, say, the constant polynomial f(x) = c.

4.4 Analysis

We will now prove that the protocol is a perfectly secure implementation.

4.4.1 Correctness

As for addition, note that if we let c(X) = a(X) + b(X), then c(X) is again a polynomial
of degree at most t. Furthermore, c(0) = a(0) + b(0) = a + b and Pi holds the share
ci = ai + bi = a(i) + b(i) = c(i). Therefore a + b is correctly shared using the polynomial
c(X).

As for multiplication, note that if we let d(X) = a(X)b(X), then d(X) is a polynomial of
degree at most 2t. Furthermore, d(0) = a(0)b(0) = ab, and after the local multiplication
step Pi holds the share di = aibi = a(i)b(i) = d(i). Therefore d = ab is shared using the
polynomial d(X), but d(X) does not necessarily have degree t as required by the invariant.
Handling this issue is the job of the next two steps, and is called secure degree reduction.
Note that since d(X) has degree at most 2t and 2t ≤ n− 1 and (r1, . . . , rn) is the recombi-
nation vector for computing d(0) from d(1), . . . , d(n) when d is a polynomial of degree at
most n− 1, it follows from (1) that

d(0) =
n

∑

i=1

rid(i) ,

20



4.4 Analysis 4 A PASSIVE SECURE PROTOCOL

which is that same as

ab =

n
∑

i=1

ridi .

Therefore the shares di determine ab using a known linear combination with r = (r1, . . . , rn).
The parties essentially just compute this linear combination securely by acting on secret
sharings of the values di: Let di(X) denote the polynomial of degree at most t used to secret
share di, such that di(0) = di and di(j) = dij and let

c(X) =

n
∑

i=1

ridi(X) .

Then clearly c(X) has degree at most t, and

c(0) =

n
∑

i=1

ridi(0) =

n
∑

i=1

ridi = ab ,

c(j) =

n
∑

i=1

ridi(j) =

n
∑

i=1

ridij = cj .

Therefore ab is correctly shared using c(X).

4.4.2 Privacy

The privacy of the overall protocol follows from the observation that all values are shared
using random polynomials of degree at most t. Since any t corrupted parties have at most
t shares of all polynomials and t shares leak no information, it follows that any subset of
t corrupted parties only learn their own inputs and their own outputs (as they receive all
shares of these). Below we formalize this argument by giving a simulator, as required by
the definition in Section 2.

For simplicity we start by proving a weaker form of security called input indistinguishable

computation. Here we require from all pairs of global inputs x(0) = (x
(0)
1 , . . . , x

(0)
n ) and

x(1) = (x
(1)
1 , . . . , x

(1)
n ), and all C ⊂ {1, . . . , n} with |C| ≤ t, that if

idealC(Ff
sfe

(x
(0)
1 , . . . , x(0)

n )) ∼p
idealC(Ff

sfe
(x

(1)
1 , . . . , x(1)

n )) ,

then
realC(πf

sfe
(x

(0)
1 , . . . , x(0)

n )) ∼p
realC(πf

sfe
(x

(1)
1 , . . . , x(1)

n )) .

I.e., if two sets of global inputs cannot be distinguished by the corrupted parties in the
ideal world, then neither can they be distinguished in the real world.

Recall that
idealC(Ff

sfe
(x1, . . . , xn)) = {(i, xi, yi)}i∈C

and
realC(πf

sfe
(x1, . . . , xn)) = {(i, xi, yi, ri,msgi)}i∈C .
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So, the definition requires that if

{(i, x(0)
i , y

(0)
i )}i∈C = {(i, x(1)

i , y
(1)
i )}i∈C ,

then
{(i, x(0)

i , y
(0)
i , r

(0)
i ,msg

(0)
i )}i∈C ∼p {(i, x(1)

i , y
(1)
i , r

(1)
i ,msg

(1)
i )}i∈C .

I.e., if the inputs and outputs of the corrupted parties are the same, then the distribution
of the messages that they send and receive are also the same.

For the parts of the protocol which does not open values, it is easy to check that this
is the case:

Input Sharing: Each corrupt Pi ∈ C creates a random sharing of x
(b)
i . Since x

(0)
i = x

(1)
i ,

this clearly leads to the same distribution on the shares in the two cases.

Each honest Pj 6∈ C creates a random sharing of x
(b)
j . It might be the case that

x
(0)
j 6= x

(1)
j , but the corrupted parties only see the shares {xj(i)

(b)}i∈C . Since |C| ≤ t,

these are uniformly random and independent of x
(b)
j ; In particular, the distribution

is the same when b = 0 and b = 1.

Addition: Here no party sends or receives anything, so there is nothing to show.

Multiplication: Follows as for Input Sharing: We can assume that all values held by
corrupted parties have the same distribution, as all the values they received so far
had the same distribution. In particular, ai and bi have the same distributions in the
two cases. Therefore all values generated and sent by the corrupted parties have the
same distribution. The honest parties only send shares of random sharings, and the
corrupted parties only see t shares of each sharing. These are just uniformly random
values.

Output Reconstruction: Here all shares of y(b)(X) are securely sent to some Pj . If Pj is
honest, the corrupted parties do not see anything. But, if Pj is corrupted, then Pj ,
and thus the corrupted parties, sees all shares of y(b)(X). We therefore need to show
that (y(0)(1), . . . , y(0)(n)) and (y(1)(1), . . . , y(1)(n)) are identically distributed.

By the condition {(i, x(0)
i , y

(0)
i )}i∈C = {(i, x(1)

i , y
(1)
i )}i∈C , we know that y(0) and y(1)

are identical, and as we argued above, the shares {y(0)(i)}i∈C and {y(1)(i)}i∈C have
the same distribution. Since y(0)(0) = y(0) and y(1)(0) = y(1), we can conclude
that the values {y(0)(i)}i∈C∪{0} and {y(1)(i)}i∈C∪{0} have the same distribution.

From this it follows, using Lagrange interpolation, that {y(0)(i)}ni=0 and {y(1)(i)}ni=0

have the same distribution: From the t + 1 points {y(b)(i)}i∈C∪{0} one can com-

pute {y(b)(i)}ni=0 using the Lagrange formulas for computing the missing points
from the t + 1 given one. I.e., {y(b)(i)}ni=0 = F ({y(b)(i)}i∈C∪{0}) for some func-

tion F . When {y(0)(i)}i∈C∪{0} and {y(1)(i)}i∈C∪{0} have the same distribution, then

of course F ({y(0)(i)}i∈C∪{0}) and F ({y(1)(i)}i∈C∪{0}) have the same distribution —

this holds for any function F . In particular, {y(0)(i)}ni=0 = F ({y(0)(i)}i∈C∪{0}) and

{y(1)(i)}ni=0 = F ({y(1)(i)}i∈C∪{0}) have the same distribution.
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4.4.3 From Indistinguishability to Simulation

Above we only proved that the protocol is input indistinguishable. This is known sometimes
to be weaker than poly-time simulation security, as defined in Section 2, but actually
implies simulation security if the function f is invertible in poly-time (when restricted to
some subset of the outputs). For simplicity we here show that input indistinguishable
imply simulation security if we allow the simulator unbounded computing power.

To see this, recall that the simulator gets input

idealC(Ff
sfe

(x1, . . . , xn)) = {(i, xi, yi)}i∈C .

Then it picks a set of inputs x′ = (x′
1, . . . , x

′
n) with the property that

idealC(Ff
sfe

(x′
1, . . . , x

′
n)) = {(i, xi, yi)}i∈C ,

i.e., {(i, xi, yi)}i∈C = {(i, x′
i, y

′
i)}i∈C when (y′1, . . . , y

′
n) = f(x′

1, . . . , x
′
n). Since the orig-

inal inputs, (x1, . . . , xn), fulfill this equation, a solution exists. So, a computationally
unbounded simulator can find a solution by exhaustive search. Then S runs the protocol
on (x′

1, . . . , x
′
n) and outputs the internal state of the parties Pi, i ∈ C. I.e., it outputs

S(idealC(Ff
sfe

(x1, . . . , xn))) = realC(πf
sfe

(x′
1, . . . , x

′
n)) .

Since
idealC(Ff

sfe
(x′

1, . . . , x
′
n)) = idealC(Ff

sfe
(x1, . . . , xn)) ,

it follows from input indistinguishability that

realC(πf
sfe

(x′
1, . . . , x

′
n)) ∼p

realC(πf
sfe

(x1, . . . , xn)) ,

which implies that

S(idealC(Ff
sfe

(x1, . . . , xn))) ∼p
realC(πf

sfe
(x1, . . . , xn)) ,

as desired.
This shows that simulation security with an unbounded simulator is implied by input

indistinguishability. Furthermore, if S can compute x′ from {(i, xi, yi)}i∈C in poly-time,
then the entire simulation is poly-time, and we have a proof of poly-time simulation security,
as defined in Section 2.

4.4.4 Poly-Time Simulation Security

The protocol is, however, secure in the sense of Section 2 for all functions f . The simulation
argument is just a little more involved, as sketched now.

The simulator S gets input

idealC(Ff
sfe

(x1, . . . , xn)) = {(i, xi, yi)}i∈C .

It then lets x′
i = xi for i ∈ C and lets x′

i = 0 for i 6∈ C. Then S runs the protocol on
(x′

1, . . . , x
′
n) and records the internal state of the parties Pi, i ∈ C. I.e., it records

realC(πf
sfe

(x′
1, . . . , x

′
n)) .
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Since some of the corrupted parties Pi might get different outputs y′i on input (x′
1, . . . , x

′
n)

than their output yi on input (x1, . . . , xn) we cannot appeal to input indistinguishability.
Note, however, that up to the point where an output y′ is reconstructed, the view of the cor-
rupted parties is the same in realC(πf

sfe(x
′
1, . . . , x

′
n)) and realC(πf

sfe(x1, . . . , xn)), as they
have the same inputs and only see t shares of the values shared by the honest parties. So,
the only point where the difference is spotted is when an incorrect output y′ is reconstructed
towards a corrupted party. Before the simulator outputs realC(πf

sfe(x
′
1, . . . , x

′
n)) it simply

corrects for this difference: It knows the true value y that the output should have — from
its input {(i, xi, yi)}i∈C . If y′ 6= y, then it patches the execution realC(πf

sfe(x
′
1, . . . , x

′
n))

as follows: Let {y′i}i∈C be the shares of the corrupted parties. Define y′(0) := y and then
compute a polynomial y′(X) of degree ≤ t with y′(0) = y and y′(i) = y′i for i ∈ C. Then
change the shares of the honest parties to be y′j : = y′(j) for j 6∈ C, and send these shares
instead. Do this patching for all outputs going to corrupted parties, and then output the
patched version of realC(πf

sfe(x
′
1, . . . , x

′
n)). The patching simply changes the shares of

the honest parties to be consistent with the true output value y, as opposed to y′.
Note that the patched version is a function G(realC(πf

sfe(x
′
1, . . . , x

′
n)), {yi}i∈C) of the

prefix of the execution realC(πf
sfe(x

′
1, . . . , x

′
n)) which does not include the output recon-

struction and therefore is identically distributed to the same prefix in realC(πf
sfe(x1, . . . , xn)).

In particular,

G(realC(πf
sfe

(x′
1, . . . , x

′
n)), {yi}i∈C) ∼p G(realC(πf

sfe
(x1, . . . , xn)), {yi}i∈C) .

By definition the output of S is

S(idealC(Ff
sfe

(x1, . . . , xn))) = G(realC(πf
sfe

(x′
1, . . . , x

′
n)), {yi}i∈C) .

So,
S(idealC(Ff

sfe
(x1, . . . , xn))) ∼p G(realC(πf

sfe
(x1, . . . , xn)), {yi}i∈C) .

Since the outputs computed in realC(πf
sfe(x1, . . . , xn)) are actually {yi}i∈C , by the

correctness of the protocol, patching with {yi}i∈C has no effect. I.e.,

G(realC(πf
sfe

(x1, . . . , xn)), {yi}i∈C) = realC(πf
sfe

(x1, . . . , xn)) ,

which proves that S(idealC(Ff
sfe(x1, . . . , xn))) ∼p realC(πf

sfe(x1, . . . , xn)), as desired.

4.5 Example Computations and Proofs by Example

The above argument for the output reconstruction shows that it does not harm to give all
shares of an output to the corrupted parties. This, in particular, shows that the shares do
not carry information about how the result was computed: If c = a + b is reconstructed
and the result is 6, then the n shares of c will be consistent with both a = 2, b = 4 and
a = 1, b = 5 — otherwise the protocol could not be secure. We will, however, look at two
exercises to exemplify this phenomenon.

Consider a setting where variables a and b have been computed, and where then a
variable c = a + b is computed and output to P1. Assume that n = 3 and t = 1. I.e., we
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have three parties P1, P2, P3 and one can be corrupted. For sake of example, say it is P1.
Since t = 1 we are using polynomials of the form f(X) = α0 + α1X, a.k.a. lines.

Assume that a = 2 and that a is shared using the polynomial a(X) = 2 + 2X, and
assume that b = 4 and that b is shared using the polynomial a(X) = 4 + X. This gives the
following computation:

Variable Value P1 P2 P3

a 2 4 6 8
b 4 5 6 7

c = a + b 6 9 12 15

We show the shares a(1) = 4, a(2) = 6, a(3) = 8 and the shares b(1) = 5, b(2) = 6, b(3) = 7
in the rows to the right of the variables and their values. When the parties compute the
variable c = a + b, they simply add locally and compute the shares 6, 12 respectively 15.
In the table all shares that P1 would see in this case are put in bold.

We want that P1 only learns that c = 6, and nothing about a and b except that a+b = 6.
We demonstrate that this is the case by sake of example. We let the party P1 make the
hypothesis that a = 1 and b = 5. Hopefully it cannot exclude this hypothesis. As a starter,
P1 imagines that the network is configured as follows, not knowing the shares of P1 and
P2:

Variable Value P1 P2 P3

a 1 4 ? ?
b 5 5 ? ?

c = a + b 6 9 12 15

If a(0) = 1 and a(1) = 4, then it must be the case that a(X) = 1 + 3X, which would imply
that a(2) = 7 and a(3) = 10. Furthermore, if b(0) = 5 and b(1) = 5, then it must be the
case that b(X) = 5 + 0X, which would imply that b(2) = 5 and b(3) = 5. If P1 fills these
values into the table it concludes that the network must be configuration as follows for its
hypothesis to hold:

Variable Value P1 P2 P3

a 1 4 7 10
b 5 5 5 5

c = a + b 6 9 12 15

Note that this hypothesis is consistent with the protocol and what P1 have seen, as 7+5 =
12 and 10 + 5 = 15. Therefore a = 1 and b = 5 is as possible as a = 2 and b = 4.

Exercise 5 In the above example, P1 could also have made the hypothesis that a = 0 and
b = 6. Show that P1 cannot exclude this example, by filling in the below table and noting
that it is consistent.

Variable Value P1 P2 P3

a 0 4 ? ?
b 6 5 ? ?

c = a + b 6 9 12 15
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We now consider an example of a multiplication of variables a = 2 and b = 3. The
polynomials used to share them are a(X) = 2 + X and b(X) = 3− X:

Variable Value P1 P2 P3

a 2 3 4 5
b 3 2 1 0

d = ab 6 6 4 0

d1 6 4 2 0

d2 4 6 8 10
d3 0 0 0 0

c = 3d1 − 3d2 + d3 6 −6 −18 −30

We explain the lower part of the table soon, but first note that the shares of d = ab = 6
are not on a line, as all the other shares are. The reason is that d(X) = a(X)b(X) is not
a line, but a quadratic polynomial. In fact, d(X) = (2 + X)(3 − X) = 6 + X − X2, which is
consistent with d(1) = 6, d(2) = 4 and d(3) = 0.

After having computed the local products di, the next step in the multiplication algo-
rithm uses the Lagrange formula for computing d from d1, d2, d3, so we derive that one.
Since 2t = 2 we are looking at quadratic polynomials y(X) = α0 + α1X+ α2X

2, where α0 is
the secret. Therefore the shares are y1 = y(1) = α0 + α1 + α2, y2 = y(2) = α0 + 2α1 + 4α2

and y3 = y(3) = α0 + 3α1 + 9α2. It follows that α0 can always be computed from the
shares as α0 = 3y1 − 3y2 + y3. This formula was found using simple Gaussian elimination,
but is also given by the Lagrange interpolation formula. I.e., in our case the recombination
vector is r = (3,−3, 1).

In our example we have d1 = 6, d2 = 4 and d3 = 0, and indeed 3d1 − 3d2 + d3 =
18 − 12 = 6 = ab, as it should be. Each party now shares its value di. In the table P1

used the polynomial d1(X) = 6 − 2X, P2 used the polynomial d2(X) = 4 + 2X and P3 used
the polynomial d3(X) = 0 + 0X. The parties then locally combine their shares by an inner
product with the recombination vector (3,−3, 1), leading to the shares in the table.

Again, an example will reveal that any other hypothesis, like a = 1 and b = 6 would
have given the exact same view to P1. The reader is encourage to do that, by solving the
following exercise.

Exercise 6 Show that the values seen by P1 are consistent with the hypothesis a = 1 and
b = 6 by filling in the following table and noting that it is consistent.

Variable Value P1 P2 P3

a 1 3 ? ?
b 6 2 ? ?

d = ab 6 6 ? ?

d1 6 4 2 0

d2 ? 6 ? ?
d3 ? 0 ? ?

c = 3d1 − 3d2 + d3 6 −6 −18 −30

[To check solution: It must say −42 and 84 somewhere.]
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4.6 Optimality of the Corruption Bound

What if t ≥ n/2? We will argue that then there are functions that cannot be computed
securely.

Towards a contradiction, suppose there is a protocol π, with perfect privacy and perfect
correctness for two players P1, P2 to securely evaluate the logical AND of their respective
private input bits b1, b2, i.e., b1 ∧ b2.

Assume that the players communicate using a perfect error-free communication chan-
nel. One of the players may be corrupted by an infinitely powerful, passive adversary.

Without loss of generality, we may assume the protocol is of the following form.

1. Each player Pi has a private input bit bi. Before the protocol starts, they select
private random strings ri ∈ {0, 1}∗ of appropriate length.

Their actions in the forthcoming protocol are now uniquely determined by these
initial choices.

2. P1 sends the first message m11, followed by P2’s message m21.

This continues until P2 has sent sufficient information for P1 to compute r = b1 ∧ b2.
Finally, P1 sends r (and some halting symbol) to P2.

The transcript of the conversation is

T = (m11,m21, . . . ,m1t,m2t, r).

For i = 1, 2, the view of Pi is

viewi = (bi, ri,T ).

Perfect correctness means here that the protocols always halts (in a number of rounds t
that may perhaps depend on the inputs and the random coins) and that always the correct
result is computed.

Perfect privacy means that given their respective views, each of the players learns
nothing more about the other player’s input b′ than what can be inferred from the own
input b and from the resulting function output r = b ∧ b′.

Note that these conditions imply that if one of the players has input bit equal to 1,
then he learns the other player’s input bit with certainty, whereas if his input bit equals 0,
he has no information about the other player’s input bit.

Let T (0, 0) denote the set of transcripts T , which can arise when b1 = 0 and b2 = 0
and let T (0, 1) denote the set of transcripts T , which can arise when b1 = 0 and b2 = 1.

Given a transcript T = (m11,mm2, . . . ,m1t,mmt) we say that it is consistent with input
b1 = 1 if there exists r1 such that if P1 is run with input b1 = 1 and randomness r1 and
receiving the message m2r in rounds r = 1, . . . , t would make it send exactly the messages
m1r in rounds r = 1, . . . , t. Let Cb1=1 denote the transcripts consistent with b1 = 1.

It follows from the perfect security that

T (0, 0) ⊂ Cb1=1 .
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Assume namely that P1 has input b1 = 0 and P2 has input b2 = 0, and that P2 sees a
transcript T which is not from Cb1=1. Then P2 can conclude that b1 = 0, contradicting
the perfect security.

From the perfect correctness we can conclude that

Cb1=1 ∩ T (0, 1) = ∅ .

Consider namely T ∈ T (0, 1). From the perfect correctness it follows that r = 0 in T .
Therefore T is clearly not consistent with input b1 = 1, as that would mean that T can
be produced with b1 = 1 and b2 = 1, which would give the result r = 1 (by the perfect
correctness).

From the two above observations we see that T (0, 0)∩T (0, 1) = ∅. Note, however, that
when P1 has b1 = 0, then it sees a transcript T from either T (0, 0) or T (0, 1). Since they
are disjoint, P1 can determine the input of P2 simply by checking whether T ∈ T (0, 0) or
T ∈ T (0, 1). This contradicts the perfect security.

The argument can be generalized to show that impossibility for statistical security and
statistical correctness, and even weaker security notions allowing small constant insecurity
and incorrectness.

Exercise 7 Show that there is no perfectly secure and perfectly correct protocol for the OR
function (b1, b2) 7→ b1 ∨ b2.

Exercise 8 Show that the following protocol is a perfectly secure (in the sense of poly-time
simulation) and perfectly correct protocol for the XOR function (b1, b2) 7→ b1 ⊕ b2. Party
P1 sends b1 to P2 and P2 sends b2 to P1. Then they both output b1 ⊕ b2.

Exercise 9 Any binary Boolean function B : {0, 1} × {0, 1} → {0, 1} can be given by
a vector (o00, o01, o10, o11) ∈ {0, 1}4, by letting B(b1, b2) = ob1b2. The AND function is
given by (0, 0, 0, 1), the OR function is given by (1, 0, 0, 0), the XOR function is given by
(0, 1, 1, 0), and the NAND function is given by (1, 1, 1, 0). Show that all functions specified
by a vector with an even number of 1’s can be securely computed as defined above and that
none of the other functions can.

4.6.1 Computational Security

The assumptions about the players’ computational resources and the communication chan-
nel are essential for the impossibility results.

It can be shown that any of the following conditions is sufficient for the existence of a
secure two-party protocol for the AND function (as well as OR).

1. Existence of trapdoor one-way permutations.

2. Both players are memory bounded.

3. The communication channel is noisy.
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We sketch a secure AND protocol based on the assumption that there exists a public-
key cryptosystem where the public keys can be sampled in two different ways: There is the
usual key generation which gives an encryption key ek and the corresponding decryption
key dk. The other method only generates ek and even the party having generated ek
cannot decryption ciphertexts under ek. We assume that these two key generators give
encryption keys with the same distribution

If b1 = 0, then P1 samples ek uniformly at random without learning the decryption
key. If b1 = 1, then P1 samples ek in such a way that it learns the decryption key dk. It
sends ek to P2. Then P2 sends C = Epk(b2) to P1. If b1 = 0, then P1 outputs 0 and sends
r = 0 to P2 which outputs r. If b1 = 1, then P1 decrypts C to learn b2, outputs b2 and
sends r = b2 to P2 which outputs r.

Since the two ways to sample the public key gives the same distribution, the protocol is
perfectly secure for P1. The security of P2 depends on the encryption hiding b′ when b = 0
and is therefore computational. In particular, a computationally unbounded P1 could just
use brute force to decrypt C and learn b2 even when b1 = 0.

This protocol can be in principle made robust by letting the parties use generic zero-
knowledge proofs to show that they followed the protocol, and in principle leads to secure
two-party protocols for any function. For more information, see for instance [16].

Exercise 10

1. Use the special cryptosystem from above to give a secure protocol for the OR function.

2. Try to generalize to any two-party function, where one of the parties has a constant
number of inputs and the other party might have an arbitrary number of inputs. [Hint:
The party with a constant number of inputs will have perfect security and will not
send just a single encryption key.]
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5 Definition of Security

It is easy to see that the above protocol is not actively secure. If e.g. some of the corrupted
parties send incorrect shares in the opening phase and the recipient uses these to reconstruct
its output, the output could become incorrect. In Section 6 we will show how to make the
protocol secure against such deviations, but before doing this we need a model of active
security.

Until now we have only looked at passive security, which allowed us to use a relatively
simple definition of security: The view of the corrupted parties in the protocol must be
simulatable given the view of the same parties in the ideal protocol. We say that the real

leakage can be simulated given the ideal leakage.
We now turn our attention to the case of active corruptions, where the corrupted

parties might deviate from the protocol. We have to require that this does not render the
protocol insecure. Specifically we want that whatever the corrupted parties can obtain by
deviating in the real world (where they run the protocol), they could have obtained by
deviating in the ideal world (where an ideal functionality does the computation). Thereby
we require that the protocol is still as secure as conceivable. Since the deviations done by
the corrupted parties are done to influence the execution of the protocol, possibly to make
it leak more values, we call the possible deviations in the protocol the real influence and we
call the possible deviations in the ideal world the ideal influence. The requirement is then
that the real influence can be simulated given the ideal influence.

When we consider function evaluation of a function f , then the ideal world is that it
is done by a fully trusted third party, which we called Ff

sfe. Here the only influence of
a corrupted party Pi is that it can replace its input xi to Ff

sfe by some alternative input
x′

i. After this the function is evaluated on the supplied inputs and the parties get back
their own outputs. Since we consider a monolithic adversary which controls all corrupted
parties, the ideal influence and leakage on an input (x1, . . . , xn) is the following:

1. First the adversary gets the inputs {xi}i∈C , where C is the set of corrupted parties.

2. Then the adversary specifies alternative inputs {x′
i}i∈C for the corrupted parties.

3. Then (y1, . . . , yn) = f(x′
1, . . . , x

′
n) is computed, where x′

i = xi for i 6∈ C — i.e., all
honest parties use their correct inputs.

4. Then the adversary is given the outputs {yi}i∈C of the corrupted parties.

In the real world an adversary controlling the corrupted parties can of course also
choose alternative inputs x′

i for the corrupted parties and then honestly run the protocol
on these inputs. This is indistinguishable from the case where the parties were honest
and just happened to have these inputs, and therefore not really to be considered as
corrupted behavior. In the real world the corrupted parties, however, have many more
ways to influence the computation, like changing the way the messages are computed or
not sending messages at all. By requiring that all such deviations can be simulated in
the ideal world (by choosing an alternative input) we essentially require that all possible
deviations correspond to the corrupted parties choosing alternative inputs.
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As a simple example we could build into a protocol that if some party Pi does not send
any messages at all, then the other parties themselves run a copy of the program that Pi

should have run when it has input xi = 0. This allows them to complete the protocol even
when Pi sends no messages, and ensures that the influence Pi has by not sending messages
just corresponds to choosing an alternative input x′

i = 0.
When formally specifying what it means for the real leakage to be simulatable given the

ideal leakage we had a fairly simple job, as both of them were values — bit strings. Now
we have the problem that both the real influence and the ideal influence are not simple bit
strings, but behavior. Therefore the simulator will not just translate one bit string into
another bit string, but will translate behavior into behavior — for each possible way to
deviate in the real world it must specify an equivalent way to deviate in the ideal world.
It turns out that the right way to formalize this is to let the simulator be an poly-time
interactive machine. On one side it sees inputs corresponding to corrupted behavior in the
real world (like which corrupted parties send which messages) and on the other side it then
gives outputs corresponding to corrupted behavior in the ideal world (like which corrupted
parties use which alternative inputs). Its job is to demonstrate that the two world are
equivalent under this mapping of real influence to ideal influence. We now proceed to
formalize this.

The security model that we use is the UC model developed by Ran Canetti[10]. Here UC
stands for universally composable, which denotes that if a protocol is UC secure according
to the formal definition, then it is secure to use in any context (where it would have been
secure to use the ideal functionality). We later return to what this exactly means.

5.1 Specifying the Ideal World

We already introduces the idea of modeling the ideal world by an ideal functionality F .
Formally an ideal functionality will be an interactive machine.4 The interface of F is as
follows: F has an input port and an output port for every player. These 2n ports are
called the protocol ports. The input port for Pi is named ini and the output port for Pi is
named outi. Party Pi uses ini to deliver its inputs to F and Pi gets back its outputs on
outi.

In addition to the protocol ports, F has two special ports, an input port called the
influence port, and named infl, and an output port called the leakage port, and named
leak. The leakage port is used to let F leak information about the inputs, as a way to
specify that leaking this information is also allowed by a secure implementation of F . The
influence port is used to specify which influence the adversary is allowed to have on F ,
i.e. the ideal influence.

As an example, we specify an ideal functionality Fst for secure transfer in Fig. 1. Only
the port structure for two parties is shown. The code is general enough to handle any
number of parties. The influence port is used to determine in which order the messages are
delivered, except that messages from one party to another are not reordered. Since more

4Formally, we model an interactive machine by an interactive Turing machine[10]. We could in principle
have chosen any other notion of computation device which is well defined and which can receive and send
messages and keep state, like a Java object.
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st.out2st.in1

st.in2st.out1

st.leak

st.infl

st

• On receiving a value (mid, Pj ,m) on st.ini, output (mid, Pi, Pj , |m|) on
st.leak and store (mid, Pi, Pj ,m); Here mid is a message identifier used to
distinguish stored messages.

• On a later input (deliver, Pi, Pj ,mid) on st.infl, where mid is the mes-
sage identifier of the currently oldest message not deliver from Pi to Pj ,
delete (mid, Pi, Pj ,m) and output (mid, Pi,m) on st.outj .

Figure 1: The ideal functionality Fst for secure transfer

than one message can be in transit5 at a time, we use message identifiers to distinguish
the messages. The leakage of (mid, Pi, Pj , |m|) specifies that also an implementation of
Fst is allowed to leak the message identifier and the length of m. This is important, as
no cryptosystem can fully hide the size of the information being encrypted. Without the
leakage of |m|, there would not exist secure implementations of Fst.

Exercise 11 Specify an ideal functionality Fmill for the millionaire’s problem, with the
twist that if x1 = x2, then we allow either of the parties to be announced as winner, by a
non-deterministic choice.

The special ports are also used to model which information is allowed to leak when
a party is corrupted and which control a hacker gets over a party when that party is
corrupted. There are many choices, but we will assume that all ideal functionalities have
the following standard corruption behavior.

On input (passive corrupt, i) on infl, output (state, i, σ) on leak, where σ is called
the ideal internal state of Pi and is defined to be all previous inputs on ini along with all
previous outputs on outi. This models that if a party is corrupted, the hacker only learns
the inputs and outputs of that party.6

The above only models passive corruption. We model active corruption as follows. On in-
put (active corrupt, i) on infl, the ideal functionality F starts ignoring all inputs on ini

and stops giving outputs on outi. Instead, whenever it gets an input (alternative input, i, x)
on infl, it behaves exactly as if x had arrived on ini, and whenever F is about to output
some value y on outi, it instead outputs (output, i, y) on leak. The way to think about

5The value (mid, Pi, Pj , m) is stored, but (mid, Pi, m) has not been output to Pj yet.
6A non-standard corruption behavior could be to only leak the last input and output. This would model

an even more ideal situation where a hacker cannot learn previous inputs and outputs when it breaks into
a party. This is desirable in some cases, but not a concern we will have in this lecture note.

32



5.2 Specifying the Real World 5 DEFINITION OF SECURITY

this is that after a party has become actively corrupted, all its inputs are chosen by the
adversary via infl and all its outputs are leaked, as they are seen by the hacker. Since it
is impossible to protect against the giving of alternative inputs (even an otherwise honest
party could do this) and it is inevitable that outputs intended for some party is seen by a
hacker controlling that party, the standard corruption behavior models an ideal situation
where a hacker gets only these inevitable powers.

5.2 Specifying the Real World

We will later specify an ideal functionality for secure function evaluation. First we will,
however, show how to specify a real-world protocol.

We continue with the secure transfer example. We want to implement Fst using an
authenticated channel and a public-key encryption scheme. In the real world there will
be two parties, which we call P1 and P2. These will communicate using an authenticated
channel. We describe how a secure transfer from P1 to P2 is implemented. All pairs of
parties use the same implementation. We use the following protocol:

1. First P2 samples a key pair (ek, dk) and sends the encryption key ek to P1 over the
authenticated channel.

2. Then P1 encrypts the message, C ← Eek(m), and returns C over the authenticated
channel.

3. Then P2 outputs m = Ddk(C).

We want to formally model this real world scenario.
In the UC model communication devices are also ideal functionalities. I.e., an ideal

functionality can play two roles, as a protocol specification and as a communication device.
To describe the real-world protocol for secure transfer we therefore need an ideal func-

tionality Fat for authenticated transfer, as that is the communication device used by the
protocol. See Fig. 2.

The only difference from Fst is that m is leaked, and not just |m|. This models that
m is not necessarily kept secret by an authenticated channel.

In general a protocol will consist of a communication device and n parties. Each party

is simply a machine connected to the protocol ports of the communication device on one
hand, and which has open ports named as the ideal functionality that the protocol is trying
to implement on the other hand. As a consequence the protocol has the same open protocol
ports as the ideal functionality it is trying to implement. See the top row of Fig. 3 for an
illustration.

Note that in addition to the ports mentioned above, party Pi has a leakage port at.leaki

and an influence port at.infli. These are used to model corruption: If Pi receives a special
symbol (passive corrupt) on at.infli, then it returns its internal state σ on at.leaki.
The internal state σ consists of all randomness used by the party so far along with all
inputs sent and received on its ports. On input (active corrupt) on at.infli, Pi starts
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AT
at.out1
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• On receiving a value (mid, Pj ,m) on at.ini, output (mid, Pi, Pj ,m) on
at.leak and store (mid, Pi, Pj ,m); Here mid is a message identifier used
to distinguish stored messages.

• On a later input (deliver, Pi, Pj ,mid) on at.infl, where mid is the mes-
sage identifier of the currently oldest message not deliver from Pi to Pj ,
delete (mid, Pi, Pj ,m) and output (mid, Pi,m) on at.outj.

Figure 2: The ideal functionality Fat for authenticated transfer

ignoring all inputs and never again produces an output — think of the machine running
the code of Pi as having been shut down.7

By passive corrupting a party in a protocol we mean that first (passive corrupt) is in-
put on at.infli and then (passive corrupt, i) is input on at.infl on the communication
device. By active corrupting a party in a protocol we mean that first (active corrupt) is
input on at.infli and then (active corrupt, i) is input on at.infl on the communication
device.

It might be puzzling that a corrupted party is just "shut down", as opposed to letting
the adversary control what the party sends in the future. To see why we do not need an
explicit modeling of active corruption of the party, recall that we assume that all ideal func-
tionalities, and thereby all communication devices, have the standard corruption behavior.
So, if P1 is active corrupted in our example (by inputting (active corrupt) on at.infl1

and inputting (active corrupt, 1) on at.infl), then arbitrary messages can now be sent
on behalf of P1 via at.infl:

1. On input (alternative input, (mid, P2,m
′)) on at.infl, Fat will treat (mid, P2,m

′)
as an input on at.in1 and will in particular store (mid, P1, P2,m

′).

2. On a later input (deliver,mid, P1, P2) on at.infl it then outputs (mid, P1,m
′) on

at.out2.

So, indeed, after P1 is active corrupted, arbitrary messages can be sent from P1 to P2.
There is no need for explicitly controlling P1. Therefore we halt the machine for simplicity.

7A note on naming. It is convenient that all port names have some prefix, such as at or st when more
ports with the same name, like ini, are present. We have chosen to prefix the special ports of a party by
the name of the communication device that it is using and not the one it is implementing (at in Fig. 3
instead of st). We could have made any other choice. The current choice was made simply because it
ensures that all special ports in the real world have the same prefix.
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The protocol πst is given by the following two parties.

Party P1:

1. On input (mid, P2,m) on st.in1, output (mid, P2, hello) on at.in1.

2. On a later input (mid, P2, ek) on at.out1, sample a random encryption
C ← Eek(m) and output (mid, P2, C) on at.in1.

Party P2:

1. On input (mid, P1, hello) on at.out2, sample a random key pair (ek, dk)
and output (mid, P1, ek) on at.in2.

2. On a later input (mid, P1, C) on at.out2, output (mid, P1,Ddk(C)) on
st.out2.

Similar code is included for the direction from P2 to P1, and besides this behavior,
both parties of course have the standard corruption behavior.

Figure 3: The protocol πst for secure transfer and the ideal functionality Fst for
secure transfer

Pictorially one can think of the hacker as turning off and disconnecting the machine that
has been taken over and then connecting his own machine to the communication interface
previous used by the machine that was taken over.

5.3 Comparing the Real World to the Ideal World

We now want to argue that πst is equivalent to Fst. We would like to define this by
requiring that a distinguisher which gets to play with either πst or Fst by sending and
receiving messages over the open ports cannot tell the difference. There is one problem with
this approach: Fst leaks (mid, P1, P2, |m|) on st.leak and πst leaks (mid, P1, P2, hello),
(mid, P2, P1, ek) and (mid, P1, P2, Eek(m)). This makes it trivial to distinguish the systems,
as even the structures of the leaked values are difference. Even the port names of the open
special ports are different (cf. Fig. 3).
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Figure 4: Port structure of the protocol πst for secure transfer and the ideal func-
tionality Fst for secure transfer, along with a simulator S

5.3.1 Introducing the Simulator

Intuitively, however, leakage of (mid, P1, P2, hello), (mid, P2, P1, ek) and (mid, P1, P2, Eek(m))
should be as benign as leakage of (mid, P1, P2, |m|) if the cryptosystem is semantic secure,
as this exactly means that an encryption leaks at most the length of a message. We are
going to formalize this using a simulation argument, as we did with zero-knowledge. There
we wanted to formalize that a protocol did not leak anything but the truth value of the
claim, even though a lot of other communication went on. Here we want to formalize that
πst does not leak anything but (mid, P1, P2, |m|), though more actual communication is
going on. As for zero-knowledge we argue this by giving a simulator, which simulates the
actual communication given the allowed information (there the truth value, and here the
value (mid, P1, P2, |m|)).

In the UC framework the simulator is a poly-time machine which connects to the leakage
port and influence port of the ideal functionality and has leakage ports and influence ports
named like the open leakage ports and influence ports of the protocol trying to implement
the ideal functionality. See Fig. 4 for an example.

The only restriction on the simulator, besides being poly-time, is that it does not
corrupt a party on the ideal functionality until that party has been corrupted in the sim-
ulation. If we consider our example in Fig. 4, this just means that S e.g. only inputs
(active corrupt, i) on st.infl if it received the input (active corrupt) on at.infl1.

Now at least the systems πst = P1 ∪ Fat ∪ P2 and Fst ∪ S have the same open ports.8

The job of the simulator is then to make the systems look the same to any distinguisher.
At first, let us ignore the special ports of the parties and consider only at.leak and

at.infl. Intuitively, the simulator sees the leakage in the ideal world (called the allowed

leakage) and produce some outputs on its open leakage port (called the simulated leakage).
The values output by the communication device in the protocol we call the real leakage.
The job of the simulator is to translate the allowed leakage into simulated leakage looking

8We use the notation ∪ for joining two systems. Formally a system just consists of a set of machines,
where we think of identically named ports being connected and the rest open. Therefore a joining of two
system is formally just a set union.

36



5.3 Comparing the Real World to the Ideal World 5 DEFINITION OF SECURITY

like the real leakage.
In addition to this "translation" of ideal leakage to simulated real leakage, the simulator

must take the inputs on its open leakage port, at.infl in the example, and "translate" it
into input values on the influence port of the ideal functionality, st.infl in the example.
We say that it translates real influence into allowed influence

Specifying a simulator S for our example will make the job of the simulator clearer. At
first we ignore the leakage ports and influence ports of the parties. One simulator could
then work as follows:

1. On input (mid, P1, P2, l) on st.leak (from Fst, and with l = |m|) it outputs
(mid, P1, P2, hello) on at.leak.

2. On a later input (deliver,mid, P1, P2) on at.infl it samples a key pair (ek, dk) and
outputs (mid, P2, P1, ek) on at.leak.

3. On a later input (deliver,mid, P2, P1) on at.infl it samples a random encryption
C ← Eek(m

′) and outputs (mid, P1, P2, C) on at.leak. Here m′ = 0l is an all-zero
message of length l.

4. On a later input (deliver,mid, P1, P2) on at.infl it outputs (deliver,mid, P1, P2)
on st.infl, which makes Fst output (mid, P1,m) on st.out2.

The reason why S uses m′ and not the real m is that Fst only outputs l = |m| to S. Giving
m to S would make the simulation trivial, but remember that the whole idea of S is to
demonstrate that the real leakage can be simulated given only the leakage allowed by the
ideal functionality, and m is not allowed to leak.

Consider now some distinguisher Z which gets to play with one of the two systems in
Fig. 4. For now we assume that Z does not use the special ports of the parties — i.e.,
it makes no corruptions. Furthermore, for simplicity, we only allow Z to do one secure
transfer and to do it only from P1 to P2. Then Z works as follows:

1. It picks some message m and inputs (mid, P2,m) on st.in1.

2. Then it sees (mid, P1, P2, hello) on at.leak and inputs (deliver,mid, P1, P2) on
at.infl.

3. Then it sees some (mid, P2, P1, ek) on at.leak and inputs (deliver,mid, P2, P1) on
at.infl.

4. Then it sees some (mid, P1, P2, C
′′) on at.leak and inputs (deliver,mid, P1, P2) on

at.infl.

5. In response to this it sees some (mid, P1,m
′′) output on st.out2.

It could of course refuse some of the deliveries, which would only have it see less messages
and thus make the distinguishing of the systems harder.

Note that by design of S, Z will see both system behave as specified above. The only
difference between the two systems is that when playing with Fst∪S, then C ′′ ← Eek(0

|m|)

37



5.3 Comparing the Real World to the Ideal World 5 DEFINITION OF SECURITY

at.inflat.infl1 at.infl2

Z

at.leak2at.leakat.leak1

at.infl2at.inflat.infl1

at.leakat.leak1 at.leak2

P1

at.in1

at.out1

P2

st.out2at.out2

at.in2 st.in2st.out1

st.in1

at

st.out2

st.in2st.out1

st

st.leak st.infl

S

Z

st.in1

Figure 5: Example of two systems closed using the same distinguisher Z

and m′′ = m and when playing with πst, then C ′′ ← Eek(m) and m′′ = Ddk(C
′′). If the

encryption scheme has perfect correctness, then m′′ = Ddk(Eek(m)) = m, making the
only difference that C ′′ ← Eek(m) or C ′′ ← Eek(0

|m|). So, a distinguisher essentially has
the following job: Pick m and receive (ek,Eek(m′′)), where ek is random and m′′ = m
or m′′ = 0|m|. Then try to distinguish which m′′ was used. Intuitively, the distinguisher
should not be able to do this if we require the distinguisher to be poly-time and we use a
semantic secure encryption scheme. The formal definition of what it means to distinguish
two systems is carefully chosen to make that the case.

5.3.2 Comparing Systems with the Same Open Ports

Given two networks N0 and N1 with the same open ports (think of N0 = Fst ∪ S and
N1 = πst) a distinguisher is a poly-time machine Z with the "dual" ports of the system,
so that N0 ∪ Z and N1 ∪ Z are closed systems. See Fig. 5 for an illustration. This notion
of a distinguisher enforces the important restriction that a distinguisher only is allowed
to play with the systems over the open ports — if it could inspect the structure of the
systems, it would be trivial to distinguish. A distinguisher is often also call an environment,
as it represents everything outside the systems to be compared. The environment is the
ultimate monolithic adversary.

To measure how well the environment Z distinguishes, we pick a bit b ∈R {0, 1} uni-
formly at random and run the system Nb ∪ Z. The execution runs as follows:
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1. First all machines are given the security parameter k and fresh randomness.

2. Then Z iteratively inputs messages on some input ports of Nb and receives back
messages on some output ports of the system.

3. In the end Z outputs a bit c ∈ {0, 1}, which we think of as its guess at b.

Since a random guess is correct with probability 1
2 , we call

advZ
def

=

∣

∣

∣

∣

Pr[c = b]− 1

2

∣

∣

∣

∣

the advantage of Z, and require that it is negligible. It is easy to see that this is the same
as requiring that

‖N0 ∪ Z,N1 ∪ Z‖def= Pr[c = 1|b = 1]− Pr[c = 1|b = 0]

is negligible. This gives us the following definition.

Definition 1 We say that N0 and N1 are computationally indistinguishable if ‖N0∪Z,N1∪
Z‖ is negligible in the security parameter for all poly-time Z. In that case we write N0 ∼c

N1.

Essentially we just extended the notion of computational indistinguishability to interactive
systems by using an interactive distinguisher.

The notion of indistinguishable systems have an important property, which we use
later. Consider two systems N0 and N1 with the same open ports and let N be some
third system which can connect to some of the ports of those systems. If N0 and N1 are
indistinguishable and N is poly-time, then N0 ∪N and N1 ∪N are also indistinguishable.
Let namely Z be any distinguisher for (N0 ∪ N ) and (N1 ∪ N ), and let Z ′ = (N ∪ Z).
Then

‖(N0 ∪ N ) ∪ Z, (N1 ∪N ) ∪ Z‖ = ‖N0 ∪ (N ∪Z),N1 ∪ (N ∪ Z)‖
= ‖N0 ∪ Z ′,N1 ∪ Z ′‖ ,

and the right-hand-side is negligible by the assumption that N0 ∼c N1 and the fact that
Z ′ is poly-time.

In words, this property says that if we extend two indistinguishable systems by the
same poly-time sub-system, the results are again indistinguishable. Not very surprising,
but a nice property to have.

In addition, the notion is transitive. I.e., if N0 and N1 are indistinguishable, and N1

and N2 are indistinguishable, then N0 and N2 are indistinguishable.

5.4 The Security Definition

Putting the above together we get the following definition.
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Definition 2 Let Fname be an ideal functionality and let πname be a protocol with the same
open protocol ports. We say that πname securely implements Fname if there exists a poly-
time simulator S such that πname ∼c Fname ∪ S. If πname ∼c Fname ∪ S only holds for
distinguishers which make passive corruptions, we say that the protocol is a passive secure
implementation. If πname ∼c Fname ∪ S only holds for distinguishers which make at most
t corruptions, we say that the protocol is t-secure. If πname ∼c Fname ∪ S only holds for
distinguishers which makes corruption from some adversary structure A, we say that the
protocol is A-secure. If πname ∼c Fname ∪ S only holds for distinguishers which makes all
corruptions before having any other interactions with the system, we say that the protocol
is static secure.

Writing the definition out a bit, it say that there should exist a poly-time simulator
S such that all poly-time distinguishers Z output negligibly close guesses in πname ∪ Z
and (Fname ∪ S)∪Z. These two systems are illustrated for our secure transfer example in
Fig. 5.

Note how we do not have an explicit notion of an adversary. This is because we con-
sider the adversary to be part of the environment Z. When distinguishing the systems, the
environment Z can give inputs to parties and schedule the execution (which constitutes
normal use of the system) but can also see all values leaked by the communication device
used by the protocol, corrupt parties and send arbitrary messages on behalf of actively
corrupted parties. Therefore the environment can launch an attack, where even the choice
of inputs to the protocol are a coordinated part of the attack. This is the ultimate mono-
lithic adversary. For the same reason we will sometimes call Z the adversary and e.g. say
that Fat leaks (mid, P1, P2,m) to the adversary.

5.5 Modular Composition

An important property of the UC framework is that when e.g. πst implements Fst, then
Fst can securely be replaced by πst in any protocol. Consider some third ideal functionality
Fn doing some interesting task ideally secure. Assume that we can design a protocol πn,
which uses Fst as communication device and which securely implements Fn. Designing a
secure implementation of Fn using secure transfer as communication device is potentially
much easier than designing a protocol using only authenticated transfer. The structure of
such a protocol is shown in the top row of Fig. 6, along with Fn.

To get an implementation using only authenticated transfer, we can replace the use
of Fst by the use of the protocol πst — we write πn[πst/Fst]. This is possible as Fst

and πst have the same protocol ports. The result is shown in the bottom row in Fig. 6.
We consider Q1 ∪ P1 as one party and consider P2 ∪ Q2 as one party. As an example,
P ′

1 = Q1 ∪ P1 is just a machine with open ports at.in1 and at.out1 connecting it to
the protocol’s communication device Fat and with open protocol ports n.in1 and n.out1

named as the ideal functionality Fn that the protocol is trying to implement. The ports
inside Q1 ∪ P1 are just particularities of how the machine is implemented.9 In addition
Q1 ∪ P1 has some special ports which allow to corrupt it. We could insist on somehow

9If we use interactive Turing machines as the underlying machine model, then these internal ports will
just correspond to work tapes of the machine.
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Figure 6: The protocol πn, the ideal functionality Fn, and the protocol πn[πn/Fst]

joining these ports, but allowing to corrupt the components of P ′
1 separately just gives

more power to en entity corrupting P ′
1. A passive corruption of P ′

1 is done by inputting
(passive corrupt) on both st.infl1 and at.infl1, and inputting (passive corrupt, 1)
on at.infl, in response to which one receives the internal state of both components of
the party plus the internal state of the party on the communication device. An active
corruption of P ′

1 is done by inputting (active corrupt) on both st.infl1 and at.infl1,
and inputting (active corrupt, 1) on at.infl. After this one can then send messages on
behalf of P ′

1 using at.infl.
The question is whether πn[πst/Fst] securely implements Fn? For this, there must exist

a poly-time simulator U which simulates all 10 special ports of the protocol πn[πst/Fst]
given just the two special ports of Fn. The answer is in the affirmative. This is a rather
powerful result to have as it allows us to design protocols e.g. for a setting with ideally
secure channels and then later plug in protocols using more realistic communication devices
without losing security, and without having to reprove security each time. This is called
secure modular composition.

Theorem 1 Let πst be a secure implementation of some Fst and let πn be a secure imple-
mentation of some Fn. If the parties of πn are poly-time and πn uses Fst as communication
device, then πn[πst/Fst] securely implements Fn. If both protocols are passive secure, then
the composition is passive secure. If both protocols are t-secure, then the composition is
t-secure. If both protocols are A-secure, then the composition is A-secure. If both protocols
are static secure, then the composition is static secure.

In the theorem we maintained the names from our secure transfer example, but the
protocols and ideal functionalities can be arbitrary. We sketch the proof of the theorem.

Since πst securely implements Fst, there exists a poly-time simulator S such that the
two systems in the top row of Fig. 7 are indistinguishable. Here Fat denotes any ideal
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Figure 7: Extending πst and Fst ∪ S with Q1 and Q2

functionality that πst might use. Again we use the naming from our example for clarity.
In the second row, we extended πst by connecting Q1 and Q2 to the system. In the last
row, we extended Fst∪S by connecting Q1 and Q2 to the same ports as in the extension of
πst. Since Q1 and Q2 are poly-time, the systems in the last two rows are indistinguishable
by the fact that indistinguishability of systems is closed under poly-time extensions.

Since πn securely implements Fn, there exists a poly-time simulator T such that the
two systems in the top row of Fig. 8 are indistinguishable. In the bottom row of Fig. 8
we extended both systems by connecting S to the same ports. Since S is poly-time, the
systems in the bottom row are indistinguishable by the fact that indistinguishability of
systems is closed under poly-time extensions.

Now notice that the system in the bottom row of Fig. 7 is identical to the system to the
left in the bottom row of Fig. 8. By transitivity it follows that the system in the second row
in Fig. 7 is indistinguishable from the system to the right in the bottom row of Fig. 8. The
system in the second row in Fig. 7 is πn[πst/Fst]. If we let U = S ∪ T , then the system to
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Figure 8: Extending πn and Fn ∪ T with S

the right in the bottom row of Fig. 8 is Fn ∪U . So, it follows that Fn ∪U and πn[πst/Fst]
are indistinguishable. But then U is exactly a simulator showing that πn[πst/Fst] securely
implements Fn. Not very surprisingly, the simulator for the composition of two protocols
is a composition of the simulators for the individual protocols.

Exercise 12 Above we only proved that if πst securely implements Fst and πn securely
implements Fn, then πn[πst/Fst] securely implements Fn. Argue that the same holds for
t-security. I.e., argue that if πst t-securely implements Fst and πn t-securely implements
Fn, then πn[πst/Fst] t-securely implements Fn.

5.6 Example Proofs

We conclude our secure transfer example by formally proving that the protocol is a secure
implementation of the ideal functionality.
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5.6.1 No Corruptions

We start by a proof for the case where there are no corruptions. I.e., for the case where
the distinguisher does not use the leakage ports and influence ports of the parties.

Theorem 2 If the encryption scheme has perfect correctness and is semantic secure, then
πst securely implements Fst as long as there are no corruption (formally it is 0-secure).

Proof: The semantic security of an encryption scheme is defined via a game with an
adversary A: First we sample a random key pair (ek, dk) and give ek to A. Then A
outputs two messages m0 and m1 with |m0| = |m1|. Then we flip a random bit b and
input C ← Eek(mb) to A. Then A outputs a bit c, which we think of as its guess at b. We
call advA = |Pr[c = b]− 1

2 | the advantage of A, and require that advA is negligible for all
poly-time A.

Consider now some poly-time distinguisher Z, which expects to play with either πst or
Fst ∪ S. We have to argue that advZ is negligible. We do that by translating Z into an
equivalent poly-time adversary against the encryption scheme. The adversary A runs Z as
a sub-routine, as follows:

1. First receive ek.

2. Then run Z until it outputs some (mid, P2,m) on st.in1.

3. Then output m0 = m and m1 = 0|m| to the semantic security game and get back
C ← Eek(mb) for some unknown b.

4. Then input (mid, P1, P2, hello) on Z.at.leak and run Z until it outputs (deliver,mid, P1, P2)
on at.infl.

5. Then input (mid, P2, P1, ek) on Z.at.leak and run Z until it outputs (deliver,mid, P2, P1)
on at.infl.

6. Then input (mid, P1, P2, C) on Z.at.leak and run Z until it outputs (deliver,mid, P1, P2)
on at.infl.

7. Then input (mid, P1,m) on Z.st.out2 and run Z until it outputs some guess c.

8. Then output c.

It is clear that if b = 1, then C = Eek(0
|m|) and the messages shown to Z have

exactly the same distribution as in Fst ∪S, and therefore c has the same distribution as in
(Fst ∪ S) ∪ Z. If b = 0, then C = Eek(m) and the messages shown to Z have exactly the
same distribution as in πst, and therefore c has the same distribution as in πst ∪ Z. This
implies that advA = advZ . Since advA is negligible, we conclude that advZ is negligible,
as desired. qed

The important point to remember from this proof is how the simulator takes the allowed
leakage and uses it to produce the more elaborate actual leakage, and how actual influence
(deciding the delivery time of the three messages of the protocol) is mapped into allowed
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influence (deciding the delivery time of the one message in the ideal setting). All our proofs
will have this structure.

In the above proof, the simulation produced by S is only computationally indistinguish-
able. A computationally unbounded Z could easily distinguish Eek(m) and Eek(0

|m|). If
the simulated values have the exact same distribution as the real values, we say that the
implementation is perfectly secure. This is the same as the advantage of any computa-
tionally unbounded Z being 0. If the advantage of any computationally unbounded Z is
negligible, then we say that the implementation is statistically secure.

5.6.2 One Active Corruption.

We then extend the analysis to consider one static corruption. I.e., we now allow the
distinguisher to corrupt one party, and it must do so before any other interactions.

Theorem 3 If the encryption scheme has perfect correctness and is semantic secure, then
πst securely implements Fst as long as there is at most one static corruption (formally it
is static, 1-secure).

Proof: If there are no corruptions, the simulator behaves as in the proof of 0-security. If
there is one corruption, the simulator behaves as described below.

We first consider the case where the sender is active corrupted. I.e., the environ-
ment inputs (active corrupt) on at.infl1 and (active corrupt, 1) on at.infl before
the execution (cf. Fig. 5). The simulator starts by also corrupting P1. I.e., it outputs
(active corrupt, 1) on st.infl. Now S provides inputs to Fst on behalf of P1.

In the real world, P1 ∪ Fat ∪ P2, Z can send arbitrary messages to P2 via at.infl.
If Z sends a message of the form (mid, P1, C) to P2

10 after P2 sent ek, then P2 outputs
(mid, P1,Ddk(C)) on st.out2. This is easily simulated. The simulator S continues as
follows:

1. IfZ inputs (alternative input, 1, (mid, P2, hello)) and then (deliver,mid, P1, P2)
on at.infl, then sample (ek, dk) and output (mid, P2, P1, ek) on at.leak.

2. IfZ later inputs (alternative input, 1, (mid, P2, C)) and then (deliver,mid, P1, P2)
on at.infl, then let m′ = Ddk(C) and output (alternative input, 1, (mid, P2,m

′))
on st.infl, and then output (deliver,mid, P1, P2) on st.infl.

This makes Fst output (mid, P1,m
′′ = Ddk(C)) on st.out2. Therefore Z sees the two

systems respond in exactly the same way. Note how the power of P1 to send an arbitrary
C was mapped into the ideal power of sending an arbitrary message m′, by using m′ =
Ddk(C).

We then consider the case where the receiver P2 is active corrupted. I.e., the environ-
ment inputs (active corrupt) on at.infl2 and (active corrupt, 2) on at.infl before
the execution. The simulator starts by outputting (active corrupt, 2) on st.infl. Now
Fst no longer outputs on st.out2, but sends the output to S on st.leak instead. The
simulator proceeds as follows.

10Formally Z inputs (alternative input, 1, (mid, P2, C)) and then (deliver, mid, P1, P2) on at.infl
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1. On input (mid, P1, P2, l) on st.leak, the simulator knows that some (mid, P2,m)
was input to Fst on st.in1. The simulator inputs (deliver,mid, P1, P2). Since P2 is
corrupted this makes Fst output (output, 2, (mid, P1,m)) to S. The simulator stores
m.

2. The simulator then outputs (mid, P1, P2, hello) on at.leak.

3. On a later input (deliver,mid, P1, P2) on at.infl, output (output, 2, (mid, P1, hello))
on at.leak. This is what would have happened in P1 ∪ Fat ∪ P2.

4. If Z inputs (alternative input, 2, (mid, P1, ek)) and then (deliver,mid, P2, P1)
on at.infl, then compute C ← Eek(m) and output (mid, P1, P2, C) on at.leak.

5. On a later input (deliver,mid, P1, P2) on at.infl, output (output, 2, (mid, P1 , C))
on at.leak. Again, this is what would have happened in P1 ∪ Fat ∪ P2.

It can again be seen that the values that Z sees have the exact same distribution in the
protocol P1 ∪ Fat ∪ P2 and in the simulation Fst ∪ S. qed

Exercise 13 Verify that the simulation of the case of a corrupted receiver is perfect, by
tracking the message that Z would see in P1 ∪ Fat ∪ P2 if it behaves as in the interaction
with the simulator above.

5.7 Modeling Synchronous n-Party Protocols

In the following all our protocols will consist of n-parties running a synchronous protocol.
It is therefore convenient to once and for all fix some conventions for how we model, and
talk about, that setting. It is easier to start by describing how we model a synchronous
ideal functionality.

For our purposes here, a synchronous ideal functionality will be one which proceeds
through a number of rounds, which all proceed as follows: First the ideal functionality
waits for an input xi from all parties (or at least all honest parties). Then it computes
outputs yi for all parties and returns yi to each party Pi. Between getting the inputs xi and
giving the outputs yi, the ideal functionality might output running to the parties a number
of times. This models that it takes several rounds for the ideal functionality to compute
the output (which will be the case when it is replaced by a protocol). For simplicity we
let the adversary decide how many rounds it takes before the outputs are delivered — this
is the worst case. We do, however, require that all parties get outputs in the same round.
I.e., they output running the same number of times before they give the real output yi.
We also let the adversary decide in which order the outputs are delivered — again this is
the worst case. The details are given in Fig. 9.

In the rest of the note we assume that all ideal functionalities have this generic syn-
chronous behavior. In particular, when we specify ideal functionalities below, all we need
to specify is the behavior of the ideal functionality in compute outputs, i.e., how the
outputs (y1, . . . , yn) are computed from the input (x1, . . . , xn).11 Since compute out-

puts is executed only when all honest parties gave an input, we can assume that all honest

11We sometimes also specify some additional values to be leaked in get input.
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A generic synchronous ideal functionalities, Fsync, proceed as:

init: Initially, let outputi = true and runningi = false for i = 1, . . . , n.a

get inputs: On an input xi on sync.ini while outputi = true and runningi =
false, let runningi = true and store (i, xi), and output (running, i) on
sync.leak (possibly along with other messages to be leaked).

running: On an input (running, i) on sync.infl while runningi = true, output
running on sync.outi.

compute outputs: On input (compute outputs) on sync.infl while outputi =
true and runningi = true for all honest Pi, compute an output yi for each
Pi, from the stored inputs (j, xj).

b Let outputi = false for all Pi.

deliver outputs: On an input (deliver, i) on sync.infl while outputi =
false, output yi on sync.outi, and let runningi : = false and
outputi : = true. It is enforced that all honest parties output running the
same number of times between getting the input xi and giving the output
yi.

c

Note that while runningi = true, all inputs on sync.ini are ignored by the ideal
functionality.

aThe Boolean outputi tells whether Pi delivered the output from the last round already. The
Boolean runningi tells whether Pi is computing the next output.

bIf runningi = false for some Pi, then simply ignore the input (compute outputs).
cThis is done as follows: If an input (running, i) is given on sync.infl, which would violate

the restriction, because Pi would end up outputting running more times than an honest party
Pj which already provided its output yj , then the input is simply ignored. Furthermore, if an
input (deliver, i) is given, which would violate the restriction, because some honest party Pj

already output running more than Pi, then the input is simply ignored.

Figure 9: A generic synchronous ideal functionality

parties give inputs in all rounds when specifying the input-output behavior of the ideal
functionality. We will never mention the rounds where just running is output: we think
of the whole process from the xi are input till the yi are output as one round on the ideal
functionality.

A synchronous protocol is a protocol which uses a synchronous ideal functionality as
communication device, and where each party proceeds as in Fig. 5.7. We require from all
protocols that all parties provide an output yi on sync.outi after receiving the same number
of outputs Yi from the ideal functionality. That way the parties will stay synchronized.
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A party Pi for a generic synchronous protocol πsync proceeds as follows:

init: Initially, let runningi = false.

get input: On an input xi on sync.ini, let runningi = true, and go to running.

running:

1. Input some message Xi to F .

2. Wait for a message Yi from F . If Yi 6= running, then go to Step 3.
Otherwise, output running on sync.outi and go to Step 2 [sic].

3. When Yi 6= running, do one of the following:

• Output running on sync.outi and to Step 1.

• Output some output yi on sync.outi, let running := false, and
go to get input.

When running = true, party Pi ignores all inputs on sync.ini.

Figure 10: A generic synchronous party.
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6 An Active Secure Protocol

In this section, we show how to modify the protocol from Section 4 to make it secure
also against active cheating. We will postulate in the following that we have a certain
ideal functionality Fcom available. This functionality can then be implemented both in the
i.t. and the cryptographic scenario. We consider such implementations later.

We note already now, however, that in the cryptographic scenario, Fcom can be im-
plemented if t < n/2 (or in general, the adversary is Q2) and we make an appropriate
computational assumption. In the i.t. scenario we need to require t < n/3 in case of pro-
tocols with zero error and no broadcast given. If we assume a broadcast channel and allow
a non-zero error, then t < n/2 will be sufficient. All these bounds are tight.

Before we start, a word on broadcast: with passive corruption, broadcast is by definition
not a problem, we simply ask a player to send the same message to everyone. But with
active adversaries where no broadcast is given for free, a corrupt player may say different
things to different players, and so broadcast is not immediate. Fortunately, in this case,
we will always have that t < n/3 for the i.t. scenario and t < n/2 for the cryptographic
scenario, as mentioned. And in these cases there are in fact protocols for solving the
consensus broadcast problem efficiently. So we can assume that broadcast is given as an
ideal functionality. In the following, when we say that a player broadcasts a message, this
means that we call this functionality.

6.1 Some Ideal Functionalities

In the following we will design protocols which use secure channels and broadcast. For-
mally, we use a synchronous ideal functionality Fsb to model synchronous communication
with secure transfer and consensus broadcast, and the protocols will then use this ideal
functionality as communication device. The details are given in Fig. 11. In Section 9 we
discuss how to implement consensus broadcast.

We will use Fsb as communication device to implement secure function evaluation.
The ideal functionality for secure function evaluation (SFE) of a function f : K

n →
K

n, (x1, . . . , xn) 7→ (y1, . . . , yn) proceeds as detailed in Fig. 12.
We assume that all honest parties always input a value xi from K. Formally we only

prove security for environments that behave like this. This will guarantee that it is secure
to use our implementation of Ff

sfe in any protocol where the honest parties always input
values from K.12

6.2 Model for Homomorphic Commitments and Auxiliary Protocols

We will assume that each player Pi can commit to a value a ∈ K. This will later be
implemented by distributing and/or broadcasting some information to other players. We
model it here by assuming that we have an ideal functionality Fcom. To commit, one
simply sends a to Fcom, who will then keep it until Pi asks to have it revealed. Formally,

12In general, if an implementation is proven secure for a restricted set of environments (restricted on the
values they can input on the protocol ports) then it is secure to use the implementation inside any protocol
which gives inputs according to the restriction.
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The ideal functionality Fsb proceeds as follows in each round:

get input: Parse the input xi from Pi as xi = (mi,0,mi,1, . . . ,mi,n). Output the
value (i,mi,0, {mi,j}j∈C , {|mi,j |}j∈H) on sb.leak, where C denotes the set
of corrupted parties and H = {1, . . . , n}\C denotes the honest parties.a For
the corrupted parties Pi which did not give an input, let xi = (⊥,⊥, . . . ,⊥).

compute outputs: The output to Pi is yi = (m1,i, . . . ,mn,i,m), where m =
(m1,0, . . . ,mn,0).

aLeaking these values already now models rushing communication.

Figure 11: The ideal functionality for secure transfer and consensus broadcast. In
the input xi = (mi,0,mi,1, . . . ,mi,n), mi,0 is the message Pi wants to send to all
parties and mi,j is the message Pi wants to send securely to Pj.

The ideal functionality Ff
sfe proceeds as follows in each round:

get inputs: For the corrupted Pi which did not give an input, or which gave an
input which is not from K, let xi = 0.

compute outputs: The outputs are computed as (y1, . . . , yn) = f(x1, . . . , xn).

Figure 12: The ideal functionality for secure function evaluation

we assume Fcom is equipped with commands commit and open described in Fig. 13 (more
will be defined later).

Some general remarks on the definition of Fcom: since the implementation of any of the
commands may require all (honest) players to take part actively, we require that all honest
players in a given round send the same command to Fcom in order for the command to be
executed. In some cases, such as a commitment we can of course not require that all players
send exactly the same information since only the committing players knows the value to be
committed to. So, in such a case, we require that the committer sends the command and
his secret input, while the others just send the command. If Fcom is not used as intended,
e.g., the honest players do not agree on the command to execute, Fcom will output all its
private data on com.leak and let the adversary fully determine all outputs via com.infl.

Below we will use the following short-hand for describing interactions with Fcom. The
symbol [·]i denotes a variable in which Fcom keeps a committed value received from player
Pi. Thus when we write [a]i, this means that player Pi has committed to a. By Pi : [a]i ⇐ a
we mean that the parties use the commit command of Fcom to let Pi commit to a. By
[a]i ⇐ a we mean that the parties use the public commit command to force Pi to commit to
a. By a⇐ [a]i we mean that the parties use the open command to let all parties learn the
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The ideal functionality Fcom has the following basic commands:

commit: This command is executed if in some round player Pi sends
(commit, i, cid, a) and in addition all honest players send (commit, i, cid, ?).
In this case Fcom records the triple (i, cid, a). Here, cid is just a commit-
ment identifier, and a is the value committed to.a The output to all parties
is (commit, i, cid, success).

public commit: This command is executed if in some round all parties send
(commit, i, cid, a). In this case Fcom records the triple (i, cid, a). The output
to all parties is (commit, i, cid, success).b

open: This command is executed if in some round all honest players send
(open, i, cid), in which case we require that some (i, cid, a) is stored. The
output to all parties is (open, i, cid, a).

If Pi is corrupted and does not input (open, i, cid), then (open, i, cid, fail)
is output to all parties.

designated open: This command is executed if in some round all honest players
send (open, i, cid, j), in which case we require that some (i, cid, a) is stored.
The output to Pj is (open, i, cid, j, a) and the output to all other parties is
(open, i, cid, j, success).

If Pi is corrupted and does not input (open, i, cid, j), then (open, i, cid, fail)
is output to all parties.

aWe require that all honest players agree to the fact that a commitment should be made
because an implementation will require the active participation of all honest players.

bThe difference here is that all parties input a and that Pi is forced to accept the commitment.
In an implementation the other parties can in principle just remember that Pi is committed to
the known a, but it is convenient to have an explicit command for this.

Figure 13: The basic commands of the ideal commitment functionality.

value of a. By Pj : a ← [a]i we mean that the parties use the designated open command
to let Pj learn a.

It is clear from the description that all players know at any point which committed
values have been defined. Of course, the value committed to is not known to the players
(except the committer), but nevertheless, they can ask Fcom to manipulate committed
values, namely to add committed values and multiply them by public constants, as long
as the variables belong to the same party. The details are given in Fig. 14. We write
[a3]i ← [a1]i+[a2]i and [a3]i ← α[a2]i, where it is understood that a3 = a1+a2 respectively
a3 = αa2.

Later we show how to implement the basic commands and the simple manipulation
commands. For now we just assume that we have them. Once we have these commands it
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The ideal functionality Fcom has the following simple manipulation commands:

add: This command is executed if in some round all honest players send
(add, i, cid1, cid2, cid3), in which case we require that some (i, cid1, a1) is
stored and some (i, cid2, a2) is stored. As a result Fcom stores (i, cid3, a1 +
a2). The output to all parties is (add, i, cid1, cid2, cid3, success).

mult by constant: This command is executed if in some round all honest play-
ers send (mult, i, α, cid2, cid3), in which case we require that α ∈ K and
that some (i, cid2, a2) is stored. As a result Fcom stores (i, cid3, αa2). The
output to all parties is (mult, i, α, cid2 , cid3, success).

Figure 14: The simple manipulation commands of the ideal commitment functional-
ity.

The ideal functionality Fcom has the following advanced manipulation commands:

transfer: This command is executed if in some round all honest players
send (transfer, i, cid, j), in which case we require that some (i, cid, a) is
stored. As a result Fcom stores (j, cid, a). The output to all parties is
(transfer, i, cid, j, success), except Pj which gets (transfer, i, cid, j, a).

If Pi is corrupted and does not input (transfer, i, cid, j), then no value is
stored and the output to all parties is (transfer, i, cid, j, fail).

mult: This command is executed if in some round all honest players send
(mult, i, cid1, cid2, cid3), in which case we require that some (i, cid1, a1)
is stored and that some (i, cid2, a2) is stored. As a result Fcom stores
(i, cid3, a1a2). The output to all parties is (mult, i, cid1, cid2, cid3, success).

If Pi is corrupted and does not input (mult, i, cid1, cid2, cid3), then no value
is stored and the output to all parties is (transfer, i, cid, j, fail).

Figure 15: The advanced manipulation commands of the ideal commitment func-
tionality.

is possible to use Fcom to implement Fsfe. The first step is to extend Fcom with the more
advanced manipulation commands in Fig. 15. We write [a]j ← [a]i and [a3]i ← [a1]i[a2]i
for these commands.

The advanced commands are special in that they can be implemented given the basic
commands and the simple manipulation commands.
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6.2.1 The Transfer Protocol

The implementation of the command [a]j ← [a]i starts as follows:

1. Pj : a⇐ [a]i.

2. Pj : [a]j ⇐ a.

3. If the first command fails, then all parties output fail.13 If the second command
fails, then Pj is corrupted. In that case the following is executed:

(a) a⇐ [a]i.

(b) [a]j ⇐ a.

If the first command fails, then all parties output fail. The second command cannot
fail.

Note that if Pj is corrupted and does not do a commitment, then all parties learn a and
simply forces a commitment to a for Pj . This is secure, as when Pj is corrupted, then
a becomes know to the adversary in the ideal world also (as a is output to Pj). So, the
simulator learns a and can simulate the protocol simply by running it on the right a.

This protocol is, however, not sufficient. If Pj is corrupted it could run Pj : [a′]j ⇐ a′

for a′ 6= a. And, it is not sufficient to do Pi : a′ ⇐ [a′]j and let Pi check that a′ = a, as
also Pi could be corrupted. The ideal implementation asks that a′ = a even if Pi and Pj

are corrupted, therefore this should hold also for the protocol.
The next step is therefore that Pi and Pj prove to the other parties that a′ = a. We

describe this protocol for a single verifier. To convince all the players, the protocol is
simply repeated independently (for instance in parallel), each other player Pk taking his
turn as the verifier. The outcome of all the proofs are visible by all parties, and the parties
accept the proof if and only if all over individual proofs are accepting. Each individual
proof proceeds as follows:

1. First Pi picks a uniformly random r ∈R K and sends it securely to Pj .

2. Then the parties execute Pi : [r]i ← r and Pj : [r]j ← r.

3. Then the verifier Pk broadcasts a challenge e ∈ K.

4. Then the parties execute [s]i ⇐ e[a]i + [r]i and [s]j ⇐ e[a]j + [r]j .

5. Then s⇐ [s]i and s′ ⇐ [s]j.

6. The parties accept the proof only if s = s′.

13In this case Pi is clearly corrupted, so the command is allowed to fail, as a corrupted Pi in the ideal
command also has the influence that it can make the command fail.
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Failures are handled as in the first part of the protocol: if Pi makes a command fail,
output fail. If Pj makes a command fail, then reconstruct a publicly and create [a]j .

It is clear that if Pi and Pj are honest, then all proofs will be accepting. Second, if
Pi and Pj are honest, then r is random and the only value leaked to the other parties is
ea+ r, which is just a uniformly random field element. This is secure, as the simulator can
simulate ea + r using a uniformly random value. If either Pi or Pj is corrupted, there is
nothing to simulate as the simulator learns a in the ideal world. What remains is to argue
soundness. I.e., if a′ 6= a, then the proof will fail with high probability.

So, assume that a′ 6= a. I.e., Pj made a commitment [a + ∆a] for ∆a 6= 0. Then Pi

and Pj makes commitments [r]i respectively [r + ∆r]i. Again Pj could pick ∆r 6= 0, but
could also use ∆r = 0 — we do not know. We do however know that s = ea + r and
that s′ = e(a + ∆a) + (r + ∆r) = s + (e∆a + ∆r). Therefore the proof is accepted if and
only if e∆a + ∆r = 0, which is equivalent to e = ∆−1

a (−∆r) (recall that ∆a 6= 0 and thus
invertible.) Since e is uniformly random when Pk is honest and picked after ∆a and ∆r

are fixed, the probability that e = ∆−1
a (−∆r) is exactly 1/|K|. There are n − t > n/2

honest parties, so the probability that all proofs with honest verifiers are accepting is at
most 1/|K|n/2. If that is not negligible the whole process can be repeated a number of
times in parallel to make the error e.g. 2−κ, where κ is the security parameter.

If the proof fails, it could be due to Pj being corrupted, so we run Steps (a) and (b)
as described above to give Pi a chance to reveal a and let the other parties do a forced
commitment of Pj to a.

6.2.2 The Multiplication Protocol

The implementation of the command [c]j ← [a]i[b]i starts as follows:

1. Pi : [c]i ⇐ ab.

Of course Pi can cheat and commit to c 6= ab. So, again a proof is run to check that
the commitments are to consistent values. Again we describe the proof only for a single
prover Pk.

1. Pi chooses a uniformly random α ∈ K.

2. Pi : [α]i ⇐ α.

3. Pi : [γ]i ⇐ αb.

4. Pj broadcasts a uniformly random challenge e ∈ K.

5. [A]i ← e[a]i + [α]i; A⇐ [A]i.

6. [D]i ← A[b]i − e[c]i − [γ]i; D ⇐ [D]i.

7. The parties accept the proof only if D = 0.

It is easy to show that if Pi remains honest, then the proof succeeds and all values
opened are random (or fixed to 0) and so reveal no extra information to the adversary.
Using an analysis similar to that for the transfer protocol it can be shown that if c = ab+∆
for ∆ 6= 0, then the proof fails except with probability 1/|K|.
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6.3 An MPC Protocol for Active Adversaries

The active secure protocol runs be emulating the passive secure protocol, and just in
addition makes sure that all parties are committed to all their shares, and that all shares
are computed correctly.

Input sharing: Each player Pi holding input xi ∈ K commits to xi, secret shares xi using
Shamir’s secret sharing scheme and makes sure the other parties are committed to
their shares:

1. Pi : [xi]i ⇐ xi.

2. Pi chooses at random a polynomial xi(X) = xi +
∑t

j=1 αjX
j , of degree ≤ t with

xi(0) = xi.

3. For j = 1, . . . , t: Pi : [αj ]i ⇐ αj .
14

4. For x = 1, . . . , n: [xi(x)]i ←
∑t

j=1 xj [αj]i.
1516

5. For j = 1, . . . , n: [xi(j)]j ← [xi(j)]i.
17

Addition: The operand a is shared by a polynomial a(X) of degree ≤ t, and the parties
committed to their shares. I.e., a(0) = a and Pi holds ai = a(i), and Fcom holds
[ai]i, for i = 1, . . . , n. The same for b.

For i = 1, . . . , n, the parties execute [c]i = [a]i + [b]i.

Multiplication Each operand is shared by a polynomial, as describe in Addition. Mul-
tiplication proceeds as follows:

Local multiplication step: For i = 1, . . . , n, the parties execute [di]i = [ai]i[bi]i.

Resharing step: Pi secret shares [di]i the same way [xi]i was shared in Input Shar-

ing, resulting in commitments [di1]1, . . . , [din]n.

Recombination step: For j = 1, . . . , n, the parties execute [cj ]j =
∑n

i=1 ri[dij ]j ,
where (r1, . . . , rn) is the recombination vector.

Output Reconstruction: The output y is shared by a polynomial y(X) of degree ≤ t,
and the parties committed to their shares. I.e., y(0) = y and Pi holds yi = y(i), and
Fcom holds [yi]i, for i = 1, . . . , n. Let Pj be the party to learn y.

1. For i = 1, . . . , n: Pj : yi ⇐ [yi]i.

2. Some openings might fail, but since there are at most t corrupted parties, Pj

can collect at least n − t shares yi. Since n − t > t, this allows to compute y
using Lagrange interpolation

14The party commits to the coefficients of the polynomial.
15The party evaluates the polynomial inside the commitments.
16This linear combination is computed by first computing the multiplications by a constant xj [αj ]i and

then using the add command.
17The shares are transferred.
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The security follows almost directly from the security of the passive secure protocol.
In particular, since the manipulation commands of Fcom are used, all parties compute all
shares exactly as in the passive secure protocol, and Fcom keeps the shares as secret. The
worst that can happen is that some party refuses to carry out one of the commands. We
describe how to handle this now.

First, if Pi refuses any of the commands in Input sharing, each party Pj will simply
get share [xj]j ⇐ 0. This ensure that the shares are shares of the 0-polynomial and that
all parties are committed. This corresponds to Pi having chosen input 0.

In Addition there are no commands which can fail, and we described how to handle
the failures in Output Reconstruction.

It remains to be described what should be done if a player Pi fails in Multiplication.
In general, the simplest way to handle such failures is to go back to the start of the com-
putation, open the input values of the players that have just been disqualified, and restart
the computation, simulating openly the disqualified players. This allows the adversary to
slow down the protocol by a factor at most linear in n. This solution works in all cases.
However, in the i.t. case when t < n/3, we can do better: after multiplying shares locally,
we have points on a polynomial of degree 2t, which in this case is less than the number of
honest players, n − t. In other words, reconstruction of a polynomial of degree 2t can be
done by the honest players on their own. So, the recombination step can always be carried
out: we just tailor the recombination vector to the set of at least n− t players that actually
completed the local multiplication step correctly.

6.4 Realization of Fcom: Information Theoretic Scenario

We assume throughout this subsection that we are in the i.t. scenario and that t < n/3.
We show how to implement a commitment scheme with the desired basic commands and
simple manipulation commands.

The idea that immediately comes to mind in order to have a player D commit to a is to
ask him to secret share a. At least this will hide a from the adversary if D is honest, and
will immediately ensure the homomorphic properties we need, namely to add commitments,
each player just adds his shares, and to multiply by a constant, all shares are multiplied
by the constant.

However, if D is corrupt, he can distribute inconsistent shares, and can then easily
“open” a commitment in several ways, as detailed in the exercise below.

Exercise 14 A player P sends a value ai to each player Pi (also to himself). P is supposed
to choose these such that ai = f(i) for all i, for some polynomial f(X) of degree at most
t where t < n/3 is the maximal number of corrupted players. At some later time, P is
supposed to reveal the polynomial f(X) he used, and each Pi reveals ai, The polynomial
is accepted if values of at most t players disagree with f(X) (we cannot demand fewer
disagreements, since we may get t of them even if P was honest).

1. We assume here (for simplicity) that n = 3t + 1. Suppose the adversary corrupts
P . Show how to choose two different polynomials f(X), f ′(X) of degree at most t and
values ãi for P to send, such that P can later reveal and have accepted both f(X) and
f ′(X).
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2. Suppose for a moment that we would settle for computational security, and that P
must send to Pi, not only ai, but also his digital signature si on ai. We assume that
we can force P to send a valid signature even if he is corrupt. We can now demand
that to be accepted, a polynomial must be consistent with all revealed and properly
signed shares. Show that now, the adversary cannot have two different polynomials
accepted, even if up to t ≤ n/3 players may be corrupted before the polynomial is to
be revealed. Hint: First argue that the adversary must corrupt P before the ai, si are
sent out (this is rather trivial). Then, assume f1(X) is later successfully revealed and
let C1 be the set that is corrupted when f1 is revealed. Assume the adversary could
also choose to let P reveal f2(X), in which case C2 is the corrupted set. Note that if
we assume the adversary is adaptive, you cannot assume that C1 = C2. But you can
still use the players outside C1, C2 to argue that f1(X) = f2(X).

3. (Optional) Does the security proved above still hold if t > n/3? why or why not?

To prevent the problems outline above, we must find a mechanism to ensure that the
shares of all uncorrupted players after committing consistently determine a polynomial
f(X) of degree at most t, without harming privacy of course.

6.4.1 Minimal Distance Decoding

Before we do so, it is important to note that n shares out of which at most t are corrupted
still uniquely determine the committed value a, even if we don’t know which t of them are
corrupted. This is based on an observation also used in error correction.

Concretely, define the shares

sf = (f(1), . . . , f(n)),

and let e ∈ K
n be an arbitrary “error vector” subject to

wH(e) ≤ t,

where wH denotes the Hamming-weight of a vector (i.e., the number of its non-zero coor-
dinates), and define

s̃ = s + e.

Then a is uniquely defined by s̃.
In fact, more is true, since the entire polynomial f is. This is easy to see from Lagrange

Interpolation and the fact that t < n/3.
Namely, suppose that s̃ can also be “explained” as originating from some other polyno-

mial g of degree at most t together with some other error vector u with Hamming-weight
at most t. In other words, suppose that

sf + e = sg + u.

Since wH(e), wH(u) ≤ t and t < n/3, there are at ≥ n− 2t > t positions in which the
coordinates of both are simultaneously zero. Thus, for more than t values of i we have

f(i) = g(i).
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Since both polynomials have degree at most t, this means that

f(X) = g(X) .

6.4.2 The Protocol

Based on the above observation, we see that we have a commitment scheme if we can find
a protocol which ensures that all honest parties hold consistent shares. We describe this
mechanism later, but first described the implementation assuming that we have such a
protocol.

commit: The party to commit to a value x generates a Shamir sharing of x using the
sub-protocol assumed above. As a result each Pi gets a share xi, and the shares of
the honest parties are on a polynomial of degree at most t.

public commit: Each Pi takes his share to be ai = a. This is a share on the polynomial
a(X) = a.

open: The value a is shared as follows: If Pi is honest, then Pi knows a polynomial a(X)
of degree ≤ t, and Pj holds aj = a(j). Even if Pi is corrupted will the shares of the
honest parties be on some polynomial a(X) of degree ≤ t.

1. Pi broadcasts a(X).

2. For j = 1, . . . , n each Pj broadcasts aj .

3. The opening is accepted if and only if a(X) has degree ≤ t and aj = a(j) for at
least n− t parties. In that case, the value of the opening is taken to be a = a(0).

designated open: As above, but the shares are only sent to Pj . If Pj rejects the opening,
it broadcasts a public complaint, and Pi must then do a normal opening. If that one
fails, all parties output fail.

add: To add two commitments [a]i and [b]i, shared by a(X) and b(X), the party Pi computes
c(X) = a(X) + b(X), and each Pj computes ci = ai + bi.

multiplication by constant: To multiply a commitment [b]i, shared by b(X), by a con-
stant α the party Pi computes c(X) = αb(X), and each Pj computes ci = αbi.

6.4.3 Forcing Consistent Shares

The mechanism we will use to force consistent shares is called dispute control. It has the
advantage, over some other techniques, that it is very efficient as long as there are no
corruptions, which is the typical case in practice.

The basic idea is the following. To check that Pi creates a consistent sharing, we could
simply let Pi first do a sharing, where each Pj learns sj = s(j). Then Pi broadcasts s(X)
and each Pj broadcasts sj. Then it is checked that s(X) has degree ≤ t and that s(j) = sj

for all Pj . There are two obvious problems with this approach:

1. It is insecure to broadcast s(X) and the shares, as it reveals the secret s.
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2. Even if Pi is honest could some corrupt Pj broadcast s∗j 6= sj, which would result in
s∗j 6= s(j) and the sharing being rejected.

Before we describe how to solve these problems we introduce some notation. When Pi

shared a secret s by giving share sj to Pj , we write

[s]i = (s1, . . . , sn) .

I.e., [s]i is the vector of shares. We call [s]i consistent if there exists a polynomial s(X) of
degree ≤ t such that s(j) = sj for all honest parties.

After having dealt
[s]i = (s1, . . . , sn) ,

Pi will pick a uniformly random r ∈ K and deal a sharing

[r]i = (r1, . . . , rn) .

Then a challenge e ∈ K is given18 and the parties compute

[a]i = e[s]i + [r]i = (s1 + er1, . . . , sn + ern) .

It can be see that the set of consistent sharings constitutes a linear vector space. So, if
both [s]i and [r]i are consistent, then so is [a]i. Equally important, if [s]i is not consistent,
then the probability that [a]i is consistent is at most 1/|K|: If [s]i is not in the linear vector
space of consistent sharings, then the probability that e[s]i +[r]i happens to be in the space
is at most 1/|K|. Therefore it is sufficient to test that [a]i is consistent. Finally, since r
is random, it is secure to reveal a = es + r, and we can do the test by broadcasting the
shares of [a]i as described above.

The second problem is that even though [a]i = (a1, . . . , an) is consistent, a corrupted Pj

can broadcast a∗j 6= aj. To handle this each Pi has an associated dispute set Di ⊆ {1, . . . , n}
known by all parties. Initially all Di = ∅. If some Pj broadcasts a∗j 6= aj in the test, then
Pj is added to Di and the test is repeated. When j is added to Di we say that a dispute
arises.

To avoid that the same dispute arises twice, Pi will give Pj the share 0 in all future
sharings. We call this a corrected sharing. I.e., when the test is run again it will be the
case that sj = 0 and rj = 0, and therefore aj = esj + rj = 0.19 This way it is known by
all parties what are the shares of Pj . Therefore Pj does not have to broadcast aj — the
parties simply use aj

def

=0 for j ∈ Di. If Pi broadcasts a(X) with a(j) 6= 0 for j ∈ Di it is
now clear that Pi is corrupted. In fact, we can just enforce that Pi always broadcast a(X)
with a(j) = 0 for j ∈ D simply by letting all parties define the message broadcast by Pi to
be a(X)

def

=0 if that is not the case. After this convention, it is clear that if it again happens
that aj 6= a(j), then this is for some j 6∈ Di. We can therefore add j to Di and repeat
again. This will eventually terminate, as Di can get size at most n.

18Again the other parties can all act as verifiers in one of n proofs.
19Fixing the share of Pj ∈ Di is secure, as Pj is corrupted when Pi is honest. Therefore the corrupted

parties know the share of Pj anyway. So, fixing it to a known value does not leak new information.

59



6.4 Realization of Fcom: Information Theoretic Scenario6 AN ACTIVE SECURE PROTOCOL

In fact, the process terminates already if |Di| > t: It is clear that if Pi is honest, then
j ∈ Di implies that Pj is corrupted. So, for all honest Pi it will always be the case that
|Di| ≤ t. In particular, if it happens that |Di| > t for some Pi, then all parties consider Pi

corrupted and start ignoring all messages from Pi.
This means that whenever some Pi has to share a value s, it will be the case that

|Di| ≤ t. Therefore it is possible to pick a polynomial s(X) of degree ≤ t for which s(0) = s
and s(j) = 0 for j ∈ Di (as at most t + 1 points are fixed). Furthermore, a random such
polynomial can be picked efficiently. Here is one way to do it:

1. First pick a uniformly random polynomial s′(X) of degree ≤ t and with s′(0) = s.
Then compute s′j = s′(j) for j = 1, . . . , n.

2. Compute a correction polynomial c(X) of degree ≤ t with c(0) = 0 and c(j) = s′j for
j ∈ Di. If |Di| < t, then add the restrictions c(j) = 0 for t − |Di| parties Pj with
j 6∈ Di, to get t + 1 restrictions. From these t + 1 restriction c(X) can be computed
using Lagrange interpolation.

3. Let s(X) = s′(X)− c(X).

Clearly, s(0) = s and s(j) = 0 for j ∈ Di. Furthermore, since all parties could compute
c(X) themselves, dealing a sharing using s(X) is as secure as dealing with s′(X) and then all
parties doing the correction sj = s′j − c(j) themselves. Since dealing with s′(X) is perfectly
secure (it is a standard sharing) it follows that dealing with the corrected s(X) is also
perfectly secure. This shows how to do a corrected sharing and that it is secure to use
corrected sharings.

This shows how to make consistent sharings, which in turn gives a secure implementa-
tion of Fcom and then Fsfe. Note that we assumed that t < n/3. Below we show how to
get t < n/2 in the cryptographic model. It is possible to get t < n/2 even in the i.t. model,
but we will not look at this.

6.4.4 Formal Proof for the Fcom realization

We have not given a full formal proof that the Fcom realization we presented really imple-
ments Fcom securely according to the definition. For this, one needs to present a simulator
and prove that it acts as it should according to the definition. We will not do this in detail
here, but we will give the main ideas one needs to build such a simulator — basically, one
needs the following two observations:

• If player Pi is honest and commits to some value xi, then since the commitment
is based on secret sharing, this only results in the adversary seeing an unqualified
set of shares, insufficient to determine xi (anything else the adversary sees follows
from these shares). The set of shares is easy to simulate even if xi is not known,
e.g., by secret sharing an arbitrary value and extracting shares for the currently
corrupted players. This simulation is perfect because our analysis above shows that
an unqualified set of shares have the same distribution regardless of the value of the
secret.

60



6.5 Realization of Fcom: Cryptographic Scenario6 AN ACTIVE SECURE PROTOCOL

If the (adaptive) adversary corrupts Pi later, it expects to see all values related to the
commitment. But then the simulator can corrupt Pi in the ideal process and learn
the value xi that was committed to. It can then easily make a full set of shares that
are consistent with xi and show to the adversary. This can be done by solving a set
of linear equations, since each share is a linear function of xi and randomness chosen
by the committer.

• If Pi is corrupt already when it is supposed to commit to xi, the adversary decides
all messages that Pi should send, and the simulator sees all these messages. As
we discussed, either the commitment is rejected by the honest players and Pi is
disqualified, or the messages sent by Pi determine uniquely a value x′

i. So, the
simulator can compute x′

i and commit to x′
i on Fcom on behalf of the corrupted Pi.

6.5 Realization of Fcom: Cryptographic Scenario

We have now seen how to implement Fcom in the i.t. scenario. Handling the cryptographic
case can be done in various ways, each of which can be thought of as different ways of
adapting the information theoretic solution to the cryptographic scenario.

6.5.1 Using Encryption to Implement the Channels

A very natural way to adapt the information theoretic solution is the following: since the
i.t. protocol works assuming perfect channels connecting every pair of players, we could
simply run the information theoretically secure protocol, but implement the channels using
encryption, say by encrypting each message under the public key of the receiver. Intuitively,
if the adversary is bounded and cannot break the encryption, he is in a situation no
better than in the i.t. scenario, and security should follow from security of the information
theoretic protocol.

In fact, we showed in Section 5 that this is when the adversary is static. So, for a
static adversary, standard semantically secure encryption provides a secure realization of
this communication functionality. It turns out that for an adaptive adversary, one needs
a strong property known as non-committing encryption [11]. The reason is as follows:
suppose player Pi has not yet been corrupted. Then the adversary of course does not know
his input values, but it has seen encryptions of them. The simulator doesn’t know the
inputs either, so it must make fake encryptions with some arbitrary content to simulate
the actions of Pi. This is all fine for the time being, but if the adversary corrupts Pi later,
then the simulator gets an input for Pi, and must produce a good simulation of Pi’s entire
history to show to the adversary, and this must be consistent with this input and what
the adversary already knows. Now the simulator is stuck: it cannot open its simulated
encryptions the right way. Non-committing encryption solves exactly this problem by
allowing the simulator to create “fake” encryptions that can later be convincingly claimed
to contain any desired value.

Both semantically secure encryption and non-committing encryption can be imple-
mented based on any family of trapdoor one-way permutations, so this shows that these
general complexity assumptions are sufficient for general cryptographic MPC. More effi-
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cient encryption schemes exist based on specific assumptions such as hardness of factoring.
However, known implementations of non-committing encryption are significantly slower,
typically by a factor of κ, where κ is the security parameter.

6.5.2 Cryptographic implementations of higher-level functionalities

The above approach only gives the threshold t < n/3, as the i.t. protocol had threshold
t < n/3. Recall, however, that we only needed the assumption t < n/3 when implementing
Fcom. The implementation of Fsfe from Fcom was secure for t < n/2. So, if we could
get an implementation of Fcom for t < n/2, we would have an implementation of Fsfe

for t < n/2. In the cryptographic model, getting such an implementation can be done in
several ways. We sketch one of them.

If the adversary is static, we can use, e.g., the commitments from [13] based on q-
one-way homomorphisms, which exists, e.g., if RSA is hard to invert or if the decisional
Diffie-Hellman problem in some prime order group is hard. We then require that the field
over which we compute is Zq. A simple example is if we have primes p, q, where q|p−1 and
g, h, y are elements in Z

∗
p of order q chosen as public key by player Pi. Then [a]i is of the

form (gr, yahr), i.e., a Diffie-Hellman (El Gamal) encryption of ya under public key g, h.
It is clear how to implements the simple manipulation commands, as the commitment is
linear.

One could then implement the advanced manipulation commands in the way we did
above. One can, however, do better. In [13], protocols are shown for proving efficiently in
zero-knowledge that you know the contents of a commitment, and that two commitments
contains the same value, even if they were done with respect to different public keys. It
is trivial to derive a transfer protocol from this: Pi privately reveals the contents and
random bits for [a]i to Pj (by sending them encrypted under Pj ’s public key). If this is not
correct, Pj complains, otherwise he makes [a]j and proves it contains the same value as
[a]i. In [13] there is also given a protocol showing that a commitment contains the product
of two other commitments. This gives an efficient mult protocol. We note that, in order
to be able to do a simulation-based proof of security of this Fcom implementation, each
player must give zero-knowledge, proof of knowledge of his secret key initially, as well as
prove that he knows the contents of each commitment he makes.

If the adversary is adaptive, the above technique will not work, for the same reasons
as explained in the previous subsection. It may seem natural to then go to commitments
and encryption with full adaptive security, but this means we need to use non-committing
encryption and so we will loose efficiency. However, under specific number theoretic as-
sumptions, it is possible to build adaptively secure protocols using a completely different
approach based on homomorphic public key encryption, without loosing efficiency com-
pared to the static security case[22].
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7 Protocols Secure for General Adversary Structures

It is relatively straightforward to use the techniques we have seen to construct protocols
secure against general adversaries, i.e., where the adversary’s corruption capabilities are
not described only by a threshold t on the number of players that can be corrupt, but by
a general adversary structure, as defined earlier.

What we have seen so far can be thought of as a way to build secure MPC protocols
from Shamir’s secret sharing scheme. The idea is now to replace Shamir’s scheme by
something more general, but otherwise use essentially the same high-level protocol.

To see how such a more general scheme could work, observe that the evaluation of
shares in Shamir’s scheme can be described in an alternative way. If the polynomial used
is f(X) = s+a1X+ ...+atX

t, we can think of the coefficients (s, a1, ..., at) as being arranged
in a column vector a. Evaluating f(X) in points 1, 2, .., n is now equivalent to multiplying
the vector by a Van der Monde matrix M , with rows of form (i0, i1, ..., it). We may think
of the scheme as being defined by this fixed matrix, and by the rule that each player is
assigned 1 row of the matrix, and gets as his share the coordinate of Ma corresponding to
his row.

It is now immediate to think of generalizations of this: to other matrices than Van der
Monde, and to cases where players can have more then one row assigned to them. This
leads to general linear secret sharing schemes, also known as Monotone Span Programs
(MSP). The term “linear” is motivated by the fact any such scheme has the same property
as Shamir’s scheme, that sharing two secrets s, s′ and adding corresponding shares of s
and s′, we obtain shares of s + s′. The protocol constructions we have seen have primarily
used this linearity property, so this is why it makes sense to try to plug in MSP’s instead
of Shamir’s scheme. There are, however, several technical difficulties to sort out along the
way, primarily because the method we used to do secure multiplication only generalizes
to MSP’s with a certain special property, so called multiplicative MSP’s. Not all MSP’s
are multiplicative, but it turns that any MSP can be used to construct a new one that is
indeed multiplicative.

Furthermore, it turns out that for any adversary structure, there exists an MSP-based
secret sharing scheme for which the unqualified sets are exactly those in the adversary
structure. Therefore, these ideas lead to MPC protocols for any adversary structure where
MPC is possible at all.

For details on how to use MPS’s to do MPC, see [15].
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8 A Double Auction

8.1 Introduction

In this section we describe a practical application of secure MPC to implement a secure
double auction, which was used to clear the Danish 2008 market for contracts on sugar
beets. This was the first large scale application of MPC.

In fact, despite the obvious potential that MPC has in solving a wide range of problems,
we have seen virtually no practical applications of MPC in the past. This is probably in
part due to the fact that direct implementation of the first general protocols, as those
described in above sections, would lead to very inefficient solutions. Another factor has
been a general lack of understanding in the general public of the potential of the technology.

A lot of research has gone into solving the efficiency problem, both for general protocols
(cf. [22, 28, 14]) and for special types of computations such as voting. The sugar beets
double auction was developed as part of two research projects SCET (Secure Computing,
Economy and Trust) and SIMAP (Secure Information Management and Processing) car-
ried out at Aarhus University (cf. http://sikkerhed.alexandra.dk/uk/projects/scet/
and http://sikkerhed.alexandra.dk/uk/projects/simap/). These projects aimed at
improving the efficiency of MPC, this time with an explicit focus on a range of economic
applications, which were believe to have particularly interesting for practical use.

In the economic field of mechanism design the concept of a trusted third party has been
a central assumption since the 70’s [29, 35, 21]. Ever since the field was initiated it has
grown in momentum and turned into a truly cross disciplinary field. Today, many practical
mechanisms require a trusted third party. In particular, the SCET and SIMAP projects
considered:

• Various types of auctions. This is not limited to only standard highest bid auctions
with sealed bids but also includes, for instance, variants with many sellers and buyers,
s-called double auctions: essentially scenarios where one wants to find a fair market
price for a commodity given the existing supply and demand in the market.

• Benchmarking, where several companies want to combine information on how their
businesses are running, in order to compare themselves to best practice in the area.
The benchmarking process is either used for learning, planning or motivation pur-
poses. This of course has to be done while preserving confidentiality of companies’
private data.

When looking at such applications, it was found that the computation needed is basi-
cally elementary arithmetic on integers of moderate size, typically around 32 bits. More
concretely, quite a wide range of the cases require only addition, multiplication and com-
parison of integers. The known generic MPC protocols can usually handle addition and
multiplication very efficiently, by using the field K = Zp for a prime p chosen large enough
compared to the input numbers to avoid modular reductions. This gives integer addition
and multiplication by doing addition and multiplication in K.

This is efficient because each number is shared "in one piece"20 using a linear secret

20As opposed to a bit-wise sharing.
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sharing scheme, so that secure addition, for instance, requires only one local addition by
each player. Unfortunately, this also implies that comparison is much harder. A generic
solution would express the comparison operation as an arithmetic circuit over Zp, but this
would be far too large to give a practical solution, because the circuit would not have
access to the binary representation of the inputs. Instead, special purpose techniques for
comparison have been developed. We will have a closer look at these in Section 8.5.

8.2 The Application Scenario

In this section we describe the practical case in which the secure auction was deployed. In
Denmark, several thousand farmers produce sugar beets, which are sold to the company
Danisco, which is the only sugar producing company on the Danish market. Farmers have
contracts that give them production rights, that is, a contract entitles a farmer to produce
a certain amount of beets per year and deliver them to Danisco for a fixed price. These
contracts can be traded between farmers, but trading has historically been very limited
and has been done only via bilateral negotiations. In the years up to 2008, however, the EU
drastically reduced the support for sugar beet production. This and other factors meant
that there was now an urgent need to reallocate contracts to farmers where productions
payed off best. It was realized that this was best done via a nation-wide exchange, a double
auction. The details of this mechanism can be found in [2].

Briefly, the goal is to find the so-called market clearing price, which is a price per unit
of the commodity that is traded (here the contracts for growing sugar beets for Danisco).
What happens is that each buyer specifies, for each potential price, how much he is willing
to buy at that price, similarly all sellers say how much they are willing to sell at each price.
All bids go to an auctioneer, who computes, for each price, the total supply and demand in
the market. Since we can assume that supply grows and demand decreases with increasing
price, there is a price where total supply equals total demand, and this is the price we are
looking for. Finally, all bidders who specified a non-zero amount to trade at the market
clearing price get to sell/buy the amount at this price.

This could in principle be implemented with a single trusted party as the auctioneer.
However, in the given scenario, there are some additional security concerns implying that
this is not a satisfactory solution: Bids clearly reveal information on a farmer’s economic
position and her productivity, and therefore farmers would be reluctant to accept Danisco
acting as auctioneer, given its position in the market. Even if Danisco would never misuse
its knowledge of the bids in future price negotiations, the mere fear of this happening
could affect the way farmers bid and lead to a suboptimal result of the auction. On the
other hand, contracts in some cases act as security for debt that farmers have to Danisco,
and hence the farmers’ organization DKS running the auction independently would not be
acceptable for Danisco. Finally, the common solution of delegating the legal and practical
responsibility by paying e.g. a consultancy house to be the trusted auctioneer would be
a very expensive solution. It was therefore decided to implement an electronic double
auction, where the role of the auctioneer would be played by a multiparty computation
done by representatives for Danisco, DKS and the SIMAP project.

A three party solution was selected, partly because it was natural in the given scenario,
but also because it allowed using efficient information theoretic tools such as secret sharing,
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rather than more expensive cryptographic methods needed when there are only two parties.

8.3 The Auction System

In the system that was deployed, a web server was set up for receiving bids, and three servers
were set up for doing the secure computation. Before the auction started, a public/private
key pair was generated for each computation server, and a representative for each involved
organization stored the private key on a USB stick, protected under a password.

Encrypt and Share Curve. Each bidder logged into the webserver and an applet was
downloaded to her PC together with the public keys of the computation servers. After the
user typed in her bid, the applet secret shared the bids, creating one share for each server,
and encrypted the shares under the respective server’s public key. Finally the entire set of
ciphertexts were stored in a database by the webserver.

As for security precautions on the client side, the system did not explicitly implement
any security against cheating bidders, other than verifying their identity. The reason being
that the method used for encrypting bids implicitly gives some protection: it is a variant
of a technique called non-interactive VSS based on pseudorandom secret sharing presented
in [25]. We will not look at the details of this method, but using it, an encrypted bid is
either obviously malformed, or is guaranteed to produce consistently shared values. This
means that the only cheating that is possible, is to submit bids that are not monotone, i.e.,
bids where, for instance, the amount you want to buy does not decrease with increasing
price, as it should. It is easy to see that this cannot be to a bidders advantage.

Secure Computation. After the deadline for the auction had passed, the servers were
connected to the database and each other, and the market clearing price was securely com-
puted, as well as the quantity each bidder would buy/sell at that price. The representative
for each of the involved parties triggered the computation by inserting her USB stick and
entering her password on her own machine.

The computation was based on standard Shamir secret sharing over K = Zp, where p
was a 64-bit prime. Standard protocols with passive security were used for addition and
multiplication, while a variant of a protocol from [20] was used for secure comparison. The
SIMAP protocol settled for passive security because the most important goal was to avoid
that any party would need access to bids in cleartext at any point, and passive security
already achieves this.

The system worked with a set of 4000 possible values for the price, meaning that
after the total supply and demand had been computed for all prices, the market clearing
price could be found using binary search over 4000 values, which means about 12 secure
comparisons.

8.4 Practical Evaluation and Potential

The bidding phase ran smoothly, with very few technical questions asked by users. The
only issue was that the applet on some PC’s took up to a minute to complete the encryption
of the bids. It is not surprising that the applet needed a non-trivial amount of time, since

66



8.5 Implementation Details 8 A DOUBLE AUCTION

each bid consisted of 4000 numbers that had to be handled individually. A total of 1200
bidders participated in the auction, each of these had the option of submitting a bid for
selling, for buying, or both.

The actual computation was done January 14, 2008 and lasted about 30 minutes. Most
of this time was spent on decrypting shares of the individual bids, which is not surprising,
as the input to the computation consisted of about 9 million individual numbers. As a
result of the auction, about 25.000 tons of production rights changed owner.

Other than the fact that the system worked and produced correct results, it is of course
important what users think. In this connection, one can note the results of an on-line
survey that was conducted simultaneously with the bidding phase. Here, about 80% of the
respondents said that it was important to them that the bids were kept confidential, and
also that they were happy about the confidentiality that the system offered. Also Danisco
and DKS were satisfied with the system, and said that they may well run the auction again
in following years.

In judging the further potential of multiparty computation, it is important to ask what
motivated, at the end of the day, DKS and Danisco to try using such a new and untested
technology? One important factor was simply the obvious need for a nation-wide exchange
for production rights, which had not existed before, so the opportunity to have a cheap
electronic solution —secure or not— was certainly a major reason.

It does seem, however, that security also played a role. If Danisco and DKS would have
tried to run the auction using conventional methods, one or more people would have had
to have access to the bids, or control over the system holding the bids in cleartext. As a
result, some security policy would have had to be agreed, answering questions such as: who
should have access to the system and when? who has responsibility if data leaks, and what
are the consequences? Since the parties have conflicting interests, this would have lead to
very lengthy discussions, possibly bringing the whole project to a halt. Alternatively, the
parties might have found a solution in collaboration with a consultancy house as mediator,
but this would have been a more expensive solution, and the parties would still have had
to agree on whether the mediator’s security policy was satisfactory.

As it happened, there was no need for this kind of negotiations at all, since the multi-
party computation ensured that no one needed to have access to bids at any point. The
conclusion is that the ability of multiparty computation to keep secret everything that
is not intended to be public, really is useful in practice, because it short-circuits discus-
sions and concerns about which parts of the data are sensitive and what common security
policy one should have for handling such data. In contrast, if some part of the system
—even a secure hardware device— has access to the private data in cleartext, one is forced
to administrate that part via a security policy that all parties can agree on. It may be
time-consuming, expensive or even impossible to reach such an agreement if parties have
conflicting interests. One might expect that multiparty computation will turn out to be
useful in many similar practical scenarios in the future

8.5 Implementation Details

In this section we describe the technical detail of how the secure computation of the market
clearing price was performed.
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We assume that there are P different prices, p1, . . . , pP , B buyers, S sellers, and n
servers. We start at a point where each buyer j = 1, . . . , B for each price pi shared an
integer di,j among the servers. We denote the sharing by [di,j ]. The integer di,j specifies
how much the buyer is willing to buy if the price turns out to be pi. Similarly, we assume
that each seller j = 1, . . . , S for each price pi shared an integer si,j among the servers. We
denote the sharing by [si,j]. The integer si,j specifies how much the seller is willing to sell
if the price turns out to be pi.

8.5.1 Discrete Market Clearing Price

The goal, given by economic mechanism design, is now to find the price where most goods
are moved. For this, the servers first run the following code:

1. For all prices pi, compute sharings

[di] =

S
∑

j=1

[di,j ]

and

[si] =
S

∑

j=1

[si,j] ,

by locally adding shares, i.e., use the protocol for adding shared values.

2. The output is a secret shared demand "curve” [d1], . . . , [dP ] and a secret shared supply
"curve" [s1], . . . , [sP ].

If the demand d and supply s were continuous functions of the price p and were
monotonously decreasing respectively monotonously increasing, then the price pmcp where
most goods would be traded is given by d(pmcp) = s(pmcp). Below this price the supply is
smaller (or at least not larger) and above this price the demand is smaller (or at least not
larger), which leads to a lower amount being traded (or at least not more).

We assume that the curves computed in shared form are monotone as specified above.
They are, however, not continuous. We will therefore first compute

imcp = max{i : dimcp
> simcp

} .

We can assume that d1 > s1 (by e.g. setting p1 = 0), which ensures that imcp is well-
defined.21 It is then easy to see that the price trading most goods is pimcp

or pimcp+1. For
our purpose here we simply define the discrete market clearing price to be pimcp

. If the
price grid is fine enough we expect the amount of goods being traded at pimcp

and pimcp+1

to be the same for all practical purposes. In the practical application more involved choices
were used to choose between the two possible clearing prices.

21Alternatively we can introduce some dummy price p0 and define s0 = 0 and d0 to be the maximal
amount and create some dummy sharings [s0] and [d0].
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Algorithm 1: Compare

start state: sharings [a] and [b]
end state : sharing [c] where c = 1 if a > b and c = 0 otherwise

([aℓ], . . . , [a0]) = Bits([a]);1

([bℓ], . . . , [b0]) = Bits([b]);2

for i = 0, . . . , ℓ do3

[ci] = [ai] + [bi]− 2[ai][bi];4

([dℓ], . . . , [d0]) = MS1([cℓ], . . . , [c0]);5

for i = 0, . . . , ℓ do6

[ei] = [ai][di];7

[c] =
∑ℓ

i=0[ei].8

8.5.2 Binary Search

To find imcp the servers simply do a binary search on i ∈ {1, . . . , P}. They start with
i = ⌈P/2⌉ and securely test whether di > si. If so, they go to a higher price; if not, they
go to a lower price. This way they arrive at imcp using log2(P ) secure comparisons. By
securely testing, we mean that they leak whether di > si, and nothing else.

Note that doing a binary search does not violate the security goal of leaking only imcp.
Given imcp one knows that di > si for all i ≤ imcp and di ≤ si for all i > imcp. Therefore
the outcome of all the comparisons done during the computation can be simulated given
just the result imcp.

The binary search is important for the feasibility of the system, as each secure com-
parison is relatively expensive, meaning that the difference between e.g. 4000 comparison
and ⌈log2(4000)⌉ = 12 comparisons would be a difference between running for minutes and
running for hours.

After imcp is found, the individual values dimcp,j and simcp,j are reconstructed, and the
goods are traded at price pimcp

and in the revealed amounts.

8.6 Secure Comparison

The above approach leaves us only with the problem of taking two secret shared integers
[a] and [b] and securely computing a bit c ∈ {0, 1}, where c = 1 if and only if a > b. We
write

c = [a]
?

>[b] .

Unfortunately there is no efficient algorithm for computing c from a and b using only
addition and multiplication modulo p. Instead we will take an approach which involves
first securely computing sharings of the individual bits of a and b, and then performing the
comparison on the bit-wise representations.

Assume first that we have a protocol Bits which given a sharing [a] securely com-
putes sharings [aℓ], . . . , [a0], where ℓ = ⌊log2(p)⌋ and aℓ · · · a0 is the binary representation
of a, with a0 being the least significant bit. I.e., a =

∑ℓ
i=0 2iai. Assume furthermore
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Algorithm 2: MS1

start state: sharings [cℓ], . . . , [c0] of bits
end state : sharings [dℓ], . . . , [d0], where dℓ · · · d0 = MS1(cℓ · · · c0)

let [fℓ+1] be a dummy sharing of 1;1

for i = ℓ, . . . , 0 do [fi]← [fi+1](1− [ci]);2

for i = ℓ, . . . , 0 do [di]← [fi+1]− [fi];3

that we have a protocol MS1 which given sharings [cℓ], . . . , [c0] of bits computes sharings
[dℓ], . . . , [d0] of bits, where di = 1 for the largest i for which ci = 1 and where di = 0 for
all other i — if all ci = 0, then let all di = 0. I.e., [dℓ], . . . , [d0] can be seen as a unary
representation of the index i of the most significant 1 in c.

We assume that it never happens that a = b. I.e., a > b or b > a. This can be
guaranteed by introducing some dummy, different least significant bits. The comparison
is then performed as in Algorithm Compare. A computation like [ai] + [bi] − 2[ai][bi]
means that the parties first run the multiplication protocol the compute a sharing of aibi.
Then they run the multiplication protocol with the result of this and a dummy sharing of
−2 to get a sharing of −2aibi. Then they run the addition protocol twice to get a sharing
of ai + bi − 2aibi.

It is easy to see that ci ∈ {0, 1} and ci = 1 if and only if ai 6= bi. So, the i for which
di = 1 is the most significant bit position in which a and b differ. Therefore a > b if and
only if ai > bi, and as ai 6= bi we have that ai > bi if and only if ai = 1. So, the result is
c = ai, which can be computed as

∑

j ajdj , as only di = 1. So, the value of c is correct.
Clearly the protocol is secure, as no values are opened during the computation—all

computations are done on secret shared values using secure sub-protocols. Note that we
computed a sharing of c. When c is needed one can simply reconstruct [c] towards all
parties. If the comparison is done as a part of a larger secure computation it is, however,
in some cases necessary to not leak c. We will see an example of that below.

We also use a version BitCompare which starts with bit-wise sharings ([aL], . . . , [a0])
and ([bL], . . . , [b0]) and computes [c].22 Such a protocol is a special case of Compare, and
does not need Bits as sub-protocol.

Using simple techniques we can also develop a secure protocol BitAdd, which takes bit-
wise sharings ([aL], . . . , [a0]) and ([bL], . . . , [b0]) and produces a bit-wise sharing ([cL+1], [cL], . . . , [c0])
of c = a+ b (without any modular reduction). And we can produce a secure protocol Bit-

Sub, which takes bit-wise sharings ([aL], . . . , [a0]) and ([bL], . . . , [b0]) of a ≥ b and produces
a bit-wise sharing ([cL], . . . , [c0]) of c = a− b. For all these protocols we also use versions
where some inputs might be known bits instead of shared bits, e.g., b0 instead of [b0]:
simply first do a dummy sharing of [b0] of b0 and then run the corresponding protocol for
shared values. Finally we need the protocol MS1. These three protocols all start with a
binary representation and are therefore fairly easy to construct.

As an example we look at MS1, see Algorithm MS1. Note that it only uses addition

22We use L as bound as it might be the case that L 6= ℓ.
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Algorithm 3: Bits

start state: sharing [a] of a ∈ Zp

end state : sharings [fℓ], . . . , [f0] of the bits of a

([r], [rℓ], . . . , [r0])← RandomSolvedBits;1

[c] = [a]− [r];2

c← Reconstruct([c]);3

write c in binary cℓ, . . . , c0;4

([dℓ+1], . . . , [d0])← BitAdd(([rℓ], . . . , [r0]), (cℓ, . . . , c0));5

write p in binary (pℓ+1, pℓ, . . . , p0);6

[e] = BitCompare(([dℓ+1], . . . , [d0]), (pℓ+1, . . . , p0));7

for i = 0, . . . , ℓ + 1 do [epi] = [e][pi];8

([fℓ+1], . . . , [f0])← BitSub(([dℓ+1], . . . , [d0]), ([epℓ+1], . . . , [ep0]));9

Algorithm 4: RandomSolvedBits

end state : sharing [r] of a random unknown field element r ∈ Zp

end state : sharings [rℓ] . . . , [r0] of the bits of r

c← 0;1

while c = 0 do2

for i = 0, . . . , ℓ do [ri]← RandomBit();3

write p in binary pℓ, . . . , p0;4

[c]← BitCompare((pℓ, . . . , p0), ([rℓ], . . . , [r0]));5

c← Reconstruct([c]);6

[r]←∑ℓ
i=0 2i[ri];7

and multiplication of shared values as it should. As for the correctness, note the fi is
always a value from {0, 1} and that it is 0 if and only if fi+1 = 0 or ci = 1. In particular,
when fj = 0, then fk = 0 for all k < j. Furthermore, since we start with fℓ+1 = 1 it follows
that fi = 1 for i = ℓ, . . . , i0 where i0 is the smallest index such that all the bits cℓ, . . . , ci1

are 0. As an example, if c = c7 · · · c0 = 00010010, then f8f7 · · · f0 = 111100000. Note then
that fi+1 − fi is 0 if fi+1fi = 11 or fi+1fi = 00 and that fi+1 − fi is 1 if fi+1fi = 10. So,
di will be 0 everywhere, except where the sequence 111100000 changes from 1 to 0. In our
example where f8f7 · · · f0 = 111100000 we get that d7 · · · , d0 = 00010000. In general, di

will be 1 exactly where the first 1 is found in c, as it should be.

Exercise 15 Implement BitAdd and BitSub securely using in the order of ℓ secure
multiplications. The number of secure additions is not important, as they are cheap in
that they do not require communication. [Hint: Iterate from the least significant bit to
the most significant one, and keep a carry bit. The challenge is to only use addition and
multiplication.]
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We then turn our attention to Bits. At first this seems as a hard challenge, but as
often is the case in MPC, a random self reduction will do the job. I.e., we generate a random
solved instance of the problem, and then use it to solve the original problem. In doing that,
we use the randomness of the solved instance to mask the original instance, which allows
to reveal the masked values and do most of the hard operations on plaintext. This is a
very common technique.

Assume that we have a secure protocol RandomSolvedBits which outputs a random
sharing [r] along with sharings of its bits ([rℓ], . . . , [r0]). As we show later, producing
such a random solved instance is fairly easy. The protocol then proceeds as described in
Algorithm Bits.

The protocol reconstructs only one value, namely c. Since c = a − r mod p and r is
an unknown uniformly random value in Zp independent of a, the value c is a uniformly
random number in Zp independent of a, so it is secure to let all parties learn c. Therefore
the protocol is secure. It takes a little more work to see that it is correct.

First note that d = c + r. Since c = a− r mod p this means that d = a or d = a + p.
The later case happens when r > a such that a−r mod p gives a wrap around. We find out
which case we are in by (securely) comparing d to p: the bit e is 1 if d = a+ p and it is 0 if
d = a — we can write this as d = a + ep. The next step then (securely) subtracts ep from
d. In the for-loop we compute a bit-wise sharing of ep. Then we use a secure subtraction.
It follows that fℓ+1, fℓ, . . . , f0 is the bit-wise representation of d − ep = a. Since a is an
ℓ-bit number we in particular knows that fℓ+1 = 0, so we only have to use [fℓ], . . . , [f0] as
the result.

We are then stuck with RandomSolvedBits. For a last time we push some of the
burden into the future, by assuming that we have a protocol RandomBit which generates
a sharing of a random bit. Then a random solved instance is generated as in Algo-

rithm RandomSolvedBits. We essentially generate a random element r ∈ Zp by using
secure rejection sampling. Since r < p with probability at least 1

2 , by the definition of ℓ,
this protocol terminates after an expected two iterations, and on termination r is clearly
a uniformly random integer from [0..p), as desired.

Note that the reason why generating a random solved instance is easier than solving
a given instance is that we do not solve the random instance — we generate the solution
(the bits) and then generate the instance from the solution.

All that is left is then to implement RandomBit. One inefficient way of doing it is to
let all parties generate a sharing of a random bit and then e.g. take the secure XOR of these
bits.23 The reason why this is inefficient is that it would require n− 1 multiplications for
each of the generated bits. With three servers that is fine, but in general it can be rather
inefficient. Furthermore, it is not actively secure as the servers might not all contribute
bits, and as can be seen, all the above protocols are indeed active secure if the sub-protocols
are active secure, so we should try to also make the generation of random bits active secure.

Our active secure protocol is based on the fact that squaring a non-zero element modulo
an odd prime is a 2-to-1 mapping, and given b = a2 one has no idea if the pre-image
was a or −a. We will let the "sign" of such an a be our random bit. We use a sub-

23The XOR of bits a and b can be expressed via addition and multiplication as a + b − 2ab.
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Algorithm 5: RandomBit

end state : a sharing [r] of a random unknown bit

A← 0;1

while A = 0 do2

[a]← RandomFieldElement;3

[a2] = [a][a];4

A← Reconstruct([a2]);5

b←
√

A mod p;6

[c] = (b−1 mod p)[a];7

[r] = 2−1([c] + 1);8

protocol RandomFieldElement which generates a sharing of a random field element. It
is implemented by each server sharing a random field elements and then adding them. Here
there is no room to cheat: as long as just one server contributes a random field element,
the result is random.

The protocol is given in Algorithm RandomBit. It rejects when A = 0 to ensure
that we started with a ∈ Z

∗
p. When the loop terminates, then A = a2 mod p for a uniformly

random a ∈ Z
∗
p. Since A only has two square roots, as we are computing modulo a prime,

and since a is one of them, it follows that b = a or b = −a mod p. Since A = a2 mod p
and A = (−a)2 mod p, the value b =

√
A mod p is clearly independent of whether A

was computed as A = a2 mod p or A = (−a)2 mod p, no matter which algorithm is used
for computing the square root. Since a was chosen uniformly at random it follows that
Pr[b = a] = 1

2 and Pr[b = −a mod p] = 1
2 . If b = a, then b−1a mod p = 1 and thus r = 1.

If b = −a mod p, then b−1a mod p = −1 mod p and thus r = 0. So, Pr[r = 1] = 1
2 and

Pr[r = 0] = 1
2 . Since [a] is not reconstructed, no party knows whether r = 0 or r = 1.

8.6.1 Conclusion

By inspection of the above protocols, and given a solution to Exercise 15, it can be seen that
all protocols use a number of multiplications in the order of log2(p), and the unmentioned
constant is fairly small. This allows to perform comparisons of shared integers relatively
efficiently. The ability to split a shared number has many other applications. One is to
move a number x shared modulo one prime p into a sharing modulo another prime q. If
q is smaller than p, this computes a modulo reduction of x modulo q. Many similar tricks
exists, and are constantly being produced, to allow efficient secure computation of specific
operations.

Exercise 16 Above we had to compute
√

A mod p. When p is a prime and A is a square
modulo p this can be done efficiently. The algorithm depends on whether p mod 4 = 1 or
p mod 4 = 3. Note if p > 2, then p is odd, so it cannot be the case that p mod 4 ∈ {0, 2}. If
p mod 4 = 3, then

√
A mod p = A(p+1)/4 mod p. I.e., if you let b = A(p+1)/4 mod p, then

b2 mod p = A. Notice that A(p+1)/4 is well defined as p mod 4 = 3 implies that p = 4m + 3
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for some integer. Therefore p + 1 = 4m + 4 = 4(m + 1) and (p + 1)/4 = m + 1 is an
integer, as it should be for A(p+1)/4 to be defined. Prove that b2 mod p = A. [Hint: Use
that A = a2 mod p for some a and that p + 1 = (p− 1) + 2, and a little theorem.]

Exercise 17 Assume that you are given a sharing [a] of an element a 6= 0, and assume
that you can generate a sharing [r] of a uniformly random element r 6= 0. Argue that it is
secure to compute [ar] = [a][r] and reveal ar. Show how to securely compute [a−1] from [a].

Exercise 18 In a Vickrey auction there is a single item, and a number of buyers Bi. Each
buyer Bi bids a price pi. The winner is the buyer with the highest bid, and the winner gets
to buy the item, but at the second highest bid. Assume that all prices are different and
describe a protocol which computes the winner and the price, and which leaks noting else.
You are allowed to assume that you have access to some servers of which more than half
are honest. Try to make the system as efficient as possible.
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9 Consensus Broadcast

In the above section we designed protocols for a setting where communication takes place
using Fsb, which in particular means that we assumed that we had access to consensus
broadcast. In real life no ideal consensus broadcast is present, so the consensus broadcast
has to be implemented using a protocol. In this section we take a brief look at how to
implement consensus broadcast between n parties P1, . . . , Pn. Many more details can be
found in [36, Chapter 7], where it is in particular shown how to UC implement Fsb. Here
we look at a modified version of a protocol by Dolev and Strong[24]. This protocol uses
signatures to make it possible to prove to others that a particular message was received.

9.1 The Dolev-Strong Protocol

We assume that each party Pi has a key pair (ski, vki) for a digital signature scheme
(sig, ver), where ski is the private signing key and vki is the public verification key. We
use σ ← sigski

(M) to denote the computation of a signature on message M and we use
vervki

(M,σ) to denote the verification of a signature σ on message M—the verification
returns valid or invalid.

To motivate the protocol, consider an implementation of consensus broadcast where we
simply ask a party Ps, acting as sender in some round r0, to sign M = (r0, s,m) and send
M and the signature σ on M to all parties. Signing this value is the party’s way of saying
that in round r0, I Ps send the message m.

We then instruct the other parties to only accept a message m as sent by Ps in round
r0 if it receives a signature on the above M from Ps at the beginning of round r0 + 1. If
Pi accepts a message it outputs (r0, s,m) to signal that it believes Ps sent message m in
round r0. This approach of course does not work. Recall namely that the goal is that all
honest parties agree on which messages all other parties send in each round. In the above
protocol a corrupted Ps could send (r0, s,m) and σ = sigsks

(r0, s,m) to some honest Pi

and (r0, s,m
′ 6= m) and σ′ = sigsks

(r0, s,m
′) to some other honest Pj . As a result Pi and

Pj will not agree on the message broadcast by Ps in round r0.
The next natural attempt is then to compare views. I.e., when a party Pi receives

M = (r0, s,m) and σ = sigsks
(M) from Ps, it sends M and σ to all other parties and

wait to receive similar M ′ and σ′ from all other parties. If it receives M ′ = (r0, s,m
′ 6=

m) and σ′ = sigski
(M ′) from some other Pj , then Pi knows that Ps is cheating and

can e.g. choose not to output any message of the form (r0, s, ·)—the parties could also
choose some default message no-messages and output (r0, s, no-messages) to signal the
Ps broadcast no messages in round r0. The above protocol still does not work, at least not
if there are more than one corrupted party. Assume e.g. that P1 and P2 are honest and P3

and P4 are corrupted, and that s = 4, i.e., P4 acts as sender. Now P4 sends (r0, 4, 0) and
σ = sigsk4

(r0, 4, 0) to P1, P2 and P3 and additionally sends (r0, 4, 1) and σ′ = sigsk4
(r0, 4, 1)

to P3. Then P3 relays (r0, 4, 0) and σ = sigsk4
(r0, 4, 0) to P1 and relays (r0, 4, 1) and

σ′ = sigsk4
(r0, 4, 1) to P2. As a consequence the execution looks perfectly correct to P1,

which outputs (r0, 4, 0). The party P2, however, sees two different signed messages (namely
(r0, 4, 0) from P1 and (r0, 4, 1) from P3) and thus outputs (r0, 4, no-messages).

To combat the above attack one would have to compare all signatures received in round
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Protocol Basic Dolev-Strong:

setup: We assume that all parties know and agree on the verification keys
(vk1, . . . , vkn) of all other parties before the protocol is started.

send: Each party Ps: On input (broadcast,m) in round r0 proceed as follows:a

1. M ← (r0, s,m).

2. Output (r0, s,m).

3. σs ← sigsks
(M).

4. Σ′ ← {σs}.
5. Send (r0, s,m,Σ′) to each Pj 6= Ps.

b

relay: Each party Pi: On receiving a message of the form (r0, s,m,Σ) in round
r (from any other party), where Pi not already output (r0, s,m), proceed
as follows:

1. M ← (r0, s,m).

2. rδ ← r − r0.

3. If Σ is an rδ-signature for M and Ps is one of the signers and Pi is not
one of the signers, proceed as below. Otherwise, stop the processing of
(r0, s,m,Σ) now.

4. Output (r0, s,m).

5. σi ← sigski
(M)

6. Σ′ ← Σ ∪ {σi}.
7. Send (r0, s,m,Σ′) to each Pj which is not a signer from Σ.c

aWe allow that each party Ps, s ∈ {1, . . . , n}, can broadcast more than one message in each
round. We use r0 to denote the round a message was (supposedly) sent.

bThis message is received at the beginning of round r0 + 1 by all other parties.
cThis message is received at the beginning of round r + 1 by each such Pj .

Figure 16: The basic Dolev-Strong protocol

2, which gives a three-round protocol. This is, however, not enough if three corrupted
parties cooperate, in which case four rounds are needed, and so on. This regression stops,
fortunately, as there is only a fixed number of corrupted parties. If we want to tolerate all
the way up to t = n− 1 corrupted parties, then t + 1 = n round will do.

Below we will call a set Σ a ℓ-signature on a message M if it contains a signature σj on
M from ℓ distinct parties Pj , i.e., there exist ℓ distinct parties Pj such that for each such
Pj there exists σj ∈ Σ for which vervkj

(M,σj) = valid. We call a party Pj a signer from

Σ if Pj is one of these ℓ parties. The details of a basic form of the Dolev-Strong protocol
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are given in Fig. 16.
The protocol can be shown to have the following three properties.

validity: If Ps and Pi are honest, then Pi outputs (r0, s,m) if and only if Ps has input
(broadcast,m) in round r0.

agreement: If any honest party Pi outputs (r0, s,m), then all honest parties Pj eventually
output (r0, s,m). This holds even when Ps is corrupted.

termination: If Pi is honest, then Pi never outputs a message of the form (r0, s,m) after
round r0 + n.

By the termination property all parties Pi know that by round r0 +n they have decided
on what messages was sent by which parties in round r0. By agreement they know that they
decided on the same set of messages, and by validity they know that they decided that an
honest Ps sent m if and only if Ps actually intended to send m. It might be a problem that
it takes n rounds to decide, as messages sent or broadcast in rounds r0 + 1, . . . , r0 + n− 1
cannot depend on messages broadcast in round r0. The only generic way out of this problem
is to do nothing in these rounds except running the Dolev-Strong protocol—simply wait
until there is guaranteed agreement on which parties sent what and then run the next round
of the protocol. In special protocols one can of course exploit the intermediary rounds to
do other computations. There is provable no way out of waiting for a lot of rounds to get
agreement: any consensus broadcast protocol tolerating t corruptions must have a worst
case running time of at least t + 1 rounds.

9.2 Analysis

We now argue that the protocol has the claimed properties.
Validity is almost trivial. The party Ps outputs (r0, s,m) in round r0 by construction

of send. All other honest Pi 6= Ps will receive (r0, s,m, {sigsks
(r0, s,m)}) at the beginning

of round r0 + 1 and will then output (r0, s,m) in round r0 + 1, as they have rδ = 1
and {sigsks

(r0, s,m)} contains one valid signature from Ps 6= Pi. The only non-trivial
observation to be made is that no honest Pi will output (r0, s,m

′) if Ps does not have
input (broadcast,m′) in round r0, as this (by the check in Step 3 in relay) requires that
Pi receives at least one signature on (r0, s,m

′), and Ps never signs (r0, s,m
′) when it does

not get the input (broadcast,m′) in round r0.
We then consider agreement. Assume that some honest party Pi outputs (r0, s,m). We

have to argue that then all other honest parties also output (r0, s,m). For simplicity of
the argument, let r be the first round in which some honest Pi output (r0, s,m), and let
Pi denote any of the honest parties which output (r0, s,m) in round r.24 We have to argue
that all other honest parties output (r0, s,m) in some round r′ ≥ r (actually they do so at
the latest in round r + 1).

If Pi = Ps, then the argument follows as for validity. Assume then that Pi 6= Ps. This
means that Pi output (r0, s,m) in relay, so Pi passed the check in Step 3, which means

24Note that if Ps is honest, then r = r0 and Pi = Ps. If Ps is corrupt it might be that r > r0 and it will
always be the case that Pi 6= Ps.
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that Σ is an rδ-signature for (r0, s,m), where Pi is not one of the signers. This means that
when Pi adds σi to extend Σ to Σ′, then Σ′ becomes an (rδ + 1)-signature for (r0, s,m).
The party Pi sends this value to all Pj which are not signers from Σ and they receive it
in round r′ = r + 1. By definition of r, no honest party Pj outputs (r0, s,m) in a round
r′ < r, so since a party Pj only signs (r0, s,m) after having output (r0, s,m), it follows
that no honest Pj signed (r0, s,m) in a round r′ < r. Hence, since Σ was received in round
r, no honest party Pj is a signer from Σ, which means that all honest parties Pj receive Σ′

in round r′ = r + 1, where they have r′δ = r′ − r0 = r + 1 − r0 = rδ + 1. So, Σ′ will for
all these honest parties Pj be an r′δ-signature for (r0, s,m) where Ps is a signer and where
they themselves are not signers. Therefore they all output (r0, s,m) in round r + 1 (unless
they did so already in round r.)

Exercise 19 Show that if there are f corrupted parties, then no honest party will output
a message of the form (r0, ·, ·) after round r0 = f + 1.

Exercise 20 Consider the following simple protocol for broadcast: when Ps gets input
(broadcast,m) in round r0 it lets M ← (r0, s,m), σs ← sigsks

(M) and sends (M,σs) to
all parties. When a party Pi receives a value of the form ((r0, s,m), σs) from any other
party, where vervks

((r0, s,m), σs) = valid, then it outputs (r0, s,m) (if it did not already
do so) and sends ((r0, s,m), σs) to all other parties. Which of the properties validity,
agreement and termination does this protocol have and which does it not have? Argue
for your answer.

Exercise 21 Use K = Z7 and n = 5 and t = 2. Create a sharing of s = 4. Derive the
formula which in general allows to reconstructing the secret s from just the shares s2, s3, s4.
Check that it works on your concrete sharing.

9.3 Results on Consensus Broadcast

Above we described a consensus broadcast protocol which can tolerate any number of
corrupted parties. It is known that if one does not assume that any setup is possible,
such as the public keys in the above example, then it is only possible to tolerate t < n/3
corrupted parties[26]. It seems one could just start by distributing public keys and then
run the Dolev-Strong protocol, but getting to agree on who has which public key is a
consensus problem in itself!

The Dolev-Strong protocol uses signatures and therefore has computational security.
If we allow a setup where pairs of parties share some correlated secret values, then it
is, however, possible to implement a tool called pseudo-signatures, which has the same
functionality as digital signatures of being transferable authenticators, but which opposed
to digital signatures are unconditionally secure. Using such pseudo-signatures instead of
digital signatures, it is possible to implement unconditionally secure consensus broadcast
secure against any number of parties, i.e., t < n.[39]
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