
Group 4 dCryptology
DVD Copy Protection

dCryptology
DVD Copy Protection

By

Kasper Kristensen, 20072316
Asger Eriksen, 20073117
Mads Paulsen, 20072890

Page 1 of 22

Group 4 dCryptology
DVD Copy Protection

Content Scrambling System...3
The keys..4
How it works..4
The decryption..4
LFSR...5
How is the output used:..5
Key decryption...7
Mutual Authentication:...8

CSS ATTACKS:..9
Mangling Process...9
LFSR attacks..9
Playerkey attack..11
Hash attack...11

DeCSS:...13
CPPM/CPRM and the 4C Entity ...15

Media Key Blocks..16
Cryptomeria..17
Attacks on Cryptomeria..19
WinDVD...20
Conclusion..21
Resource List..22

Page 2 of 22

Group 4 dCryptology
DVD Copy Protection

Content Scrambling System

Content Scrambling System or CSS is being used to protect DVDs againts piracy and to add the
region-based viewing restrictions, so that you only can watch DVDs bought in your own region.

To explain CSS, we will look at the DVD player as three components namely the DVD, the DVD
player and the host.

The DVD contains 2 things, the video itself and “a hidden area”, which is used to store some keys,
that will only be given to an authenticated device.

The DVD player stores a couple of different things used to authenticate itself. It has a playerkey,
which is used to decrypt the key on the DVD, a region code, that defines what area this player is
from and a “secret” key used for authentication.

The host contains the secret, that they use for the private key authentication.

Page 3 of 22

Group 4 dCryptology
DVD Copy Protection

The keys

The playerkey, which is the key, that is given to the manufacturer of the DVD player by the DVD
Copy Control Association. This is stored within the player, and is used to decrypt the disk key.
There's a total of 409 playerkeys.

The Disk-Key. This key is used to encrypt the title key, and is itself decrypted by using the
playerkey. A table of the disk key encrypted under all the 409 playerkeys is stored on a hidden
sector of the DVD. In that sector, the disk key encrypted under the disk key is also stored. The
reason to do this, is so the player can verify, that it got the right disk key.

The title key, which is XORed with the sector key, and is then used to encrypt the data in a sector.

The sector key, which is a 128 byte plain-text header for each of the 2048 byte sectors. The bytes
80-84 in the header, is an additional key, that is used to encode the data in the sector.

The Authentication key, which is used as the “secret” key for the mutual authentication process.

The session key, that is negotiated when we authenticate, and is used to encrypt disk keys and
more, while sending them over the bus, which is unprotected. We need this to prevent
eavesdropping.

How it works

The first step: is, that they, host and player, have to authenticate to each other, to make sure, that
they actually are who they say they are. This is done by a challenge-response system, and in the
process, they come up with a session key.

Second step: Now the DVD player have to decode the information on the DVD. The DVD player
now tries the different playerkeys, until it can decode the disk key, which is diskwide.

Third step: this is where the title and bus key are sent from the player to the host. Here we use the
session key found in the first step, to prevent a man-in-the-middle attack.

Fourth step : simply sending a sector from the dvd to the host.

Fifth step : is the host decoding the title key by using the disk key.

Sixth step: here the host finally decodes the sector by using the title key and the sector key, that can
be found in the sectors header.

The decryption

The data is decrypted using the Linear Feedback Shift Registers (LFSRs). From this we get a stream
of pseudo-random bits, that we XOR with the data that we want to encrypt. Now the host can
recreate the bit-stream and XOR again, that thus get the plaintext.

Page 4 of 22

Group 4 dCryptology
DVD Copy Protection

LFSR

The generic LFSR takes a seed as input and with each clock tick some predefined bits are given to a
“feedback function”. Now the output of the feedback function is given being shifted into the register
again. The output from the normal LFSR is the bits that is shifted out.

They way CSS use LFSR is a little different from the normal way, because they actually throw the
bit that is normally considered output away. They actually use 2 LFSRs, one with 17 bits and one
with 25. They set bit4 (counting from 0) to 1 in the initial state of both registers to prevent null-
cycling, in case all bits of the seeds are 0. Instead of using the bit shifted out as output, it uses the
output of the feedback function as output. So far we have seen three articles that state three different
sets of bits that are used for the feedback function, meaning for the rest of the the report, we will not
refer to the actual bits that are used for taps, and any pictures taken from our sources may have
different opinions on which bits are used.
This is not a serious problem as it should be possible to actually test which bits are used, using a
legal player... We have not done this, though.

How is the output used:

We combine the output from the 2 LFSRs using 8-bit addition, meaning when we have made 8
ticks, 1 byte, from each register, then we add the bytes together with an 8-bit adder, including the
carry from the last round. This means that if we output 2 bytes from each, then the second byte will
be LFSR17Out(2) + LFSR25Out(2) + carry(1).

The fun, or sad, thing about this, is that its not really a good way of using the LFSRs, its actually
pretty weak. They could have used more LFSRs and done something more complicated fx using
different clock rates, but they didnt.

Page 5 of 22

Group 4 dCryptology
DVD Copy Protection

The way we actually use the LFSRs is by seeding them with the key given to the en/decrypt, first
two bytes are given to the LFSR17 and the three last are given to the LFSR25.
Now that we have seeded both the LSFRs, we can create the bit stream that we talked about above,
and XOR it with the plaintext to generate the ciphertext. They also used a so called S-box, before
they do the XOR. What the S-box does, is basically obscure the relationship between the key and
the ciphertext. The reason is really unknown, since we know the S-Box, we will not reverse the S-
Box, but refer to it as a one-way function F, since it is not bijective.

Page 6 of 22

Group 4 dCryptology
DVD Copy Protection

Key decryption
Besides decryption described earlier, CSS does a little more, to protect the keys. It uses a two-step
mangling operation, so that the keys arent just in plaintext. This is done as shown in the picture.
Decryption(data, key), data and key are 5 bytes long each. A1...A5 is the data bytes, k1...k5 is the
first 5 output bytes when the LFSR streamcipher is given the key as seed and C1...C5 is the output
bytes of the decryption. F is a one-way function (not-bijective) and is implemented with lookup-
tables. B1...B5 are intermediate stages that will be used when discussing the attacks on CSS.

Page 7 of 22

Group 4 dCryptology
DVD Copy Protection

Mutual Authentication:

This is used between the player and the host, so that they “know” that they are talking to each other.
During the authentication, they also make the session key, that they need for data transfer later, so
that people cant just read the plaintext when they are communicating. The session key created is
called the session key or bus key. Authentication starts with the host requesting an Authentication
Grant ID(AGID) from the drive. Next, the host created a nonce and sends it to the drive. Now the
drive encrypts the nonce, and sends it back to the host, so the host can decrypt it, and verify that the
drive actually has the correct key and knows the right algorithm. The same thing is done the other
way around, for the drive to make sure, that its actually talking to the host. A problem here is that
this is a secret key system, and that the key has to be within all DVD players.

But now, both the host and the drive have a nonce from each other, and then they combine them,
encrypt them, and uses the result as the session key, which is now used to encrypt the data they send
between each other.

Page 8 of 22

Group 4 dCryptology
DVD Copy Protection

CSS ATTACKS:

CSS has a number of flaws.

Firstly, the key bit-length is only 40 bits, which isn't much, so it's susceptible to brute-force attack.
Secondly, one can find another playerkey in ~216 time, by using an already known playerkey.

Mangling Process
If we look at the Mangling function then we see it uses output from the LFSR streamcipher (5 bytes
to be exact).
Let us assume we know C1...C5 and A1...A5 (input and output).
The problem is that if we guess 1 byte correct, then we can calculate the other bytes.

If we guess k5 (28 possibilities, not much), then we can just reverse the whole operation.

B5 = XOR(F(A5), A4, k5)
B4 = XOR(F(B5), C5, k5)
k4 = XOR(F(A4), A3, B4)
B3 = XOR(F(B4), C4, k4)
k3 = XOR(F(A3), A2, B3)
B2 = XOR(F(B3), C3, k3)
k2 = XOR(F(A2), A1, B2)
B1 = XOR(F(B2), C2, k2)
k1 = XOR(F(A1), B5, B1)

We can verify by calculating the output, if we do not get what we already had, try another
possibility of k5.
ie. C1 = XOR(F(B1), k1)

LFSR attacks
There are 2 attacks on the LFS Registers, both of which require that we know the output of the
streamcipher.

We have come across a good deal if inconsistency, as to how many bytes are needed for
verification. Either 2 or 3 bytes, where 2 bytes are questionable with regards to accuracy of your
verification, 3 bytes means we have to assume that Stevenson is correct in his statement (which he
does not prove).

Page 9 of 22

Group 4 dCryptology
DVD Copy Protection

6 bytes known:
If we know 6 bytes of output from the streamcipher, then we can calculate the key used for the
cipher in 216 time.

This is done simply by guessing the initial state of LFSR17 and then clocking out 3 bytes.
These 3 bytes will then uniquely determine 3 bytes as output from LFSR25 in order to match the 3
first bytes of the cipher output that you already know.

Since the new bit after a clock is linearly dependant on the state before the clock, we get a system of
linear equations with 24 equations and 24 unknowns (bit 4 is 1 in the initial state, hence known).

Solving these gives us the initial state of LFSR25, and thereby we have the entire key used for the
cipher.

We can verify by clocking out an additional 3 bytes from each register and checking them against
the last 3 bytes of the known cipher output.

Alternatively we could clock 4 bytes out of LFSR17 instead of 3, and we'd then have a complete
state of LFSR25, which means we can backtrack to the initial state rather easily.
This only leaves us with 2 bytes to verify our choice with, and it might be debatable wether that is
enough.

5 bytes known:
Okay, we rarely have 6 bytes of known output, but we CAN actually get our hands on 5 bytes.
This is rather similar to the case with 6 bytes, except for a few oddities.

Stevenson states (with no proof) that by clocking out 2 bytes from LFSR17 and calculating the
corresponding bytes from LFSR25 - from which we get a system of linear equations - we can
calculate everything about the initial state of LFSR25 except for the most significant bit, which
means we have 2 possible states, which is correct can be tested by using it to decrypt more data.

However if we only use 2 bytes to verify with, then we can clock out 3 bytes and calculate the
initial state of LFSR25 completely.

We have not tried to prove the statement that Stevenson makes, nor have we looked much into
wether or not 2 bytes is enough for verifying...
Intuitively we have 1 / 216 chance to happen to get a "false" match from the 2 bytes, compared to the
1 / 224 chance we have with 3 bytes... That's a factor 256.

Page 10 of 22

Group 4 dCryptology
DVD Copy Protection

Playerkey attack

Assuming you have the disk key, then you can actually calculate all other playerkeys that have been
used to encrypt the disk key, since there is an encrypted version of the disk-key for every playerkey,
on the DVD.
We know the disk-key (DK) and the encryption of the DK under a playerkey PKi (call it DK-PKi).
We already know DK and DK-PKi, which is the output and the input of the decryption algorithm
respectively. This means we can use the attack on the mangling process to get 5 bytes of output
from the LFSRs, and then use the attack on the LFSRs to figure out the key.

This is a 28 + 216 attack.

Hash attack

The REALLY big flaw is the fact that they verify the disk-key by decrypting the hash of the disk-
key with the disk-key, which should produce the disk-key.

This is very bad because we can reverse the process, combined with the other attacks.
The point of the attack is by knowing ONLY the hash-value of the disk-key, we can figure out the
disk-key itself:

Figure out k1, ... , k5, which are used in the mangling process.
These are 5 bytes of output from the streamcipher, and we know we can break that then, which will
give us the disk-key.

To begin with we need to write a table with possibilities of C2 and B1 from the mangling process,
indexing it.
At each entry will be the possible values of k2.

You calculate k2 = XOR(F(A2), A1, B2), for all values of B2.

And for each k2 we do:
C2 = XOR(F(B2), B1, k2) for all B1.

Here F is the lookup table for mangling.

For the table this means, if we choose B1 and C2 as indexes, what possibilities of k2 can then make
this happen?
Since C2 is dependant on k2 and B1 and also on the xor between k2 and F(B2), then you can get
different values of k2, for a fixed C2 and B(1), where k2 xor F(B2) of course is fixed as well... (If it
wasn't you wouldn't get C2 :P)
This is because, even though k2 and B2 differ, then k2 xor F(B2) might "hit" the same value
multiple times.

It's also noted that there can be 0-8 possibilities for k2 at each entry, if 0 then that C2 was never
calculated, which means we can ignore that combination of C2 and B1 later on.
This takes 216 time since there are 28 possibilities for B1 and 28 possibilities for k2, and you go
through all k2 for each B1 possibility.

Page 11 of 22

Group 4 dCryptology
DVD Copy Protection

In any case this is very little time used compared to the 224 time we will use next. (factor 28 smaller
to be precise!)

We will make a table that for all possibilities of 3 output bytes from LFSR25, namely the first,
second and fifth one, shows the initial state of LFSR25. This is because we know the output of the
streamcipher of these bytes at that time (noted later).
This table has 224 entries since 3 bytes = 24 bits, and each entry corresponds to an initial state of
LFSR25, which means if we know these three bytes we also know the initial state of LFSR25.
We can do this because there is a one-to-one correspondence between byte 1,2 and 5 and the initial
state of the register. (not proven by our sources)
This takes 224 time obviously.

Now we go through all possibilities for LFSR17 initial state.
For each guess we output the first five bytes of output from it, and guess on B1.
Since we guessed the initial state of LFSR17 we also have C1 and C2 since the key input is the
output. Herein lies the fault.
We use this knowledge to calculate k1 = XOR(F(B1), C1)
and use k1 to calculate B5 = XOR(F(A1), B1, k1)
and finally use B5 to calculate k5 = XOR(F(A5), A4, B5).

For the next part we go through all k2 indexed by B1 and C2.
Now we know k1, k2 and k5 which are the output bytes of the streamcipher, as mentioned when we
made the table with 224 entries.

Lookup into the table and get the initial state of LFSR25.
Now we potentially have C1...C5.

In order to verify we can check if our calculated k2 is valid.
Just reverse the mangling process and calculate k3, k4, B2, B3 and B4.
Then use B2 to calculate k2* = XOR(F(A2), A1, B2)
If k2* == k2, celebrate, if not go back and continue looping until you find something.

This attack is complexity 225 (due to the 224 table plus more work) and is said to be extremely fast
(~18 seconds on a Pentium III 450MHz CPU).

Page 12 of 22

Group 4 dCryptology
DVD Copy Protection

DeCSS:

DeCSS is a program that decrypts the CSS manually, by using a playerkey.
If one does not have a playerkey, it's not hard to find one, as described in the cryptanalysis of CSS.

It was developed by reverse-engineering the algorithm on a Xing player, as the playerkey was
apparently easily available on it, so they could do chosen-plaintext attacks to figure it out.
The algorithm / cipher of CSS was posted shortly after to the mailing list of LiViD, a linux video
player project, that was going to use DeCSS to make a linux DVD-player.
2 days later Frank Stevenson posted his cryptanalysis on CSS, which showed that it could be broken
in far less time than the bitlength of the key.

DVD-CCA, the company that was licensing CSS, then sued more than 500 people who had posted
DeCSS code on the net, with Jon Johansen as the creator of it.
His case ended in aquittal, as he had not actually devised the decryption program, but only the
graphical user interface (GUI) for it.

The real creators of the DeCSS algorithm are unknown members of a group called Masters of
Reverse engineering (MoRe), and Johansen said that both MoRe and a russian group called Drink
or Die (DoD), was working on breaking CSS at the same time, however MoRe was faster with the
GUI.

Johansen also stated that they had based DeCSS on a cryptanalysis by Derek Fawcus.

MPAA joined DVD-CCA in their lawsuits and sued 3 people for publishing the DeCSS code on the
net and in a magazine, in New York, while DVD-CCA was dragging people from around the world
to California to stand trial for posting DeCSS code on the net.

While the New York case (based on the Digital Millenium Rights Act (DMCA)) was successful,
and imposed a restraining order on the 3 defendants, that barred them from ever posting the code
again, it was not successful in barring them from doing anything else, and as such the defendants
urged everyone to spread the DeCSS everywhere, by any means. The defendants themselves also
linked to sites that spread DeCSS code, as this was not in the restraining order.

Meanwhile in California, the DVD-CCA had much more trouble winning, as they based their
lawsuits on CSS being a trade secret, but it was ruled that CSS was not a trade-secret at the time the
defendants were posting it, as the information was readily available on the net.

Furthermore, it was ruled that it was unconstitutional to drag people from outside California, to
stand trial in California.

All of this was an attempt from the MPAA and DVD-CCA to prevent people from knowing about
how CSS works, but this proved to backlash quite a bit, as the communities involved reacted by
spreading the information and code everywhere, by any means, even by Haiku poems or by putting
the information into the DNS.

As a sidenote, it was largely presented as an argument against DeCSS that it created the possibility
of lossless copying of DVDs, where you could copy a DVD without losing quality like you do
when copying a VHS.

Page 13 of 22

Group 4 dCryptology
DVD Copy Protection

This was quite false, as lossless copying had been used for as long as a year before the DeCSS case,
by simply copying the DVD incl. encryption. Since they would be sold to people with legal players,
then decryption was not really a problem. The decryption was only necessary for people who had
no DVD players for their OS.

Alternatively, you could feed into the drivers of you computer and leech the datastream that is sent
through them after a DVD player has decrypted the data, this is quite more sofisticated though, and
requires a special system.

For more details about the lawsuits, see the resource list.

Page 14 of 22

Group 4 dCryptology
DVD Copy Protection

CPPM/CPRM and the 4C Entity

The CPPM(or CPRM) is a form of Digital Rights Management(DRM) for securing recorded
entertainment content. The CPPM specification was developed by 4C Entity, which is the “four
company entity” with people from Intel, IBM, Toshiba and Matsushita. It was designed for
flexibility and renewability, balanced with ease of implementation. It utilizes cryptography as the
way to keep media secure. The target was portable and removable physical media such as DVD
media and flash memory, but is not limited to these types of media.

The official specification mentions no restrictions on the kind of data that this system can be used
on. It is hard though, to find information about whether CPPM/CPRM is actually in use on normal
DVD videos. The average user who wants to take a copy of a DVD might still be stopped by the
CSS as it requires additional tools, to circumvent it, CSS is still in use today on DVD-video. CPPM
is in use in DVD-Audio discs though.

The reason for CPPM being in use in DVD-Audio media, is that it the initial motivation for making
this system, was the lack of copy protection on audio media. Mainly the big recording labels were
interested in some kind of protection. Old CDs weren’t protected, but with the introduction of
DVD-Audio media, there was a chance to do something about it. The music industry looked to
DVD-Videos where CSS was already in use. This is when the 4C Entity was assembled, with the
goal of finding a successor to CSS, to be used on DVD-Audio. They came up with a new system,
with the very innovative name CSS2. Unfortunately for 4C CSS was rendered useless as a copy
prevention mechanism, as the secret keys were revealed and the algorithm was reverse engineered.
Fortunately this happened before CSS2 ever made it out of the design phase, so they had the chance
to discard it and come up with a new system. The new system turned out to be CPPM/CPRM. The
reason why CSS2 was dropped, was because no one wanted to have anything to do, with something
related to CSS anymore.

The market for DVD-Audio never really got as big as CDs or DVD-Video. In fact the place where
4C encryption gets used the most is in SD Cards, and DVD-R, -RW and –RAM formats, using the
CPRM system.

When saying CPPM/CPRM and not just CPPM, it’s because they are actually two different
schemes that get applied in different cases, but very similar in the way they function. CPRM is
Content Protection for Recordable Media, that is all the media people buy when they want to make
copies at home (DVD-R, DVD-RW and so on). The idea is that when you initially burn some copy-
right protected data onto the disc, it is encrypted using a unique serial number on the disc, as part of
the encryption key. This still allows you to copy the data to another disc, but the new disc won’t be
able to decrypt correctly, because it will of course have a different serial number. CPPM (Content
Protection for Pre-recorded media) on the other hand, is used on discs sold by official
manufacturers and not something used on normal writable media.

CPPM does not use the discs serial number, but instead something that 4C invented for this
particular system. It was something IBM and Intel had been working on together in the past, and it
resulted in a system called Media Key Block.

Page 15 of 22

Group 4 dCryptology
DVD Copy Protection

Media Key Blocks

The motivation for making Media Key Blocks was the need for some kind of authentication
between the DVD media and the players and recorders. DVD discs are very passive in nature, and
there is no chance that you can interact with it - you can only read data from it.
The Media Key Block solves that problem, by implicitly authenticating the device playing the disc.
The key block is an array that is stored on each DVD, containing encrypted values. To be able to
play the content of the DVD, a compliant device has to have a valid set of keys. This key set is used
to process the Media Key Block and obtain a key that can be used to decrypt the content of the
DVD.

The key block stored on a DVD is sold to licensed DVD media manufacturers and likewise with the
key sets in players/recorders. Because these are kept secret, they can be used to do the
authentication. If a device is able to play the protected DVD, then the authentication has already
happened implicitly because a non-authentic device wouldn’t have been able to play the content.
The Media Key Block also has the property of being able to block stolen keys. If it is discovered
that someone have got their hands on licensed keys, then future DVD media will have their Media
Key Block modified, so that it no longer works with the leaked keys. Media Key Blocks are only
unique for each released title, so two original copies of some Disney movie, will have the same key
block, given that they are produced roughly at the same time.

I mentioned that a player/recorder device would be able to play the content of a DVD if it can
obtain the right key from processing the Media Key Block. Obtaining the key though, only takes
you half the way. Next step is to use to derived key to decrypt the content on the DVD. For this is
used something called the Cryptomeria Cipher.

Page 16 of 22

Group 4 dCryptology
DVD Copy Protection

Cryptomeria

Cryptomeria (also called C2) is a proprietary block cipher made also by the 4C Entity. It is basically
a 10 round Feistel cipher using a symmetric key, meaning that the keys for encryption and
decryption are trivially related or identical. The advantage you get using a Feistel cipher is that
encryption and decryption is very much the same. For encryption, there is a key schedule that
produces a key for each of the 10 rounds that you iterate, and to decrypt all you have to do is do the
encryption again, but using the keys in reverse order.

What distinguishes different Feistel ciphers is the choice of round function. This is a special
function that can be very complex and it doesn’t have to be invertible, as many other functions have
to be and other crypto-ciphers.

The general scheme for a Feistel cipher is to cut the plaintext in two halves – a right and left half.
We call these Li and Ri for the i’th round. At first the plaintext is whatever text we want to encrypt.
In the second round, the plaintext is the output from the first round and the output from the second
goes as input to the third round and so on. For some i we let Ri become Li+1, so the right side goes
unmodified into the next round and become the left side of input for round i+1.
The right side also goes into the round function, which also take a roundkey as input. The output
from the round function is then XOR’ed with the left half and the result of that become Ri+1.

This describes one round of a Feistel cipher, and this is also how the Cryptomeria cipher works.
What we also want to look at is what make Cryptomeria unique, namely its round function. This is
a bit more complicated, and the official description and specification of this function is made public
as a code example written in C++. This makes interpretation a little more difficult due to a very low
level description, but of course helps those who want to implement it.

Here follows a basic description of what happens in the round function of Cryptomeria. First half of
the plaintext and a key are added modulo 32 into a 32 bit string. The 32 bit is cut in four pieces with
8 bit in each part. We call these four pieces for Zi for i = 1,...,4. Then we take Z1 and run it through
an S-box. S-box is short for substitution box, and all it does is basically substitute bits in the output.
In the case of Cryptomeria the S-box outputs a bit string of length equal to the input string. What
exactly is inside this S-box is the secret in CPPM/CPRM. What you pay for if you want to buy a
license from 4C is some secret constants that make up this S-box. The rest of the algorithm is open
for peer-review, which by the way was a quite new approach back when the algorithm was released.

The next thing that happens is that we do three XOR operations. What we XOR is a copy of the
output from the S-box in each of them and a predefined byte constant that is different for each of
the XOR operations. Then the three values we that get are rotated 1, 5 and 2 places respectively, to
the left. After that we XOR each of the results with Z2, Z3 and Z4 respectively. Then we construct a
new 32 bit string consisting of the three results from the XOR operations we just made, and the S-
boxed 8 bit string. This new string is made in three copies. One copy is rotated 9 places left, one
copy is rotated 22 times left and the last copy is unchanged. These three 32 bits strings get XOR’ed
and the result of that is the output of the round function.

Page 17 of 22

Group 4 dCryptology
DVD Copy Protection

The key that is part of the input of the round function is a new key for each round.
The 10 keys that are needed for this, is constructed from a “master key” K. With this you make a
intermediate key Ki´ which is used to make a round key rki. In the making of these round keys the S
box is also used – the same S-box as is used in the round function.

The figure below illustrates how the round-function works:

Page 18 of 22

Group 4 dCryptology
DVD Copy Protection

Attacks on Cryptomeria

There are four different attacks that we have looked at, on Cryptomeria.
The first one is an attack where you try to recover the S-box with a chosen key attack. Apparently
there is a flaw in the key schedule, so that some master keys generate only three different inputs to
the S-box. This happens in the part of the key scheduling where you take out 8 bits of the
intermediate key, and use these as input to the S-box. The fact that only three different round keys
are created, allows you to somehow guess what the ciphertext will be after the 7th round in the
encryption. When you do the actual encryption, you can compare your guess with the result and if
your guess what right, you have learned something about what is inside the S-box.

The second attack is a boomerang attack. Boomerang attacks are based on differential cryptanalysis.
The basic idea is to observe the effect differences between plaintexts have on the ciphertexts, and
discover where the cipher does something non-random during the encryption.
We use a boomerang attack to observe when the S-box gets the same input in different rounds. The
attack is used to recover bits of the first round key used.

The third attack is a chosen ciphertext attack, used to recover both key and S-box. This is also based
on a boomerang attack, which is used to recover the least significant 22 bits of the first and last
round key. The remaining bits of the two keys and 1 S-box entry can be recovered in 252. After that
we can get the second round key aswell, and then determine the master key uniquely.

A brute-force attack was also attempted in 2004 to recover S-box values. This was made as a
distributed computing project. The motivation behind it was that a japanese tv station was sending
HDTV with an encrypted signal using CPRM. After three months the entire 56bit key space had
been scanned, but for unknown reasons no valid keys were found.

Further information about the Cryptomeria cipher and attacks on it, see the cryptanalysis in the
resource list.

Page 19 of 22

Group 4 dCryptology
DVD Copy Protection

WinDVD

At some point in time there was a DVD player called WinDVD, it had a peculiar flaw that was
exploited by some programmers.

They made a patch for it that because of the flaw, made it possible to change the destination of the
output, meaning you could send the output of WinDVD to a file.

This practically disabled every and all security measures on all medias that were playable by
WinDVD, and easily so, since anyone could just apply the patch and start ripping the media of its
protection.

It's uncertain wether or not this has been successfully patched, and if you can still use the older
version to rip new DVDs and the like. We have been unable to find any concluding statements at
least.

Page 20 of 22

Group 4 dCryptology
DVD Copy Protection

Conclusion

People question wether the cipher used for CSS could even be regarded as a real cipher, considering
how easily it's broken. This, and all the lawsuits trying to keep CSS a secret even after it's been
figured out, tell us that the way CSS protected DVDs were by being a secret technology.

Everything that happened around CSS testaments to the futility of trying to protect information by
having a secret way of doing so, because once the secret is out then there's no protection.
And the secret always gets out sooner or later.

On top of that we have the poor design of CSS, coupled with the export restriction on cryptographic
algorithms not having keylength more than 40 bits, which obviously makes a huge impact on the
complexity of attacks made against it.
By that time's standards 40 bits was bruteforceable with a lot of computing power, like f.x. the US
government has, but as time goes on, even 40 bits is bruteforceable now by smaller scale computer
networks in a reasonable time.

Then we have the supposed successor of CSS: CPPM
CPPM is using a cipher called Cryptomeria which works on 56 bit keys...
56 bit is simply too short, only a 16 bit upgrade from CSS which was bruteforceable even back
then.
Everyone knows we have to amp up the bitlength as time goes by, because computers get more and
more powerful, so brute-forcing becomes more and more of an actual option at those bitlengths.

In the end we are left with a so-called protection technology which can be broken in seconds and a
successor which is rarely used for anything except DVD-audio and a few other medias.

We conclude that getting confidentiality by keeping something a secret or by having a confusing
process is simply futile. The secret will be figured out and the process will be mapped and
understood at some point, and once those are done, we can find and attack whatever vulnerabilities
the algorithm may have.

Page 21 of 22

Group 4 dCryptology
DVD Copy Protection

Resource List

DVD:
noget til disk sectors osv: http://www.osta.org/technology/dvdqa/dvdqa6.htm
(Definition of Host: and a host device, which usually refers to a decoder board or software
application.)

CSS and cryptanalysis of CSS:
http://www.cs.cmu.edu/~dst/DeCSS/Kesden/index.html
http://www.lemuria.org/DeCSS/crypto.gq.nu/
(Alternative: http://cyber.law.harvard.edu/openlaw/DVD/resources/crypto.gq.nu.html)
http://www.cs.cmu.edu/~dst/DeCSS/Cherry/index.html
http://dvd-copy.blogspot.com/2005/08/dvd-content-scrambling-system.html

DVD-CCA / MPAA lawsuit:
http://w2.eff.org/IP/Video/DVDCCA_case/
http://www.legal.wao.com/decss.html
http://cyber.law.harvard.edu/openlaw/DVD/resources.html (and sublinks)
http://w2.eff.org/IP/Video/DVDCCA_case/20040122_eff_pr.php
http://www.lemuria.org/DeCSS/gilc.html
http://w2.eff.org/effector/HTML/effect12.04.html

MoRe / Jon Johansen and the creation of DeCSS:
http://www.lemuria.org/DeCSS/dvdtruth.txt
(Alternative: http://www.defacto2.net/groups/dod/more+dod_decss.txt)
http://www.lemuria.org/DeCSS/decss.html
http://web.archive.org/web/20001202051300/http://livid.on.openprojects.net/pipermail/livid-
dev/1999-October/000548.html

General DeCSS:
http://www.lemuria.org/DeCSS/
http://www.cs.cmu.edu/~dst/DeCSS/
http://www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html

Source code for DeCSS:
http://torch.cs.dal.ca/~hannon/decss.c

42 methods for spreading DeCSS:
http://decss.zoy.org/
http://www.cs.cmu.edu/~dst/DeCSS/Gallery/decss-haiku.txt

CPPM:
http://events.iaik.tugraz.at/weworc09/9aa510c7c7aab1/abstracts/04.pdf (cryptanalysis)
http://www.intel.com/standards/case/case_cp.htm
http://edipermadi.files.wordpress.com/2008/08/cryptomeria-c2-spec.pdf
http://www.4centity.com/docs/How%20CPRM%20Works.pdf

WinDVD:
http://www.highfidelityreview.com/news/news.asp?newsnumber=14550899

Page 22 of 22

http://www.osta.org/technology/dvdqa/dvdqa6.htm
http://www.4centity.com/docs/How%20CPRM%20Works.pdf
http://www.cs.cmu.edu/~dst/DeCSS/Kesden/index.html

	Content Scrambling System
	The keys
	How it works
	The decryption
	LFSR
	How is the output used:
	Key decryption
	Mutual Authentication:

	CSS ATTACKS:
	Mangling Process
	LFSR attacks
	Playerkey attack
	Hash attack

	DeCSS:
	CPPM/CPRM and the 4C Entity
	Media Key Blocks

	Cryptomeria
	Attacks on Cryptomeria
	WinDVD
	Conclusion
	Resource List

