madalgo - - -**CENTER FOR MASSIVE DATA ALGORITHMICS**

Energy-Efficient Sorting using Solid State Disks

The Sort Benchmark

The Benchmark

- Sort 100 byte records with a 10 byte key
- Introduced 1985, starting with 100 MB
- New categories added targeting
- Speed/Size/Throughput (GraySort)
- Time (MinuteSort)
- Cost Efficiency (PennySort)
- Energy Efficiency (JouleSort, 2007)
- 10 GB, 100 GB, 1000 GB
 - 100 TB (2010)
- Classes: Indy (tuned), Daytona (general)

- Sorting large data sets
- Is easily described
- Has many applications
- Stresses both CPU and the I/O

Energy Efficiency

- Energy (and cooling) is a signif
- factor in data centers
- Energy consumption correlates pollution

JouleSort Hardware Selection

2007

Rivoire, Shah, Ranganathan, Kozyrakis Stanford University and HP Labs

Beckmann, Meyer, Sanders, Goethe University and Karlsruhe Institute of Techn

2010

Intel Core 2 Duo T7600 (Mobile CPU) 2 cores, 2 threads, 1.66 GHz 2 GB 2 PCI-e Disk Controllers (8+4 SATA) 1 SATA (onboard) 13 x Hitachi Travelstar 5K160 160 GB Notebook HDD Linux XFS on Linux Software Raid (Striping) NSort (commercial sorter) 59 W 100 W **F** 2007 JouleSort Winner 10 GB, 100 GB

Processor	Intel Atom 330 2 cores 4 threads 1.6 GHz
Memory	4 GB
I/O	4 x SATA 3.0 Gb/s (onboard
Disks	4 x SuperTalent FTM56GX2 256 GB SSD
OS File System	Linux XFS on Linux Software Raid
Software	EcoSort, DEMsort using ST
Power Idle ower Loaded	25 W 37 W

	Algorithms			
system icant cost	 External Memory Multiway Mergesort Phase 1: Run Formation Phase 2: Merge Runs Careful parameter selection for optimal performance while requiring a single merge pass Parallel implementations utilize the 4 CPU threads Overlapping of I/O and computation Run Formation uses key extraction and radixsort Two implementations: 	Pro Built from No mecha Good shod Low energ Higher thro Con Higher pric Small bloc		
	 Bring overlapping to the limits Allow independent tuning of more parameters DEMsort (Indy: 1000 GB, 100 TB) 	 Prenoma Properties Properties 		
s, Singler ology	 Developed by Sanders, Singler et al. at the Karlsruhe Institute of Technology Won the 2009 Sort Benchmark in the categories MinuteSort and GraySort using a 200-node cluster Efficient also on a single node Allows in-place sorting, needed to sort 1000 GB with just 1024 GB of storage 			
	 Nsort (Daytona: 100 GB, 1000 GB) Commercial software Sorts arbitrary data types 			
	I/O and CPU utilization while sorting 10 GB: Sorting 10 GB (12 runs) Transfer Rate	Class, Size [GB]		
	Head + Bread 600 500 500 500 500 500 500 100 - 100 - 100 - - - - - - - - - - - - -	Indy, 10 Indy, 100 Daytona, 100 Indy, 1000 Daytona, 1000	-7	
)))	0 0 10 20 30 40 50 60 70 80 Time [s] Sorting 10 GB (12 runs) CPU Usage	Indy, 100 TB	Ve	
d (Striping) XXL	80 - Mait User System - Mait User - System	time: in the 10 both in terms of As a conseque machine, a new 2010 Sort Bend		
	0 0 10 10 10 10 10 10 10 10 10	** 200-node cl	lu	

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Danmarks Grundforskningsfond Danish National **Research Foundation**

Solid State Disks

- NAND flash memory chips
- inically moving parts
- ck resistance
- y consumption
- oughput than HDDs
- ce and less capacity than today's HDDs
- k random writes are slow
- nce may degrade depending on access pattern vary depending on manufacturer, model, firmware:

Results

2010 Sort Benchmark in the JouleSort categories 00 GB and 1000 GB and Daytona 100 GB!

	2010			2007		
Energy Saving Factor	Rec./J	Energy [kJ]	Time [s]	Rec./J	Energy [kJ]	Time [s]
3.7	42635	2.3	72.4	11628	8.6	86.6
3.5	39853	25.1	691	11354	88.1	881
3.1	35789	27.9	756	11354	88.1	881
5.1	17489	572	17026	3425	2920*	7196*
	nitted)	to be sub <mark>n</mark>	2011 (
1.5	5273	1897*	6486*	3425	2920*	7196*
-	1441	694 MJ**	9835**	-	-	-

- er hardware does not imply an increase in running GB and 100 GB category we beat previous results f energy consumption and running time.
- nce of winning all three categories using a single v 100 TB JouleSort category was introduced for the chmark, first 100 TB results to be submitted 2011.
- hardware, not a low energy machine ister