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Computing the Hausdorff Distance between Sets of Line Segments

Problem \
Given two shapes P and Q as sets
of line segments, determine their

(dis-)similarity with respect to / / /

Hausdorff distance. P Q.

Definition - Hausdorff Distance

The (directed) Hausdorff distance |
between two sets of line segments

P and Q is cfﬁ(ﬂ’,Q):maxy Ming a[(p, 01),

C[ﬁ(g)’@

%\

\
P

where c[(]o, (’l) denotes the Euclidean |

distance between two points peP and geQ,,

Definition - Voronoi Diagram

vD(Q)

Given a set Q of geometric objects \

(points, line segments, etc.),
/AN

that are closer to g than to any other object in Q.
The Voronoi diagram of Q (VD(Q)) is the set of boundaries

the Voronoi cell of an object geQ
is the set of points in the plane,

of the Voronoi cells of all objects in Q.

Theorem

Given two sets P and Q of n line segments, such that
no two segments of the same set intersect, except

possibly at the endpoints, the Hausdorff distance a[ﬁ(?,Q)

can be computed in O(log” n) time on O(n) processors
using O(n log n) storage in the CREW-PRAM model.

Algorithm

Sequential version due to [ABB95].

Observation: The Hausdorff distance from P to Q is attained either at an endpoint of P or
at an intersection point of P and the Voronoi diagram of Q.

1 VD(Q)
1 Construct the Voronoi diagram vD(Q) of Q. \

(parallel construction in [GDY93])
A4

1

VD(Q)

2 | For each endpoint p of a segment in P
find its closest segment in Q using VD(Q) and

compute the distance from p to that segment.
(parallel point location in [TV89])

3 Determine the "critical points" on the edges of VD(Q),

the intersection points with P with the highest and

the lowest x-coordinate.
(parallel computation is the contribution of this work) P

R
4 | For each critical point g compute the distance

from g to its nearest segment in Q.

5 Return the maximal distance of endpoints
and critical points.
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Computing the depth of an arrangement of axis-parallel rectangles

Definition

Given a set of n axis—-parallel rectangles,

find the depth of their arrangement, i.e.,
the maximum number of the rectangles
containing a common point.

Application: e.g., find a transformation
maximizing the similarity of two geometric shapes.

Sequential Algorithm

Use a plane sweep technique to
process all rectangles and find the
maximum number sharing a common

point in time O(n log n) using O(n) space.

Plane sweep is inherently sequential!

Sequential running time is a "folklore"” knowledge based on
[Ben77].

Implementation
Proof-of-concept implementation with OpenCL

Running Time on CPU and GPU

1E+08 Speedup on GPU

©O sequential on Xeon E5520 (2.27 GHz)
©O parallel on Tesla C1060
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Parallel Algorithm
Model: Exclusive Read Exclusive Write PRAM - u 2
a shared memory RAM with
problem size dependent > 3 5
number of processors. 3 gf 3
2 2
Idea:
e Construct a segment tree for all
horizontal rectangle sides in parallel. x1 X2 X3 x4 X5 %6 |x7 x8
e Store the information about all sweep
events for each node in a history list
of that node.
e Process all sweep events for each level X4 X7 [x2|x5|x1|x8(x3|x6|x1 X8 |x2 x5 x4 X7 |X3|X6
of the tree in parallel. & Ltitjtjtjt{t/t|t|bjb|/blblb|b|b|b

%)
@
performance: Ob X4 X2 |x1(x3(x1|x2x3 x4 | X7 |x5/x8|x6|x8 (x5|x7 |x6
([ ) @Q t t|t|{t/lb/b/b/bl|t|t|t|t|b|b|/bl|b
Time O(log? n N
J < / / \
Processors O(n) {\@ x2|x1x1x2| x4 |+2(x3-2,x3|x4| |+1x5/+1|x6|-1 x5|-1 |x6/| X7 |x8|x8 X7
@‘Z’ titb/bllt|2/t|o|blb/|lo|t|o|lt|olblo|b||[t|t|b|b
Space O(n). / \ / \ \
. . Y )
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