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Implementation 
Proof-of-concept implementation with OpenCL
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 Computing the Hausdorff Distance between Sets of Line Segments                            .

Definition
Given a set of n axis-parallel rectangles,
find the depth of their arrangement, i.e., 
the maximum number of the rectangles 
containing a common point. 
.                                                                                                                     .
Application: e.g., find a transformation
maximizing the similarity of two geometric shapes.

Sequential Algorithm
Use a plane sweep technique to 
process all rectangles and find the 
maximum number sharing a common 
point in time O(n log n) using O(n) space.

Plane sweep is inherently sequential! 
.                                                                                                                     .
Sequential running time is a "folklore" knowledge based on 
[Ben77].
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Tree T

Parallel Algorithm
Model: Exclusive Read Exclusive Write PRAM -

a shared memory RAM with 
problem size dependent
number of processors.

Idea: 
• Construct a segment tree for all 

horizontal rectangle sides in parallel.
• Store the information about all sweep 

events for each node in a history list 
of that node.

• Process all sweep events for each level 
of the tree in parallel.

Performance: 
Time O(log² n) 
Processors O(n) 
Space O(n).
Randomized time O(log n log* n) 

with high probability.
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Theorem
Given two sets P and Q of n line segments, such that 
no two segments of the same set intersect, except 
possibly at the endpoints, the Hausdorff distance dh(P,Q) 
can be computed in O(log² n) time on O(n) processors 
using O(n log n) storage in the CREW-PRAM model.

Algorithm
Sequential version due to [ABB95].

Observation: The Hausdorff distance from P to Q is attained either at an endpoint of P or 
at an intersection point of P and the Voronoi diagram of Q.

1. Construct the Voronoi diagram VD(Q) of Q. 
 (parallel construction in [GDY93])

3. For each endpoint p of a segment in P 
find its closest segment in Q using VD(Q) and 
compute the distance from p to that segment.
(parallel point location in [TV89])

4. Determine the "critical points" on the edges of VD(Q),
the intersection points with P with the highest and 
the lowest x-coordinate.
(parallel computation is the contribution of this work)

6. For each critical point q compute the distance 
from q to its nearest segment in Q.

7. Return the maximal distance of endpoints 
and critical points.

Problem
Given two shapes P and Q as sets
of line segments, determine their 
(dis-)similarity with respect to 
Hausdorff distance.

Definition - Hausdorff Distance
The (directed) Hausdorff distance 
between two sets of line segments 
P and Q is dh(P,Q)=maxp minq d(p, q),
where d(p, q) denotes the Euclidean 

distance between two points p∈P and q∈Q. 

Definition - Voronoi Diagram
Given a set Q of geometric objects 
(points, line segments, etc.), 
the Voronoi cell of an object q∈Q 
is the set of points in the plane, 
that are closer to q than to any other object in Q. 
The Voronoi diagram of Q  (VD(Q)) is the set of boundaries 

of the Voronoi cells of all objects in Q.
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