
AComparisonof theUseofVirtualVersusPhysical
Snapshots forSupportingUpdate-IntensiveWorkloads

Darius Šidlauskas

Aalborg University
darius@cs.aau.dk

Christian S. Jensen

Aarhus University
csj@cs.au.dk

Simonas Šaltenis

Aalborg University
simas@cs.aau.dk

Motivation
Current processors offer substantial parallel processing capabilities. However, the parallel processing of
workloads that intermix queries with frequent updates is non-trivial because programmers face compli-
cations of concurrency control, which often causes serialization bottlenecks. Snapshot-based parallel
processing is attractive for several reasons:

◮ Isolates otherwise conflicting operations
◮ Enables atomic (full) data scans

◮ Simplifies concurrency control (and its verification)
◮ Current technologies permit very frequent snapshotting

Virtual Snapshotting
◮ Uses the fork system call
◮ Supported by HW (MMU, TLB)

◮ Represents incremental/lazy copy-
ing (a copy-on-write approach)

Empirical Study
◮ Includes 4 multi-core platforms:

◮ Lean-camp and fat-camp CMP designs
◮ Single- and multi-socket configurations
◮ Different Unix flavors

◮ The figures show results obtained on a
quad-core Intel Core i7-2600K (Sandy
Bridge) with 2 thread contexts per core.

◮ Findings include:
◮ The memory bandwidth utilization in

memcpying is 76–88%.
◮ Physical snapshot creation is very com-

petitive (max snapshot size considered
is 2GB).

◮ In updating, only under very skewed
update distributions is virtual snap-
shotting preferable.

◮ The use of huge pages improves virtual
snapshotting performance significantly.

1KB 10KB 100KB 1MB 10MB 100MB 1GB

0.25

0.5

1

2

4

8

16

Snapshot size

C
o

p
yi

n
g

 r
at

e,
 G

B
/s

 

 

↑
memory
bandwidth

← LLC (8MB)

t= 1
t= 2
t= 4
t= 8

Physical snapshotting with varying num-
ber t of threads executing the memcpy. 1KB 10KB 100KB 1MB 10MB 100MB 1GB

0.25

0.5

1

2

4

8

16

32

64

128

256

Snapshot size

T
im

e/
sn

ap
sh

o
t,

 m
s

 

 

fork(q= 1)
fork(q= 2)
fork(q= 4)
fork(q= 8)
memcpy(t= 2)

1 4 64 768 4k 64k

Snapshot size, 4KB pages

← DTLB reach

Virtual snapshotting; q is the number of query threads in the forked process.

1KB 10KB 100KB 1MB 10MB 100MB 1GB

0.25

0.5

1

2

4

8

16

32

64

128

256

Snapshot size

T
im

e/
sn

ap
sh

o
t,

 m
s

 

 

fork(q= 1)
fork(q= 2)
fork(q= 4)
fork(q= 8)
memcpy(t= 2)

1 1 1 1 5 64 1k

Snapshot size, 2MB pages

DTLB reach→ 

T2 Nehalem Sandy Bridge Barcelona

0.25

0.5

1

2

4

8

16

32

64

Platform

A
vg

. t
im

e 
p

er
 p

ag
e 

ac
ce

ss
, µ

se
c

(l
o

g
 s

ca
le

)

 

 

↓

x242

↑

↓

x17

↑

↓

x51

↑

↓

x29

↑

w/o CoW
with CoW

Copy-on-write cost on different platforms.

19 20 21 22 23 24
0

50

100

150

200

250
(1) Uniform

F
s
, 2x

P

V

P

V
P

V P

V

P

V

P

V

A
vg

. t
im

e/
it

er
at

io
n

, m
s

 

 

19 20 21 22 23 24
0

20

40

60

80

100

120
(2) Sorted

F
s
, 2x

P

V

P

V

P

V

P

V

P

V

P

V

19 20 21 22 23 24
0

20

40

60

80

100

120

140

160
(3) Heavy hitter

F
s
, 2x

P

V

P

V

P

V
P

V
P

V

P

V

19 20 21 22 23 24
0

50

100

150

200
(4) Repeated runs

F
s
, 2x

P

V

P

V

P

V
P

V

P

V

P

V

19 20 21 22 23 24
0

50

100

150

200
(5) Zipf

F
s
, 2x

P

V

P

V

P

V P

V

P

V

P

V

19 20 21 22 23 24
0

10

20

30

40

50

60

70

80
(7) Moving cluster

F
s
, 2x

P

V

P

V

P

V

P

V

P

V

P

V

Snapshotting
Processing

Snapshotting and update processing under different update distributions when snapshotting frequency, Fs , is varied.
The snapshot size is fixed at 224 data items or 128MB. P/V correspond to physical/virtual snapshotting, respectively.

Physical Snapshotting
◮ Uses the standard C library memcpy function
◮ Supported by hardware (prefetching, cache bypassing instructions)
◮ Represents eager copying (a brute-force approach)

Abstract
This paper studies two fundamentally different ap-
proaches to data snapshotting in main memory.
Physical, memcpy-based and virtual, fork-based
snapshotting techniques are thoroughly compared
in a series of micro-benchmarks. The use of physi-
cal snapshots is surprisingly efficient in many cases.

Conclusion
For most of the considered workloads, the best overall update performance is achieved using physical
snapshotting, including the workloads with snapshot sizes an order of magnitude larger than the LLC.

Ease of implementation Cross- Small Huge Update skew (distribution nr.) Memory
Linked struct. queries platform snapshots pages 1 2 3 4 5 6 7 footprint

V + − − − + − + − − − − + +

P − + + + − + − + + + + − −

Acknowledgements
This research was supported by grant 09-
064218/FTP from the Danish Council for Indepen-
dent Research—Technology and Production Sci-
ences. We thank Kenneth A. Ross (supported by
NSF grant IIS-1049898) for providing access to the
experimental hardware.


