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Introduction

Simple semantic techniques for reasoning about realistic
programming languages

higher-order store
dynamic allocation
recursive types
impredicative polymorphism
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Application Areas

Unary:
ML references
logics for higher-order store (nested Hoare triples)
capability calculi
storable locks and concurrency

Relational:
ctx. equivalence (relational parametricity, data abstraction)
effect-based program transformations (a la Benton-Hofmann)
compositional compiler correctness and soundness of
optimizations (extending Benton’s work to higher-order store)
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Case Study: Unary model of ML refs

Language: Fµ,ref .
Call-by-value operational semantics.
Typing judgements:

Ξ; Γ; Σ ` M : τ,

where
Ξ = α1, . . . , αn
Γ = x1 : τ1, . . . , xm : τm
Σ = l1 : τ1, . . . , lk : τk
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Unary Model of ML refs — Ideas

Impredicative polymorphism:
Types as predicates over some set V of values.

Dynamic allocation of references:
Kripke Model, worlds capturing types of allocated locations
Types = predicates indexed over worlds

In Summa: recursive equation:

V = set of values, including locations
W = N⇀fin T
T = W →mon Pred(V )

Our approach: solve equation in category of metric spaces.

Lars Birkedal (ITU) Kripke Models over Recursive Worlds Paris 2010 5 / 32



Unification of Methods

Idea first developed using domain-theoretic model of programming
language [BST - FOSSACS’09, MSCS’10]
Now show that it applies to operational semantics via
step-indexing

pros: simpler, scales well to concurrency
high-level understanding of step-indexing

essence of step-indexing
generalizes Hobor et. al.’s Indirection Theory [POPL’10], which is
aimed at giving general description of step-indexed models

has been formalized in Coq [C. Varming & LB]
Denotational approach still useful

gives more abstract model for relational reasoning
reasoning in the model is at same abstraction level as modal logics
for reasoning about step-indexed models, see [BST’10, Dreyer et.
al., LICS’09, POPL’10]

Lars Birkedal (ITU) Kripke Models over Recursive Worlds Paris 2010 6 / 32



Outline

Background on metric spaces
Step-indexed Model of ML refs
Pointers to other applications
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CBUltne

Recall:
An ultrametric space is a metric space (D,d) that instead of
triangle inequality satisfies the stronger ultrametric inequality:

d(x , z) ≤ max(d(x , y),d(y , z)).

A function f : D1 → D2 from a metric space (D1,d1) to a metric
space (D2,d2) is non-expansive if d2(f (x), f (y)) ≤ d1(x , y) for all x
and y in D1.
A function f : D1 → D2 from a metric space (D1,d1) to a metric
space (D2,d2) is contractive if there exists δ < 1 such that
d2(f (x), f (y)) ≤ δ · d1(x , y) for all x and y in D1.
CBUltne is the category with complete, non-empty, 1-bounded
ultrametric spaces and non-expansive functions.
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CBUltne, II

We’ll work with bisected metric spaces: all non-zero distances are
of the form 2−n, for some natural number n ≥ 0.
Write x n

= y to mean that d(x , y) ≤ 2−n.

Fact: n
= is an equivalence relation (since ultrametric).

Fact: x 0
= y always holds (since space 1-bunded).

Fact: f : X → Y is non-expansive iff, forall n > 0,
x n

= x ′ ⇒ f (x)
n
= f (x ′)
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CBUlne, III

CBUltne is cartesian closed; the exponential (D1,d1)→ (D2,d2) is
the set of non-expansive maps with the “sup”-metric dD1→D2 as
distance function:

dD1→D2(f ,g) = sup{d2(f (x),g(x)) | x ∈ D1} .

Solutions to recursive domain equations for locally contractive
functors (America-Rutten):
A functor F : CBUltop × CBUlt→ CBUlt is locally contractive if
there exists δ < 1 such that

d(F (f ,g),F (f ′,g′)) ≤ δ ·max(d(f , f ′),d(g,g′))

for all non-expansive functions f , f ′, g, and g′.
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Uniform Predicates

Uniform predicates:

UPred(Val) = {p ⊆ N× Val | ∀(k , v) ∈ p.∀j ≤ k . (j , v) ∈ p}

(“uniform” by analogy to complete uniform per’s in realizability
models).
For p ∈ UPred(Val) and k ∈ N, let

pk = {(m, v) ∈ p | m < k}

Distance:

d(p,q) =

{
2−max{k | pk =qk} if p 6= q
0 otherwise.

Lemma (UPred(Val),d) is a well-defined object in CBUltne.
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Worlds

Lemma
Let (D,d) ∈ CBUlt. The set N⇀fin D with distance function:

d ′(∆,∆′) =

{
max {d(∆(l),∆′(l)) | l ∈ dom(∆)} if dom(∆) = dom(∆′)
1 otherwise.

is in CBUlt.

Extension ordering: ∆ ≤ ∆′ iff

dom(∆) ⊆ dom(∆′) ∧ ∀l ∈ dom(∆).∆(l) = ∆′(l) .
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Space of Types, I

Lemma

F (D) = (N⇀fin D)→mon UPred(Val)

(monotone, non-expansive maps) defines a functor
F : CBUltneop → CBUltne.

Theorem

There exists T̂ ∈ CBUltne such that

T̂ ∼= 1
2 · ((N⇀fin T̂ )→mon UPred(Val))

is an iso in CBUltne.
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Example proof
Lemma

F (D) = (N⇀fin D)→mon UPred(Val)

(monotone, non-expansive maps) defines a functor
F : CBUltneop → CBUltne.

Proof.
SFTS: limit of Cauchy sequence of monotone maps is also monotone.
Let (νm)m∈ω be a Cauchy seq of monotone maps, with limit ν.

TS: ν(w) ⊆ ν(w ′), for all w v w ′.

SFTS: ∀n. ν(w)
n ⊆ ν(w ′)

n
.

Fix n. By limit, there exists m, s.t. d(ν, νm) ≤ 2−n, so

ν(w)
n

= νm(w)
n
, for all w .

Then
ν(w)

n
= νm(w)

n ⊆ νm(w ′)
n

= ν(w ′)
n
.
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Space of Types, II

Definition

W = N ⇀fin T̂
T = W →mon UPred(Val).

Observe: T̂ = 1
2(W →mon UPred(Val)) and

w n
=W w ′

⇒ w(l) n
=T̂ w ′(l)

⇒ w(l) n−1
= W→monUPred(Val) w ′(l)

⇒ ∀w0 ∈ W.w(l)(w0)
n−1
= UPred(Val) w ′(l)(w0)
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Interpretation of Types, I
Define non-expansive map

JΞ ` τK : T |Ξ| → T

by induction on τ :

JΞ ` τKη :W →mon UPred(Val)

JΞ ` 1Kηw = {(k , ()) | k ∈ N}
JΞ ` ref τKηw = {(k , l) | l ∈ dom(w)∧

∀w ′ w w .i(w(l))(w ′) k
= JΞ ` τKηw

′}
JΞ ` αKηw = η(α)(w)

JΞ ` ∀α.τKηw = {(k , v) | ∀τ ′. ∀r ∈ T . ∀w ′ w w .

∀i ≤ k . (i , v [τ ′]) ∈ E [[Ξ, α ` τ ]]η[α 7→r ]w
′}
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Interpretation of Types, II

Recursive Types:

J∆ ` µα.τKη = fix(λr . λw . {(k , fold v) | k > 0⇒
(k − 1, v) ∈ J∆, α ` τKη[α 7→r ]w})

Uses Banach’s fixed point theorem.
Contractiveness ensured by use of k − 1.
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Interpretation of Types, III

q
Ξ` τ→ τ ′

y
η
w = {(k , v) | ∀v ′ ∈ Val. ∀w ′ w w . ∀i ≤ k .

(i , v ′)∈ JΞ` τKηw
′ ⇒ (i , v v ′)∈E [[Ξ` τ ′]]ηw

′}

E [[Ξ ` τ ]]η :W →mon UPred(Exp)

E [[τ ]]ηw = {(k , t) | ∀i ≤ k . ∀h,h′. ∀v ∈ Val.(
h :k w ∧ (t |h) 7−→i (v |h′)

)
⇒
(
∃w ′ w w . h′ :k−i w ′ ∧ (k − i , v) ∈ JτKηw

′)}
h :k w ⇐⇒ ∀i < k . dom(h) = dom(w) ∧

∀l ∈ dom(w). (i ,h(l)) ∈ w(l)(w)
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Interpretation of open expressions

JΞ ` ΓKη : W → UPred(Val|Γ|)

J∅Kηw = {()}
JΓ, x : τKηw = {(k , ρ[x 7→ v ]) | (k , ρ) ∈ JΓKηw ∧ (k , v) ∈ JτKηw}

JΣK : UPred(W )

JΣK = {(k ,w) | ∀(l : τ) ∈ Σ. (k , l) ∈ J∅ ` ref τK()w}

Ξ; Γ; Σ ` t :log τ ⇐⇒
∃α1, . . . , αn. Ξ = α1, . . . , αn ∧
∀τ1, . . . , τn. ∀k ≥ 0. ∀η. ∀ρ. ∀w .(

η ∈ T |Ξ| ∧ (k , ρ) ∈ JΞ ` ΓKηw ∧ (k ,w) ∈ JΣK
)

⇒
(
(k , (ρ(t))[α1:=τ1, . . . , αn:=τn]) ∈ E [[Ξ ` τ ]]ηw

)
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Well-definedness

Metric setup tells you what you have to show:
non-expansiveness of JΞ ` τK
non-expansiveness of JΞ ` τKη
contractiveness of map for recursive types.

Simple calculations.
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Example lemma
Lemma

If s :k w and w n
=W w ′ and k < n, then also s :k w ′.

Proof.
TS: ∀j < k . dom(s) = dom(w ′) ∧ ∀l ∈ dom(w ′). (j , s(l)) ∈ w ′(l)(w ′).
Sps. k > 0; then n > 0. Let j < k . By w n

=W w ′, we get
dom(w) = dom(w ′) ∧ ∀l ∈ dom(w).∀w0.w(l)(w0)

n−1
= w ′(l)(w0). Since

dom(s) = dom(w) by the assumption that s :k w (using k > 0), we get
dom(s) = dom(w ′). Moreover,

w(l)(w)
n
= w(l)(w ′) n−1

= w ′(l)(w ′)

since w(l) is non-expansive, and since w n
=W w ′. Thus, as

(j , s(l)) ∈ w(l)(w) by assumption, and since j < k ≤ n − 1, we also get
(j , s(l)) ∈ w ′(l)(w ′), as desired.
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Soundness

Theorem
If Ξ; Γ; Σ ` t : τ , then Ξ; Γ; Σ ` t :log τ .
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Specialization to Indirection Theory

Indirection Theory. Hobor et. al. POPL’10
General formulation of step-indexed models. Also observe cannot
solve world-equation in sets. Instead describe approximate
solutions and show how they can be used in many step-indexed
models.

We prove that one can derive an approx. solution a la Indirection
Theory from one of our metric equations (see paper for detailed
formulation and formal theorems).
Corollary: applies to all the models described by indirection theory.
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Advantages of metric approach

(some propaganda :-))
Useful guiding framework.
Supporting theory (e.g., recursive equations when spaces
equipped with structure).
Supports recursively-defined operations on worlds.
Connection between step-indexing and metric spaces known from
start of step-indexing (Appel-McAllester); but useful not to forget
the connection!
Also formalized in Coq (Varming, Birkedal).
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Recursively defined operation on worlds

For describing how to extend world-dependent invariants.
Has been used for Nested Hoare Triples & Capability Calculus
(stored code)
Capability Calculus setup: W ∼= 1

2W → UPred↑(Heap).
Define non-expansive operation ◦ : W ×W →W , s.t. for all
p, r ,w ∈W ,

ι−1(p ◦ r)(w) = ι−1(p)(r ◦ w) ∗ ι−1(r)(w) .

Intuition:
p and r world dependent invariants
world-dependency via application
p ◦ r is the extension of p with r : first extend r with w , and then
apply p to that, in addition to “starring on” r(w).

Well-defined by Banach: intuitively because the ◦ on the right is as
an argument, below an unfolding via ι−1.
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Current / Future Work
Storable locks and concurrency
Metric model of Nakano’s calculus with a Modality for Recursion.
Extend capability calculus model with antiframe and
fates/observations a la Pottier (more formal connection between
recursive world extension operation and use of state transition
diagrams by Dreyer et. al.)
Extend capability calculus model to reason about shared data
structures (most work so far focused on data abstraction qua
separation).
Semantic model of focusing with cyclic proofs.
Refine basic setup: Formulations based on simple categories of
(pre)sheaves. Generalize solution theory.
Effect-based program transformations.
Compiler correctness in presence of higher-order store.
Extend HTT with better types for higher-order store.
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