A Simple Model of Separation Logic for
Higher-order Store

Lars Birkedal

IT University of Copenhagen
Joint work with B. Reus, J. Schwinghammer, H. Yang

July, 2008

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 1/20

Introduction

Semantic foundation for separation logic for higher-order store:
m Higher-order Store

m not only first-order data but also procedures / commands can be
stored in the heap

m used both in higher-typed languages (ML), OO languages, and
low-level languages (code pointers)

m Why separation logic ?

m for modular reasoning about programs with shared mutable data

(pointers)
{Prc{Q}
{P+R}C{Q=* R}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 2/20

Challenges of sep. logic for higher-order store, |

m Because of higher-order store we’ll need to solve some recursive
domain equations

m Model the frame rule from separation logic
m In traditional models of separation logic, soundness of frame rule
depends on semantics of prog. lang.:
B nondeterministic memory allocator
B semantics with partial heaps
B prove that programs satisfy the frame property
m Reus and Schwinghammer CSL06:

| functor category semantics over category of worlds (world is roughly
the set of locations allocated) [avoiding powerdomains]

B needed to solve recursive domain eqgn. in functor category

m frame property also became recursively defined

m clever, but complicated; makes it hard to scale to richer languages

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 3/20

Challenges, I

m Model the frame rule from separation logic (continued):
m Here:
B “bake-in” the frame rule to the interpretation
m allows for deterministic memory allocator, simple semantics of
langauge, using idea from [Birkedal:Yang:FOSSACS’07]
B also accomodates higher-order frame rules, and
B pointer arithmetic
m Validation of proof rules for recursion through the store
m amount to recursively defined specifications
m existence of such recursive properties of domains is well-known to
be non-trivial [Pitts:InfComp:96, e.g.] and involve admissibility and
downwards-closure conditions
m R&S:CSL06: restriction on assertions to ensure those conditions
m Here: just force them to hold by taking suitable closure, so no
restrictions on assertions (but need to verify that we get a sound
model of all the rules).

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 4/20

Programming Language

ecExp:=...|C
C € CoM ::=skip | Cy;Cy | if (e1=e2) then C; else Co
| let x=new (ey,...,en)in C|free e

| [e1]:=e2 | let y=[€] in C | eval [€]

m allows for storing of commands, qua quoted commands as
expressions

m addresses are natural numbers, so address arithmetic is possible

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 5/20

Program Logic

Assertions:
Standard sep. logic, i.e., classical predicate logic, extended with
e— €,emp, PxQand P—xQ. J

Specifications:

First-order intuitionistic logic with Hoare triples as atomic formulas, and
with invariant extension ¢ ® P:

o, =e1=e [{PIC{Q} [0 @ P[T|Flony oV |p=1v
| Ix.o | VX

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 6/20

Proof Rules
Assertion Logic:
m standard classical logic + Bl rules for new connectives, e.g.,

Py Q4 P Qo

(PxQ)* R Px(Qx*R) PP Qs

Specification Logic:
m intuitionistic logic with equality + special rules for Hoare triples and
invariant extension, e.g.,

m allocation (x ¢ fv(P, Q, e))

Vx.{Pxx — e}C{Q}
{P}let x=new e in C{Q}

m free
{e— _}ree(e){emp}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 7/20

Proof Rules, Il

m Rule of consequence:

PFP QFQ
{PrC{@} ={P}C{Q}

m Selected rules for invariant extension (higher-order frame rules):

v = P
{P}C{P}®Q {PxQ}C{P «Q}
(eo=e€1)®Q e = e

=

<~
(<p®P)®Q & e (PxQ)
(prn)e@P < (¢@P)A (Y@ P)
(Vx.p) ® &S YX.p®P

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP

8/20

Proof Rules for Stored Code

(similar to proof rules for recursive procedures)
—
(vy.{P}eval [e]{Q}) = Vy.{P}C{Q})

Vy.{P+e—‘Cleval [e]{Qxe—‘C} (v ¢ fv(e, C))

(Vx. (Vy.{Px e~ x}eval [e]{Q* e— x})
= Vy. {Pxe—x}C{Qx*e— x})

Vy. {Px*e— ‘Cleval [e]{Qx*e—‘C’}

(x ¢ fv(P.Q,y,e0C),
y ¢ fv(e C)

(see paper for a third, slightly more expressive variant)

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 9/20

Example: factorial

OO-style factorial using three cells: (0,0+ 1, 0 + 2), with o the
argument, o + 1 the result field, and o + 2 the stored code.
Fo £ let x=[o] in let r=[o+1] in
if (x=0) then skip
else ([o+1]:=r - x; [0]:=x—1;eval [0+2])

c ¥ [0+2]:='F,’; eval [0+2]
o F{o—51,_}C{o— 0,5, 'F,}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP

10/20

Key Step in Factorial Proof

Using rule 1:

ot (Vij{o—i,j}eval[o+2]{o—0,j-il})
= (Vij.{o—1i,j}Fo{0—0,j-i'})
ok Vij.{o—ij,‘Fo'}eval [0+2]{o—0,j-i!,'F,’}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 11/20

Semantics of Programs

m Standard denotational semantics using recursively defined
domains:

Val = Integers, & Com
Heap = Rec(Val)
Com Heap — Heap @ {error} |,

where Rec(A) is the domains of records with natural numbers as
labels, ordered by:

/ def
=

rcr r # L = (dom(r) =dom(r') AV¢ e dom(r). r(¢) C r'(¢)

m Semantic equations mostly as expected:

m quote is modeled via injection of commands into values
m allocation is modeled via choosing least free location
m see paper for details

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 12/20

Semantics of Assertions

m Let P be the set of subsets p C Heap that contain L.

m Thm: P is a complete boolean Bl-algebra.

m In particular,
hepy«xpo & 3hy,ho. h=hiehy A hy €p; A ho € po.

m Use the canonical Bl-hyperdoctrine [BBTS:05] Set(—, P) to model
the assertion logic

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 13/20

Semantics of Specifications

m To model higher-order frame rules (invariant extension), use a

Kripke model over preorder (P, C), where
def

pCqg & IreP. pxr=aq.
m Specification logic modeled in hyperdoctrine Set(_, P 1 (P))
m Concretely, forcing relation n, p = ¢, with, e.g.,

mpEe=v & forallreP,ifpCrandn,rk= ¢, thenn,r =1
npEeoP & np«[Pl) e
n.p E{PIC{Q} & H[[P]]:;‘*p} [C1, {1QI; * p}

m where semantic triples are. ..

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 14/20

Semantic Triples

A semantic Hoare triple is a triple of predicates p, g € P and function
¢ € Com, written {p}c{q}. J

A semantic triple{p}c{q} is valid, denoted ={p}c{q}, if and only if, for
all r € P and all h € Heap, we have that he pxr = c¢(h) € Ad(q * r).J

Addresses challenges from intro:

m universal quantification over x-added invariants r, bakes-in the
frame rule.

m takes admissible, downwards closure Ad(q * r) of post-conditions

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 15/20

Semantic Triples, Il

Thm: If &= {p}c{q},then E{px*r}ic{gxr}forallreP.

Thm: For all p, g € P, the subset {c | {p}c{q} is valid} is an
admissible, downward-closed subset of Com.

Main Thm: The specification logic rules are sound.

Lars Birkedal (ITU) Sep. Logic for Higher-order Store

ICALP

16/20

Soundness of Rule 2 for Stored Code
Recall the rule:

(Vx. (Vy.{P x e x}eval [e]{Q x e— x})
= Vy.{Pxe— x}C{Qx* e x})
Vy.{Pxe—‘C}eval [e]{Qx+e—'C"}

(x ¢ fv(P,Q,y,e, C),
y ¢ fv(e, C))

Outline of soundness proof:
m Define a predicate A, , on Com x Comby: A, /(c, d) iff

vveVal". ={[P+e—x]; «r}d{[Qxe— x];\ r}

where 1 = n[y—V, x—c].
m Soundness of the rule boils down to proving:

(Ve e Com.vr' dr. A, p(c,c) = A, n(c[C1,))
= A ([C],.['CT,)

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 17/20

Proof Outline Continued

m SFTS that, for all n, r, there exists S, , C Com such that S, /(c)
holds iff Vd. S, ,(d) = A, (d,c).

m Existence of S, , obtained as fixed point of symmetrization ®% of
operator ¢: C%? — C, with C the complete lattice of admissible
subsets of Com (ordered by C).

®(S)={ce Com|vd.de S= A,,(d,c)}.

m S, T)E (B(T),d(S)):CP xC—CPxC
m $(S) is admissible qua admissible closure in semantic triples.

m Existence proof boils down to a fixed point induction, using
minimal invariance of the recursive domain equation (downwards
closure used, holds qua downwards closure in semantic triples).

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 18/20

Conclusion & Future Work

Conclusion:

m Developed a simple model of separation logic for reasoning about
partial correctness of programs using higher-order store:

m Straightforward standard semantics for programming language
(deterministic allocator)

m Bake-in frame rule into the interpretation of triples
m Force admissibility and downwards closure
m Also accomodates higher-order frame rules and address arithmetic

Future Work:
m Extend to a language with higher-order functions

m Relational version of the logic for reasoning about data abstraction
[Birkedal:Yang:FOSSACS’07]

m Models of anti-frame rules of Pottier

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 19/20

Lars Birkedal (ITU)

Thank You.

Thank you for your attention.

Sep. Logic for Higher-order Store

	Introduction
	Conclusion
	Thank You

