
A Simple Model of Separation Logic for
Higher-order Store

Lars Birkedal

IT University of Copenhagen
Joint work with B. Reus, J. Schwinghammer, H. Yang

July, 2008

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 1 / 20

Introduction

Semantic foundation for separation logic for higher-order store:
Higher-order Store

not only first-order data but also procedures / commands can be
stored in the heap
used both in higher-typed languages (ML), OO languages, and
low-level languages (code pointers)

Why separation logic ?
for modular reasoning about programs with shared mutable data
(pointers)

{P}C{Q}
{P ∗ R}C{Q ∗ R}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 2 / 20

Challenges of sep. logic for higher-order store, I

Because of higher-order store we’ll need to solve some recursive
domain equations
Model the frame rule from separation logic

In traditional models of separation logic, soundness of frame rule
depends on semantics of prog. lang.:

nondeterministic memory allocator
semantics with partial heaps
prove that programs satisfy the frame property

Reus and Schwinghammer CSL’06:
functor category semantics over category of worlds (world is roughly
the set of locations allocated) [avoiding powerdomains]
needed to solve recursive domain eqn. in functor category
frame property also became recursively defined
clever, but complicated; makes it hard to scale to richer languages

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 3 / 20

Challenges, II

Model the frame rule from separation logic (continued):
Here:

“bake-in” the frame rule to the interpretation
allows for deterministic memory allocator, simple semantics of
langauge, using idea from [Birkedal:Yang:FOSSACS’07]
also accomodates higher-order frame rules, and
pointer arithmetic

Validation of proof rules for recursion through the store
amount to recursively defined specifications
existence of such recursive properties of domains is well-known to
be non-trivial [Pitts:InfComp:96, e.g.] and involve admissibility and
downwards-closure conditions
R&S:CSL’06: restriction on assertions to ensure those conditions
Here: just force them to hold by taking suitable closure, so no
restrictions on assertions (but need to verify that we get a sound
model of all the rules).

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 4 / 20

Programming Language

e ∈ EXP ::= . . . | ‘C’

C ∈ COM ::= skip | C1;C2 | if (e1=e2) then C1 else C2
| let x=new (e1, . . . ,en) in C | free e
| [e1]:=e2 | let y=[e] in C | eval [e]

allows for storing of commands, qua quoted commands as
expressions
addresses are natural numbers, so address arithmetic is possible

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 5 / 20

Program Logic

Assertions:

Standard sep. logic, i.e., classical predicate logic, extended with
e 7→ e′, emp, P ∗Q and P −∗Q.

Specifications:

First-order intuitionistic logic with Hoare triples as atomic formulas, and
with invariant extension ϕ⊗ P:

ϕ,ψ ::= e1=e2 | {P}C{Q} | ϕ⊗ P | T | F | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ψ

| ∃x .ϕ | ∀x .ϕ

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 6 / 20

Proof Rules
Assertion Logic:

standard classical logic + BI rules for new connectives, e.g.,

(P ∗Q) ∗ R a` P ∗ (Q ∗ R)
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗Q2

Specification Logic:
intuitionistic logic with equality + special rules for Hoare triples and
invariant extension, e.g.,
allocation (x 6∈ fv(P,Q,e))

∀x .{P ∗ x 7→ e}C{Q}
{P}let x = new e in C{Q}

free
{e 7→ _}free(e){emp}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 7 / 20

Proof Rules, II

Rule of consequence:

P ` P ′ Q′ ` Q
{P ′}C{Q′}⇒{P}C{Q}

Selected rules for invariant extension (higher-order frame rules):

ϕ ⇒ ϕ⊗ P
{P}C{P ′}⊗Q ⇔ {P ∗Q}C{P ′ ∗Q}
(e0 = e1)⊗Q ⇔ e0 = e1

(ϕ⊗ P)⊗Q ⇔ ϕ⊗ (P ∗Q)
(ϕ ∧ ψ)⊗ P ⇔ (ϕ⊗ P) ∧ (ψ ⊗ P)
(∀x . ϕ)⊗ P ⇔ ∀x . ϕ⊗ P

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 8 / 20

Proof Rules for Stored Code

(similar to proof rules for recursive procedures)

1
(∀~y .{P}eval [e]{Q}) ⇒ ∀~y .{P}C{Q}

)
∀~y .{P ∗ e 7→ ‘C’}eval [e]{Q ∗ e 7→ ‘C’}

(~y /∈ fv(e,C))

2

(∀x . (∀~y .{P ∗ e 7→ x}eval [e]{Q ∗ e 7→ x})
⇒ ∀~y .{P ∗ e 7→ x}C{Q ∗ e 7→ x})

∀~y .{P ∗ e 7→ ‘C’}eval [e]{Q ∗ e 7→ ‘C’}
(
x 6∈ fv(P,Q, ~y ,e,C),
~y /∈ fv(e,C)

)
3 (see paper for a third, slightly more expressive variant)

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 9 / 20

Example: factorial

OO-style factorial using three cells: (o,o + 1,o + 2), with o the
argument, o + 1 the result field, and o + 2 the stored code.

Fo
def
= let x=[o] in let r=[o+1] in

if (x=0) then skip
else

(
[o+1]:=r · x ; [o]:=x−1; eval [o+2]

)
C def

= [o+2]:=‘Fo ’; eval [o+2]

o ` {o 7→ 5,1,_}C{o 7→ 0,5!, ‘Fo ’}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 10 / 20

Key Step in Factorial Proof

Using rule 1:

o ` (∀ij .{o 7→ i , j}eval [o+2]{o 7→0, j · i!})
⇒ (∀ij .{o 7→ i , j}Fo{o 7→0, j · i!})

o ` ∀ij . {o 7→ i , j , ‘Fo ’}eval [o+2]{o 7→0, j · i!, ‘Fo ’}

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 11 / 20

Semantics of Programs

Standard denotational semantics using recursively defined
domains:

Val = Integers⊥ ⊕ Com⊥
Heap = Rec(Val)
Com = Heap (Heap ⊕ {error}⊥,

where Rec(A) is the domains of records with natural numbers as
labels, ordered by:

r v r ′ def⇔ r 6= ⊥ ⇒
(
dom(r) = dom(r ′) ∧ ∀` ∈ dom(r). r(`) v r ′(`)

)
.

Semantic equations mostly as expected:
quote is modeled via injection of commands into values
allocation is modeled via choosing least free location
see paper for details

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 12 / 20

Semantics of Assertions

Let P be the set of subsets p ⊆ Heap that contain ⊥.
Thm: P is a complete boolean BI-algebra.
In particular,
h ∈ p1 ∗ p2

def⇔ ∃h1,h2. h = h1 • h2 ∧ h1 ∈ p1 ∧ h2 ∈ p2.

Use the canonical BI-hyperdoctrine [BBTS:05] Set(−,P) to model
the assertion logic

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 13 / 20

Semantics of Specifications

To model higher-order frame rules (invariant extension), use a
Kripke model over preorder (P,v), where
p v q def⇔ ∃r ∈ P. p ∗ r = q.
Specification logic modeled in hyperdoctrine Set(_,P ↑ (P))

Concretely, forcing relation η,p |= ϕ, with, e.g.,

η,p |= ϕ⇒ ψ
def⇔ for all r ∈ P, if p v r and η, r |= ϕ, then η, r |= ψ

η,p |= ϕ⊗ P def⇔ η,p ∗ JPKAη |= ϕ

η,p |={P}C{Q} def⇔ |={JPKAη ∗ p} JCKη {JQKAη ∗ p}

where semantic triples are. . .

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 14 / 20

Semantic Triples

A semantic Hoare triple is a triple of predicates p,q ∈ P and function
c ∈ Com, written {p}c{q}.

A semantic triple{p}c{q} is valid, denoted |={p}c{q}, if and only if, for
all r ∈ P and all h ∈ Heap, we have that h ∈ p ∗ r ⇒ c(h) ∈ Ad(q ∗ r).

Addresses challenges from intro:
universal quantification over ∗-added invariants r , bakes-in the
frame rule.
takes admissible, downwards closure Ad(q ∗ r) of post-conditions

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 15 / 20

Semantic Triples, II

Thm: If |= {p}c{q}, then |= {p ∗ r}c{q ∗ r} for all r ∈ P.

Thm: For all p,q ∈ P, the subset {c | {p}c{q} is valid} is an
admissible, downward-closed subset of Com.

Main Thm: The specification logic rules are sound.

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 16 / 20

Soundness of Rule 2 for Stored Code
Recall the rule:

(∀x . (∀~y .{P ∗ e 7→ x}eval [e]{Q ∗ e 7→ x})
⇒ ∀~y .{P ∗ e 7→ x}C{Q ∗ e 7→ x})

∀~y .{P ∗ e 7→ ‘C’}eval [e]{Q ∗ e 7→ ‘C’}
(
x 6∈ fv(P,Q, ~y ,e,C),
~y /∈ fv(e,C)

)
Outline of soundness proof:

Define a predicate Aη,r on Com × Com by: Aη,r (c,d) iff

∀~v∈Valn. |={JP ∗e 7→ xKAη1
∗ r}d{JQ ∗e 7→ xKAη1

∗ r}

where η1 = η[~y 7→~v , x 7→c].
Soundness of the rule boils down to proving:(

∀c ∈ Com.∀r ′ w r . Aη,r ′(c, c)⇒ Aη,r ′(c, J‘C’Kη)
)

⇒ Aη,r (J‘C’Kη , J‘C’Kη).

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 17 / 20

Proof Outline Continued

SFTS that, for all η, r , there exists Sη,r ⊆ Com such that Sη,r (c)
holds iff ∀d . Sη,r (d) ⇒ Aη,r (d , c).
Existence of Sη,r obtained as fixed point of symmetrization Φ§ of
operator Φ: Cop→C, with C the complete lattice of admissible
subsets of Com (ordered by ⊆).

Φ(S) = {c ∈ Com | ∀d .d ∈ S ⇒ Aη,r (d , c)}.

Φ§(S,T)
def
= 〈Φ(T),Φ(S)〉 : Cop × C → Cop × C

Φ(S) is admissible qua admissible closure in semantic triples.
Existence proof boils down to a fixed point induction, using
minimal invariance of the recursive domain equation (downwards
closure used, holds qua downwards closure in semantic triples).

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 18 / 20

Conclusion & Future Work

Conclusion:
Developed a simple model of separation logic for reasoning about
partial correctness of programs using higher-order store:

Straightforward standard semantics for programming language
(deterministic allocator)
Bake-in frame rule into the interpretation of triples
Force admissibility and downwards closure
Also accomodates higher-order frame rules and address arithmetic

Future Work:
Extend to a language with higher-order functions
Relational version of the logic for reasoning about data abstraction
[Birkedal:Yang:FOSSACS’07]
Models of anti-frame rules of Pottier

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 19 / 20

Thank You.

Thank you for your attention.

Lars Birkedal (ITU) Sep. Logic for Higher-order Store ICALP 20 / 20

	Introduction
	Conclusion
	Thank You

