Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types

Lars Birkedal

IT University of Copenhagen
Joint work with Kristian Støvring and Jacob Thamsborg
Sep, 2008

Relational Parametricity

■ Reynolds 1983: to show equivalence of polymorphic programs and to show representation independence for abstract data types. Setting: λ_{2}.
■ Abadi and Plotkin: logic for parametricity, universal properties of definable types [LB + Møgelberg: categorical models for such]

- Towards relational parametricity for languages with effects:

■ I: Equational type theories with effects:
■ Plotkin: linear $\lambda_{2}+$ fixed points, universal properties of recursive types
■ LB + Møgelberg: LAPL + categorical models of such
■ Recent work by Simpson, Møgelberg on general polymorphic type theory for effects and Hasegawa on continuations, related to Paul Levy's CBPV

Relational Parametricity, II

- II: Programming languages with effects
- Wadler

■ equality = contextual equivalence

- much research on devising reasoning methods for ctx. equiv. using both logical relations and bisimulation techniques; for state:
Pitts-Stark, Benton-Leperchey, LB-Bohr, Koutavas-Wand, Støvring-Lassen, ...
■ relationally parametric models for languages with recursion and inductive/co-inductive types [Pitts, Bierman et. al., Johann and Voigtlaender] and recursive types [Appel et. al.]
- Link between the two approaches: next talk
- This talk:
- relational parametric model for prog. lang. with recursive types and general references.
- focus on challenge of defining adequate semantics, existence of logical relations
- future work: combine with LB-Bohr to get better reasoning methods for local state

Outline - Types

Slogan: one domain equation for each of \forall, ref, μ.
\forall impredicative polymorphism: choose to model types as relations UARel(V) over a recursively defined predomain V.
ref general references with dynamic allocation: use Kripke model with recursively defined worlds, approximately of the form:

$$
\begin{aligned}
\mathcal{W} & =\mathbb{N}_{0} \rightarrow \mathcal{T} \\
\mathcal{T} & =\mathcal{W} \rightarrow \operatorname{UAReI}(V)
\end{aligned}
$$

Solve in CBUIt.
μ recursive types: relations interpreting types also recursively defined,

■ non-trivial for reference types, leads to novel modeling of locations involving some approximation information.

Outline - Terms

■ Use V to give an "untyped" semantics of terms.
■ For well-typed terms: prove the fundamental theorem of logical relations with respect to the relational interpretation of types, to get a typed interpretation.
■ In earlier work, shown adequacy of such a denotational semantics wrt. operational semantics:

■ Hence get proof method for proving contextual equivalence of programs.

- In particular, data abstraction results qua parametricity in a language with general references.

Uniform cpos

A uniform cpo $\left(A,\left(\varpi_{n}\right)_{n \in \omega}\right)$ is a cpo A together with a family $\left(\varpi_{n}\right)_{n \in \omega}$ of continuous functions from A to A_{\perp}, satisfying

$$
\begin{aligned}
\varpi_{0} & \sqsubseteq \varpi_{1} \sqsubseteq \cdots \sqsubseteq \varpi_{n} \sqsubseteq \cdots \\
\bigsqcup_{n \in \omega} \varpi_{n} & =\overline{i d_{A}}=\lambda a .\lfloor a\rfloor \\
\varpi_{m} \bar{\sigma} \varpi_{n} & =\varpi_{n} \bar{\sigma} \varpi_{m}=\varpi_{\min (m, n)} \\
\varpi_{0} & =\lambda e . \perp .
\end{aligned}
$$

Predomain V of values

Proposition. There exists a uniform cpo $\left(V,\left(\pi_{n}\right)_{n \in \omega}\right)$ satisfying: In pCpo:

$$
\begin{equation*}
V \cong \mathbb{Z}+L o c+1+(V \times V)+(V+V)+V+T V+(V \rightarrow T V) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
T V & =(V \rightarrow S \rightarrow \text { Ans }) \rightarrow S \rightarrow A n s \\
S & =\mathbb{N}_{0} \rightharpoonup_{f i n} V \\
\text { Ans } & =(\mathbb{Z}+E r r)_{\perp}
\end{aligned}
$$

and

$$
\begin{aligned}
L o c & =\mathbb{N}_{0} \times \bar{\omega} \\
E r r & =1 .
\end{aligned}
$$

The functions $\pi_{n}: V \rightarrow V_{\perp}$ satisfy (and are determined by)

$$
\begin{aligned}
\pi_{0} & =\lambda v \cdot \perp \\
\pi_{n+1}\left(i n_{\mathbb{Z}}(k)\right) & =\left\lfloor i n_{\mathbb{Z}}(k)\right\rfloor \\
\pi_{n+1}\left(i n_{\times}\left(v_{1}, v_{2}\right)\right) & = \begin{cases}\left\lfloor i n_{\times}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right\rfloor & \text { if } \pi_{n} v_{1}=\left\lfloor v_{1}^{\prime}\right\rfloor \text { and } \pi_{n} v_{2}=\left\lfloor v_{2}^{\prime}\right\rfloor \\
\perp & \text { otherwise }\end{cases} \\
& \ldots \text { etc. as you'd expect, except: } \\
\pi_{n+1}\left(i n_{L o c}(l, m)\right) & =\left\lfloor i i_{L o c}(l, \min (n+1, m))\right\rfloor
\end{aligned}
$$

Untyped Semantics of Terms

$\square \llbracket t \rrbracket_{X}: V^{X} \rightarrow T V$ by induction on t, e.g.:

$$
\llbracket!t \rrbracket_{X} \rho=\llbracket t \rrbracket_{X} \rho \star \lambda v . \text { lookup } v
$$

- where lookup $v=$

$$
\lambda k \lambda s . \begin{cases}k s(I) s & \text { if } v=\lambda_{l} \text { and } I \in \operatorname{dom}(s) \\ k v^{\prime} s & \text { if } v=\lambda_{I}^{n+1}, I \in \operatorname{dom}(s) \text {, and } \pi_{n}(s(I))=\left\lfloor v^{\prime}\right\rfloor \\ \perp_{\text {Ans }} & \text { if } v=\lambda_{I}^{n+1}, I \in \operatorname{dom}(s) \text {, and } \pi_{n}(s(I))=\perp \\ \text { error }_{\text {Ans }} & \text { otherwise }\end{cases}
$$

Untyped Semantics of Terms, II

Let t be a term of type int with no free term variables or type variables. The program semantics of t is the element $\llbracket t \rrbracket^{\mathrm{p}}$ of Ans defined by

$$
\llbracket t \rrbracket^{\mathrm{p}}=\llbracket t \rrbracket_{\emptyset} \emptyset k_{\text {init }} s_{\text {init }}
$$

where

$$
k_{\text {init }}=\lambda v \cdot \lambda s . \begin{cases}\left\lfloor\iota_{1} k\right\rfloor & \text { if } v=i n_{\mathbb{Z}}(k) \\ \text { error }_{\text {Ans }} & \text { otherwise }\end{cases}
$$

and where $s_{i n i t} \in S$ is the empty store.

CBUIt

Recall:

- An ultrametric space is a metric space (D, d) that instead of triangle inequality satisfies the stronger ultrametric inequality:

$$
d(x, z) \leq \max (d(x, y), d(y, z)) .
$$

- CBUIt is the category with complete 1-bounded ultrametric spaces and non-expansive functions.
\square CBUlt is cartesian closed; the exponential $\left(D_{1}, d_{1}\right) \rightarrow\left(D_{2}, d_{2}\right)$ is the set of non-expansive maps with the "sup"-metric $d_{D_{1} \rightarrow D_{2}}$ as distance function:

$$
d_{D_{1} \rightarrow D_{2}}(f, g)=\sup \left\{d_{2}(f(x), g(x)) \mid x \in D_{1}\right\} .
$$

- Solutions to recursive domain equations for locally contractive functors.

UARel $(V) \in$ CBUlt

Recall [Amadio, Abadi-Plotkin]:
■ UARel (V) is the set of admissible relations that are unifom: $\varpi_{n} \in R \rightarrow R_{\perp}$, for all n.
$■$ Such relations are determined by its elements of the form $\left(\varpi_{n} e, \varpi_{n} e^{\prime}\right)$.
■ UARel $(V) \in$ CBUlt, distance function:

$$
d(R, S)= \begin{cases}2^{-\max \left\{n \in \omega \mid \varpi_{n} \in R \rightarrow S \wedge \varpi_{n} \in S \rightarrow R\right\}} & \text { if } R \neq S \\ 0 & \text { if } R=S\end{cases}
$$

Worlds

$■$ Proposition. Let $(D, d) \in$ CBUlt. The set $\mathbb{N}_{0} \rightharpoonup_{\text {fin }} D$ with distance function:
$d^{\prime}\left(\Delta, \Delta^{\prime}\right)= \begin{cases}\max \left\{d\left(\Delta(I), \Delta^{\prime}(I)\right) \mid I \in \operatorname{dom}(\Delta)\right\} & \text { if } \operatorname{dom}(\Delta)=\operatorname{dom} \\ 1 & \text { otherwise }\end{cases}$
is in CBUlt.
■ Extension ordering: $\Delta \leq \Delta^{\prime}$ iff

$$
\operatorname{dom}(\Delta) \subseteq \operatorname{dom}\left(\Delta^{\prime}\right) \wedge \forall I \in \operatorname{dom}(\Delta) \cdot \Delta(I)=\Delta^{\prime}(I)
$$

Space of types

■ Proposition.

$$
F(D)=\left(\mathbb{N}_{0} \rightarrow_{\text {fin }} D\right) \rightarrow_{\text {mon }} \operatorname{UARel}(V)
$$

(monotone, non-expansive maps) defines a functor $F: C B U I t^{\mathrm{op}} \rightarrow$ CBUIt.
■ Theorem. There exists $\widehat{\mathcal{T}} \in$ CBUlt such that the isomorphism

$$
\begin{equation*}
\widehat{\mathcal{T}} \cong \frac{1}{2}\left(\left(\mathbb{N}_{0} \rightharpoonup_{\text {fin }} \widehat{\mathcal{T}}\right) \rightarrow_{\text {mon }} \operatorname{UARel}(V)\right) \tag{2}
\end{equation*}
$$

holds in CBUlt.

Space of Types, II

Define:
$■$ Worlds: $\mathcal{W}=\mathbb{N}_{0} \rightharpoonup_{\text {fin }} \widehat{\mathcal{T}}$
■ Types: $\mathcal{T}=\mathcal{W} \rightarrow_{\text {mon }} \operatorname{UAReI}(V)$
■ Computations: $\mathcal{T}_{T}=\mathcal{W} \rightarrow$ mon $\operatorname{UAReI}(T V)$
■ Continuations: $\mathcal{T}_{K}=\mathcal{W} \rightarrow_{\text {mon }} \operatorname{UAReI}(K)$
$■$ States: $\mathcal{T}_{S}=\mathcal{W} \rightarrow \operatorname{UARel}(S)$ (note: not monotone)

Semantics of Types

For every $\equiv \vdash \tau$, define the non-expansive $\llbracket \tau \rrbracket_{\equiv}: \mathcal{T} \equiv \rightarrow \mathcal{T}$ by induction on τ :

$$
\begin{aligned}
& \llbracket \alpha \rrbracket \equiv \varphi=\varphi(\alpha) \\
& \llbracket \mathrm{int} \rrbracket_{\equiv} \varphi=\lambda \Delta .\left\{\left(i n_{\mathbb{Z}} k, i n_{\mathbb{Z}} k\right) \mid k \in \mathbb{Z}\right\} \\
& \llbracket 1 \rrbracket_{\equiv} \varphi=\lambda \Delta .\left\{\left(i n_{1} *, i n_{1} *\right)\right\} \\
& \llbracket \tau_{1} \times \tau_{2} \rrbracket_{\equiv} \varphi=\llbracket \tau_{1} \rrbracket_{\equiv} \varphi \times \llbracket \tau_{2} \rrbracket \equiv \varphi \\
& \llbracket 0 \rrbracket_{\equiv} \varphi=\lambda \Delta . \emptyset \\
& \llbracket \tau_{1}+\tau_{2} \rrbracket_{\equiv \varphi}=\llbracket \tau_{1} \rrbracket_{\equiv} \varphi+\llbracket \tau_{2} \rrbracket_{\equiv \varphi} \\
& \llbracket \operatorname{ref} \tau \rrbracket_{\equiv} \varphi=\operatorname{ref}\left(\llbracket \tau \rrbracket_{\equiv} \varphi\right) \\
& \llbracket \forall \alpha . \tau \rrbracket_{\equiv} \varphi=\lambda \Delta .\left\{\left(i n_{\forall} c, i n_{\forall} c^{\prime}\right) \mid \forall \nu \in \mathcal{T} .\left(c, c^{\prime}\right) \in\right. \\
& \left.=\quad \operatorname{comp}\left(\llbracket \tau \rrbracket_{\equiv, \alpha} \varphi[\alpha \mapsto \nu]\right)(\Delta)\right\} \\
& \llbracket \mu \alpha . \tau \rrbracket_{\equiv} \varphi=\text { fix }\left(\lambda \nu . \lambda \Delta .\left\{\left(i n_{\mu} v, i n_{\mu} v^{\prime}\right) \mid\left(v, v^{\prime}\right) \in \llbracket \tau \rrbracket_{\Xi, \alpha} \varphi[\alpha \mapsto \nu] \Delta\right\}\right) \\
& \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\equiv \varphi}=\left(\llbracket \tau_{1} \rrbracket_{\equiv} \varphi\right) \rightarrow\left(\operatorname{comp}\left(\llbracket \tau_{2} \rrbracket_{\equiv \varphi}\right)\right)
\end{aligned}
$$

Semantic Type Constructors

$$
\begin{aligned}
&\left(\nu_{1} \times \nu_{2}\right)(\Delta)=\left\{\left(\operatorname{in}_{\times}\left(v_{1}, v_{2}\right), i n_{\times}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \mid\right. \\
&\left.\left(v_{1}, v_{1}^{\prime}\right) \in \nu_{1}(\Delta) \wedge\left(v_{2}, v_{2}^{\prime}\right) \in \nu_{2}(\Delta)\right\} \\
& \operatorname{ref}(\nu)(\Delta)=\left\{\left(\lambda_{l}, \lambda_{l}\right) \mid I \in \operatorname{dom}(\Delta) \wedge\right. \\
&\left.\forall \Delta_{1} \geq \Delta . \operatorname{App}(\Delta(I)) \Delta_{1}=\nu\left(\Delta_{1}\right)\right\} \\
& \cup\left\{\left(\lambda_{l}^{n+1}, \lambda_{l}^{n+1}\right) \mid I \in \operatorname{dom}(\Delta) \wedge\right. \\
&\left.\forall \Delta_{1} \geq \Delta . \operatorname{App}(\Delta(I)) \Delta_{1} \stackrel{n}{=} \nu\left(\Delta_{1}\right)\right\}
\end{aligned}
$$

■ Note the use of semantic locations to ensure non-expansiveness in ref case.
■ Necessary: for earlier version we proved that relations did not exist if we didn't use semantic locations.

- Because of relational parametricity, we need to model open types; hence need to compare semantic types above, cannot simply use syntactic worlds and compare types syntactically.

Semantic Type Constructors, II

$$
\begin{aligned}
&(\nu \rightarrow \xi)(\Delta)=\left\{\left(\text { in }_{\rightarrow} f, i n_{\rightarrow} f^{\prime}\right) \mid \forall \Delta_{1} \geq \Delta .\right. \\
&\left.\forall\left(v, v^{\prime}\right) \in \nu\left(\Delta_{1}\right) \cdot\left(f v, f^{\prime} v^{\prime}\right) \in \xi\left(\Delta_{1}\right)\right\} \\
& \operatorname{cont}(\nu)(\Delta)=\left\{\left(k, k^{\prime}\right) \mid \forall \Delta_{1} \geq \Delta . \forall\left(v, v^{\prime}\right) \in \nu\left(\Delta_{1}\right) .\right. \\
&\left.\forall\left(s, s^{\prime}\right) \in \operatorname{states}\left(\Delta_{1}\right) \cdot\left(k v s, k^{\prime} v^{\prime} s^{\prime}\right) \in R_{\text {Ans }}\right\} \\
& \operatorname{comp}(\nu)(\Delta)=\left\{\left(c, c^{\prime}\right) \mid \forall \Delta_{1} \geq \Delta . \forall\left(k, k^{\prime}\right) \in \operatorname{cont}(\nu)\left(\Delta_{1}\right) .\right. \\
&\left.\forall\left(s, s^{\prime}\right) \in \operatorname{states}\left(\Delta_{1}\right) \cdot\left(c k s, c^{\prime} k^{\prime} s^{\prime}\right) \in R_{\text {Ans }}\right\} \\
& \operatorname{states}(\Delta)=\left\{\left(s, s^{\prime}\right) \mid\right. \operatorname{dom}(s)=\operatorname{dom}\left(s^{\prime}\right)=\operatorname{dom}(\Delta) \\
&\left.\wedge \forall I \in \operatorname{dom}(\Delta) \cdot\left(s(I), s^{\prime}(I)\right) \in \operatorname{App}(\Delta(I))(\Delta)\right\} \\
& R_{\text {Ans }}=\{(\perp, \perp)\} \cup\left\{\left(\left\lfloor\iota_{1} k\right\rfloor,\left\lfloor\iota_{1} k\right\rfloor\right) \mid k \in \mathbb{Z}\right\}
\end{aligned}
$$

Lemmas for interpreting \forall and μ

■ Lemma. Let τ and τ^{\prime} be types such that $\equiv, \alpha \vdash \tau$ and $\equiv \vdash \tau^{\prime}$. For all φ in \mathcal{T},

$$
\llbracket \tau\left[\tau^{\prime} / \alpha\right] \rrbracket_{\equiv} \varphi=\llbracket \tau \rrbracket_{\equiv, \alpha}\left(\varphi\left[\alpha \mapsto \llbracket \tau^{\prime} \rrbracket_{\equiv} \varphi\right]\right)
$$

Corollary. For $\equiv, \alpha \vdash \tau$ and $\varphi \in \mathcal{T} \equiv$,

$$
\llbracket \mu \alpha . \tau \rrbracket_{\equiv} \varphi=\lambda \Delta .\left\{\left(i n_{\mu} v, i n_{\mu} v^{\prime}\right) \mid\left(v, v^{\prime}\right) \in \llbracket \tau[\mu \alpha \cdot \tau / \alpha] \rrbracket_{\equiv} \varphi \Delta\right\} .
$$

Typed Semantics of Terms

$■$ For $\equiv \vdash \Gamma$ and $\varphi \in \mathcal{T} \equiv$, let $\llbracket\left\ulcorner\rrbracket_{\equiv} \varphi\right.$ be the binary relation on $V^{\operatorname{dom}(\Gamma)}$ defined by

$$
\llbracket \Gamma \rrbracket_{\equiv} \varphi=\left\{\left(\rho, \rho^{\prime}\right) \mid \forall x \in \operatorname{dom}(\Gamma) .\left(\rho(x), \rho^{\prime}(x)\right) \in \llbracket \Gamma(x) \rrbracket_{\equiv} \varphi\right\}
$$

■ Two typed terms $\equiv \mid \Gamma \vdash t: \tau$ and $\equiv \mid \Gamma \vdash t^{\prime}: \tau$ of the same type are semantically related, written $\equiv \mid \Gamma \vDash t \sim t^{\prime}: \tau$, if for all $\varphi \in \mathcal{T}^{\equiv}$, all $\left(\rho, \rho^{\prime}\right) \in \llbracket \Gamma \rrbracket \equiv \varphi$, and all $\Delta \in \mathcal{W}$,

$$
\left(\llbracket t \rrbracket_{\operatorname{dom}(\ulcorner)} \rho, \llbracket t^{\prime} \rrbracket_{\operatorname{dom}(\ulcorner)} \rho^{\prime}\right) \in \operatorname{comp}\left(\llbracket \tau \rrbracket_{\equiv} \varphi\right)(\Delta)
$$

Typed Semantics of Terms, II

\square Theorem. Semantic relatedness is a congruence.
■ Corollary. (FTLR) If $\equiv \mid \Gamma \vdash t: \tau$, then $\equiv \mid \Gamma \models t \sim t: \tau$.
$■$ Corollary. (Type Soundness) If $\emptyset \mid \emptyset \vdash t: \tau$ is a closed term of type τ, then $\llbracket t \rrbracket_{\emptyset} \emptyset \neq$ error.

Simple Example: counter-module

■ Type for counter-module client:

$$
\tau_{\mathrm{cl}}=\forall \alpha .((1 \rightarrow \alpha) \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow \text { int }) \rightarrow \text { int })
$$

■ Two implementations:

$$
\begin{aligned}
& I_{1}=(\lambda x: 1.0, \lambda x: \text { int. } x+1, \lambda x: \text { int. } x) \\
& I_{2}=(\lambda x: 1.0, \lambda x: \text { int. } x-1, \lambda x: \text { int. }-x) .
\end{aligned}
$$

■ Can show

$$
\emptyset|\emptyset| c: \tau_{\mathrm{cl}} \vdash c[\mathrm{int}] /_{1}={ }_{\mathrm{ctx}} c[\mathrm{int}] l_{2}: \text { int }
$$

(using adequacy of denotational semantics wrt. operational).
■ Simple example, no reference types in the module implementations, but note that the client may use all features of the language, including references.

Conclusion \& Future Work

Conclusion:
■ Developed a realizability model of call-by-value prog. lang. with parametric polymorphism, general references, and recursive types.

■ Kripke model over a recursively defined set of worlds.

- Introduced semantic locations to model reference types involving comparison of semantic types (as needed for modelling of syntactic open types, as needed for relational parametricity).
Future Work:
■ Refine worlds to achieve better reasoning methods for local state.
■ Will combine with earlier work by Bohr-Birkedal [2006], and also recent related work by Ahmed-Dreyer-Rossberg [2008].
■ Formal relationship with recent step-indexed models of recursive types and state by Appel, Ahmed, et. al.

Additional material, I

$$
\begin{aligned}
\llbracket x \rrbracket_{X} \rho & =\eta(\rho(x)) \\
\llbracket k \rrbracket_{X} \rho & =\eta\left(i n_{\mathbb{Z}} k\right) \\
\llbracket t_{1} \pm t \rrbracket_{2} \rrbracket_{X} \rho & =\llbracket t_{1} \rrbracket_{X} \rho \star \lambda v_{1} \cdot \llbracket t_{2} \rrbracket_{X} \rho \star \lambda v_{2} \cdot \begin{cases}\eta\left(i i_{\mathbb{Z}}\left(k_{1} \pm k_{2}\right)\right) & \text { if } v_{1}=i n_{\mathbb{Z}} k_{1} \\
\text { error } & \text { otherwise }\end{cases} \\
\llbracket \lambda x \cdot t \rrbracket_{X} \rho & =\eta\left(i n_{\rightarrow}\left(\lambda v \cdot \llbracket t \rrbracket_{X, X}(\rho[X \mapsto v\rfloor)\right)\right) \\
\llbracket t_{1} t_{2} \rrbracket_{X} \rho & =\llbracket t_{1} \rrbracket_{X} \rho \star \lambda v_{1} \cdot \llbracket t_{2} \rrbracket_{X} \rho \star \lambda v_{2} \cdot \begin{cases}f v_{2} & \text { if } v_{1}=i n_{\rightarrow} f \\
\text { error } & \text { otherwise }\end{cases} \\
\llbracket \Lambda \alpha \cdot t \rrbracket_{X} \rho & =\eta\left(i n_{\forall}\left(\llbracket t \rrbracket_{X} \rho\right)\right) \\
\llbracket t \tau \tau \rrbracket_{X} \rho & =\llbracket t \rrbracket_{X} \rho \star \lambda v \cdot \begin{cases}c & \text { if } v=i n_{H} c \\
\text { error } & \text { otherwise }\end{cases}
\end{aligned}
$$

Additional material, II

■ What goes wrong if we leave out semantic locations ?
■ Letting $\nu=\llbracket \operatorname{ref} \tau \rrbracket_{\equiv} \varphi$, we cannot prove non-expansiveness, i.e.: If $\Delta \stackrel{n}{=} \Delta^{\prime}$, then $\varpi_{n} \in \nu(\Delta) \rightarrow \nu\left(\Delta^{\prime}\right)_{\perp}$.

