
Realizability Semantics of
Parametric Polymorphism, General References,

and Recursive Types

Lars Birkedal

IT University of Copenhagen
Joint work with Kristian Støvring and Jacob Thamsborg

Oct, 2008

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 1 / 28

Introduction

Two lines of motivation:
Logics for weak (ML style) references
Data abstraction qua relational parametricity for languages with
effects

Let’s briefly discuss both.

Long version of paper can be found at
www.itu.dk/people/kss/papers/poly-ref-rec.pdf.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 2 / 28

Intro I: Logics for weak refs

All of the logics mentioned in earlier talk on HOSL (Ideal. ML, HTT,
Java, higher-order store) do not take advantage of type safety.
For references, we reason as if locations are just natural numbers

E.g., in HTT we have a typed points-to predicate x 7→τ e, which in
Ynot formalization means additional proof obligations
E.g., for lookup we need to prove precondition that the pointer
points to something, even if the language cannot have
“null-pointers” (Ideal. ML, e.g.)

Wish to combine separation logic with equational reasoning, such
as:

beta and eta rules for the pure part of the language
Plotkin-Power axioms for state

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 3 / 28

Intro II: Relational Parametricity

Reynolds 1983: to show equivalence of polymorphic programs
and to show representation independence for abstract data types.
Setting: λ2.
Abadi and Plotkin: logic for parametricity, universal properties of
definable types [LB + Møgelberg: categorical models for such]
Towards relational parametricity for languages with effects:
I: Equational type theories with effects:

Plotkin: linear λ2 + fixed points, universal properties of recursive
types
LB + Møgelberg: LAPL + categorical models of such
Recent work by Simpson, Møgelberg on general polymorphic type
theory for effects and Hasegawa on continuations, related to Paul
Levy’s CBPV

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 4 / 28

Relational Parametricity, II
II: Programming languages with effects

Wadler
equality = contextual equivalence
much research on devising reasoning methods for ctx. equiv. using
both logical relations and bisimulation techniques; for state:
Pitts-Stark, Benton-Leperchey, LB-Bohr, Koutavas-Wand,
Støvring-Lassen, . . .
relationally parametric models for languages with recursion and
inductive/co-inductive types [Pitts, Bierman et. al., Johann and
Voigtlaender] and recursive types [Appel et. al.]

Link between the two approaches: Møgelberg used type theories
to give adequate semantics for FPC.
This talk:

relational parametric model for prog. lang. with recursive types and
general references.
focus on challenge of defining adequate semantics, existence of
logical relations
future work: combine with LB-Bohr to get better reasoning methods
for local state

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 5 / 28

Outline — Types

Slogan: one domain equation for each of ∀, ref, µ.
∀ impredicative polymorphism: choose to model types as relations

UARel(V) over a recursively defined predomain V .
ref general references with dynamic allocation: use Kripke model with

recursively defined worlds, approximately of the form:

W = N0 → T
T = W → UARel(V)

Solve in CBUlt.
µ recursive types: relations interpreting types also recursively

defined,
non-trivial for reference types, leads to novel modeling of locations
involving some approximation information.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 6 / 28

Outline — Terms

Use V to give an “untyped” semantics of terms.
For well-typed terms: prove the fundamental theorem of logical
relations with respect to the relational interpretation of types, to
get a typed interpretation.
In earlier work, shown adequacy of such a denotational semantics
wrt. operational semantics:

Hence get proof method for proving contextual equivalence of
programs.
In particular, data abstraction results qua parametricity in a
language with general references.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 7 / 28

Uniform cpos

A uniform cpo (A, ($n)n∈ω) is a cpo A together with a family ($n)n∈ω of
continuous functions from A to A⊥, satisfying

$0 v $1 v · · · v $n v . . .⊔
n∈ω

$n = idA = λa.bac

$m ◦ $n = $n ◦ $m = $min(m,n)

$0 = λe.⊥ .

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 8 / 28

Predomain V of values
Proposition. There exists a uniform cpo (V , (πn)n∈ω) satisfying:
In pCpo:

V ∼= Z + Loc + 1 + (V × V) + (V + V) + V + TV + (V → TV) (1)

where

TV = (V → S → Ans)→ S → Ans
S = N0 ⇀fin V

Ans = (Z + Err)⊥

and

Loc = N0 × ω
Err = 1 .

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 9 / 28

The functions πn : V → V⊥ satisfy (and are determined by)

π0 = λv .⊥
πn+1(inZ(k)) = binZ(k)c

πn+1(in×(v1, v2)) =

{
bin×(v ′1, v

′
2)c if πn v1 = bv ′1c and πn v2 = bv ′2c

⊥ otherwise

. . . etc. as you’d expect, except:
πn+1(inLoc(l ,m)) = binLoc(l ,min(n + 1,m))c

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 10 / 28

Untyped Semantics of Terms, I
JtKX : V X → TV by induction on t :

JxKX ρ = η(ρ(x))
q
k
y

X ρ = η(inZ k)

Jt1 ± t2KX ρ = Jt1KX ρ ? λv1. Jt2KX ρ ? λv2.

{
η(inZ(k1 ± k2)) if v1 = inZ k1 and v2 = inZ k2
error otherwise

Jλx . tKX ρ = η(in→(λv . JtKX ,x (ρ[x 7→ v])))

Jt1 t2KX ρ = Jt1KX ρ ? λv1. Jt2KX ρ ? λv2.

{
f v2 if v1 = in→ f
error otherwise

JΛα. tKX ρ = η(in∀ (JtKX ρ))

Jt [τ]KX ρ = JtKX ρ ? λv .
{

c if v = in∀ c
error otherwise

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 11 / 28

Untyped Semantics of Terms, II

For lookup and assignment we need to consider semantic
locations:

J! tKX ρ = JtKX ρ ? λv . lookup v

where lookup v =

λk λs.


k s(l) s if v = λl and l ∈ dom(s)

k v ′ s if v = λn+1
l , l ∈ dom(s), and πn(s(l)) = bv ′c

⊥Ans if v = λn+1
l , l ∈ dom(s), and πn(s(l)) = ⊥

errorAns otherwise

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 12 / 28

Untyped Semantics of Terms, III

assignment:

Jt1 := t2KX ρ = Jt1KX ρ ? λv1. Jt2KX ρ ? λv2.assign v1 v2

where assign v1 v2 = λk λs. =
k (in1∗) (s[l 7→ v2]) if v1 = λl and l ∈ dom(s)

k (in1∗) (s[l 7→ v ′2]) if v1 = λn+1
l , l ∈ dom(s), and πn(v2) = bv ′2c

⊥Ans if v1 = λn+1
l , l ∈ dom(s), and πn(v2) = ⊥

errorAns otherwise

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 13 / 28

Untyped Semantics of Terms, IV

Let t be a term of type int with no free term variables or type variables.
The program semantics of t is the element JtKp of Ans defined by

JtKp = JtK∅ ∅ kinit sinit

where

kinit = λv .λs.
{
bι1 kc if v = inZ(k)
errorAns otherwise

and where sinit ∈ S is the empty store.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 14 / 28

CBUlt

Recall:
An ultrametric space is a metric space (D,d) that instead of
triangle inequality satisfies the stronger ultrametric inequality:

d(x , z) ≤ max(d(x , y),d(y , z)).

A function f : D1 → D2 from a metric space (D1,d1) to a metric
space (D2,d2) is non-expansive if d2(f (x), f (y)) ≤ d1(x , y) for all x
and y in D1.
A function f : D1 → D2 from a metric space (D1,d1) to a metric
space (D2,d2) is contractive if there exists δ < 1 such that
d2(f (x), f (y)) ≤ δ · d1(x , y) for all x and y in D1.
CBUlt is the category with complete 1-bounded ultrametric spaces
and non-expansive functions.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 15 / 28

CBUlt, II

CBUlt is cartesian closed; the exponential (D1,d1)→ (D2,d2) is
the set of non-expansive maps with the “sup”-metric dD1→D2 as
distance function:

dD1→D2(f ,g) = sup{d2(f (x),g(x)) | x ∈ D1} .

Solutions to recursive domain equations for locally contractive
functors.
A functor F : CBUltop × CBUlt→ CBUlt is locally contractive if
there exists δ < 1 such that

d(F (f ,g),F (f ′,g′)) ≤ δ ·max(d(f , f ′),d(g,g′))

for all non-expansive functions f , f ′, g, and g′.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 16 / 28

UARel(V) ∈ CBUlt

Recall [Amadio, Abadi-Plotkin]:
UARel(V) is the set of admissible relations that are unifom:
$n ∈ R → R⊥, for all n.
Such relations are determined by its elements of the form
($n e, $n e′).
UARel(V) ∈ CBUlt, distance function:

d(R,S) =

{
2−max{ n∈ω | $n∈R→S ∧ $n∈S→R } if R 6= S
0 if R = S.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 17 / 28

Worlds

Proposition. Let (D,d) ∈ CBUlt. The set N0 ⇀fin D with distance
function:

d ′(∆,∆′) =

{
max {d(∆(l),∆′(l)) | l ∈ dom(∆)} if dom(∆) = dom(∆′)
1 otherwise.

is in CBUlt.
Extension ordering: ∆ ≤ ∆′ iff

dom(∆) ⊆ dom(∆′) ∧ ∀l ∈ dom(∆).∆(l) = ∆′(l) .

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 18 / 28

Space of types

Proposition.

F (D) = (N0 ⇀fin D)→mon UARel(V)

(monotone, non-expansive maps) defines a functor
F : CBUltop → CBUlt .
Theorem. There exists T̂ ∈ CBUlt such that the isomorphism

T̂ ∼= 1
2((N0 ⇀fin T̂)→mon UARel(V)) (2)

holds in CBUlt.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 19 / 28

Space of Types, II

Define:
Worlds: W = N0 ⇀fin T̂
Types: T =W →mon UARel(V)

Computations: TT =W →mon UARel(TV)

Continuations: TK =W →mon UARel(K)

States: TS =W → UARel(S) (note: not monotone)

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 20 / 28

Semantics of Types
For every Ξ ` τ , define the non-expansive JτKΞ : T Ξ → T by induction
on τ :

JαKΞ ϕ = ϕ(α)

JintKΞ ϕ = λ∆. { (inZ k , inZ k) | k ∈ Z }
J1KΞ ϕ = λ∆. { (in1 ∗, in1 ∗) }

Jτ1 × τ2KΞ ϕ = Jτ1KΞ ϕ× Jτ2KΞ ϕ

J0KΞ ϕ = λ∆. ∅
Jτ1 + τ2KΞ ϕ = Jτ1KΞ ϕ+ Jτ2KΞ ϕ

Jref τKΞ ϕ = ref (JτKΞ ϕ)

J∀α.τKΞ ϕ = λ∆. { (in∀ c, in∀ c′) | ∀ν ∈ T . (c, c′) ∈
= comp(JτKΞ,α ϕ[α 7→ ν])(∆) }

Jµα.τKΞ ϕ = fix
(
λν. λ∆. { (inµ v , inµ v ′) | (v , v ′) ∈ JτKΞ,α ϕ[α 7→ ν] ∆ }

)
Jτ1 → τ2KΞ ϕ = (Jτ1KΞ ϕ)→ (comp(Jτ2KΞ ϕ))

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 21 / 28

Semantic Type Constructors

(ν1 × ν2)(∆) = { (in×(v1, v2), in×(v ′1, v
′
2)) |

(v1, v ′1) ∈ ν1(∆) ∧ (v2, v ′2) ∈ ν2(∆) }

ref (ν)(∆) = { (λl , λl) | l ∈ dom(∆) ∧
∀∆1 ≥ ∆. App (∆(l)) ∆1 = ν(∆1) }

∪ { (λn+1
l , λn+1

l) | l ∈ dom(∆) ∧

∀∆1 ≥ ∆. App (∆(l)) ∆1
n
= ν(∆1) }

Note the use of semantic locations to ensure non-expansiveness
in ref case.
Necessary: for earlier version we proved that relations did not
exist if we didn’t use semantic locations.
Because of relational parametricity, we need to model open types;
hence need to compare semantic types above, cannot simply use
syntactic worlds and compare types syntactically.
Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 22 / 28

Semantic Type Constructors, II

(ν → ξ)(∆) = { (in→ f , in→ f ′) | ∀∆1 ≥ ∆.

∀(v , v ′) ∈ ν(∆1) .(f v , f ′ v ′) ∈ ξ(∆1) }

cont(ν)(∆) = { (k , k ′) | ∀∆1 ≥ ∆. ∀(v , v ′) ∈ ν(∆1).

∀(s, s′) ∈ states(∆1). (k v s, k ′ v ′ s′) ∈ RAns }

comp(ν)(∆) = { (c, c′) | ∀∆1 ≥ ∆.∀(k , k ′) ∈ cont(ν)(∆1).
∀(s, s′) ∈ states(∆1). (c k s, c′ k ′ s′) ∈ RAns }

states(∆) = { (s, s′) | dom(s) = dom(s′) = dom(∆)
∧ ∀l ∈ dom(∆). (s(l), s′(l)) ∈ App (∆(l)) (∆) }

RAns = { (⊥,⊥) } ∪ { (bι1 kc, bι1 kc) | k ∈ Z }

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 23 / 28

Lemmas for interpreting ∀ and µ

Lemma. Let τ and τ ′ be types such that Ξ, α ` τ and Ξ ` τ ′. For
all ϕ in T Ξ,

q
τ [τ ′/α]

y
Ξ
ϕ =

q
τ
y

Ξ,α
(ϕ[α 7→

q
τ ′

y
Ξ
ϕ]) .

Corollary. For Ξ, α ` τ and ϕ ∈ T Ξ,

Jµα.τKΞ ϕ = λ∆. { (inµ v , inµ v ′) | (v , v ′) ∈ Jτ [µα.τ/α]KΞ ϕ∆ } .

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 24 / 28

Typed Semantics of Terms

For Ξ ` Γ and ϕ ∈ T Ξ, let JΓKΞ ϕ be the binary relation on V dom(Γ)

defined by

JΓKΞ ϕ = { (ρ, ρ′) | ∀x ∈ dom(Γ). (ρ(x), ρ′(x)) ∈ JΓ(x)KΞ ϕ } .

Two typed terms Ξ | Γ ` t : τ and Ξ | Γ ` t ′ : τ of the same type are
semantically related, written Ξ | Γ |= t ∼ t ′ : τ , if for all ϕ ∈ T Ξ, all
(ρ, ρ′) ∈ JΓKΞ ϕ, and all ∆ ∈ W,(q

t
y

dom(Γ)
ρ,

q
t ′
y

dom(Γ)
ρ′
)
∈ comp(

q
τ
y

Ξ
ϕ)(∆) .

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 25 / 28

Typed Semantics of Terms, II

Theorem. Semantic relatedness is a congruence.
Corollary. (FTLR) If Ξ | Γ ` t : τ , then Ξ | Γ |= t ∼ t : τ .
Corollary. (Type Soundness) If ∅ | ∅ ` t : τ is a closed term of
type τ , then JtK∅ ∅ 6= error.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 26 / 28

Simple Example: counter-module

Type for counter-module client:

τcl = ∀α.((1→ α)× (α→ α)× (α→ int)→ int) .

Two implementations:

I1 = (λx : 1.0, λx : int. x + 1, λx : int. x)
I2 = (λx : 1.0, λx : int. x − 1, λx : int. − x).

Can show

∅ | ∅ | c : τcl ` c[int]I1 =ctx c[int]I2 : int .

(using adequacy of denotational semantics wrt. operational).
Simple example, no reference types in the module
implementations, but note that the client may use all features of
the language, including references.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 27 / 28

Conclusion & Future Work
Conclusion:

Developed a realizability model of call-by-value prog. lang. with
parametric polymorphism, general references, and recursive
types.

Kripke model over a recursively defined set of worlds.
Introduced semantic locations to model reference types involving
comparison of semantic types (as needed for modelling of syntactic
open types, as needed for relational parametricity).

Future Work:
Refine worlds to achieve better reasoning methods for local state.
Will combine with earlier work by Bohr-Birkedal [2006], and also
recent related work by Ahmed-Dreyer-Rossberg [2008].
Formal relationship with recent step-indexed models of recursive
types and state by Appel, Ahmed, et. al.
Monadic language and program logic.

Lars Birkedal (ITU) Realizability for ∀, ref, µ FIRST Fall School 2008 28 / 28

	Introduction
	Untyped Semantics
	Typed Semantics
	Examples
	Conclusion

