
Parametric Domain-theoretic
Models of Linear/Intuitionistic
Polymorphic Lambda Calculus

Lars Birkedal

The IT University of Copenhagen

Joint work with Rasmus Møgelberg and Rasmus Lerchedahl Petersen

MFPS XX, May 2004 – p.1/28

Second-order LNL

◆ Types: σ ::= α | 1 | σ ⊗ τ | σ (τ |!σ |
∏

α. σ

◆ Expressions of form

α1, . . . , αl | x1 : σ1, . . . , xn : σn; a1 : σ′1, . . . , am : σ′m ` t : τ

◆ Terms: LNL + abstraction over types, type application,
and fixed point combinator Y

~α | Γ;− ` Y :
∏

α. (α → α) → α

where σ → τ =!σ (τ .

MFPS XX, May 2004 – p.2/28

Parametricity and Domain Theory

◆ Important for data abstraction

◆ Useful metalanguage for domain-theory [Plotkin 1994]
■ In particular: Not only inductive and coinductive

datatypes, but also recursive types

MFPS XX, May 2004 – p.3/28

Encoding

◆ Inductive:

µα. σ(α) =
∏

α. (σ(α) (α) → α.

◆ Coinductive:

να. σ(α) =
∏

β.
∏

α. (!(α (σ(α)) ⊗ α (β) (β

◆ Recursive: given σ(α, β)
■ ω(α) = µβ.σ(α, β)

■ τ ′ = να.σ(ω(α), α)

■ τ = ω(τ ′)

■ τ ∼= σ(τ, τ)

MFPS XX, May 2004 – p.4/28

Linear Abadi & Plotkin logic, I

◆ Abadi & Plotkin (1993) proposed a logic for reasoning
about parametricity.

◆ Plotkin (1994) suggested it could be extended to
reason about second-order LNL

◆ Allows to formulate parametricity as a schema and
prove expected consequences, including recursive
types for definable functors.

◆ We will define parametric models to be models of
Linear Abadi & Plotkin logic satisfying parametricity.

MFPS XX, May 2004 – p.5/28

Linear Abadi & Plotkin logic, II

◆ Expressions:

~α | ~x : ~σ | ~R ⊂ ~τ × ~τ ′ | ~S ⊂Adm ~ω × ~ω′ ` φ : Prop

where ~α | ~x : ~σ;− is a context of second-order LNL

◆ Propositions:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ |

∀α : Type. φ | ∀x : σ. φ | ∀R ⊂ σ × τ. φ |

∀S ⊂Adm σ × τ. φ | ∃α : Type. φ | ∃x : σ. φ |

∃R ⊂ σ × τ. φ | ∃S ⊂Adm σ × τ. φ

for ρ a definable relation.

MFPS XX, May 2004 – p.6/28

Definable relations, I

◆ Definable relations

ρ ::= R | (x : σ, y : τ).φ

◆ Formation rules

Ξ | Γ | Θ, R ⊂ σ × τ ` R ⊂ σ × τ

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ ⊂ σ × τ

Ξ | Γ | Θ ` ρ ⊂Adm σ × τ

Ξ | Γ | Θ ` ρ ⊂ σ × τ

MFPS XX, May 2004 – p.7/28

Definable relations, III

α1, . . . , αn ` σ(~α) : Type

Ξ | Γ | Θ ` ρ1 ⊂Adm τ1 × τ ′1, . . . , ρn ⊂Adm τn × τ ′n

Ξ | Γ | Θ ` σ[~ρ] ⊂Adm σ(~τ) × σ(~τ ′)

MFPS XX, May 2004 – p.8/28

Definable relations, IV

◆ Instantiating definable relations

Ξ | Γ | Θ ` ρ ⊂ σ × τ Ξ | Γ;− ` t : σ, s : τ

Ξ | Γ | Θ ` ρ(t, s) : Prop

◆ Also write tρs for ρ(t, s).

MFPS XX, May 2004 – p.9/28

Definable relations, examples

◆ The graph of a function f : σ (τ

〈f〉 = (x : σ, y : τ). f(x) =τ y

◆ The equality relation eqσ defined as the graph of the
identity map.

MFPS XX, May 2004 – p.10/28

Remarks

◆ In Abadi and Plotkins original article, σ[~ρ] was defined
inductively on the structure of σ.

◆ We would like to consider σ[~ρ] as a construction in the
internal language of the model (also work for types that
are not inductively defined).

◆ In our version, we capture the inductive definition by
axioms of the logic, e.g.,

~α ` σ (σ′ : Type Ξ | Γ | Θ ` ~ρ ⊂Adm ~τ × ~τ ′

Ξ | Γ | Θ | > ` (σ (σ′)[~ρ] ≡ (σ[~ρ] (σ′[~ρ]),

where ρ (ρ′ is

(f : σ (σ′, g : τ (τ ′).∀x : σ∀y : τ. ρ(x, y) ⊃ ρ′(fx, gy)
MFPS XX, May 2004 – p.11/28

Admissible Relations

Ξ | Γ | Θ ` eqσ ⊂Adm σ × σ

Ξ | Γ | Θ ` ρ ⊂Adm σ × τ Ξ | Γ | Θ ` t : σ′ (σ, u : τ ′ (τ

Ξ | Γ | Θ ` (x : σ′, y : τ ′). ρ(t x, u y) ⊂Adm σ′ × τ ′

Ξ | Γ | Θ ` ρ ⊂Adm σ × τ

Ξ | Γ | Θ ` φ : Prop x, y /∈ Dom(Γ)

Ξ | Γ | Θ ` (x : σ, y : τ). φ ⊃ ρ(x, y) ⊂Adm σ × τ

Ξ, α | Γ | Θ ` ρ ⊂Adm σ × τ Ξ | Γ | Θ

Ξ ` σ : Type Ξ ` τ : Type

Ξ | Γ | Θ ` (x : σ, y : τ).∀α : Type. ρ(x, y) ⊂Adm σ × τ

MFPS XX, May 2004 – p.12/28

Parametricity

◆ Identity extension:

∀~α : Type. σ[eq~α] ≡ eqσ(~α)

◆ Extensionality:

(∀x : σ. t x =τ u x) ⊃ t =σ(τ u

(∀α : Type. t α =τ u α) ⊃ t =Q

α : Type.τ u.

MFPS XX, May 2004 – p.13/28

LAPL-structures

A LAPL-structure consists of categories and functors:

Prop

r

��

LinType

**UUUUUUUUUUUUUUUUUU
22 Type

pp

p

$$JJJJJJJJJ

�

� I // Ctx

q

��

Kind

such that

MFPS XX, May 2004 – p.14/28

LAPL-structures, I

◆ the diagram

LinType

&&MMMMMMMMMM
G

11⊥ Type
F

qq

p
zzttttttttt

Kind

is a model of second-order LNL + Y .

MFPS XX, May 2004 – p.15/28

LAPL-structures, II

◆ (r, q) is an indexed first-order logic fibration which has
products and coproducts with respect to projections
Ξ × Ω → Ξ in Kind, where Ω is the generic object of p.

◆ I is a faithful product-preserving map of fibrations.

◆ q is a fibration with fibred products

MFPS XX, May 2004 – p.16/28

LAPL-structures, III

a contravariant morphism of fibrations:

LinType×Kind LinType
U //

))TTTTTTTTTTTTTTTT
Ctx

zzvvvvvvvvv

Kind

such that

◆ U(σ, τ) is powerset of σ and τ in LinTypeΞ, i.e.,

ΨΞ : HomCtxΞ
(ξ, U(σ, τ)) → Obj (Propξ×I(G(σ)×G(τ)))

MFPS XX, May 2004 – p.17/28

LAPL-structures, IV

To interpret admissible relations, we require subfunctor V of

U , which we think of as the subset of all admissible relations,

closed under all the rules for creating admissible relations.

MFPS XX, May 2004 – p.18/28

LAPL-structures, V

A context

Ξ | x1 : σ1, . . . xn : σn | R1 ⊂ τ1 × τ ′1, . . . , Rm ⊂ τm × τ ′m |

S1 ⊂Adm ω1 × ω′
1, . . . , Sk ⊂Adm ωk × ω′

k

is interpreted as

∏

i IG([[σi]]) ×
∏

j U([[τj]], [[τ
′
j]]) ×

∏

l V ([[ωl]], [[ω
′
l]])

where the interpretations of the types is the usual interpreta-

tion of types in LinType → Kind.

MFPS XX, May 2004 – p.19/28

Fibration of relations, I

◆ Given the above data, one can construct a fibration

AdmRelations

��

AdmRelCtx.

◆ AdmRelCtx is given as the pullback

AdmRelCtx

〈∂0,∂1〉
��

// Ctx

��

Kind × Kind
×

// Kind

We write an object Θ in AdmRelCtx over (Ξ,Ξ′) as
Ξ,Ξ′ | Θ. MFPS XX, May 2004 – p.20/28

Fibrations of relations, II

◆ Objects of AdmRelations over an object Ξ,Ξ′ | Θ are

Ξ; Ξ′ | Θ ` ρ ⊂Adm σ × τ.

◆ A vertical morphims in AdmRelations from
ρ ⊂Adm σ × τ to ρ′ ⊂Adm σ′ × τ ′ is a pair of morphisms
f : σ (τ , g : σ′ (τ ′ in LinType such that in the
internal language the formula

∀x : σ, y : τ . ρ(x, y) ⊃ ρ′(f x, g y)

holds.

MFPS XX, May 2004 – p.21/28

Relational interpretation of types

To interpret σ[ρ] we will require that the graph

AdmRelations

��

AdmRelCtx

∂0 //

∂1

//

LinType

��

Kind

.

has an extension to a reflexive graph of linear λ2-fibrations.

MFPS XX, May 2004 – p.22/28

Soundness and completeness

◆ The presented model is sound.

◆ Completeness is proved by constructing a syntactical
model.

◆ A parametric LAPL-structure is an LAPL-structure, with
very strong equality in which identity extension and
extensionality holds in the internal logic.

◆ Theorem: In a parametric LAPL-structure, for any
polymorphically strong fibred functor
F : LinTypeop × LinType → LinType, there exists a
closed type τ such that F (τ, τ) ∼= τ .

MFPS XX, May 2004 – p.23/28

A concrete model, I

◆ The expected model does indeed work:

Fam(Sub(Set))

r
��

PFam(SAP⊥)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 00 PFam(SAP)
pp

p

))SSSSSSSSSSSSSS

�

� I // Fam(Set)

q

��

PSAP

MFPS XX, May 2004 – p.24/28

A concrete model, II

◆ PSAP has natural numbers as objects, and a
morphism n→ m is an m-vector of objects in
PFam(SAP⊥).

◆ Over 1, objects of PFam(SAP) are functions
■ fp : SAP⊥ → SAP⊥

■ f r :
∏

σ,τ∈SAP⊥

(

RegSub(σ × τ) →

RegSub(fp(σ) × fp(τ))
)

satisfying f r(eqσ) = eq(fp(σ)), for all σ ∈ SAP⊥.

◆ Morphisms in PFam(SAP) have continous realizers,
preserving relations

◆ Morphisms in PFam(SAP⊥) have strict continous
realizers, preserving relations

MFPS XX, May 2004 – p.25/28

Other concrete models

(back-of-the-envelope calculations only)

◆ Rosolini and Simpson model (IST)

◆ Model based on Lily (Pitts et. al.)

MFPS XX, May 2004 – p.26/28

Internal models

◆ the definition of LAPL-structure is fairly long

◆ for an internal LNL-model in a quasi-topos with a
Lawvere-Tierney topology j, much of the
LAPL-structure can be derived

MFPS XX, May 2004 – p.27/28

Summary

◆ Precise definition of LAPL and proofs of expected
properties

◆ Definition of parametric LAPL-structure, sound and
complete

◆ Concrete model

◆ Ongoing and future work:
■ Adequacy of Lily-like language a la Rosolini and

Simpson
■ Completion process
■ References and other computational effects

MFPS XX, May 2004 – p.28/28

	Second-order LNL
	Parametricity and Domain Theory
	Encoding
	Linear Abadi & Plotkin logic, I
	Linear Abadi & Plotkin logic, II
	Definable relations, I
	Definable relations, III
	Definable relations, IV
	Definable relations, examples
	Remarks
	Admissible Relations
	Parametricity
	LAPL-structures
	LAPL-structures, I
	LAPL-structures, II
	LAPL-structures, III
	LAPL-structures, IV
	LAPL-structures, V
	Fibration of relations, I
	Fibrations of relations, II
	Relational interpretation of types
	Soundness and completeness
	A concrete model, I
	A concrete model, II
	Other concrete models
	Internal models
	Summary

