
Proving Correctness of a
Garbage Collector

via Local Reasoning

Lars Birkedal [birkedal@itu.dk], Noah Torp-Smith [noah@itu.dk]

The IT University of Copenhagen

Joint work with John C. Reynolds, Carnegie Mellon University

Appsem–II Workshop, Nottingham, March 2003 – p.1/19

mailto://noah@itu.dk
mailto://birkedal@itu.dk

Overview and Motivation

◆ Proved garbage collector correct, using (slight
extension of) spatial logic [O’Hearn, Reynolds, et. al.]

◆ Has been considered a challenging problem, both in
realm of spatial logics and in related realm of typed
assembly language & proof carrying code

◆ Test of local reasoning / spatial logics: a non-toy
example

Appsem–II Workshop, Nottingham, March 2003 – p.2/19

Setup

◆ User Language (think: Java / ML / Scheme / . . .)
■ stack-allocated mutable variables
■ memory-allocation only through calls to
■ no pointer arithmetic (Pointer Int)

◆ Impl. Language (think: C / Assm / . . .)
■ lang. in which runtime system, in particular G.C., is

impl.
■ with pointer arithmetic

(Pointer Location Int)
■ heaps map locations to integers
■ all user level values represented as integers

(encoding to allow G.C. to distinguish between
pointers and non-pointers)

Appsem–II Workshop, Nottingham, March 2003 – p.3/19

Correctness of Tracing G.C.

◆ If the requirement is that is a
garbage collected version of :

■ there is an isomorphism between the locations of
the reachable cells in the two states (the iso
because cells can be moved around during
garbage collection)

◆ more precisely. . .

Appsem–II Workshop, Nottingham, March 2003 – p.4/19

Correctness of Tracing G.C. (2)

◆ is a garbage collected version of , if there is
a heap isomorphism .

◆ A weak heap isomorphism is a
bijection such that for all

,

where is the extension of to all integers with the
identity on nonpointers. If also , we
call a heap isomorphism.

Appsem–II Workshop, Nottingham, March 2003 – p.5/19

Cheney’s Copying Collector

◆ Assumes contiguous “semi-spaces” of equal size,

and

◆

◆ is reachable

◆ Copies to and resumes allocation there

Appsem–II Workshop, Nottingham, March 2003 – p.6/19

Example

1 2

3 4 5

root

42

0

Appsem–II Workshop, Nottingham, March 2003 – p.7/19

Example (2)

2

3 4 5

root

1 2

freescan

Appsem–II Workshop, Nottingham, March 2003 – p.8/19

Sets of cells

◆ forwarded locations in alive

◆ non-forwarded locations in alive

◆

◆

◆

Appsem–II Workshop, Nottingham, March 2003 – p.9/19

Extension of Separation Logic

To formalize the partitioning of cells, we extend the term
language with finite sets of pointers:

We will also need finite relations:

T

Semantics for : extension with identity on non-pointers:

Appsem–II Workshop, Nottingham, March 2003 – p.10/19

Extension of Separation Logic

To formalize the partitioning of cells, we extend the term
language with finite sets of pointers:

��� ��� ��� � � � ��� � � � ��� � � �

� � � � � � ��� ���

We will also need finite relations:

T

Semantics for : extension with identity on non-pointers:

Appsem–II Workshop, Nottingham, March 2003 – p.10/19

Extension of Separation Logic

To formalize the partitioning of cells, we extend the term
language with finite sets of pointers:

��� ��� ��� � � � ��� � � � ��� � � �

� � � � � � ��� ���

We will also need finite relations:

��� � �� � �� � ��� � � � � � � � ��� �

�

��� �
	 T

Semantics for : extension with identity on non-pointers:

Appsem–II Workshop, Nottingham, March 2003 – p.10/19

Extension of Separation Logic

To formalize the partitioning of cells, we extend the term
language with finite sets of pointers:

��� ��� ��� � � � ��� � � � ��� � � �

� � � � � � ��� ���

We will also need finite relations:

��� � �� � �� � ��� � � � � � � � ��� �

�

��� �
	 T

Semantics for : extension with identity on non-pointers:

�� � �� �

Appsem–II Workshop, Nottingham, March 2003 – p.10/19

Extension of Separation Logic (2)

Some new assertion forms:

◆ Iterated Separating Conjunction:

◆ Semantics:

iff
implies and

implies

Appsem–II Workshop, Nottingham, March 2003 – p.11/19

Extension of Separation Logic (2)

Some new assertion forms:

◆ Iterated Separating Conjunction:

◆ Semantics:

iff
implies and

�
 implies
�

Appsem–II Workshop, Nottingham, March 2003 – p.11/19

The Proof

We have

The sets mentioned before

Relations and that record the initial heap

, a bijection,

These are added to the program as auxiliary variables [Ow-

icki,Gries], and will be part of the proof.

Appsem–II Workshop, Nottingham, March 2003 – p.12/19

The Proof (2)

Analysis of each set:

◆ is not modified, so we can use .

◆ : First component points to cell determined by :

◆ . Pointers here are in the domain of the heap:

Appsem–II Workshop, Nottingham, March 2003 – p.13/19

The Proof (2)

Analysis of each set:

◆ is not modified, so we can use .

� �

◆ : First component points to cell determined by :

◆ . Pointers here are in the domain of the heap:

Appsem–II Workshop, Nottingham, March 2003 – p.13/19

The Proof (2)

Analysis of each set:

◆ is not modified, so we can use .

� �

◆ : First component points to cell determined by :

�

◆ . Pointers here are in the domain of the heap:

Appsem–II Workshop, Nottingham, March 2003 – p.13/19

The Proof (2)

Analysis of each set:

◆ is not modified, so we can use .

� �

◆ : First component points to cell determined by :

�

◆ . Pointers here are in the domain of the heap:

� �

Appsem–II Workshop, Nottingham, March 2003 – p.13/19

The Proof (3)

Analysis of each set, ct’d:

◆ : Each cell is a copy of the cell in that
points to it:

� � T

T

◆ : scanned cells in . Scanning means updating
component to -value (but only if the component is a
pointer). This is captured by :

T

T

Appsem–II Workshop, Nottingham, March 2003 – p.14/19

The Proof (3)

Analysis of each set, ct’d:

◆ : Each cell is a copy of the cell in that
points to it:

� � T

T

◆ : scanned cells in . Scanning means updating
component to -value (but only if the component is a
pointer). This is captured by :

� � T

T

Appsem–II Workshop, Nottingham, March 2003 – p.14/19

The Proof (4)

The Precondition:

The deals with “unreachable” cells (they are framed out).

Appsem–II Workshop, Nottingham, March 2003 – p.15/19

The Proof (4)

The Invariant:

� � � � � � � � �

Appsem–II Workshop, Nottingham, March 2003 – p.16/19

The Proof (5)

The most interesting part of the proof is when we copy a
cell. We prove a local specification and use the Frame Rule:
The local specification only mentions the “footprint” of the
program fragment (is cell pointed to by):

� 	

� 	

Appsem–II Workshop, Nottingham, March 2003 – p.17/19

The Proof (6)

Remarks about the Proof:

The proof of the specification is entirely “logical”:
always uses proof-rules, not “semantical arguments”.

The proof that the invariant is strong enough to
conclude that there is a heap isomorphism, is almost
logical: We prove logically that,

Recall equation for heap isos:

Appsem–II Workshop, Nottingham, March 2003 – p.18/19

The Proof (6)

Remarks about the Proof:

The proof of the specification is entirely “logical”:
always uses proof-rules, not “semantical arguments”.

The proof that the invariant is strong enough to
conclude that there is a heap isomorphism, is almost
logical: We prove logically that,

Recall equation for heap isos:

Appsem–II Workshop, Nottingham, March 2003 – p.18/19

The Proof (6)

Remarks about the Proof:

The proof of the specification is entirely “logical”:
always uses proof-rules, not “semantical arguments”.

The proof that the invariant is strong enough to
conclude that there is a heap isomorphism, is almost
logical: We prove logically that,

Recall equation for heap isos:

Appsem–II Workshop, Nottingham, March 2003 – p.18/19

Conclusion and Future Work

◆ Formal proof of an algorithm that is used in practice

◆ Local reasoning “passed the test”

◆ Method of sets and relations is believed to be widely
applicable, so further study is needed. . . also of
higher-order separation logic

◆ A more precise formulation of the interface issues is
needed.

◆ A technical report will be available soon.

Appsem–II Workshop, Nottingham, March 2003 – p.19/19

	Overview and Motivation
	Setup
	Correctness of Tracing G.C.
	Correctness of Tracing G.C. (2)
	Cheney's Copying Collector
	Example
	Example (2)
	Sets of cells
	Extension of Separation Logic
	Extension of Separation Logic (2)
	The Proof
	The Proof (2)
	The Proof (3)
	The Proof (4)
	The Proof (4)
	The Proof (5)
	The Proof (6)
	Conclusion and Future Work

