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Overview and Motivation

◆ Proved garbage collector correct, using (slight
extension of) spatial logic [O’Hearn, Reynolds, et. al.]

◆ Has been considered a challenging problem, both in
realm of spatial logics and in related realm of typed
assembly language & proof carrying code

◆ Test of local reasoning / spatial logics: a non-toy
example

Appsem–II Workshop, Nottingham, March 2003 – p.2/19



Setup

◆ User Language (think: Java / ML / Scheme / . . . )
■ stack-allocated mutable variables
■ memory-allocation only through calls to
■ no pointer arithmetic (Pointer Int )

◆ Impl. Language (think: C / Assm / . . . )
■ lang. in which runtime system, in particular G.C., is

impl.
■ with pointer arithmetic

(Pointer Location Int )
■ heaps map locations to integers
■ all user level values represented as integers

(encoding to allow G.C. to distinguish between
pointers and non-pointers)
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Correctness of Tracing G.C.

◆ If the requirement is that is a
garbage collected version of :

■ there is an isomorphism between the locations of
the reachable cells in the two states (the iso
because cells can be moved around during
garbage collection)

◆ more precisely. . .
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Correctness of Tracing G.C. (2)

◆ is a garbage collected version of , if there is
a heap isomorphism .

◆ A weak heap isomorphism is a
bijection such that for all

,

where is the extension of to all integers with the
identity on nonpointers. If also , we
call a heap isomorphism.
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Cheney’s Copying Collector

◆ Assumes contiguous “semi-spaces” of equal size,

and

◆

◆ is reachable

◆ Copies to and resumes allocation there
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Example
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Example (2)
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Sets of cells

◆ forwarded locations in alive

◆ non-forwarded locations in alive

◆

◆

◆
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Extension of Separation Logic

To formalize the partitioning of cells, we extend the term
language with finite sets of pointers:

We will also need finite relations:

T

Semantics for : extension with identity on non-pointers:
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Extension of Separation Logic (2)

Some new assertion forms:

◆ Iterated Separating Conjunction:

◆ Semantics:

iff
implies and

implies
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The Proof

We have

The sets mentioned before

Relations and that record the initial heap

, a bijection,

These are added to the program as auxiliary variables [Ow-

icki,Gries], and will be part of the proof.
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The Proof (2)

Analysis of each set:

◆ is not modified, so we can use .

◆ : First component points to cell determined by :

◆ . Pointers here are in the domain of the heap:
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The Proof (3)

Analysis of each set, ct’d:

◆ : Each cell is a copy of the cell in that
points to it:

� � T

T

◆ : scanned cells in . Scanning means updating
component to -value (but only if the component is a
pointer). This is captured by :

T

T
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The Proof (4)

The Precondition:

The deals with “unreachable” cells (they are framed out).
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The Proof (4)

The Invariant:

� � �  � � � � � �
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The Proof (5)

The most interesting part of the proof is when we copy a
cell. We prove a local specification and use the Frame Rule:
The local specification only mentions the “footprint” of the
program fragment ( is cell pointed to by ):

� 	

� 	
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The Proof (6)

Remarks about the Proof:

The proof of the specification is entirely “logical”:
always uses proof-rules, not “semantical arguments”.

The proof that the invariant is strong enough to
conclude that there is a heap isomorphism, is almost
logical: We prove logically that,

Recall equation for heap isos:
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Conclusion and Future Work

◆ Formal proof of an algorithm that is used in practice

◆ Local reasoning “passed the test”

◆ Method of sets and relations is believed to be widely
applicable, so further study is needed. . . also of
higher-order separation logic

◆ A more precise formulation of the interface issues is
needed.

◆ A technical report will be available soon.
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