
Separation Logic for
Low-level and Realistic Programs

Zongyuan Liu

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Separation Logic for
Low-level and Realistic Programs

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Zongyuan Liu
March 1, 2025

Abstract

Separation logic is a powerful formal verification technique for ensuring the cor-
rectness and security of software. However, applying separation logic to low-level
programs presents a key challenge: capturing the complexities of realistic system
modelling while maintaining modularity for compositional reasoning.

This dissertation develops novel separation logics to address two challenging
aspects of low-level systems: (1) virtual memory and memory sharing hypercalls in
system software and (2) concurrency under relaxed hardware architectures. VMSL
is a separation logic for reasoning about virtual machines interacting through hy-
percalls in a virtualized environment. It enables VM-local reasoning and captures
the desired memory isolation property using a logical relation. AxSL is a concur-
rent separation logic framework for reasoning about relaxed memory concurrency,
instantiated for the highly relaxed Arm-A architecture. It ensures sound and thread-
modular verification even in the presence of complex out-of-order executions. AxSL+
extends AxSL with mixed-order reasoning to enhance verification tractability. It
supports constructing high-level abstractions based on multiple consistency orders
of a memory model.

These contributions establish separation logic as a modular and foundational
approach to verifying low-level software with dynamic memory access control and
relaxed concurrency, laying the groundwork for reliable verification of real-world
software.

i

Resumé

Separationslogik er en kraftfuld formel verifikationsteknik, der kan bruges til at sikre
korrekthed og sikkerhed af software. Indtil nu er separationslogik mestendels blevet
udforsket for modeller af programmeringssprog som abstraherer fra væsentlige
aspekter af realistiske lavniveau-programmer og -systemer som er meget komplekse
og dermed meget udfordrende at modellere og ræsonnere om.

Denne afhandling udvikler nye separationslogikker til at løse to udfordrende
aspekter af lavniveau-systemer: (1) virtuel hukommelse og såkaldte "hypercalls" i sys-
temsoftware og (2) flertrådede programmer i "relaxed memory" hardwarearkitekturer.
VMSL er en separationslogik til at ræsonnere om virtuelle maskiner, der interagerer
gennem "hypercalls" i et virtualiseret miljø. Det tillader VM-lokale ræsonnementer,
og beskriver den ønskede isoleringsegenskab for hukommelse ved brug af en logisk
relation. AxSL er et separationslogikframework til at ræsonnere om flertrådet "re-
laxed" hukommelse, instantieret for den meget "relaxed" Arm-A arkitektur. Det sikrer
sund og trådmodulær verifikation, selv i tilstedeværelsen af komplekse udførelser af
programmer. AxSL+ udvider AxSL med "mixed-order" ræsonnementer for at lette
beviser i logikken. AxSL+ understøtter konstruktionen af højniveausabstraktioner
baseret på flere konsistente ordninger af hukommelsesmodeller.

Disse bidrag etablerer separationslogik som en grundlæggende og modulær
tilgang til verifikationen af lavniveau-programmer med dynamisk kontrol af hukom-
melsesbrug og "relaxed" parallelitet, og derved skaber afhandlingen grundlaget for
pålidelig verifikation af lavniveau-system software i den virkelige verden.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Lars
Birkedal, for his guidance, support, and continuous encouragement throughout
my Ph.D. His mentorship in my academic growth has been truly inspiring and
instrumental, and I am deeply grateful for his efforts in always ensuring the best
possible path for me. Lars is a true role model for me.

I sincerely appreciate my co-advisor, Jean Pichon-Pharabod, for his generous
support, for the countless technical discussions and chats on various topics, and
for introducing me to relaxed memory when I was searching for a new research
direction. I feel truly fortunate to have had Lars and Jean as my Ph.D advisors. Thank
you for making my Ph.D journey such a rewarding experience.

I extend my appreciation to my co-authors for the insightful discussions during
our collaborations, which have resulted in successful work; to my friends and LogSem
colleagues for all the interesting and humorous kitchen chats, outdoor adventures,
and bouldering sessions; and to my parents for their constant support and care,
despite the physical distance between us.

Last but not least, I would like to give a special thanks to Meng. Your compan-
ionship, through both the good and bad days of the past three and a half years, has
meant a great deal to me. I am fortunate to have you by my side.

Zongyuan Liu,
Aarhus, 1st March 2025.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Formal Verification of Programs . 3
1.2 Scope and Thesis . 4

2 Background 7
2.1 Separation Logic . 8
2.2 Iris: A Higher-Order Concurrent Separation Logic Framework . . . 14
2.3 Relaxed Memory Concurrency . 26
2.4 Further Related Work . 36

3 Results 41
3.1 Coq/Rocq Mechanisations . 41
3.2 Personal Contributions . 42
3.3 Structure . 42

II Publications 45

4 VMSL: A Separation Logic for Mechanised Robust Safety of Virtual Ma-
chines Communicating above FF-A 47

vii

Contents viii

4.1 Introduction . 48
4.2 Formalising A Substantial Fragment of the HVC ABIs 51
4.3 Reasoning about Communicating VMs 56
4.4 Reasoning in the Presence of Unknown VMs 65
4.5 Related Work . 73
4.6 Conclusion . 76

5 An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 77
5.1 Introduction . 78
5.2 Context: Program Logics and Relaxed Concurrency 82
5.3 Key Ideas . 84
5.4 The Languages . 90
5.5 The Logics . 99
5.6 Model and Soundness . 118
5.7 Adequacy . 132
5.8 Technical Remarks and Limitations 138
5.9 Related Work . 143
5.10 Conclusion . 146

6 First Steps towards AxSL+ 149
6.1 Introduction . 149
6.2 Context . 150
6.3 Technical Overview . 153
6.4 An AxSL+ Instance for Non-Atomics: AxSL+NA 160
6.5 Semantic Model . 166
6.6 Adequacy . 174
6.7 Further Steps . 178
6.8 Conclusion . 183

Bibliography 185

Part I

Overview

1

1

Introduction

1.1 Formal Verification of Programs

Formal verification of programs is the process of formally proving that a program does
not exhibit unexpected behaviours with respect to its specification. This methodology
complements program testing, as each approach has distinct advantages: testing
validates a subset of executions at runtime, providing empirical confidence, while
formal verification ensures correctness across all possible executions through static
reasoning, offering rigorous guarantees.

To conduct verification formally in a verification system, one must first define
models and specifications:

Models A mathematical model is required to describe the possible behaviours of
the program. This can be, for example, formal semantics of the programming
language in which the program is written, which define the meaning of the
program. Real-world systems, however, are often highly complex, making it
infeasible to capture every detail precisely. Thus, the model is usually only
an approximation and/or an abstraction of the realistic behaviours. Another
common compromise is simplifying the model to omit details irrelevant to
the properties being verified. Such simplifications can significantly reduce
verification complexity but may introduce unsoundness and are sometimes
unavoidable due to constraints in verification systems (e.g.,to guarantee ter-
mination of automated systems).

Specifications The expected properties or sets of desired behaviours of a pro-
gram must be defined with respect to the model. These specifications can
be expressed directly in the model’s language or in that of the verification
system, which should relate to the model. A fundamental property of interest
is functional correctnesswhich ensures the correctness of the return value given
a specific input and initial program state. Security properties are another cat-
egory of interest, such as ensuring that a program does not leak confidential
information and is robust against malicious attacks.

3

Chapter 1. Introduction 4

Approaches For a given verification problem, a verification system typically
approaches it in one of the following two ways:

Enumeration This algorithmic approach systematically enumerates all possible
program outcomes according to the model and verifies their correctness in-
dividually. State-space explosion often occurs when the number of possible
states in the model grows exponentially, making it computationally infeasible
to verify large or complex systems using this approach. Since enumeration
techniques rely on exhaustively exploring all possible states, they are not
well-suited for verifying infinite-state systems where the number of states is
unbounded. A notable example of enumeration-based verification is model
checking, which systematically explores all reachable states of a system, of-
ten leveraging various techniques to mitigate state-space explosion, e.g.,only
exploring an abstract state-space of the system.

Deduction This proof-based approach translates the verification problem into
logical formulas that quantify over all possible program executions. The cor-
rectness of these formulas is then established using a proof systemwith axioms
and inference rules. The proof search can be performed almost automatically
with minimal human intervention, requiring only necessary hints, or interact-
ively. The former is efficient but limited to verifying relatively weak properties,
while the latter provides greater flexibility, allowing reasoning about more
expressive properties at the cost of significant manual effort. A key example
of the deductive approach is program logic, which includes formalisms such
as Hoare logic to reason about program correctness. The topic of this thesis,
separation logic, is an extension of Hoare logic.

1.2 Scope and Thesis

This dissertation aims to advance the theory of foundational andmodular verification
of low-level and realistic programs using separation logic.

Foundational Verification tools (particularly automated ones) often have a com-
plicated logic baked-in to reason about intricate program behaviours, which
leads to a large trusted computing base. This reduces the assurance of verific-
ation results, as a single error in the logic can compromise the entire outcome.
One approach to making formal verification more trustworthy is to make it
foundational: foundational verification [Appel, 2001] enhances reliability by
producing proofs that can be checked by proof assistants. The trusted comput-
ing base of various mainstream proof assistants (e.g., HOL, Coq/Rocq, Lean)
is limited to their relatively simple yet expressive kernels, which implement
well-established core calculi. By specifying program behaviours as theorems
and proving them in proof assistants, one can attain higher confidence in the
verification results.

Foundational verification has been successfully applied at scale to practical

5 1.2. Scope and Thesis

and realistic software systems. Among them, Compcert [Leroy, 2009] is a
formally verified C compiler that compiles a large subset of C. It is a practical
compiler that implements a collection of optimisation passes, both developed
and formally verified in the Coq/Rocq proof assistant. seL4 [Klein et al.,
2010, 2009] is a formally verified operating system (OS) kernel. This high-
performance OS kernel provides strong security guarantees, such as isolation
for applications running on top, and is verified using the Isabelle/HOL theorem
prover.

Modular The exact notion of modularity varies depending on the context, but
generally means decomposing a large and complicated verification task into
smaller, more manageable ones. This idea makes program verification scalable.
For instance, CompCert’s compiler correctness is verified modularly: its cor-
rectness result, stating that the compilation preserves the semantics of source
programs, is composed of the correctness of all compilation passes. For concur-
rent programs, thread-local reasoning [O’Hearn, 2007] enables verifying each
thread in isolation, disregarding non-interfering behaviours of other threads.
This is a key form of modularity that underpins many effective verification
techniques. Another crucial aspect is specification modularity, which enables
proof reuse: once a module is verified against a strong modular specification,
subsequent client verification can rely on this specification without the need
to reverify the module itself.

Separation logic Separation logic has proven to be a powerful deductive veri-
fication technique that supports modularity, which we elaborate on in Sec-
tion 2.1. This dissertation explores the theoretical foundations of separation
logic, which is particularly significant because separation logic is not only a
widely used technique in foundational verification, but has also been adapted
into various automated tools. These include program verifiers [Jacobs et al.,
2011; Müller et al., 2016; Pulte et al., 2023], static analysers [Calcagno and
Distefano, 2011; Le et al., 2022], testers [Banerjee et al., 2025; Nguyen et al.,
2008], and synthesisers [Polikarpova and Sergey, 2019], among others. These
tools integrate the principles of separation logic and facilitate the practical
verification of substantial codebases. The results of this dissertation are thus
intended to lay the foundation for large scale program verification.

Low-level and realistic Separation logic has been successfully applied to reason-
ing about programs modularily against relatively idealised language semantics.
However, as formal verification becomes more widespread and its theories
and tools become more mature, it is increasingly feasible and desirable to base
verification on more realistic modelling, which ensures better alignment with
real-world software and hardware behaviours. This dissertation focuses on
low-level computer system behaviours that are often abstracted away from
high-level languages.

This dissertation investigates the following question:

Chapter 1. Introduction 6

Can the modularity benefits of separation logic be preserved for low-level
languages with more realistic modelling?

with two aspects of realistic modelling:
Virtual memory and hypercalls System software employs virtual memory to
regulate memory access by low-privileged units. It does so by controlling the
translation from virtual addresses to physical addresses. A hypervisor, for
instance, manages the memory access of its clients — virtual machines (VMs)
— by maintaining page tables that define these mappings, which the hardware
consults to perform address translation. One of the primary objectives of this
access control mechanism is to enforce memory isolation, ensuring that each
VM’s memory remains private unless explicitly shared with other VMs.
A key question is whether hypervisors can still guarantee the intended isol-
ation when VMs invoke hypercalls for sharing their private memory. This
dissertation studies the official FF-A hypercalls in the Arm architecture by
modelling their behaviours and developing a separation logic to enable VM-
modular reasoning about these hypercalls and capture the isolation property.

Relaxed hardware architecture Much of the work on concurrency reasoning in
separation logic assumes sequential consistency. However, real-world hard-
ware architectures with relaxed memory models reorder instructions to op-
timise performance. Consequently, instruction execution may be out-of-order,
posing a challenge for separation logic, whose consistency largely relies on
in-order execution.
This dissertation explores how separation logic techniques can be adapted
to reason about realistic relaxed hardware concurrency models while main-
taining thread-modular verification. In particular, the focus is on the Arm-A
architecture, which features a very relaxed memory model, permitting more
aggressive instruction reordering. A more detailed introduction to relaxed
memory concurrency is provided in Section 2.3.

Thesis The results of this dissertation support the following thesis:

Modern separation logic is an effective tool that achieves modular verifica-
tion of low-level programs that feature dynamic memory access control or
highly relaxed hardware concurrency.

2

Background

In this chapter, we provide a review of separation logic and relaxed memory concur-
rency, two key topics that form a significant foundation of this dissertation. This
serves as a preliminary introduction to the topics covered in the papers of this dis-
sertation. We begin with a brief historical overview of separation logic, highlighting
its contributions to modular reasoning for concurrent programs. We then introduce
Iris, a state-of-the-art concurrent separation logic framework that unifies many sep-
aration logic advancements within a compact yet expressive foundation. Next, we
proceed with an introduction to relaxed memory concurrency. Finally, we conclude
the chapter with related work.

The chapter is structured as follows:
Section 2.1 provides an overview of key advancements in separation logic. We
start by revisiting Hoare logic and discussing its limitations in reasoning about
pointers, which were later addressed tractably by separation logic. We then
introduce concurrent separation logic (CSL), an extension of separation logic
designed for modular verification of concurrent programs. We conclude the
section with notable improvements to CSL aimed at achieving a fiction of
separation to enable even more modular reasoning.

Section 2.2 presents an introduction to Iris, with a particular focus on its higher-
order and extensible features. We begin with the Iris base logic, a minimal
foundation incorporating step-indexing and higher-order ghost resources.
Next, we discuss Iris’ language-parametric program logic, which is built upon
its base logic.

Section 2.3 introduces the fundamentals of relaxed memory concurrency, which
encompasses more realistic concurrency models compared to the idealised
sequential consistency upon which most CSL work is based. We begin with a
conceptual introduction to the topic, followed by an explanation of different
approaches to formulating relaxed memory semantics. We further elaborate
by presenting the different styles of the x86-TSO memory model, and touch

7

Chapter 2. Background 8

upon the memory model of C/C++11 and Arm-A. We conclude the section
with a discussion on verification efforts for relaxed concurrency models.

Section 2.4 examines related work on verifying low-level and/or realistic pro-
grams, particularly broadly related ones that are not covered in the publications
included in Part II.

2.1 Separation Logic

Since its introduction [O’Hearn et al., 2001; Reynolds, 2002], separation logic has
become a significant milestone in the field of program verification. It was developed
as an enhancement of Hoare logic [Floyd, 1967; Hoare, 1969], with the goal of
alleviating the challenges associated with reasoning about programs that manipulate
pointers.

Over the years, separation logic has been extensively extended to study various
programming language features and type systems. In this section, we focus on aspects
of separation logic that are particularly relevant to reasoning about concurrent
programs. We refer readers to Charguéraud’s habilitation thesis [Charguéraud, 2023]
for a comprehensive review on separation logic for sequential programs.

2.1.1 Hoare Logic

Hoare logic is a formal deductive system for reasoning about program correctness.
It introduces Hoare triples, which is a logical assertion that specifies the expected
behaviour of a program:

{𝑃} 𝑒 {𝑄}

A Hoare triple consists of a precondition 𝑃 , a program 𝑒 , and a postcondition 𝑄 . It
asserts that if 𝑃 holds before executing 𝑒 , then 𝑄 holds upon execution completion.
To establish a Hoare triple, one applies axiomatic reasoning rules for the primitive
constructs of the programming language, their composition, and the inference of
assertions.

To illustrate Hoare logic in practice, we present a selection of its reasoning rules
for a simple sequential imperative language, similar to the one presented in Hoare’s
original work:

HL-ht-assign
{𝑃 [𝑒/𝑥]} 𝑥 :=𝑒 {𝑃}

HL-ht-composition
{𝑃} 𝑒1 {𝑅} {𝑅} 𝑒2 {𝑄}

{𝑃} 𝑒1;𝑒2 {𝑄}

HL-ht-conseqence
𝑃 → 𝑃 ′ {𝑃 ′} 𝑒 {𝑄 ′} 𝑄 ′ → 𝑄

{𝑃} 𝑒 {𝑄}

9 2.1. Separation Logic

HL-ht-assign This is the reasoning axiom for assignments. It requires 𝑃 [𝑒/𝑥]
to hold to establish 𝑃 after the assignment, where 𝑃 [𝑒/𝑥] is the notation for
substituting all free occurrences of 𝑥 in 𝑃 with 𝑒 .

HL-ht-conseqence This is the rule of consequence. It allows altering the asser-
tions of a triple via logical deduction. One can update precondition 𝑃 ′ to 𝑃
when 𝑃 implies 𝑃 ′; and 𝑄 ′ to 𝑄 when 𝑄 ′ implies 𝑄 .

HL-ht-composition This is the rule of sequential composition. It allows combin-
ing the triples for programs 𝑒1 and 𝑒2 if the postcondition of the first program
𝑅 is identical to the precondition of the second triple, when composing the
two programs sequentially. This rule is often used alongside the rule of con-
sequence.

Hoare logic has been shown to be effective for reasoning about programs with
simple features but encounters difficulties when applied to programs that manipulate
pointers. This challenge arises because sound reasoning rules for pointers must
account for pointer aliasing, ensuring that updates to the value referenced by a
pointer do not affect distinct locations. Alias reasoning also undermines modularity:
to soundly compose Hoare triples for two programs that manipulate pointers, one
must ensure that the pointers used by the two programs are distinct.

2.1.2 Sequential Separation logic

Separation logic provides a foundational and elegant solution for reasoning about
heap-manipulating programs with pointers. It extends Hoare logic with two key
operators: separating conjunction ∗ (also known as the “star”) and separating implica-
tion −∗ (also known as the “magic wand”), which embeds a notion of separation into
their semantics comparing to their vanilla counterparts.

Points-to assertions We use the points-to assertion 𝑥 ↩→ 1 to denote that pointer
𝑥 refers to the integer 1 in the heap. It enables reasoning about pointer updates, for
instance, using the SL-ht-ptr-upd rule:

SL-ht-ptr-upd
{𝑥 ↩→ 𝑣} ∗𝑥 := 𝑣 ′ {𝑥 ↩→ 𝑣 ′}

The assertion 𝑥 ↩→ 1 ∗ 𝑦 ↩→ 2 implies that the two pointers are distinct; in other
words, the heap fragments they represent are disjoint. Formally, we have

𝑥 ↩→ _ ∗ 𝑦 ↩→ _ ⊢ 𝑥 ≠ 𝑦

Framing With this operator, one can formally capture the notion of local reason-
ing [O’Hearn et al., 2001] through the well-known frame rule:

SL-ht-frame
{𝑃} 𝑒 {𝑄}

{𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

Chapter 2. Background 10

This rule captures an intuitive but important idea: only assertions representing
heap fragments that are touched by the program 𝑒 (also known as the footprint
of 𝑒) matter to its proof — one can simply frame out the untouched part, 𝑅, from
the pre- and postcondition to ease the reasoning. This rule has a profound impact
on all subsequent developments in separation logic and is one of the key factors
contributing to its success.

Language of resources Separation logic assertions can be viewed as a language
of resources, as they revolve around resource reasoning. For instance, for a logic
targeting a heap manipulating language, the resources are loosely fragments of a
heap ℎ. The heap is represented a finite map from pointers to their values, which
forms the basis for defining the semantics of logical assertions as follows:

J𝑥 ↩→ 𝑣K(ℎ) ≜ 𝑥 ∈ dom(ℎ) ∧ ℎ(𝑥) = 𝑣
J𝑃 ∗𝑄K(ℎ) ≜ ∃ℎ1 ∪ ℎ2 = ℎ. J𝑃K(ℎ1) ∧ J𝑄K(ℎ2) ∧ ℎ1 # ℎ2
J𝑃 −∗ 𝑄K(ℎ) ≜ ∀ℎ′ # ℎ. J𝑃K(ℎ) ∧ J𝑄K(ℎ ∪ ℎ′)

The points-to 𝑥 ↩→ 𝑣 concerns the heap cell 𝑥 of ℎ. The semantics of separating
conjunction requires that the heap fragment satisfying 𝑃 ∗𝑄 can be split into two
smaller and disjoint fragments, ℎ1 and ℎ2, such that ℎ1 satisfies 𝑃 and ℎ2 satisfies 𝑄 .
The separating implication intuitively represents the resources required to obtain
the resources of 𝑄 , given the resources of 𝑃 .

Linear and affine logics Generally, separation logics are categorised into two
kinds, depending on if they admit the following weakening rule:

SL-weaken
𝑃 ∗𝑄 ⊢ 𝑃

This rules allows freely “throwing away” resources. Logics admitting this rule are
affine, in which the semantics of assertions are monotone. It means that if some
resource satisfies an assertion, then resources larger than it also satisfy the assertion.
Logics not admitting this rule are linear, in which assertions tracks resources precisely.
Linear logics are suitable for reasoning about memory leaks. For instance, to show an
empty postcondition, one has to show that the program indeed frees all the allocated
memory.

2.1.3 Concurrent Separation Logic

Concurrent Separation Logic (CSL) [Brookes, 2007; O’Hearn, 2007] is a significant
extension of separation logic that fully realises its potential for reasoning about
concurrent programs. CSL represents a major breakthrough in addressing the long-
standing challenge of compositional reasoning for shared-memory concurrency. One

11 2.1. Separation Logic

key contribution is its parallel decomposition rule:

CSL-disj-par
{𝑃1} 𝑒1 {𝑄1} {𝑃2} 𝑒2 {𝑄2}
{𝑃1 ∗𝑄1} 𝑒1 | | 𝑒2 {𝑄1 ∗𝑄2}

CSL-disj-par allows reasoning about two parallel threads 𝑒1 and 𝑒2 independently,
provided that the heap fragments accessed by each thread are disjoint. This form
of concurrency, where threads operate without interfering others, is referred to as
disjoint concurrency.

Resource sharing

To reason about shared-state concurrency in general, a more flexible rule is required:
one that allows multiple threads to access shared heap regions for communication.

Achieving this while remaining thread-modular is challenging, as it requires
the logic to account for global interference. That is, when reasoning locally about a
shared heap cell in one thread, the logic must also consider how other threads may
modify the same cell concurrently.

The initial work on CSL [Brookes, 2007; O’Hearn, 2007] addresses this problem
in coarse-grained concurrency (i.e., well-locked programs) using resource invariants.
Resource invariants ensure that shared resources become available locally to a thread
once it enters a critical section, where interference from other threads is prevented.
To make the use of invariants sound, the parallel decomposition rule has additional
constrains to handle interference, which makes it rather intractable to use.

Parkinson et al. [2007] demonstrates how to reason about fine-grained concurrent
programs using invariants. Rather than relying on critical sections for sound resource
sharing, their logic identifies atomic operations, such as compare-and-swap (CAS),
as fine-grained alternatives to critical sections.

CSL-inv-atomic
Γ ⊢ {𝑃 ∗ 𝐼 } 𝑒 {𝑄 ∗ 𝐼 } atomic(𝑒)

Γ, 𝐼 ⊢ {𝑃} 𝑒 {𝑄}

The rule CSL-inv-atomic enables the use of an invariant resource 𝐼 within the execu-
tion of an atomic operation 𝑒 .

An ownership perspective O’Hearn [2007] conceptualises resource sharing
between threads as ownership transfer. The assertion 𝑥 ↩→ 𝑣 is read as the ownership
of the heap cell storing value 𝑣 ; which allows the owning thread to modify the
cell. Resource invariants effectively facilitate the transfer of ownership between
threads. Bornat et al. [2005] extend this interpretation by introducing a notion of
permissions. The assertion 𝑥 ↩→𝑞 𝑣 , where the fraction 0 < 𝑞 ≤ 1, denotes 𝑞 shares
of the ownership. When 𝑞 = 1, the thread has full ownership of the cell therefore
the permission to read, write, and deallocate it. Otherwise, the thread has partial

Chapter 2. Background 12

ownership, thus read-only permission. Allocations always give full permission.
Permissions can be split and combined as follows:

CSL-pt-perm
𝑥 ↩→𝑞1 𝑣 ∗ 𝑥 ↩→𝑞2 𝑣 ⊣⊢ 𝑥 ↩→𝑞1+𝑞2 𝑣 ∗ (𝑞1 + 𝑞2 ≤ 1)

Modular Reasoning for Fine-Grained Concurrency

Extensive follow-up work [Dinsdale-Young et al., 2013, 2010; Dodds et al., 2009;
Feng, 2009; Nanevski et al., 2014; Svendsen and Birkedal, 2014; Vafeiadis and Parkin-
son, 2007] introduces various abstraction techniques that enhance the modularity
and flexibility of CSL, making it more effective for reasoning about fine-grained
concurrency.

Concurrent abstract predicates Dinsdale-Young et al. [2010] introduce concur-
rent abstract predicates (CAP) to facilitate reasoning about fine-grained concurrent
modules (e.g., a CAS-based lock). The abstract predicates provide a fiction of sep-
aration. By abstracting over the internal interference of the module, the clients
can use the module’s predicate as if they owned the module and apply its CAP
specification in a thread-local manner. This is achieved by requiring the abstract
predicate of a module to remain preserved under a predefined collection of abstract
actions of the module that may affect its heap fragments. These heap fragments
are shared among the threads (the module’s clients) via invariants, with protocols
specifying how those abstract actions mutate the shared heap regions. To prove a
CAP specification for a module, one must account for all actions that other threads
may perform concurrently on the shared regions, ensuring correctness under all
possible interference scenarios.

For instance, a CAP specification that captures the behaviour of a classic CAS-
based lock implementation is as follows:

CAP-lock
{isLock(𝑥)} lock(x) {isLock(𝑥) ∗ Locked(𝑥)}

CAP-unlock
{isLock(𝑥) ∗ Locked(𝑥)} unlock(x) {isLock(𝑥)}

The protocol for the lock permits two abstract actions corresponding to the two
operations: lock and unlock, which are tracked using permission assertions: the
assertion Locked(𝑥) carries the exclusive unlock permission, which a thread obtains
after performing lock as specified in CAP-lock, and is consumed by unlock in CAP-
unlock. The abstract predicate isLock(𝑥) carries the lock permission, which grants
the permission to update the value of the shared heap cell referenced by pointer 𝑥
during the verification of the lock procedure. The lock procedure employs a CAS
operation to read and update the value of 𝑥 atomically, performing the lock action
following the protocol. During this CAS update, the ownership of the shared heap
cell is available temporarily from the invariant via a CAP variation of CSL-inv-atomic.

13 2.1. Separation Logic

The higher-order extensions of CAP, HOCAP [Svendsen et al., 2013] and iCAP
[Svendsen and Birkedal, 2014], generalise the CAP idea to higher-order separation
logic. They provide much more power of abstraction, which enables even more
general and modular specifications for fine-grained concurrent modules. For in-
stance, the lock procedure of the same CAS-based lock can now be specified more
generically in HOCAP-style as follows:

HOCAP-lock
{isLock(𝑥, 𝑅)} lock(x) {isLock(𝑥, 𝑅) ∗ Locked(𝑥) ∗ 𝑅}

The new higher-order predicate isLock is additionally parameterised by a proposition
𝑅, which remains unknown when verifying the lock implementation. This predicate
can be interpreted as that the lock implemented at location 𝑥 protects the resource
𝑅. The rule HOCAP-lock allows obtaining the ownership of 𝑅 upon acquiring the
lock. The resource 𝑅 can represent any assertion, which enables the construction
of layered abstractions and recursive predicates. These are essential for modular
verification of more advanced concurrent modules beyond CAS-based locks.

User-specified resources The Views framework [Dinsdale-Young et al., 2013]
provides a simple yet powerful meta theory that unifies the core ideas of many results
in CSL. It enhances the flexibility of CSL by introducing a notion of views. Views are
semigroups equipped with a composition operator that provides a generalised notion
of separation. Intuitively, views capture a thread’s knowledge of the physical state
and its permissions to update the state. The composition of views corresponds to the
aggregation of knowledge and permissions. To ensure soundness, any update to a
thread’s view must preserve the views held by other threads. The Views framework
can be instantiated with user-defined views that introduce appropriate abstractions
over the physical state, effectively enabling user-specified resources. The standard
points-to assertions used to represent heap cells are just a simple instance of views
with minimal abstraction over the physical heap.

Linearisability and atomic triples TaDA [da Rocha Pinto et al., 2014] combines
the ideas of linearisability [Herlihy and Wing, 1990] and CAP to provide a fiction
of atomicity for non-atomic concurrent operations. Linearisability is a strong cor-
rectness criterion for concurrent modules. It requires that all concurrent calls to a
module’s operations must have a linearisation point, and the calls appear as if they
occur atomically at their linearisation points.

TaDA captures this notion of logical atomicity through atomic triples. The atomic
triple ⟨𝑃 ⟩ 𝑒 ⟨𝑄⟩ allows the clients of 𝑒 to update 𝑃 to 𝑄 with invariant resource 𝐼 , as
if 𝑒 were an atomic operation:

TaDA-inv-atomic
Γ ⊢ ⟨𝑃 ∗ 𝐼 ⟩ 𝑒 ⟨𝑄 ∗ 𝐼 ⟩
Γ, 𝐼 ⊢ ⟨𝑃 ⟩ 𝑒 ⟨𝑄⟩

Chapter 2. Background 14

To establish such a triple, it must be shown that although operation 𝑒 may consist
of multiple execution steps, 𝑃 transitions to 𝑄 atomically at its linearisation point.
At all other points during the execution of 𝑒 , 𝑃 and 𝑄 must remain unchanged.
For instance, below is a possible specification of the lock operation of CAS lock
formulated using an atomic triple:

⟨𝑏. LockState(𝑥, 𝑏)⟩ lock(x) ⟨LockState(𝑥, true)⟩
The predicate LockState(𝑥, 𝑏) means that the lock 𝑥 is at an abstract boolean state 𝑏
representing if the lock is taken. The state 𝑏 is bounded in the precondition, instead
of being quantified outside of the triple, to denote that 𝑏 is the state of the lock that
one can only know at the linearisation point of lock(x). This is because other calls
to the lock module may change the state concurrently during lock(x) before the
linearisation point. The lock operation is expected to change the state to true, as
reflected in the postcondition, indicating the lock has been successfully taken.

TaDA’s atomic triple is essentially equivalent in expressive power to HOCAP-
style specifications. Both approaches leverage user-defined ghost resources and have
become the de facto standards on strong specifications for fine-grained concurrent
modules.

An alternative approach to formulate linearisability is trace-based. The FCSL
logic [Nanevski et al., 2014] supports using auxiliary time-stamped histories to specify
concurrent modules with regular Hoare triples [Sergey et al., 2015b]. Histories are
tracked with resources, such that the fragmental and subjective views of histories
can be separated and used by clients. This idea is then generalised to specify non-
linearisable concurrent modules [Sergey et al., 2016].

2.2 Iris: A Higher-Order Concurrent Separation Logic Frame-
work

Iris [Jung et al., 2016, 2018b, 2015; Krebbers et al., 2017a] is a state-of-the-art higher-
order concurrent separation logic framework that integrates and refines many of
the advances in separation logic discussed in Section 2.1. It unifies key features of
prior CSLs for modular concurrent reasoning through two fundamental yet powerful
primitives: monoids and invariants. Since its introduction, Iris has been successfully
applied to the studies of various advanced programming language features and
type systems, as well as the verification of sophisticated sequential and concurrent
modules, with over a hundred publications.

Iris supports advanced separation logic features and foundational proofs, which
is the key reason the results of this dissertation are based on it. In this section, we
introduce the core features of the framework. This section is structured as follows:

Section 2.2.1 introduces the base logic of Iris, which serves as the core foundation
upon which the rest of its features are implemented.

Section 2.2.2 presents the key features of Iris, including impredicative invariants
for resource sharing and the language-agnostic program logic for verification.

15 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

2.2.1 Base Logic

Iris is structured as a two-layer hierarchy: the base logic, which supports higher-order
ghost resources and guarded recursion, and the language-agnostic program logic
extension, built upon the base logic. The logical constructs of the program logic,
including invariants and Hoare triples, are derived from the base logic. The assertion
language of Iris’ base logic is depicted in Figure 2.1. All Iris propositions are of type
iProp.

𝑃,𝑄 ∈ iProp ≜ ⌈𝜑⌉ | True | False | 𝑃 ⇒ 𝑄 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄
| ∃𝑥 . 𝑃 | ∀𝑥 .𝑄 | ⊲ 𝑃 | � 𝑃 | Own (𝑎) | ¤|⇛𝑃 | · · ·

Figure 2.1: The grammar of Iris base logic

Iris base logic is a:
separation logic It includes the standard separation logic connectives: separating
conjunction ∗ and separating implication −∗.

resource-aware logic It introduces Own (𝑎) as an assertion for ownership of
ghost resource𝑎; the basic updatemodality ¤|⇛ ensures sound resource updates;
the persistently modality � asserts the duplicable portion of resources.

higher-order and step-indexing logic It supports higher-order quantification (∀
and ∃) over Iris propositions. It also allows recursive predicates and higher-
order ghost states via the later modality ⊲.

affine logic It admits the weakening rule SL-weaken.

Soundness

The soundness (or consistency) of Iris base logic is established through its semantic
model that interprets all Iris base logic assertions. The logic in which this semantic
model is formalised is referred to as the meta-logic. Iris’ meta-logic is the logic of
Coq/Rocq, as it is mechanised and proven sound within the Coq/Rocq proof assistant.
Iris allows embedding meta-level propositions 𝜑 using the notation ⌈𝜑⌉, though this
is often omitted when it is clear that 𝜑 belongs to the meta-logic. Such propositions
are classified as pure propositions, meaning they do not involve any Iris-specific
features such as resources or modalities. The soundness of the Iris base logic can be
formulated in terms of a pure proposition 𝜑 , as stated in Theorem 2.2.1.

Theorem 2.2.1 (Soundness of Iris base logic). Given the following Iris entailment for
meta level proposition 𝜑 behind Iris’ modalities dealing with resource update (¤|⇛) and
higher-orderness (⊲) iterated 𝑛 times

True ⊢ (¤|⇛ ⊲)𝑛 ⌈𝜑⌉
then 𝜑 holds in the meta-logic.

Chapter 2. Background 16

Step-Indexing and Later Modality

Iris is a step-indexing logic that supports higher-order ghost resources and guarded
recursion — two key features to make it expressive and extensible. The step-indexing
of Iris is modelled using Ordered Families of Equivalences (OFE). As the name
suggests, anOFE consists of a set of elements𝑇 equippedwith a family of equivalence
relations {𝑛= ⊆ (𝑇×𝑇) | 𝑛 ∈ N} on𝑇 . Intuitively, the natural number index𝑛measures
the strength of the equivalence: the larger the index, the stronger the equivalence.
This can also be interpreted as a measure of how indistinguishable two elements
related by 𝑛

= are, where 𝑛 represents the number of computational steps required to
distinguish them.

Very loosely speaking, Iris propositions are defined as step-indexed predicates
over its model of resources. Step-indexed propositions (SProp) form a OFE: they are
downward-closed sets of step indices (natural numbers), meaning that if a proposition
holds at some step index, it must also hold at all smaller step indices.

SProp ≜ {𝑠 ∈ 2N | ∀𝑚 ≤ 𝑛. 𝑛 ∈ 𝑠 ⇒𝑚 ∈ 𝑠}

The Iris base logic employs a later modality ⊲ to abstract over tedious explicit
step-indexing reasoning. The assertion ⊲ 𝑃 means that 𝑃 holds one computation step
later. Semantically, if 𝑃 holds for step indices 0 through 𝑛, then ⊲ 𝑃 holds for step
indices 0 through 𝑛 + 1. The key rules for the later modality are as follows:

Iris-Later-intro
𝑃 ⊢ ⊲ 𝑃

Iris-Later-löb
(⊲ 𝑃 ⇒ 𝑃) ⊢ 𝑃

Iris-Later-mono
𝑃 ⊢ 𝑄

⊲ 𝑃 ⊢ ⊲𝑄

Iris-Later-intro As per the semantics of ⊲, this rule allows concluding that 𝑃
holds one step later, provided that 𝑃 holds at the current step.

Iris-Later-löb The latermodality enables guarded recursion, allowing the guarded
fixpoint of recursive predicate definitions, where recursive occurrences are
placed behind a later modality. This rule states that a recursive predicate 𝑃
can be established if one can show 𝑃 , assuming that its recursive occurrence
⊲ 𝑃 holds. This is useful when reasoning about guarded recursive predicates.

Iris-Later-mono This rule asserts that the later modality preserves the logical
entailment. It is often used to eliminate a later modality from assumptions.

Ghost resources

Iris unifies resources representing physical states and ghost states. It uses a notion
of resource algebra (RA) as the model of (first-order) resources.

Resource algebra A resource algebra is a collection of elements (𝑀) with three
operations:

17 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

Composition · : 𝑀 → 𝑀 → 𝑀 is a binary operator for composition of elements.
The composition operation is associative and commutative.

Core | − | : 𝑀 → 𝑀? is a partial function that returns a core of an element,
where𝑀? ≜ 𝑀 + {⊥}. A core of element 𝑎 is a fragment of 𝑎 that is duplicable:
|𝑎 | ·𝑎 = 𝑎. If 𝑎 does not have a duplicable core, then |𝑎 | = ⊥. The core operation
is idempotent: | |𝑎 | | = |𝑎 |.

Validity V : 𝑀 → Prop is a validity predicate identifying the valid elements of
𝑀 . Composition is only meaningful on valid elements. If an element is valid,
then all of its components are also valid.

There are two important derived notations:
Extension order 𝑎 ≼ 𝑏 means there is a 𝑐 ∈ 𝑀 such that 𝑎 · 𝑐 = 𝑏. The core
operation preserves extension: |𝑎 | ∈ 𝑀 ∧ 𝑎 ≼ 𝑏 ⇒ |𝑏 | ∈ 𝑀 ∧ |𝑎 | ≼ |𝑏 |.

Frame-preserving update 𝑎 ⇝ 𝐵 means that element 𝑎 can be updated to 𝐵 ⊆ 𝑀

if, for every frame of 𝑎 — elements whose composition with 𝑎 is valid — there
exists a 𝑏 ∈ 𝐵 whose composition with the frame is also valid. Formally:

𝑎 ⇝ 𝐵 ≜ ∀𝑐 ∈ 𝑀?.V(𝑎 · 𝑐) ⇒ ∃𝑏 ∈ 𝐵.V(𝑏 · 𝑐)
𝑎 ⇝ 𝑏 ≜ 𝑎 ⇝ {𝑏}

The model of higher-order resources generalises RA using step-indexing. Instead
of providing its definition, we present examples of higher-order RA later in this
section.

Resource Ownership and Update

Iris’ primitive assertionOwn (𝑎 : 𝑀) expresses ownership of a valid element 𝑎 within
some RA𝑀 . Iris provides several connectives, elaborated below, that interact with
this ownership assertion and are governed by the following laws:

Iris-ownM-op
Own (𝑎) ∗Own (𝑏) ⊣⊢ Own (𝑎 · 𝑏)

Iris-ownM-pers
Own (𝑎) ⊢ �Own (|𝑎 |)

Iris-ownM-bupd
𝑎 ⇝ 𝐵

Own (𝑎) ⊢ ¤|⇛∃𝑏 ∈ 𝐵.Own (𝑏)

Iris-ownM-op This rule means owning resources 𝑎 and 𝑏 separately, as per the
separating conjunction, is equivalent to owning their composition.

Iris-ownM-pers This rule means owning resource 𝑎 implies owning its core |𝑎 |
which is persistent knowledge, as per the persistently modality �.

Iris-ownM-bupd This rule says one may update resource 𝑎 to any 𝑏 ∈ 𝐵 with
the basic update modality ¤|⇛ if the update is frame-preserving. The modality
only indicates that the update is allowed, but not completed. To complete the
update and use the updated resources freely, one has to remove the modality.

Chapter 2. Background 18

Persistently modality and persistent propositions The persistently modality
is a modality that is easy to eliminate but hard to introduce.

Iris-pers-idemp
�� 𝑃 ⊣⊢ � 𝑃

Iris-pers-elim
� 𝑃 ⊢ 𝑃

Iris-pers-intro
� 𝑃 ⊢ 𝑄
� 𝑃 ⊢ � 𝑃

Iris-pers-idemp The persistently modality is idempotent.

Iris-pers-elim This rules allows removing the persistently modality from propos-
itions at any time. Combined with Iris-pers-idemp, one can remove arbitrary
number of it.

Iris-pers-intro This rules allows introducing the persistently modality to 𝑄 if
one can show 𝑄 with only assumptions guarded by the modality. It is usually
applied to remove the modality from the goal.

The persistently modality is used to define a kind of propositions called persistent
proposition. 𝑃 is persistent if 𝑃 ⊢ � 𝑃 , which means the proposition does not own
any non-duplicable portion of resources. Such propositions represent knowledge
that does not change once established, and are freely duplicable. For instance, pure
propositions and the assertion Own (|𝑎 |) are persistent.

Basic update modality and resource update The basic update modality is
straightforward to introduce but difficult to eliminate, in contrast to the persistently
modality. It is called the basic update modality because Iris also provides a more
powerful fancy update modality which is built upon the basic one and elaborated in
Section 2.2.2.

Iris-bupd-idemp
¤|⇛ ¤|⇛𝑃 ⊣⊢ ¤|⇛𝑃

Iris-bupd-intro
𝑃 ⊢ ¤|⇛𝑃

Iris-bupd-elim
𝑃 ⊢ ¤|⇛𝑄

¤|⇛𝑃 ⊢ ¤|⇛𝑃

Iris-bupd-idemp The basic update modality is idempotent.

Iris-bupd-intro This rules allows introducing the basic update modality at any
time.

Iris-bupd-elim This rules allows eliminating a basic update modality from the
assumption 𝑃 if the goal has a basic update modality. In a sense, the modality
on the goal denotes a permission to perform the resource updates in 𝑃 . Since
updating resources introduces an update modality (Iris-ownM-bupd), this rules
is used to remove the introduced modality to use the updated resources.

Basic view shift The basic view shift 𝑃 ¤⇛ 𝑄 is the persistent fact that 𝑃 can be
updated to 𝑄 .

𝑃 ¤⇛ 𝑄 ≜ �(𝑃 −∗ ¤|⇛𝑄)

19 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

Multiple RAs Iris supports the parallel use of multiple resource algebras (RAs)
by constructing a partial function RA that indexes each used RA𝑀 with a unique
identifier 𝑖 . Additionally, Iris allows multiple instances of the same RA, which is
achieved by constructing another partial function RA for each 𝑀𝑖 , where every
instance of𝑀𝑖 is indexed by a ghost name 𝛾 ∈ GName.

The notation 𝑎 : 𝑀𝑖
𝛾 asserts the ownership of the resource 𝑎 from RA𝑀𝑖 under

the ghost name 𝛾 , defined using the ownership assertion. The RA𝑀𝑖 is often omitted
when it is unambiguous from the context.

The following essential rules can be derived for this assertion from the rules of
the basic update modality:

Iris-ownG-op
𝑎

𝛾 ∗ 𝑏 𝛾 ⊣⊢ 𝑎 · 𝑏 𝛾

Iris-ownG-alloc
V𝑀𝑖

(𝑎)
True ¤⇛ ∃𝛾 : GName. 𝑎 : 𝑀𝑖

𝛾

Iris-ownG-update
𝑎 ⇝ 𝑏

𝑎
𝛾 ¤⇛ 𝑏

𝛾

Iris-ownG-op This rule says the resources governed by the same ghost name
𝛾 (indicating they belong to the same RA instance) can be combined or split
following the composition of the RA.

Iris-ownG-alloc This rule allows allocating the resource 𝑎 of RA𝑀𝑖 with a fresh
ghost name 𝛾 if 𝑎 is valid.

Iris-ownG-update This rules is derived from the rule of basic update and the
definition of view shift. It allows resource 𝑎 to update to 𝑏 if the update is
frame-preserving, which is crucial for the soundness of resource update.

Higher-order ghost resources Iris supports higher-order ghost resources by
extending the resource model from RAs to CMRAs. CMRAs integrate step-indexing
into RAs by requiring the element collection 𝑀 to form an OFE. Consequently,
the assertion 𝑎

𝛾 now takes elements from CMRAs. This extension allows Iris
propositions to be referenced within ghost resources, effectively making ghost
resources higher-order.

For instance, Iris includes a savedProp CMRA, implemented using the agreement
constructor (elaborated below) which maps Iris propositions to a CMRA. The asser-
tion savedProp(𝑞, 𝑃) 𝛾 stores a fractional share 𝑞 ∈ (0, 1] of the Iris proposition 𝑃
as a ghost resource, and follows two key rules:

Iris-savedProp-ag
savedProp(𝑞1, 𝑃)

𝛾 ∗ savedProp(𝑞2, 𝑄)
𝛾 ⊢ (𝑞1 + 𝑞2 ≤ 1) ∗ ⊲(𝑃 = 𝑄)

Iris-savedProp-upd
savedProp(1, 𝑃) 𝛾 ¤⇛ savedProp(1, 𝑄) 𝛾

Iris-savedProp-ag This rule allows concluding the equality of two stored Iris
propositions. The equality is behind a later modality for the soundness of
higher-order ghost resources.

Chapter 2. Background 20

Iris-savedProp-upd This rule allows updating the full share of the saved propos-
ition 𝑃 to an arbitrary 𝑄 .

Common (CM)RA constructors

Iris provides some basic (CM)RA constructors. These constructors act as building
blocks for more sophisticated ghost resources, supporting the diverse needs of
program verification. We present some representative ones below.

Agreement CMRA For any OFE 𝑇 , Ag(𝑇) is a CMRA with a injection function
ag(𝑥) ≜ {𝑥} that maps 𝑥 ∈ 𝑇 to Ag(𝑇). Intuitively, this function maps 𝑥 of 𝑇 to a
CMRA which contains only replicas of 𝑥 . Indeed, we have ag(𝑥) · ag(𝑥) = ag(𝑥).
A frame-preserving update to ag(𝑥) is not possible, as the number of replicas (the
frames) is unknown. This CMRA allows embedding Iris propositions, and savedProp
is implemented using it.

Product CMRA Given two CMRAs𝑀1 and𝑀2,𝑀1×𝑀2 is a CMRAwhose elements
are pairs: {(𝑥,𝑦) | 𝑥 ∈ 𝑀1 ∧ 𝑦 ∈ 𝑀2}. The CMRA operations are pointwise.

Fraction RA Fraction RA is widely used to pair with some CMRA to track its
shares. For instance, it is employed to implement fractional permissions [Bornat
et al., 2005].

𝑀 ≜ frac((0, 1]) |
V(𝑎) ≜ 𝑎 ≠

frac(𝑞1) · frac(𝑞2) ≜ frac(𝑞1 + 𝑞2) when (𝑞1 + 𝑞2) ≤ 1

The elements of this RA are fractions and a bottom element. Fractions compose
through addition.

Authoritative CMRA Given a CMRA𝑀 , the CMRA Auth(𝑀) provides two views
(the Iris adaptation of the views in the Views framework) for some 𝑥 ∈ 𝑀 : the
authoritative view •𝑥 and the fragmental view ◦𝑥 . These two views follow the
following key rules:

Iris-Auth-auth-op
V(•𝑥 · •𝑦) ⇒ False

Iris-Auth-frag-op
(◦𝑥 · ◦𝑦) = ◦(𝑥 · 𝑦)

Iris-Auth-both-op
V(•𝑥 · ◦𝑦) ⇔ 𝑦 ≼ 𝑥 ∧V(𝑥)

Iris-Auth-both-upd
(𝑥,𝑦) ⇝𝑙 (𝑥 ′, 𝑦′)
•𝑥 · ◦𝑦 ⇝ •𝑥 ′ · ◦𝑦′

Iris-Auth-auth-op This rule states that the authoritative view is exclusive, mean-
ing it represents the unique and complete knowledge of the resource 𝑥 ∈ 𝑀 .

21 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

Iris-Auth-frag-op This rule ensures that fragmental views can be composed by
combining the elements they carry. An authoritative view may have multiple
distinct fragmental views, and this rule ensures that their composition remains
a valid fragmental view.

Iris-Auth-both-op This rule establishes that fragmental views provide partial
knowledge of 𝑥 : all valid fragmental views must be contained within the
corresponding authoritative view.

Iris-Auth-both-upd This rule allows simultaneous updates to both views when
the frame-preserving update is a local update, denoted by ⇝𝑙 . Intuitively, the
local update ensures that any fragmental frame whose composition with 𝑦
results in 𝑥 is preserved: its composition with 𝑦′ must result in 𝑥 ′. This is
trivially satisfied when𝑦 has no frames or when the update from 𝑥 to 𝑥 ′ affects
only the portion of the view disjoint from 𝑦.

The Authoritative CMRA captures the fiction of separation and is widely used
for modular reasoning in Iris. An example of this CMRA applied to a finite heap is
presented later in this section.

2.2.2 Program Logic

Iris provides a generic program logic framework built on top of its base logic. This
framework is language-parametric.

Invariants and fancy update modality

Iris supports impredicative invariants, denoted as 𝑃 𝜄 , for resource sharing in the
program logic. Here, 𝑃 is an arbitrary Iris proposition (which can itself be another
invariant), and 𝜄 ∈ InvName represents the invariant’s unique name. Invariants are
persistent, meaning they can be freely shared among threads. Threads can open
invariants (and violate them) for an atomic step, as specified in Iris-ht-inv.

Iris-ht-inv
⊢ {⊲ 𝐼 ∗ 𝑃} 𝑒 {⊲ 𝐼 ∗𝑄}E\{𝜄} atomic(𝑒) 𝜄 ∈ E

𝐼
𝜄 ⊢ {𝑃} 𝑒 {𝑄}E

To ensure that each invariant is opened at most once at any given time, Iris employs
masks (collections of invariant names) to track which invariants are permitted to be
opened. The Hoare triple in Iris is parameterised by a mask E. When an invariant
is opened, its name is removed from E to prevent unsound repeated openings. For
soundness, the associated invariant resource 𝐼 is guarded by a later modality, meaning
it becomes accessible only after at least one computation step. However, in practice,
this does not usually pose an issue, as the later modality can be eliminated from a
class of propositions that do not refer to invariants without requiring a computation
step.

Chapter 2. Background 22

Fancy update modality Under the hood, the opening and closing of invariants
are managed by the fancy update modality |⇛E1 E2

, which extends the basic up-
date modality with two masks. It is implemented using the basic update modality
combined with ghost resources. The assertion |⇛E1 E2

𝑃 expresses that, prior to the
resource update, all invariants whose names are in the opening mask E1 remain
closed (hence, they may be opened), and after updating to 𝑃 , the closing mask E2
defines the set of invariants that remain closed. By specifying the masks before and
after an update, one can control which invariants may be opened or which must be
closed. E1 = E2 ensures that the set of closed invariants remains unchanged after
the update. However, this does not preclude invariants in E1 from being temporarily
opened and then closed. The shorthand notation |⇛E1

is used for this case.
The non-mask-changing fancy update modality |⇛E serves as a drop-in replace-

ment for the basic update modality and satisfies all its corresponding rules. The
mask-changing one additionally adheres to the following key rules:

Iris-fupd-trans
|⇛E1 E2

|⇛E2 E3
𝑃 ⊢ |⇛E1 E3

𝑃

Iris-fupd-intro
E2 ⊆ E1

𝑃 ⊢ |⇛E1 E2
|⇛E2 E1

𝑃

Iris-fupd-frame
𝑄 ∗ |⇛E1 E2

𝑃 ⊢ |⇛E1⊎E𝑓 E2⊎E𝑓
(𝑄 ∗ 𝑃)

Iris-fupd-trans This rule allows chaining mask changes, which is useful when
the goal’s mask do not match those in the assumption.

Iris-fupd-intro This rule allows introducing masks. This is often implicitly use
when removing the modality from the goal.

Iris-fupd-frame This rule allows framing awaymasks that are not useful to show
the goal.

Fancy update modality also has notations for view shifts:

𝑃 ≡−∗E1 E2
𝑄 ≜ 𝑃 −∗ |⇛E1 E2

𝑄

𝑃 ⇛E1 E2
𝑄 ≜ �(𝑃 ≡−∗E1 E2

𝑄)
𝑃 ⇛E 𝑄 ≜ 𝑃 ⇛E E 𝑄

The difference between the first two view shifts is that the first can only be applied
once, while the second is persistent.

The following rules illustrate how the fancy update modality interacts with
invariants:

Iris-inv-alloc
⊲ 𝑃 ⇛∅ 𝑃

N

Iris-inv-open
N ∈ E

𝑃
N

⇛E E\N ⊲ 𝑃 ∗ (⊲ 𝑃 ≡−∗E\N E True)

Iris-inv-alloc This rule allows the allocation of an invariant under a namespace
N , instead of a specific name. In Iris, invariants are identified by namespaces

23 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

N , which are sets of invariant names. This approach generalises the concrete
invariant name 𝜄 used previously, as reasoning typically concerns disjointness
and inclusion among sets of invariant names. This generalisation is necessary
to allow the flexible allocation of invariants within arbitrary namespaces. The
allocation is performed using an empty mask ∅.

Iris-inv-open This rule permits opening an invariant with the namespace N ,
provided that the view shift mask includes it. The associated invariant resource
is made available as ⊲ 𝑃 . Upon opening the invariant, the mask is updated to
E \N . To restore the original mask and reestablish the invariant, the invariant
resource ⊲ 𝑃 must be returned, as required by the view shift.

The Iris invariant is formally defined as follows:

𝑃
N
≜ �∀E . |⇛E E\N ⊲ 𝑃 ∗ (⊲ 𝑃 ≡−∗E\N E True)

Hoare triples and Weakest preconditions

Hoare triples in Iris manage invariants by incorporating masks via the fancy update
modality. They are defined using weakest preconditions as follows:

{𝑃} 𝑒 {𝑄}E ≜ �(𝑃 −∗ wpE 𝑒 {𝑄})

wpE 𝑒 {𝑄} represents the weakest precondition that ensures that the postcondition
𝑄 holds upon termination of 𝑒 . It is parameterised by the invariant mask E, so that
invariants whose namespaces included in the mask can be opened.

Iris provides a default, language-independent definition of weakest preconditions
for partial correctness. To instantiate it for a specific language, one needs to provide
a small-step operational semantics, including a notion of physical shared state and
thread-local reductions that mutate the state. To link the semantics with the program
logic, one needs to provide a logical predicate called state interpretation to interpret
the physical state using the ghost resources of a customised ghost theory. This ghost
theory defines rules governing the interaction between the state interpretation and
logical assertions, which are also implemented using the ghost resources.

To elaborate, we present key elements of the weakest precondition definition,
specialised for a toy heap-based language. For a comprehensive description of the
full definition, we refer readers to the Iris papers [Jung et al., 2016, 2018b, 2015]. The
shared physical state of this toy language is a heap 𝜎 , represented as a finite map
from locations to values. Its operational semantics consists of two levels of reduction
relations.

Thread-local reduction This reduction relation form ⟨𝑒, 𝜎⟩ → ⟨𝑒′, 𝜎 ′⟩ describes
how one thread may mutate the heap atomically. The semantics of the three heap

Chapter 2. Background 24

operations of the toy language are specified as follows:

Opsem-tl-load
𝜎 [𝑥] = 𝑣

⟨!𝑥, 𝜎⟩ → ⟨𝑣, 𝜎⟩
Opsem-tl-store
⟨𝑥 := 𝑣, 𝜎⟩ → ⟨(), 𝜎 [𝑥 ↦→ 𝑣]⟩

Opsem-tl-alloc
𝑥 ∉ dom(𝜎)

⟨ref (𝑣), 𝜎⟩ → ⟨𝑥, 𝜎 ∪ {𝑥 ↦→ 𝑣}⟩

Opsem-tl-load This rule for load returns the value of location 𝑥 in the heap.

Opsem-tl-store This rule for store update the value of 𝑥 in the heap.

Opsem-tl-alloc This rule for allocation returns a fresh location 𝑥 that stores 𝑣 .

Thread-pool reduction The toy language has fixed number of threads. Its thread-
pool reduction is of the form ⟨®𝑒, 𝜎⟩ →tp ⟨®𝑒′, 𝜎 ′⟩ where ®𝑒 and ®𝑒′ are the programs
of all threads (i.e.,the thread pool). Concurrency (under sequential consistency)
is modelled by non-deterministically selecting a thread to perform a thread-local
reduction step with the rule below:

Opsem-tp
⟨𝑒, 𝜎⟩ → ⟨𝑒′, 𝜎 ′⟩

⟨®𝑒; 𝑒; ®𝑒′, 𝜎⟩ →tp ⟨®𝑒; 𝑒′; ®𝑒′, 𝜎 ′⟩

The transitive closure of thread-pool reduction represents the interleaving of thread-
local reductions.

Definition The overall structure of the weakest precondition wpE 𝑒 {𝑄} for the
language consists of two cases corresponding to whether the execution of the pro-
gram 𝑒 has terminated or not.

In the terminating case, we require the postcondition𝑄 holds on 𝑒 after a resource
update:

IsVal(𝑒) −∗ |⇛E𝑄 (𝑒)

The termination of a program is determined by the predicate IsVal over program 𝑒:
it holds when 𝑒 is a value thus cannot be further reduced.

If 𝑒 remains a reducible expression, a universally quantified physical shared heap
𝜎 is assumed, along with its state interpretation SI(𝜎) that provides an abstract logical
view of 𝜎 using the ghost theory. The weakest precondition requires satisfying two
obligations while opening invariants permitted by E:

¬IsVal(𝑒) −∗ ∀𝜎. SI(𝜎) ≡−∗E ∅ Progress(𝑒, 𝜎) ∗ Preservation(𝑒, 𝜎)

25 2.2. Iris: A Higher-Order Concurrent Separation Logic Framework

Progress The program 𝑒 must be able to take one more thread-local step forward:

Progress(𝑒, 𝜎) ≜ ∃𝑒′, 𝜎 ′. ⟨𝑒, 𝜎⟩ → ⟨𝑒′, 𝜎 ′⟩

For instance, when 𝑒 is about to load from a location, it must be demonstrated
that the corresponding cell is allocated within the heap.

Preservation The abstract view and the physical heap must remain consistently
linked throughout the execution of 𝑒:

Preservation(𝑒, 𝜎) ≜ ∀𝑒′, 𝜎 ′. ⟨𝑒, 𝜎⟩ → ⟨𝑒′, 𝜎 ′⟩ ∗ ⊲ |⇛∅ E SI(𝜎 ′) ∗ wpE 𝑒
′ {𝑄}

This preservation is established recursively: for a single reduction step from 𝜎

to 𝜎 ′, the state interpretation is updated from SI(𝜎) to SI(𝜎 ′); and the weakest
precondition of 𝑒′ enforces this link for the reminder of the execution. The
use of modalities ⊲ |⇛∅ E is for soundness. The fancy update modality restores
the invariant mask to E to ensure that invariants opened for evaluating 𝑒
are reestablished after the atomic step. This mechanism effectively ensures
that invariant resources are only available temporarily for atomic steps, as in
Iris-ht-inv. The recursive occurrence of the weakest precondition is placed
behind a later modality to guarantee the existence of a guarded fixed point for
its definition. The new state interpretation is also behind the later modality so
that the one in front of the invariant resources (Iris-inv-open) can be eliminated
after the step.

Soundness and Adequacy

With an instantiated weakest precondition, one can define a tailored Iris program
logic for the language by formulating proof rules for its primitives using Hoare
triples. Such a logic must be proven consistent and useful. Consistency requires
the soundness of the proof rules: the proof rules must be sound with respect to the
instantiated weakest precondition and the ghost theory; usefulness requires the
adequacy of the logic: one should be able to extract the verification results with
respect to the semantics of programs from the Iris program logic to the meta-logic.

Soundness of proof rules To show the soundness of the proof rules for the
toy language, we need a ghost theory for its heap. The ghost theory for heaps 𝜎
consists of the full view A(𝜎) ≜ •𝜎 𝛾 and the fragmental view F(𝜎) ≜ ◦𝜎 𝛾 , both
implemented using the Authoritative CMRA. The following rules on the two views
can be derived:

GT-heap-agree
A(𝜎) ∗ F(𝜎 ′) ⊢ 𝜎 ′ ⊆ 𝜎

GT-heap-update
𝑙 ∈ dom(ℎ′)

A(𝜎) ∗ F(𝜎 ′) ⇛ A(𝜎 [𝑙 ↦→ 𝑣]) ∗ F(𝜎 ′ [𝑙 ↦→ 𝑣])

GT-heap-alloc
A(𝜎) ⇛ ∃𝑙 ∉ dom(𝜎) .A(𝜎 [𝑙 ↦→ 𝑣]) ∗ F({𝑙 ↦→ 𝑣})

Chapter 2. Background 26

The full view serves as the abstract heap state in the state interpretation SI(𝜎) ≜ A(𝜎),
while the fragmental view implements the points-to assertion 𝑥 ↩→ 𝑣 ≜ F({𝑥 ↦→ 𝑣}).

This ghost theory suffices to establish the rules for allocation, read, andwrite with
respect to the definition of the weakest precondition and the operational semantics:

Iris-ht-load
{𝑥 ↩→ 𝑣} !𝑥 {𝑤.𝑤 = 𝑣 ∗ 𝑥 ↩→ 𝑣}

Iris-ht-store
{𝑥 ↩→ 𝑣} 𝑥 := 𝑣 ′ {𝑥 ↩→ 𝑣 ′}

Iris-ht-alloc
{True} ref (𝑣) {𝑥 . 𝑥 ↩→ 𝑣}

Iris-ht-load We use GT-heap-agree to conclude that 𝜎 [𝑥] = 𝑣 , as required by
Opsem-tl-load.

Iris-ht-store We use GT-heap-update to update the points-to assertion when
updating the heap from 𝜎 to 𝜎 [𝑥 ↦→ 𝑣 ′] according to Opsem-tl-store.

Iris-ht-alloc We use GT-heap-alloc to allocate a new points-to assertion when
extending the heap from 𝜎 to 𝜎 [𝑥 ↦→ 𝑣] for a fresh location 𝑥 according to
Opsem-tl-alloc.

Adequacy The adequacy theorem allows us to lift verification results from the
program logic to the meta-logic. This removes the entire program logic construction
and the Iris base logic presented in this section from the trusted computing base,
relying only on the meta-logic –— in this case, the Coq/Rocq proof assistant.

The adequacy theorem can be formulated in different ways to reflect varying
strengths. Theorem 2.2.2 presents a simple adequacy theorem for our toy language.

Theorem 2.2.2 (Adequacy theorem). Given an initial heap 𝜎 , programs ®𝑒 , meta-
level propositions ®𝜑 (one for each thread), ff we have a thread-pool reduction trace
⟨®𝑒, 𝜎⟩ →∗

tp ⟨®𝑒′, 𝜎 ′⟩, and want to show that each 𝜑 holds for the corresponding thread if
the thread terminates in the meta-logic, it suffices to show the following in the Iris logic:

⊢ |⇛⊤∃SI. SI(𝜎) ∗ ∗
𝑒,𝜑∈®𝑒 ; ®𝜑

wp⊤ 𝑒 {⌈𝜑⌉}

This entailment requires instantiating the state interpretation SI, allocating it
for the initial heap, and performing verification using weakest preconditions (with
⊤ mask including all namespaces) for all threads using the meta-level propositions
as the postconditions.

The proof of this theorem requires induction on the reduction trace, unfolding
the weakest preconditions along the way, and relying on the soundness of the Iris
base logic (Theorem 2.2.1).

2.3 Relaxed Memory Concurrency

The performance of modern multi-core programs benefits substantially from hard-
ware optimisations such as caching and speculation. Since the introduction of

27 2.3. Relaxed Memory Concurrency

multi-core processors, there have been significant advancements in their perform-
ance. One such example is the introduction of multi-layered caching between CPU
cores and memory to reduce communication latency. These caches prioritise speed
over strict memory access order, significantly enhancing performance by reducing
dependence on slower memory accesses. However, such optimisations lead to out-
of-order execution of instructions, where normal memory accesses may not occur in
the order specified by the program. To compensate this side effect, concurrent code
has to use a family of memory barriers and stronger memory accesses to ensure
ordering at various granularities.

The sequential consistency (SC) model [Lamport, 1979] is a widely adopted
concurrency model for study of concurrent programs. It requires that in a valid
execution, the effects of all concurrent memory operations are ordered sequentially,
and the sequential order respects the program order of the threads. A substantial
body of work on concurrent program verification is based on this model. However,
SC is not a correct modelling of real-world concurrency as it disallows out-of-order
behaviours. Instead, the concurrency of real-world hardware and programming
languages is modelled using relaxed memory models.

High-level languages and hardware Both high-level languages and hardware
architectures define their own memory models. For hardware, memory models are
part of the architectural specifications that formally define the observable behaviours
of processors as abstractions over their complex implementations.

Defining relaxed memory models for high-level languages is more challenging,
as they must also account for compilation schemes targeting different architectures.
Designing these models requires handling different relaxed hardware architectures
and accommodating compiler optimisations that may restructure programs by re-
ordering, removing, or merging memory operations.

Litmus testing Litmus testing is a method for understanding intricate relaxed
concurrency behaviours. Litmus tests are tiny concurrent programs that capture
specific memory access patterns. Their execution outcomes reflect the characteristics
of relaxed memory models which can be simulated using tools such as herd [Alglave
et al., 2014]. We present litmus tests in a simple assembly-like language: str [x] 𝑣
denotes a memory store at address 𝑥 with value 𝑣 ; 𝑟 := ldr [y] denotes a memory
load from address 𝑦 into register 𝑟 . For instance, message passing (MP) captures

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str [flag] 1 𝑑 : 𝑟2 := ldr [data]

Figure 2.2: MP in SC: 𝑟1 = 1 ∧ 𝑟2 = 42. The initial value of the two locations are zero.
The symbol before each instruction is the label of the instruction.

the pattern of one thread passing a message to the other thread by writing the
message to a shared location data, and uses another location flag for notifying the

Chapter 2. Background 28

reader thread the completion of the write, as depicted in Figure 2.2. In sequential
consistency concurrency, one can expect the reader thread to only read the payload
42 from data if it reads 1 from flag. This is because the two writes in the writer
thread are executed in program order, which ensures that the write to data happens
before the write to flag. Under sequential consistency, the reader thread thus can
observe the two writes only in the same order, and the two reads are also executed
in program order. As we will see later, this is however not always the case in relaxed
concurrency because of the reordering of instructions.

Structure In this preliminary section, we give an overview on relaxed memory
concurrency with definitions and litmus tests. The section is structured as follows:

Section 2.3.1 describes two styles of formalising memory models, using two
formalisations of (a subset of) x86-TSO as examples.

Section 2.3.2 discusses two relaxed memory models: C/C++ and Arm-A.

Section 2.3.2 highlights verification work on relaxed memory concurrency.

2.3.1 Two Styles of Formal Semantics

There are two widely used styles for formally specifying concurrency models: oper-
ational and axiomatic.

Operational An operational concurrency model is an abstract machine stimulat-
ing the concurrency behaviours. More specifically, an abstract machine is a
labeled transition system (LTS), whose valid transitions are allowed execution
outcomes. The states of the LTS include information about the program state;
and the transitions of LTS update these information, modelling a small execu-
tion step. They often have a microarchitectual flavour, abstracting behaviours
of processor-internal hardware units and their interactions.
Operational models are executable: one can implement models such that they
execute incrementally, allowing inspecting the relaxed behaviours interactively
with e.g. the RMEM tool [Sarkar et al., 2024]; they are also relatively intuitive:
it is usually easier to get intuition on certain relaxed behaviours by considering
how the abstract machine would run.

Axiomatic An axiomatic model is a predicate over candidate executions. Candid-
ate executions are all possible well-formed executions of a program, including
those that are inconsistent with the model. A candidate execution consists
of memory events and various relations between the events. The axiomatic
model defines which of those candidate executions are consistent, often by
posing constraints on the relations.
Axiomatic models are more abstract than their operational counterparts, thus
providing less intuition; they are not trivially executable due to their non-
operational nature. Isla [Armstrong et al., 2021] makes axiomatic models
executable by translating the predicates to SMT constraints.

29 2.3. Relaxed Memory Concurrency

Ideally, one has complementary, equivalent operational and axiomatic models
for the same concurrency system. In the rest of this subsection, we present the
x86-TSO (TSO for short) memory model in the two styles, and illustrate how the
model accepts or rejects certain behaviours of representative litmus tests. For brevity,
we do not consider read-modify-write operations and memory barriers.

Operational

The TSO model considers that each processor has a write buffer that connects to the
shared memory. The buffer holds all pending writes of the processor, and works like
a queue: it pops writes to the shared memory in first-in-first-out order. A processor
reading from a given reads from the latest relevant entry of its own write buffer if
there is one, and shared memory otherwise.

We define the state of the abstract TSO machine 𝜎 to track the state of all write
buffers and the shared memory:

𝜎 ≜ ⟨buf ,mem⟩

where buf maps from thread identifiers to the private write buffers of the threads,
and mem maps from memory addresses to values.

LTS Formally, we define the abstract TSO machine as an LTS, with the following
transition on machine states:

𝜎
𝑎:𝛼−−−→ 𝜎 ′

where 𝜎 and 𝜎 ′ are the machine states before and after an execution step, 𝛼 is the
memory action emitted from the machine step, and 𝑎 = ⟨𝑖, 𝑡⟩ is a pair of an action
identifier 𝑖 and the thread identifier 𝑡 of the thread performing the action. A memory
action 𝛼 can be

Write 𝑥 𝑣 A write action with address 𝑥 and value 𝑣 .

Read 𝑥 𝑣 A read action with address 𝑥 and value 𝑣 .

Dequeue 𝑎 𝑥 𝑣 A dequeue action with address 𝑥 and value 𝑣 , which moves the
write 𝑎 from the write buffer to the shared memory.

Chapter 2. Background 30

The machine can make the following transitions according to the action:

TSO-op-read-mem
𝜎.mem[𝑥] = 𝑣 NotIn(𝜎.buf [𝑎.𝑡], 𝑥)

𝜎
𝑎:Read(𝑥, 𝑣)
−−−−−−−→ 𝜎

TSO-op-read-buf
IsLatest(𝜎.buf , 𝑎′:Write(𝑥, 𝑣))

𝜎
𝑎:Read(𝑥, 𝑣)
−−−−−−−→ 𝜎

TSO-op-write
buf ′ = 𝜎.buf [𝑎.𝑡 ↦→ enqueue(𝜎.buf [𝑎.𝑡], 𝑎:Write(𝑥, 𝑣))]

𝜎
𝑎:Write(𝑥, 𝑣)
−−−−−−−→ ⟨buf ′, 𝜎 .mem⟩

TSO-op-deqeue
𝑎′:Write(𝑥, 𝑣) = top(𝜎.buf [𝑎.𝑡]) buf ′ = 𝜎.buf [𝑎.𝑡 ↦→ dequeue(𝜎.buf [𝑎.𝑡])]

𝜎
𝑎:Dequeue(𝑎′, 𝑥, 𝑣)
−−−−−−−→ ⟨buf ′, 𝜎 .mem[𝑥 ↦→ 𝑣]⟩

TSO-op-read-mem This rule allows the thread 𝑎.𝑡 to read 𝑥 from memory when
there is no write at 𝑥 in its write buffer.

TSO-op-read-buf This rule allows the thread 𝑎.𝑡 to read from the latest write at
𝑥 in its write buffer.

TSO-op-write This rule allows the thread 𝑎.𝑡 to buffer write 𝑎.

TSO-op-deqeue This rule allows the thread 𝑎.𝑡 to move the oldest write of its
buffer to the memory.

Store buffering To justify outcomes of litmus tests using the operational model,
one needs to find a transition of the LTS from the initial state 𝜎0 where all write
buffers are empty and all addresses are initialised with value 0 in the memory. The
store buffering (SB) litmus test in Figure 2.3 captures that in TSO local write-read
pairs might be reordered.

𝑎: str [y] 1 𝑐: str [x] 1
𝑏: 𝑟1 := ldr [x] 𝑑 : 𝑟2 := ldr [y]

Figure 2.3: SB in TSO: 𝑟1 = 0 ∧ 𝑟2 = 0 allowed. The initial value of the two locations
are zero.

We can use the operational model to explain why the outcome 𝑟1 = 0 ∧ 𝑟2 = 0 is
allowed. This is because two threads can first push their writes to their write buffers,
and read the value at the other location before the buffered writes are dequeued to
the memory, as in the following sequence of actions:

⟨𝑎, 𝐿⟩:Write(𝑦, 1) ; ⟨𝑐, 𝑅⟩:Write(𝑥, 1) ; ⟨𝑏, 𝐿⟩:Read(𝑥, 0) ; ⟨𝑑, 𝑅⟩:Read(𝑦, 0) ;
⟨_, 𝐿⟩:Dequeue(⟨𝑎, 𝐿⟩, 𝑦, 1) ; ⟨_, 𝑅⟩:Dequeue(⟨𝑐, 𝑅⟩, 𝑥, 1)

where we assign the identifier 𝐿 to the left thread and 𝑅 to the right thread.

31 2.3. Relaxed Memory Concurrency

Axiomatic

A candidate execution of the TSOmodel consists of a candidate pre-execution ⟨𝐸, po⟩,
and a witness ⟨rf, co⟩, where

𝐸 is a set of memory events each labeled with an unique identifier. Each memory
operation of the program may emit one or more memory event, each repres-
enting some effect of the memory operation. For TSO, the events areW 𝑥 𝑣

for write operation str [𝑥] 𝑣 , and R 𝑥 𝑣 for the read operation that reads value
𝑣 . The event identifier (Eid) also carries the thread ID of the thread that the
event belongs to, to distinguish if two events belong to the same thread.

po is the program order relation for events (Eid × Eid), reflecting the syntactic
order of memory operations. This relation is irreflexive and transitive, and
only relates events from the same thread.

rf is the read-from relation that relates each write to all reads that read from it.
One read event can only be related to one write event, and the two events must
have the same address and value. Reads can also read from initial writes with
default value 0. Initial writes to the memory addresses used in the program are
modelled as write events that do not correspond to explicit memory operations.

co is the coherence relation that relates writes of the same address. This relation
is irreflexive, transitive, and total for writes of the same address.

Auxiliary relations and relational algebra Weuse notations 𝑒 R 𝑒′ or (𝑒, 𝑒′) ∈ R
for two events with Eids 𝑒 and 𝑒′ related by relation R. Since many relations capture
ordering between events, we often say 𝑒 is R-ordered after 𝑒′ for 𝑒 R 𝑒 . There are
also some auxiliary relations:

loc is the same-location relation that relates events at the same location.

int is the internal relation that relates events from the same thread.

ext is the external relation that relates events from different threads.
The consistency condition of a memory model often refers to compound relations
defined using the base relations of a candidate execution. For convenience, we use
relation algebra to compose relations. For relations R,R′ and event set 𝑆 :

Union R | R′ or R ∪ R′ ≜ {(𝑒, 𝑒′) | (𝑒, 𝑒′) ∈ R ∨ (𝑒, 𝑒′) ∈ R′}

Intersection R & R′ or R ∩ R′ ≜ {(𝑒, 𝑒′) | (𝑒, 𝑒′) ∈ R ∧ (𝑒, 𝑒′) ∈ R′}

Sequential composition R ;R′ ≜ {(𝑒, 𝑒′) | ∃𝑒′′. (𝑒, 𝑒′′) ∈ R ∧ (𝑒′′, 𝑒′) ∈ R′}

Minus R \R′ ≜ {(𝑒, 𝑒′) | (𝑒, 𝑒′) ∈ R ∧ (𝑒, 𝑒′) ∉ R′}

Inverse R−1 ≜ {(𝑒, 𝑒′) | (𝑒′, 𝑒) ∈ R}

Identity [𝑆] ≜ {(𝑒, 𝑒) | 𝑒 ∈ 𝑆}
We then define a few more auxiliary relations using relational algebra:

Chapter 2. Background 32

fr ≜ rf−1; co is the from-read relation that relates each read with the writes that
are co-after the write that paired with the read with rf.

rfe ≜ rf ∩ ext is the external fragment of rf. Likewise, we have coe, fre.

rfi ≜ rf ∩ int is the internal fragment of rf. Likewise, we have coi, fri.

[W] is the identity relation for all write events.

[R] is the identity relation for all read events.

The model We are now ready to give the TSO axiomatic model. We say a TSO
candidate execution is a consistent TSO execution if it satisfies the following two
conditions:

SC-per-location acyclic(po-loc∪ rf ∪ co∪ fr), where po-loc ≜ po∩ loc. This
condition requires that all memory access at the same location have sequen-
tially consistent behaviours by requiring acyclicity of the union of the co-
herence orders between events at same address. Coherence is a fundamental
property that most hardware architectures and many programming languages,
but not all distributed systems, enforce.

External-visibility acyclic((po \([W] ; po ;[R])) ∪ rfe∪ coe∪ fre). We refer to
the union of the four orders as ob (ordered-before), which is the order that
captures the synchronisation between threads. The ob relation is externally
visible, meaning that if two events are ordered by it, then this ordering is
visible to all threads.

Litmus tests We now illustrate the TSO axiomatic model with several litmus tests.
SB TSO allows the SB outcome in Figure 2.3. As shown in Figure 2.4a, the
execution is allowed since no forbidden cycles are formed. In particular, since
[W] ; po ;[R] is excluded from the synchronisation order, 𝑎 and 𝑏, 𝑐 and 𝑑 are
not ob ordered.

MP TSO disallows the 𝑟1 = 1 ∧ 𝑟2 = 0 outcome of MP (Figure 2.2). Execution in
Figure 2.4b is forbidden because of the ob cycle: 𝑎 po 𝑏 rfe 𝑐 po 𝑑 fre 𝑎.

Other styles

The promising semantics [Kang et al., 2017; Lee et al., 2020; Pulte et al., 2019] is
proposed to prevent the out-of-thin-air problem of C11. It is a timestamp-based
operational model with a promising step that allows threads to promise to perform a
write in the future, and requires a certification that ensures the promises can indeed
be implemented.

Jeffrey et al. [2022] propose a denotational semantics that supports sequential
composition as an alternative proposal for fixing the out-of-thin-air problem.

33 2.3. Relaxed Memory Concurrency

𝑎:W 𝑥 1

𝑏:R 𝑦 0

𝑐:W 𝑦 1

𝑑 :R 𝑥 0

po po

fre

fre

(a) An allowed execution of SB. 𝑏 and 𝑐
are related by fre because 𝑏 reads from
the initial write of 𝑦, which is co-ordered
before 𝑐 . Likewise, 𝑑 and 𝑎 are related by
rfe.

𝑎:W data 42

𝑏:W flag 1

𝑐:R flag 1

𝑑 :R data 0

po po

rfe

fre

(b) The forbidden execution ofMP.𝑑 and𝑎
are related by fre because𝑑 reads from the
initial write of data, which is co-ordered
before 𝑎.

Figure 2.4: Illustration on the TSO axiomatic model with litmus tests

2.3.2 C/C++11 and Arm-A

In this subsection we provide a preliminary introduction to the C/C++11 and the
(user) Arm-A memory model, as they will be discussed in the publications of this
dissertations.

C/C++11 The C/C++11 memory model [Batty et al., 2011; Boehm and Adve, 2008]
(C11 hereafter) is a high-level language model that supports various low-level access
modes for different access strengths. It classifies memory accesses into non-atomic
accesses and atomic accesses.

Non-atomic accesses are not allowed to have races: any race on non-atomic
accesses results in undefined behaviour (UB) which gives no execution guar-
antees for the program.

Atomic accesses can be annotated with different access modes and are allowed
to have races. Examples of the modes include memory_order_release for
stores that creates ordering between the annotated store and all program-
order-before accesses; memory_order_acquire for loads that creates ordering
between the annotated load with all program-order-after accesses.

As a language-level model, C11 is sound with respect to the compiler optimisations,
but is excessively weak since it suffers from the out-of-thin-air problem: the model
allows certain undesirable execution outcomes that the language implementations
should not allow. This problem is inherited by other language-level models based on
C11, for instance Rust. There have been multiple proposals for fixing the problem
[Chakraborty and Vafeiadis, 2019; Jeffrey and Riely, 2016; Kang et al., 2017; Lee
et al., 2020; Paviotti et al., 2020; Pichon-Pharabod and Sewell, 2016], but none has
been accepted officially. Among these, Repaired C11 (RC11) [Lahav et al., 2017] is a
relatively well adapted fix-up in research. It eliminates the out-of-thin-air problem
by significantly strengthening C11, to rule out the read-write reordering of relaxed
accesses. For instance, the weak outcome of Load Buffering (LB) in Figure 2.5 is
forbidden by RC11, which is allowed by very relaxed hardware models like Arm-A.

Chapter 2. Background 34

𝑎: 𝑟1 := ldr [x] 𝑐: 𝑟2 := ldr [y]
if (𝑟1 = 1) : if (𝑟2 = 1) :

𝑏: str [y] 1 𝑑 : str [x] 1

𝑎:R x 1

𝑏:R y 1

𝑐:W y 1

𝑑 :W x 1

po po

rf

rf

Figure 2.5: LB in RC11: 𝑟1 = 1 ∧ 𝑟2 = 1 forbidden. This execution has a forbidden
cycle of po ∪ rf.

Arm-A Arm-A [ArmLtd., 2023] is Arm’s application profile architecture, which has
a very relaxed memory model that is much weaker than x86-TSO: Arm-A instructions
are executed out-of-order by default unless violating coherence or explicit ordering.
User Armv8-A is a relatively well-studied memory model for the eighth version
of the Arm-A profile. It is a model that is slightly stronger but much simpler than
the models for previous versions, and focuses on only the user-land features: no
instruction-fetch or any system features. We just use Arm-A to refer to this model
from now on for convenience. Arm-A has a microarchitecture-flavoured operational
model and an axiomatic model [Alglave et al., 2021; Deacon, 2016; Pulte et al., 2018]
that are proven equivalent. We elaborate on the basic of the axiomatic formulation
since it is used to develop this dissertation.

Similar to TSO, Arm has a standard SC-per-location requirement and an external
visibility requirement that requires acyclicity of its synchronisation order ob. The
definition of ob however diverges. We do not present the full ob definition here since
it will be discussed later in the publication part. Instead, we highlight following
elements of the model that can form ob:

Dependencies Being an architecture memory model, Arm-A has syntactic de-
pendencies which can enforce synchronisation:

• addr is address dependency: (𝑒, 𝑒′) ∈ addr if there is a data flow from
the value of 𝑒 to 𝑒′’s address.

• data is data dependency: (𝑒, 𝑒′) ∈ data if there is a data flow from the
value of 𝑒 to the value of write 𝑒′.

• ctrl is control dependency: (𝑒, 𝑒′) ∈ ctrl if the execution of 𝑒′ depends on
the value of 𝑒 .

Barriers Arm-A has a family of data memory barriers dmb that enforce syn-
chronisation:

• dmb st is a barrier that orders stores: two same-thread events are ordered
by ob if there is a dmb st in between.

• dmb ld is a barrier that orders loads and any event: a load and any event
are ordered if there is a dmb ld in between.

• dmb sy is a full barrier: two events are ordered if there is a dmb sy in
between.

35 2.3. Relaxed Memory Concurrency

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
dmb st 𝑑 : 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

𝑏: str [flag] 1
(a) 𝑟1 = 1 ∧ 𝑟2 = 0 forbidden.

𝑎:W data 42

𝑏:W flag 1

𝑐:R flag 1

𝑑 :R data 0

dmb st addr

rfe

fre

(b) The forbidden execution of MP+dmbst+addr. The four depicted edges form an ob cycle.
𝑎 and 𝑏 are two writes thus ob-ordered by dmb st. 𝑐 and 𝑑 are ob-ordered because of the
address dependency: The address of 𝑑 depends on the value of 𝑐 .

Figure 2.6: MP+dmbst+addr in Arm-A

Due to its highly concurrent nature, Arm-A allows the undesired 𝑟1 = 1 ∧ 𝑟2 =

0 outcome for the plain MP test of Figure 2.2. To forbid this outcome, one can
leverage dependencies and barriers, as shown in the MP variant of Figure 2.6a. A
key characteristic of the very relaxed aspect of Arm-A is that it permits read-write
re-ordering, allowing the LB outcome of Figure 2.5.

Verification

Given its semantic foundation, formal verification for relaxed memory concurrency
has been an active research topic. Two mainstream approaches exist: deduction-
based verification using program logics, and enumeration-based verification using
model checking. We briefly discuss related work in these approaches below.

Model checking For model checking [Clarke, 1997] against relaxed memory mod-
els, one key challenge is how to enumerate all executions (or interleavings) efficiently,
with minimal memory footprints and time overhead. The combination of concur-
rency and out-of-order execution results in a vast state space, often exponential in
the size of the program.

Stateless model checking (SMC) [Godefroid et al., 1996] is a model checking tech-
nique that does not need to store visited states. SMC has been applied to implement
fast checking of numerous memory models, including SC, fragments of C11, RC11,
TSO, POWER, Arm-A [Abdulla et al., 2015, 2019, 2016, 2018; Kokologiannakis et al.,
2018, 2022]. To mitigate state-space explosion, SMC often employs partial-order
reduction (POR) and its refined version, Dynamic POR (DPOR) [Flanagan and Gode-
froid, 2005]. These algorithms define an equivalence on executions and ensure that
at least one representative execution in each equivalence class is checked while guar-
anteeing full exploration of possible behaviours. Further refinements to DPOR have

Chapter 2. Background 36

been proposed to enhance both it efficiency and capability. An optimal revision of
DPOR [Abdulla et al., 2018], applied to the release-acquire fragment of C11, explores
exactly one execution per equivalence class. TruSt model checker [Kokologiannakis
et al., 2022, 2023] implements advanced DPOR algorithms for RC11 and achieves
provable optimality in both time and space (polynomial memory consumption).
GenMC [Kokologiannakis et al., 2019; Kokologiannakis and Vafeiadis, 2020, 2021;
Marmanis et al., 2025] is a model checker featuring multiple DPOR enhancements,
and is parameterised over various memory models that satisfy certain conditions.
Other SMC-based model checkers include CDSChecker [Norris and Demsky, 2013]
(for C11) and Nidhugg [Abdulla et al., 2015, 2019, 2018].

Additionally, Dartagnan [de León et al., 2020] is an SMT-based relaxed memory
model checker employing bounded model checking (BMC). It translates verification
problems into satisfiability problems and delegates them to SMT solvers.

Program logic We highlight key developments in separation logic and refer
readers to the publications for extensive discussions. Most separation logics for
relaxed memory concurrency target high-level language memory models.

Starting fromRSL [Vafeiadis andNarayan, 2013], there is a long line ofwork [Dang
et al., 2020; Doko and Vafeiadis, 2016, 2017; He et al., 2016; Kaiser et al., 2017; Turon
et al., 2014] on building separation logic for the C11 memory model. Overall, these
logics trade off the expressive power of the logic and the coverage of the memory
model. RSL [Vafeiadis and Narayan, 2013] supports a substantial subset of C11 but
limits or forbids resource transfer for specific accesses. FSL [Doko and Vafeiadis,
2016] extends RSL to support memory fences and allow constrained resource transfer
via relaxed accesses, but lacks ghost resources. FSL++ [Doko and Vafeiadis, 2017]
incorporates ghost resources to FSL, but is sound only for the strengthened RC11
model. GPS [Turon et al., 2014] is based on a (stronger) subset of C11 and supports
ghost resources. All the aforementioned logics rely on axiomatic memory models,
with soundness proofs derived from intricate semantic models built from scratch.
iGPS [Kaiser et al., 2017] ports GPS to Iris by instantiating Iris with an operational
reformulation of the memory model of GPS, which demonstrates the benefits of
building logics using Iris. iRC11 [Dang et al., 2020] extends iGPS by integrating the
ideas of FSL++ and builds upon an operational reformulation of RC11.

Cosmo [Mével et al., 2020] is an Iris-based logic targeting the memory model of
multicore OCaml, which is stronger than that of C11.

2.4 Further Related Work

In this section, we discuss efforts on using separation logic for modular verification
of low-level and/or realistic systems. We in particular focus on those that are not
discussed in the papers of Part II.

37 2.4. Further Related Work

2.4.1 Realistic Modelling

This subsection discusses related work on using separation logic to reason about
programs with more realistic models. These works model realistic hardware and/or
language behaviours beyond those of idealised language semantics.

Crash-safety and file systems

Perennial [Chajed et al., 2019] is an Iris-based framework for reasoning about con-
current and crash-safe programs. Concurrent programs may experience crashes at
any time during execution and rely on a recovery program to maintain system con-
sistency. The paper models crashes in concurrent settings and focuses on verifying
file storage systems implemented in the Go language. They implement the Goose
translator to translate a subset of Go to Coq/Rocq definitions, on which they employ
Perennial for verification. Perennial extends the Iris framework with new techniques
for reasoning about concurrent crash-safety in a thread-modular way. Perennials
marks resources and Hoare triples with versions to indicate crash occurrences, which
enables reasoning about concurrent programs and their recovery programs separ-
ately. Perennial is evaluated against a small crash-safe mail server. The evaluation
shows that the verified server has better performance than a previously verified
variation, and requires less verification effort.

GoJournal [Chajed et al., 2021] is a concurrent and crash-safe journaling system
verified using Perennial 2.0. Perennial 2.0 includes substantial improvements over the
initial version in being able to specify and reason about GoJournal in a modular way.
This is to capture the crash atomicity essence of GoJournal’s top-level operations:
the clients of GoJournal should use these operations as if they were atomic, and
without thinking about crashes.

Non-volatile memory

Spirea [Vindum and Birkedal, 2023] is an Iris-based separation logic for non-volatile
memory. Non-volatile memory combines the advantages of volatile memory and
durable storage: it offers fast random access and keeps its data resilient to machine
crashes. Memory models for non-volatile memory are both weak and persistent. In
weak and persistent memory, crashes are non-deterministic: the program state after a
crash is not deterministically determined by the program state right before the crash.
This work presents the first CSL that accounts for this, taking inspirations from prior
separation logics for weak or persistent memory. Specifically, this work generalises
the Perennial logic for persistency and integrates ideas from the line of work on
relaxed memory logics for weak concurrency. The logic benefits significantly from
Iris’s advanced separation logic features, which are crucial for modular verification
— something absent in previous non-separation logics for persistent memory [Bila
et al., 2022; Raad et al., 2020]. Using its novel crash-aware invariants and a collection
of modalities, Spirea provides high-level reasoning rules and supports thread-local
reasoning and sound resource transfer for weak persistency. It is evaluated by

Chapter 2. Background 38

verifying various examples against high-level abstract specifications. In particular, it
is demonstrated by verifying concurrent durable data structures with null-recovery:
concurrent data structures whose data consistency is resilient to non-deterministic
crashes without needing any recovery.

2.4.2 Realistic Languages

In addition to reasoning about idealised toy languages with realistic modelling,
separation logic has been applied to reason about substantial portions of semantics
of realistic programming languages. This subsection focuses on these work.

WebAssembly

Iris-Wasm [Rao et al., 2023] is a program logic for the WebAssembly (Wasm) 1.0
language specification. Wasm is a low-level stack language with an expressive
module system. One key property of the language is that it provides coarse-grained
encapsulation to modules: the memory of modules cannot be accessed by other
modules unless the module exports its whole memory explicitly. To compose them,
Wasm modules need to be instantiated by the host. Based on Iris, the program logic
achieves compositional higher-order reasoning for Wasm modules: it can verify
modules individually, and compose them when the host instantiates the modules.
Another contribution of Iris-Wasm is that it captures module encapsulation with
a notion of robust safety, which allows a verified module to be combined with
arbitrary unknown modules. This is achieved by defining a logical relation on top
of the program logic. This work makes an impressive contribution of applying
Iris to a full industrial language semantics. Iris-MSWasm [Legoupil et al., 2024]
extends Iris-Wasm, for the MSWasm proposal that extends Wasm with finer-grained
encapsulation.

C

The Verified Software Toolchain (VST) [Appel, 2012] contains a separation logic
targeting the C programming language. The logic is based on and proven sound
with respect to the semantics of CompCert C light, a formalisation of a large subset
of C99 used by the CompCert project. It supports an extensive collection of language
features, for instance function pointers, and recursive definitions, so that it can
be used to verify real-world C programs. Since the logic shares the C semantics
with CompCert, C programs verified in VST can be compiled to correct semantic-
preserving assembly code by the verified CompCert compiler.

VST 3.0 [Mansky and Du, 2024] port the VST logic to Iris, by instantiating Iris
with the CompCert C semantics, and recover the reasoning rules of VST in the
new Iris-based logic. By doing so, the new logic enjoys the benefits of both VST
and Iris: it obtains the same expressive power and soundness results of VST and
better abstractions and extensibility provided by the advanced logical features and

39 2.4. Further Related Work

soundness of Iris. This work includes substantial efforts on adapting Iris to solve
the mismatch between the default semantics shape required by Iris and the complex
CompCert C semantics, and implement the VST logical features and automation
missing in Iris. This work an impressive example showing how a modern higher-
order separation logic like Iris can scale to large language semantics.

Rust

RustBelt [Jung et al., 2018a] is a project on formalising and reasoning about Rust
programs. It formalises a core fragment of Rust and its type system, and uses Iris to
build a lifetime logic that captures borrowing, a key idea of the Rust type system. It
establishes semantic type soundness for the formalised type system using its lifetime
logic. Semantic typing can show safety of programs that are not syntactically well
typed. For Rust, semantic typing is used to show that the Rust libraries implemented
using unsafe features only expose a type safe interface to clients written in safe Rust,
such that safety for the composition can be obtained.

RustHornBelt [Matsushita et al., 2022] extends RustBelt for verifying functional
correctness.

2.4.3 Mechanisation of Separation Logic

There have been efforts to mechanise separation logic in proof assistants so that
soundness proofs, which often involve complicated semantic models, can be machine-
checked. Even better, some mechanisations also offer users the opportunity to
conduct interactive and foundational verification using the logic.

FCSL [Nanevski et al., 2014] is a concurrent separation logic mechanised in
Coq/Rocq [Sergey et al., 2015a]. The logic is embedded in Coq/Rocq as a DSL, and
is also proven sound with respect to its semantic model in Coq/Rocq. It is used to
verify several fine-grained concurrent modules.

Iris (including its semantic model and soundness) is mechanised in Coq/Rocq. Iris
Proof Mode (IPM) [Krebbers et al., 2017b] is the interactive proof framework for Iris
implemented as an extension to Coq/Rocq, which provides tactics for manipulating
Iris proof terms, offering a similar experience as doing proofs in plain Coq/Rocq.
IPM is one of the key factor contributing to the success of Iris. Most of the Iris-based
work thereafter are mechanised. MoSeL [Krebbers et al., 2018] generalises IPM to
make it applicable to both affine and linear separation logics.

The VST [Appel, 2012] logic is also mechanised, with distinct mechanisation
infrastructure and architecture from Iris. Its latest development, VST 3.0 [Mansky
and Du, 2024], however is based on Iris and instantiates IPM.

3

Results

This dissertation contains text and material from the following publications and
manuscripts based on the work conducted during my Ph.D:

[Liu et al., 2023b] Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod,
Amin Timany, Aslan Askarov, and Lars Birkedal. 2023b. VMSL: A Separa-
tion Logic for Mechanised Robust Safety of Virtual Machines Communic-
ating above FF-A. Proc. ACM Program. Lang. 7, PLDI (2023), 1438–1462.
doi:10.1145/3591279

[Hammond et al., 2024] Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter
Sewell, Lars Birkedal, and Jean Pichon-Pharabod. 2024. An Axiomatic Basis for
Computer Programming on the Relaxed Arm-A Architecture: The AxSL Logic.
Proc. ACM Program. Lang. 8, POPL (2024), 604–637. doi:10.1145/3632863

[Liu et al., 2024] Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell,
Lars Birkedal, and Jean Pichon-Pharabod. 2024. An Axiomatic Basis for Com-
puter Programming on Relaxed Hardware Architectures: The AxSL Logics.
(2024), In submission

[Liu et al., 2025] Zongyuan Liu, Lars Birkedal, and Jean Pichon-Pharabod. 2025.
First Steps Towards AxSL+. (2025)

The following article includes work conducted during my Ph.D but is not part of
this dissertation:

[Pérami et al., 2024] Thibaut Pérami, Zongyuan Liu, Nils Lauermann, Brian
Campbell, Alasdair Armstrong, Thomas Bauereiss, and Peter Sewell. 2024.
Reusable Rocq semantics of modern relaxed architectures. (2024), In submis-
sion

3.1 Coq/Rocq Mechanisations

A significant portion of the work presented in this dissertation is foundational. Given
the complexity arising from detailed modelling and intricate logical abstractions,

41

https://doi.org/10.1145/3591279
https://doi.org/10.1145/3632863

Chapter 3. Results 42

mechanisation is the preferred method for ensuring the correctness of the results.
The following repositories contain the respective Coq/Rocq mechanisations:

https://github.com/logsem/VMSL is the repository that contains the mech-
anisation of the results of [Liu et al., 2023b].

https://github.com/logsem/AxSL is the repository that contains the mech-
anisation of the results of [Hammond et al., 2024] and several major results of
[Liu et al., 2024].

https://github.com/rems-project/archsem is the repository that contains
the mechanisation of the results of [Pérami et al., 2024].

3.2 Personal Contributions

My contributions to each of the aforementioned works are as follows:
[Liu et al., 2023b] I am the lead author of this work. I led the research and
the development of the mechanisation. The mechanisation also includes
contributions from Sergei Stepanenko and Amin Timany. I wrote the majority
of the paper, with editorial input from Lars Birkedal and Jean Pichon-Pharabod,
and feedback from all co-authors.

[Hammond et al., 2024] I am the co-lead author of this work. I led the research
together with Angus Hammond, and mechanised the majority of the results of
the work in Coq/Rocq. I authored Section 4 to 6 (except for 5.5) with editing
help and feedback from the co-authors, and contributed to writing and editing
the remaining sections, led by Jean Pichon-Pharabod and Peter Sewell.

[Liu et al., 2024] I am the lead author of this work. This work is an extension
of [Hammond et al., 2024], including generalisation to the original work,
elaborated examples, and significantly refined presentation. I led both research
and writing, with editorial feedback from Lars Birkedal and Jean Pichon-
Pharabod.

[Pérami et al., 2024] I am an author of this work. I contributed to the early devel-
opment of its Coq/Rocq mechanisation, assisting in mechanising definitions,
refining tactics, and proving lemmas required for [Hammond et al., 2024]. I
also contributed to drafting the mechanisation of one example.

[Liu et al., 2025] I am the lead author of this work, for both research and writing.
The writing process received editing help from Jean Pichon-Pharabod.

3.3 Structure

The following list outlines the correspondence between the included papers and the
content of the individual chapters in Part II:

https://github.com/logsem/VMSL
https://github.com/logsem/AxSL
https://github.com/rems-project/archsem

43 3.3. Structure

Chapter 4 contains the content of [Liu et al., 2023b], with minor stylistic modific-
ations for consistent representation. This work formalises the FF-A hypercall
API for memory sharing between virtual machines in a virtualisation envir-
onment, and introduces VMSL, an Iris-based program logic to reason about
virtual machines invoking the hypercalls. VMSL supports VM-local reasoning,
akin to thread-local reasoning of CSL. On the top of the logic, the intended
isolation property of the hypercall API is captured as robust safety via a logical
relation. This result enables one to preserve the verification result of a VM
when it runs together with other unknown and potentially malicious VMs.

Chapter 5 contains the content of [Liu et al., 2024], with minor corrections and
modifications for consistent styling. This work includes instances of AxSL,
a generic Iris-based CSL framework that can be instantiated with different
memory models. Notably, one of its instances, AxSLArm is the first logic that
supports thread-local reasoning for the very relaxed Arm-A memory model.
AxSLArm supports reasoning about Arm’s acyclic ordered-before (ob) relation,
which is challenging as it suffers from a circularity issue. AxSL overcomes
this challenge through an innovative semantic model and a novel two-phase
adequacy proof, ensuring sound obreasoning. Furthermore, AxSL is built on
opax semantics, a novel operationalisation of axiomatic models that provides
a general approach for reasoning about axiomatic models in Iris. This work
significantly extends the original AxSL paper [Hammond et al., 2024]; hence,
this chapter also subsumes its content.

Chapter 6 contains the content of [Liu et al., 2025]. This work introduces AxSL+,
a generalisation of AxSL, that supports mixed-order reasoning of multiple
acyclic orders. Mixed-order reasoning is necessary for building high-level
abstractions that improve verification tractability. AxSL+ implements it with
a novel level-indexing semantic model, and an advanced adequacy proof.
To demonstrate the benefits of mixed-order reasoning, the work presents
AxSL+NA, a simple Arm-A instance of AxSL+ that supports a high-level abstract
assertion for non-racy locations, leveraging both ob and the coherence order
eco of Arm-A

Part II

Publications

45

4

VMSL: A Separation Logic for Mechanised
Robust Safety of Virtual Machines

Communicating above FF-A

Abstract

Thin hypervisors make it possible to isolate key security components
like keychains, fingerprint readers, and digital wallets from the easily-
compromised operating system. To work together, virtual machines
running on top of the hypervisor can make hypercalls to the hyper-
visor to share pages between each other in a controlled way. However,
the design of such hypercall ABIs remains a delicate balancing task
between conflicting needs for expressivity, performance, and security.
In particular, it raises the question of what makes the specification of
a hypervisor, and of its hypercall ABIs, good enough for the virtual
machines. In this paper, we validate the expressivity and security of the
design of the hypercall ABIs of Arm’s FF-A. We formalise a substantial
fragment of FF-A as a machine with a simplified ISA in which hypercalls
are steps of the machine. We then develop VMSL, a novel separation
logic, which we prove sound with respect to the machine execution
model, and use it to reason modularly about virtual machines which
communicate through the hypercall ABIs, demonstrating the hypercall
ABIs’ expressivity. Moreover, we use the logic to prove robust safety
of communicating virtual machines, that is, the guarantee that even if
some of the virtual machines are compromised and execute unknown
code, they cannot break the safety properties of other virtual machines
running known code. This demonstrates the intended security guar-
antees of the hypercall ABIs. All the results in the paper have been
formalised in Coq using the Iris framework.

47

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 48

4.1 Introduction

A verification effort can only ever be as good as the specification it relies on. This is
especially true for key security components like hypervisors, where a single error in
design can void all security guarantees. Specifications for real-world programs are
sizeable programs themselves, and thus commonly suffer from bugs themselves; and
while some are found during the verification effort [Nienhuis et al., 2020, §VI], this
is not always the case [Chidambaram, 2018]. Moreover, the verification effort does
not necessarily validate the expressivity of the specification either. To address this,
specifications themselves need to be validated and tested, in particular by exercising
them to verify client code. In the terminology of DeepSpec, we need to make sure
that specifications are ‘live’ [Appel et al., 2017], in that they are “connected via
machine-checkable proofs to [not just] the implementation [but also to] client code”.

In this paper, we formalise and validate a substantial fragment of the hypercall
(aka ‘hypervisor call’, HVC) ABIs of FF-A, the Arm Firmware Framework for Arm A-
profile [Arm Ltd., 2022], as implemented by Google’s Hafnium hypervisor [Hafnium
development team, 2022]. The hypercall ABIs allow virtual machines (VMs) running
atop of a hypervisor to communicate and share data, e.g., by sending messages or by
controlled sharing of memory pages, and to pass control to others. Our formalisation
simplifies the ABIs compared to the informal FF-A specifications, but still captures the
essence (see Section 4.2.1 for details). We then validate it by exercising it to verify key
scenarios of VMs using the ABIs for controlled sharing of memory in the presence
of adversarial, unknown code. Controlled sharing is essential for communication
between VMs in real use cases, but makes the security analysis of hypervisors much
more challenging.

Our running example is that of Figure 4.1, where the ‘primary’ VM (typically,
Linux) is privileged, and can ask the hypervisor to schedule other, ‘secondary’ VMs
(typically, the keychain, or DRMs). Here, we have two secondary VMs: one running
known code, VM1, and one adversarial, running unknown code, VM2; each VM has
its own pages, disjoint from those of the others. The primary VM, VM0, first asks
the hypervisor to share one of its pages with VM1; then asks the hypervisor to run
the adversarial VM2; and, when given back control, asks the hypervisor to run the
known VM1.

Dealing with the HVC ABIs and their underlying use of virtual memory adds
many components to the machine state: page tables, in-flight memory sharing
transactions between VMs, etc. Managing the size and details of such a machine
state poses a significant proof engineering challenge. For reasoning to be tractable,
we need to be able to reason about known VMs individually: we should only need to
consider the relevant parts of the machine state, and only need to take interference
into account at interaction points, not at every step of the program.

To this end, we develop VMSL, a novel higher-order separation logic that supports
formal modular reasoning about the execution of communicating VMs. VMSL
effectively reduces the problem of verifying VMs communicating via the hypercall
ABIs of FF-A to well-studied problems: cooperative multitasking, and functional

49 4.1. Introduction

correctness of assembly.
One key intuitive desired security guarantee is robust safety: no matter what

HVCs the adversarial VM2 may invoke, it will not be able to affect the private pages
of VM0 and VM1, nor the page shared between only VM0 and VM1. This requires
carefully designed ABIs, posing constraints to each HVC, making sure the desired
guarantee is not breakable in any case, which results in a sophisticated and lengthy
informal FF-A specification [Arm Ltd., 2022]. In this paper, we describe how to
capture robust safety formally, even in the presence of in-flight transactions between
VMs, and how to prove that the ABI specifications enforce robust safety.

We highlight the following features of our VMSL logic:
• VMSL is foundational [Appel, 2001]: we mechanise the definition of VMSL and
prove it sound in Coq using the Iris separation logic framework [Jung et al.,
2018b] and the Iris Proof Mode [Krebbers et al., 2017b]. Both the definition
of VMSL and the examples using VMSL extensively rely on the expressive
power of Iris to make reasoning about low-level code tractable, and we point
out where we utilise it throughout the paper.

• VMSL supports modular reasoning in the sense that each VM can be verified
individually. This is crucial for formal verification to work at scale.

• VMSL features two compatible logical resource sharing mechanisms to support
reasoning about communication between VMs: (1) standard separation logic
invariants, and (2) our resumption conditions, a logical sharing mechanism that
offers more convenience than standard invariants for communication between
VMs in the style of cooperative multitasking.

• VMSL is factored in two parts: a general part that handles issues that arise for
any low-level model with scheduling, and a specific part that deals with the
HVC ABIs of FF-A.

• VMSL is sufficiently expressive to support not only formal reasoning about
concrete known programs, but also the definition of so-called logical relations
which can be used to reason about robust safety. We use logical relations to
reason about scenarios like that of Figure 4.1, where some VMs run known
code and others run unknown possibly adversarial code.

Contributions
• We formalise a substantial fragment of the Arm’s FF-A ABIs, as implemented
by Hafnium, in the form of an operational semantics in which HVCs are
primitive steps (Section 4.2).

• We develop and prove soundness of VMSL, a novel separation logic for modular
reasoning about communicating VMs (Section 4.3).

• We show how we capture the desired security guarantees using logical rela-
tions, and how we apply them to reason about robust safety (Section 4.4).

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 50

VM2VM1VM0

share page w/ 1

run
arbitrary HVCs

yield

run
receive page

yield
halt

Figure 4.1: A motivating example where a compromised VM2 is contained: the page
sharing between VM0 and VM1 is guaranteed to succeed if the adversarial VM2
yields, no matter what other HVCs VM2 makes. The memory integrity of the page
is guaranteed.

All of our results are mechanised in Coq using Iris. The Coq formalisation and the
instructions of usage are available in the supplementary material [Liu et al., 2023a].

Non-goals We focus on exercising the HVC ABIs, and thus do not address other
key complementary aspects, which we discuss in Section 4.5. In particular:

1. We are not verifying a hypervisor, but rather making sure that the hypervisor
specification that we are providing is adequate.

2. We focus on the HVC ABIs, and our operational semantics is a minimalistic
instruction set: it has the right shape, but it is far from a full-scale ISA.

3. Our operational semantics does not include interrupts, and assumes that there
is no concurrency, as characterising the semantics of virtual memory in a
concurrent setting is work in progress [Simner et al., 2022].

Threat model We only consider integrity, not secrecy. Our attacker model is that
of adversary VMs running unknown code; we do not consider side-channels. To
reason about adversarial VMs running unknown code, we only assume knowledge
of initially accessible pages and transactions related to adversaries; both the content
of memory and registers of adversaries are unspecified. Adversaries therefore could
perform attacks by executing malicious code stored in their memory. For instance,
adversaries could invoke arbitrary HVCs to try to interfere with in-flight transactions
between trusted VMs, or read/write memory of other VMs. With this model, we
show that adversaries cannot break the integrity of memory under protection of
hardware and the hypervisor.

51 4.2. Formalising A Substantial Fragment of the HVC ABIs

4.2 Formalising A Substantial Fragment of the HVC ABIs

As we focus on the HVC ABIs, we use a simplified subset of the Arm-A instruction
set, with only one unusual feature: the hvc instruction. Figure 4.2 shows the running
example of Figure 4.1 more precisely in our language.

4.2.1 Scope

We specify the hardware behaviours of virtualisation, including page table lookup
and context switching, plus the following HVCs of FF-A:

1. for memory sharing: Donate, Lend, Share, Retrieve, Relinquish, and Reclaim;

2. for scheduling: Run, Yield, andWait; and

3. for messaging: (asynchronous) Send and Poll.
This covers most of FF-A, apart of the ‘secure world’ trusted computing functionality
involving TrustZone. We omit the synchronous variant of Send, which requires extra
machinery without increasing expressivity, and the new messaging HVC, notify,
that was introduced after this work started.

Simplification We make two main simplifications in our model of FF-A:
1. We only formalise the ownership and access fields of the page table entries,

and only consider read-write permissions.

2. We only model 1-to-1 sharing (as implemented by Hafnium) instead of 1-to-𝑛,
and accordingly simplify the format of transaction descriptors.

These, along with other minor simplifications, help keep the size of our model
manageable, but do not significantly omit specification details or impact expressivity.
For instance, we believe the model can be adapted to support 1-to-𝑛 sharing.

Conformance As with any formal modelling activity, there is an unavoidable gap
between the informal FF-A specification and our formal specification. We have tried
to follow the intent of the informal specification when designing our formal model,
and cross-referenced it with the Hafnium implementation of the informal spec to
gain more confidence in our formal model. Future work includes showing that some
of the Hafnium HVC implementations refine our formal model.

4.2.2 Formalising HVCs

Informally, a hypervisor provides the illusion to VMs that they are running on a
machine in which the whole HVC is just a step of the machine; the hypervisor itself
is invisible. Accordingly, in our model, an HVC is a primitive step of the operational
semantics. The reduction rule for a Share in Figure 4.3 is a representative example,
and we explain it below.

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 52

1 /* VM0 */
2 /* save x to p */
3 mov R5 <- #p
4 str R0 [R5]
5 /* prepare desc */
6 mov R5 <- #ptx
7 mov R4 <- 0
8 str R4 [R5]
9 ...

10 /* share p */
11 mov R0 <- #Share

12 mov R1 <- 4
13 hvc
14 /* send handle */
15 mov R5 #ptx
16 str R2 [R5]
17 mov R3 <- R2
18 mov R0 <- #Send
19 mov R1 <- 1
20 mov R2 <- 1
21 hvc
22 /* run VM2 */

23 mov R0 <- #Run
24 mov R1 <- 2
25 hvc
26 /* run VM1 */
27 mov R0 <- #Run
28 mov R1 <- 1
29 hvc
30 /* read x */
31 mov R1 <- #p
32 ldr R0 [R1]
33 halt

1 /* VM1 */
2 /* fetch handle */
3 mov R5 <- #rx
4 ldr R4 [R5]
5 mov R0 <- #MsgPoll
6 hvc
7 /* retrieve p */
8 mov R1 <- R4
9 mov R0 <- #Retrieve

10 hvc
11 /* x = x+2 */

12 mov R5 <- #p
13 ldr R3 [R5]
14 add R3 2
15 str R5 [R3]
16 /* yield */
17 mov R0 <- #Yield
18 hvc

Figure 4.2: Code of the two known VMs in Figure 4.1. Additional notation is added to
improve readablity. Symbols with prefix # are constant values: 𝑥 is the data stored in
R0 that VM0 will share with VM1; 𝑝 is the page that VM0 will share (represented with
the base address of the page); ptx is the base addresses of the write-only messaging
buffer (TX) of VM0, and prx is the read-only buffer (RX) of VM1. We assume that
the two programs live at the start of two separate pages, pp0 and pp1.

Memory Access

On a concrete machine, an hvc causes a jump to a higher exception level and the
execution of hypervisor code. The hypervisor code operates on its private data in
physical memory; in our model, the private state of the hypervisor is represented
abstractly, separate from the physical memory that the VMs operate on, which we
model as a partial function from memory addresses to machine words (both are
represented by our type of machine words,Word).

In particular, on a concrete machine, the page tables are in-memory data struc-
tures that are edited by the hypervisor and looked up by the hardware; in our model,
the page tables are merged into one partial (mathematical) function that is updated
by memory-sharing HVCs. The partial function maps a page identifier (page base
address, which is sufficient, given that we assume identity address mappings) to a
page status, which is composed of an optional page owner, the set of VMIDs of the
VMs that have access to the page, and a bit indicating whether it is exclusively owned
(can only be accessed) by one VM. For instance, the status of page 𝑝 in the example
of Figure 4.2 is initially (Some(0), {0}, True), since VM0 has exclusive ownership on
the page; and it is updated to (Some(0), {0, 1}, False) after the page is shared with
VM1.

When a VM with VMID 𝑖 tries to perform a memory access at an address 𝑎, e.g.
str at line 4 storing the value in R5 to address 𝑝 , the page status of the page 𝑝 is

53 4.2. Formalising A Substantial Fragment of the HVC ABIs

𝜎.curr = 𝑖

valid_instr (𝜎, 𝑖) = Some(hvc, 𝑎) valid_share(𝜎, 𝑖) = Some(𝑖𝑟 , 𝑠, ℎ)

𝜎 ′ =



mem = 𝜎.mem; curr = 𝜎.curr; mb = 𝜎.mb;

pgt = 𝜎.pgt

[
𝑝 ↦→ (Some(𝑖), {𝑖}, False)
| (𝑝 ∈ 𝑠)

]
;

regs = 𝜎.regs[𝑖]

pc ↦→ 𝑎 + 1;
R0 ↦→ encode(Succ);
R2 ↦→ ℎ

 ;
trans = 𝜎.trans

[ℎ ↦→ Some((𝑖, 𝑖𝑟 , 𝑠, Share), False)];


(Normal, 𝜎) → (Normal, 𝜎 ′)

Figure 4.3: Reduction rule for Share

looked up in the page table, and checked to determine whether the VM is allowed to
access 𝑝 (which it can in this case, since 0 is an element of the ‘accessible’ set {0}).
If the access is not allowed by the page table, a page fault is raised. In our setup,
this terminates the execution (of all VMs, because there is no concurrency) with the
execution mode PageFault, and therefore a page fault is safe.

Configuration

A configuration is a pair of a state together with an execution mode. A state of our
operational semantics is composed of the aforementioned components for modelling
memory access, plus those for HVCs:

State def
=


mem : Word ⇀ Word; pgt : PageID ⇀ PageStatus;
regs : VMID → RegisterFile; curr : VMID;
trans : Transactions; mb : VMID → Mailbox;


We have three execution modes: Normal, PageFault, and Halted.

The machine can only take a further step to execute the next instruction if it is
in Normal mode. Halted is the mode reached by ‘normal’ termination via the halt
instruction, and, as stated above, PageFault is used for page faults.

Transactions

On a concrete machine, to support memory sharing transactions between VMs,
the hypervisor needs to maintain some metadata in its private memory; in our
model, we keep a partial mapping from transaction handles (machine words) to
abstract transactions, which are composed of the sender, the receiver, the set of
pages being sent, the type of the transaction, and the state of it (a bit indicating
whether the receiver has retrieved the access to the pages). For instance, the hvc at

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 54

(Some(𝑖), {𝑖}, True)

(Some(𝑖), ∅, True)

(Some(𝑗), { 𝑗}, True)

(Some(𝑖), {𝑖, 𝑗}, False) (Some(𝑖), { 𝑗}, True)

(Some(𝑖), {𝑖}, False)
Donate/Lend

Share

Retrieve
Retrieve

Retrieve
Relinquish

Relinquish

Reclaim

Reclaim

Figure 4.4: The state transition system of the status of a page during a transaction.
HVCs with dashed arrows are allowed for the sender 𝑖 , and others are allowed for
the receiver 𝑗 .

line 13 of VM0 invokes a sharing transaction of page 𝑝 to VM1, which is represen-
ted as Some((0, 1, {𝑝}, Share), False) (see the last line of antecedents in the rule in
Figure 4.3).

A VM is allowed to send pages to other VMs via transactions. To do so, the
sending VM first has to prepare a transaction descriptor specifying the receiver and
the page IDs of the pages in its TX page (lines 5–9 in the example). Next, the sending
VM invokes a memory sending HVC, asking the hypervisor to create a transaction
of the type given by the descriptor. The type of transaction (donation, sharing, or
lending) determines the effect of the HVC on the status of the pages being sent, as
per Figure 4.4. The sharing of page 𝑝 in the example corresponds to edges 2 and
5 . In all cases, the hypervisor checks that the pages are owned and exclusively
accessible by the sender before creating the transaction (e.g. done by valid_share in
Figure 4.3). If the checking fails, the hypervisor returns an error code to the VM and
resumes its execution. If it succeeds, the hypervisor then returns a fresh handle ℎ
(initially mapped to None, meaning that it is not bound to any transaction) referring
to the newly created transaction to the sender, and remembers the transaction in its
metadata (trans).

VMs can invoke other HVCs with the same handle to refer to the transaction.
For instance, with the hvc at line 10, VM1 Retrieves access to the page, flipping the
retrieved bit to True. In case of donation, this HVC also transfers ownership of the
pages to the receiver and finishes the transaction (and frees the handle). In case
of sharing or lending, the receiver could Relinquish access to the pages afterwards,
flipping the bit back. The sender can Reclaim exclusive access to the pages if the
access has not been retrieved, or has been relinquished by the receiver (in either
case, the retrieved bit is False), which is the second way of ending the transaction.

55 4.2. Formalising A Substantial Fragment of the HVC ABIs

Scheduling

On a concrete machine, to support switching between VMs, the hypervisor needs to
save registers by spilling them in its private memory, and restore them upon context
switching; in our model, we keep a total mapping (regs) from VMIDs to register files,
where a register file is itself a map from register names to words, and a VMID (curr)
to remember which VM is currently running.

By duplicating RegisterFile and picking the right one to update according to curr
when registers are modified, we avoid modelling register saving and restoring at
context switching. For instance, mov at line 3 of VM0 only updates R5 of VM0 since
curr is 0. As a consequence, the switching HVCs only need to change curr .

FF-A allows putting the responsibility of scheduling VMs either on the hypervisor,
or delegates it to VM0, the ‘primary’ VM. Typically, thin hypervisors like Hafnium
choose the latter, for instance letting the thread scheduler of Linux make scheduling
decisions. We model the latter use case.

Therefore, it grants the primary VM the privilege to Run other so-called second-
ary VMs. Secondary VMs are only allowed to return control back to the primary;
either explicitly with Yield, or as the consequence of an HVC, for example to wait
for a message withWait.

Messaging

To support messaging between VMs, on a concrete machine, the hypervisor needs
to maintain two dedicated memory pages, named TX and RX, as the message buffers
for each VM, and remembering the state of all RX buffers (e.g. whether the buffer
is full); in our model, we keep a total mapping (mb) from VMID to Mailbox, which
consists of two buffers.

The TX and RX buffers are respectively write-only and read-only, and are used
for sending and receiving messages between two VMs, or a VM and the hypervisor.
Line 21 of VM0 Sends the handle referring to the sharing transaction to VM1. The
hypervisor copies the handle from the TX page of VM0, pastes it to the RX page of
VM1, and remembers the length and the sender in its private state as Some(1, 0). In
the case where the sender is a secondary VM, the control is yielded to the primary
immediately, notifying it that a message has just been sent to the receiver, so that
the primary can schedule the receiver to run next to actually receive the message.
The receiver, like VM1, can ask for the length and the sender of the message with
Poll (line 6 of VM1), which also notifies the hypervisor that it is ready to take the
next message (updates the RX buffer to None).

Calling Convention

The calling convention that we have used in the example above works in general
as follows: to invoke a specific HVC, a VM executes the hvc instruction with the
identifier of the HVC in R0, and other arguments saved in successive general-purpose
registers (for example, the identifier of the VM to Run in R1), or in the TX buffer

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 56

(for “large” arguments like transaction descriptors), as appropriate. Return values,
including whether the HVC is successful and possible error codes, are passed back
to the VM via return registers, like in Figure 4.3, or RX buffers (depending on the
HVC).

4.3 Reasoning about Communicating VMs

To validate our model of the FF-A HVC ABIs, we develop VMSL, a program logic
designed to reason about key scenarios of VMs communicating using the FF-A ABIs.
We start this section by discussing two of the key challenges involved in developing
a program logic for communicating VMs.

The programs running on VMs are imperative and operate on mutable shared
data and so we base VMSL on separation logic [Reynolds, 2002]. In particular, this
will allow us to support local reasoning via the frame rule of separation logic, as we
show below.

The first challenge is that we wish to reason about a low-level language model
where instructions are stored in the memory, which complicates the formulation
of a sequential composition proof rule, which usually makes it possible to reason
about instructions one at a time. This is a common problem, and we neatly capture a
‘folklore’ solution in a small Iris library in the form of single-step weakest preconditions.
We discuss how our approach relates to previouswork on program logics for assembly
in Section 4.5.

The second key challenge is that we wish to support ‘VM-local’ reasoning: it
should be possible to verify each VM individually. This is analogous to ‘thread-local’
reasoning in concurrent separation logic, and is crucial for formal verification to
work at scale. We could treat each VM in a manner similar to how a thread is
treated in concurrent separation logic, and then use concurrent separation logic
style invariants to reason about sharing of data among different VMs. However, such
invariants were designed for concurrency, and pose an undue burden in our setting
where VMs are executed sequentially but not concurrently. Therefore, we introduce
resumption conditions, an alternative mechanism to share resources among VMs,
which allows a VM to use shared resources freely during its execution until control
is transferred to another VM.

We explain our solutions to the two challenges on our example in Section 4.3.2;
motivate and describe them in more detail in Section 4.3.3. With the solutions
implemented in VMSL using Iris, we prove soundness of the logic with respect to the
operational semantics of the machine model. All of VMSL’s proof rules are sound
with respect to our definition of weakest preconditions, and we have proven an
adequacy theorem which intuitively says that if a weakest precondition holds in the
VMSL, then it really means that it is safe to execute the program on the machine.
We refer the reader to our Coq formalisation for a precise formal statement of the
soundness and adequacy theorems and the proofs thereof.

57 4.3. Reasoning about Communicating VMs

SS-mov
1 pc@𝑖

reg
↦−→ 𝑎 ∗ 2𝑎 ∈𝑝 𝑠 ∗ 3Pgt@𝑖 acc↦−→ 𝑠 ∗ 4𝑎

mem↦−→ encode(mov 𝑟 𝑛) ∗ 5 𝑟@𝑖
reg
↦−→ −

sswp Normal@ 𝑖


(False, Normal) .(

pc@𝑖
reg
↦−→ 𝑎 + 1 ∗ 𝑎 mem↦−→ encode(mov 𝑟 𝑛)∗

Pgt@𝑖 acc↦−→ 𝑠 ∗ 𝑟@𝑖
reg
↦−→ 𝑛

)
Figure 4.5: The proof rule for an immediate-to-registermov instruction. The updated
resources are highlighted in yellow as in later rules. For simplicity, we omit the
encode function that maps non-words including instructions and HVC identifiers
to Words in later rules. Also, we use IsInstr@𝑖 (𝑠, 𝑎,mov 𝑟 𝑛) to represent that the
mov instruction is stored at address 𝑎 which belongs to the page that is one of VM𝑖’s
accessible pages 𝑠 .

4.3.1 VMSL

In this section we introduce VMSL by explaining how it is used to specify and reason
about VMs executing known code. We use a simplified variant of Figure 4.2 without
invoking the unknown VM2 (that is, with lines 22–25 of VM0 removed) as a running
example.

Informal Specification

In this example, the primary VM writes the content 𝑥 of register R0 to the first
location of page 𝑝 , shares the page with VM1, then schedules VM1. VM1 retrieves
access to the page 𝑝 , increments the first location of 𝑝 by two, then yields. The
primary VM then reads from 𝑝 into R0, and halts. We want to show that it reads
𝑥 + 2.

Points-to Assertions

To state this formally, we introduce the classic register ‘points-to’ assertion, 𝑟@𝑖
reg
↦−→

𝑣 , which captures the fact that register 𝑟 contains the value 𝑣 ; because our registers
are banked, we specify which VM the register belongs to via its VMID, 𝑖 . As usual
in separation logic, our assertion also captures ownership of register 𝑟 of VMID 𝑖 ,
so that this assertion is exclusive. In Table 4.1, we present a collection of similar
points-to predicates of VMSL, together with their intuitive meanings. We introduce
most of them gradually along with our explanation of how we use VMSL to reason
about the example.

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 58

Table 4.1: Selected collection of resources of VMSL

Predicate Intuition

𝑟@𝑖
reg
↦−→ 𝑤 register 𝑟 of VM𝑖 contains word𝑤

𝑎
mem↦−→ 𝑤 value𝑤 is at location 𝑎

Pgt@𝑖 acc↦−→ 𝑠 VM𝑖 has access to pages 𝑠
Pgt@𝑝 own↦−→ 𝑖 VM𝑖 owns page 𝑝
Pgt@𝑝 excl↦−→ 𝑖 VM𝑖’s access to page 𝑝 is exclusive
Tran@ℎ tran↦−→ 𝑡 transaction 𝑡 is bound to handle ℎ
Tran@ℎ rtrv↦−→ 𝑏 status of transaction bound to ℎ is 𝑏
Mb@𝑖 rx↦−→ 𝑝 VM𝑖’s RX page is 𝑝
Mb@𝑖 tx↦−→ 𝑝 VM𝑖’s TX page is 𝑝
MemPage(𝑝,𝑤𝑠) content of page 𝑝 is𝑤𝑠
FreshHandles(ℎ𝑠) handles ℎ𝑠 are fresh

Formal Specification

Returning to the example, starting from a state where R0@0
reg
↦−→ 𝑥 , with other

resources and some side conditions we introduce below, we want to show that,
when the machine terminates, VM0 reaches a Halted state (indicating success), and
moreover we have R0@0

reg
↦−→ 𝑥 + 2. We phrase this in VMSL by using a weakest

precondition predicate wp𝑚 @ 𝑖 {𝑄} which expresses the partial correctness of the
VM𝑖 , i.e., we execute the VMwithmode𝑚 and, if it terminates, then the postcondition
𝑄 holds:

R0@0
reg
↦−→ 𝑥 ∗ . . . (other resources)

⊢ wp Normal@ 0
{
m.m = Halted ∗ R0@0

reg
↦−→ 𝑥 + 2

}
4.3.2 Proving the Specification

First Instruction

To safely execute the first instruction of VM0, mov R5 #𝑝 (where 𝑝 is an immediate),
we need, as captured in our SS-mov proof rule for an immediate-to-register mov, to
know/show:

1 The value 𝑎 of the program counter, which indicates the location of the current
instruction in the memory, as captured by the points-to for registers pc@𝑖

reg
↦−→

𝑎 (here, pc@0
reg
↦−→ pp0).

2 Knowledge that the page at address 𝑎 (here, pp0) is in the accessible set 𝑠 of
PageIDs...

59 4.3. Reasoning about Communicating VMs

SS-share
1ValidDesc(memtx, 𝑖, 𝑗, ps) ∧ 2 ps ⊆ 𝑠 ∧ 3 hs ≠ ∅ ∧ IsHVC@𝑖 (𝑠, 𝑎, Share)∗

R1@𝑖
reg
↦−→ 𝑙 ∗ R2@𝑖

reg
↦−→ − ∗ 4Mb@𝑖 tx↦−→ ptx ∗ 5MemPage(ptx,memtx)∗

6∗
𝑝∈ps

(Pgt@𝑝 own↦−→ 𝑖 ∗ Pgt@𝑝 excl↦−→ True) ∗ 7 FreshHandles(hs)

sswp Normal@ 𝑖



(False, Normal) .

©­­­­­­­­­­­­­­­­«

pc@𝑖
reg
↦−→ 𝑎 + 1 ∗ 𝑎 mem↦−→ hvc ∗ Pgt@𝑖 acc↦−→ 𝑠∗

R0@𝑖
reg
↦−→ Succ ∗ R1@𝑖

reg
↦−→ 𝑙∗

Mb@𝑖 tx↦−→ ptx ∗MemPage(ptx,memtx)∗

∗
𝑝∈ps

Pgt@𝑝 own↦−→ 𝑖 ∗ Pgt@𝑝 excl↦−→ False∗

∃ℎ. ℎ ∈ hs ∧ R2@𝑖
reg
↦−→ ℎ ∗ FreshHandles(hs \ {ℎ})∗

Tran@ℎ tran↦−→ (𝑖, 𝑗, ps, Share) ∗ Tran@ℎ rtrv↦−→ False

ª®®®®®®®®®®®®®®®®¬


SS-run
1 𝑖 ≠ 0 ∧ IsHVC@0(𝑠, 𝑎,Run) ∗ R1@0

reg
↦−→ 𝑖 ∗ 2RC1/2@𝑖 {Ψ𝑖} ∗ 3RC1@0 {−} ∗

4

((
pc@0

reg
↦−→ 𝑎 + 1 ∗ 𝑎 mem↦−→ hvc ∗ Pgt@0 acc↦−→ 𝑠∗

R0@0
reg
↦−→ Run ∗ R1@0

reg
↦−→ 𝑖 ∗ Φothr ∗ RC1@0 {Ψ0}

)
−∗ Ψ𝑖 ∗ Φrest

)
∗ 5Φothr

sswp Normal @ 0
{
(True, Normal) . RC1/2@0 {Ψ0} ∗ Φrest

}
WP-SSWP

wp m@ 𝑖 {Φ} ⊣⊢ sswp m @ 𝑖

{
(𝑏, m′) . ((𝑏 ∧ RCHolds@𝑖) ∨ (¬𝑏)) −∗

wp m′ @ 𝑖 {Φ}

}
RC-hold
RCHolds@𝑖 ∗ RC1/2@𝑖 {Ψ} ⊢ ⊲Ψ ∗ RC1@𝑖 {Ψ}

Figure 4.6: Selected rules of VMSL

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 60

3 ...that are mapped for the current VM, as captured by ownership of the page
tables points-to assertion, Pgt@𝑖 acc↦−→ 𝑠 (here, Pgt@0 acc↦−→ 𝑠).

4 Ownership of the memory points-to resource for that memory location, 𝑎 mem↦−→
𝑤 (here, pp0

mem↦−→ 𝑤), which contains a word 𝑤 that is the encoding of an
immediate-to-register mov instruction (here, mov R0 #𝑝).

5 Ownership of the register points-to resource for the affected register (here,
R5@0

reg
↦−→ −); we do not need to know what it contains (as signified by the

use of −), but we must have the right to update it.
After themov instruction, the VM does not lose control (so the switching bit is False),
and the execution mode is still Normal. We get the updated resources back in our
context; in particular, the program counter has been incremented, pc@0

reg
↦−→ 𝑝𝑝0 + 1,

and the register now contains the immediate, R5@0
reg
↦−→ 𝑝; the page tables and the

instruction have not been affected, so we get their assertions back unchanged.
The proof rule requires exactly the resources needed to safely execute the in-

struction; other resources are implicitly kept unchanged via framing, which is a key
feature of separation logic that saves us from maintaining global resources all the
time, and helps keep the proof effort manageable.

The SS-mov rule, and all other single-instruction proof rules, use SSWP , our
single-step variant of weakest preconditions. A single-step weakest precondition
captures an intuitive idea (see Section 4.5): it is like a weakest precondition that
only specifies the behaviour of a single step (an instruction). Applying a single-step
weakest precondition takes resources specified in the premise, and returns resources
stated in the postcondition, with the resulting execution mode and a bit indicating
whether the instruction would cause the VM to lose control of the machine (the
hypervisor switching to another VM to execute). Single-step weakest preconditions
allow us to reason about one instruction at a time. We show how to formally apply
it to weakest precondition in Section 4.3.3.

Sharing

The following instructions prepare the descriptor and arguments for the Share HVC
at line 13. They only involve register manipulations, which can be reasoned about in
a similar way to the first instruction, and memory accesses. To reason about memory
access instructions, including ldr and str, we need memory points-to predicates, with
side conditions checking whether the VM has the permission to access the address,
similar to 2 of SS-mov.

Before reasoning about this specific Share, let us first consider the expected
behaviour of a general Share HVC, specified by the SS-share rule. To share pages
represented by a set of PageIDs ps, VM𝑖 invokes a Share HVC with a descriptor in
its TX page describing information about the transaction. Therefore, the proof rule
requires 4 the TX page ptx; 5 ownership of the page with content memtx, which is
expressed as memory points-tos for all locations of the page, connected by ∗; and 1

61 4.3. Reasoning about Communicating VMs

knowledge that the descriptor stored in memtx is valid. In addition, after validating
the descriptor, the page table is examined to check whether VM𝑖 is allowed to share
those pages in ps. Therefore, the rule requires 6 page ownership Pgt@𝑝 own↦−→ 𝑖 and
exclusiveness Pgt@𝑝 excl↦−→ True to VM𝑖 of each page 𝑝 in ps. The side condition 2 plus
the resource for page access (included in IsHVC) further ensure that VM𝑖 has access
to those pages. This information, combined, ensures that VM𝑖 is allowed to share
pages ps. To initiate a transaction, the hypervisor has to allocate a fresh transaction
handle ℎ, which is ensured by 7 remembering the set hs of available handles, and 3

requiring hs not be empty. The hypervisor further binds ℎ to the meta-information
and the state of the transaction that are also represented as resources, as in the
postcondition. It is worth-noting that in practice a predicate can be built upon these
resources, e.g. TranHandles shown in Section 4.4, leveraging the resource separation
to guarantee that fresh and allocated handles are disjoint, which would reduce the
handle availability reasoning to easy-to-discharge set disjointness side goals.

In our example, VM0 shares a single page 𝑝 to VM1, so we let 𝑖 , 𝑗 , and ps be 0,
1, and {𝑝} respectively. 1 is justified by the previous instructions constructing the
descriptor correctly. 2 is justified as we assumed 𝑠 to be {pp0 ;𝑝;𝑝tx}. 3 is justified
by assuming a non-empty hs in the specification. After applying the proof rule, we
get Tran@ℎ tran↦−→ (0, 1, 𝑝, Share) and Tran@ℎ rtrv↦−→ False, stating that the requested
transaction has been initiated, and is bound to ℎ, which is also returned to VM0 so
that it can refer to the transaction.

Messaging

To retrieve access to the shared page 𝑝 , VM1 has to refer to the transaction with
the handle ℎ. To let VM1 do so, VM0 passes ℎ to it by messaging at lines 14–21.
Messaging essentially copies from the sender’s TX page and pastes into the receiver’s
RX page; therefore, the proof rule for messaging requires the resources for the two
pages and associated memory. We capture the state of VM1’s RX page with a resource
RXState@1 ↦→ Some(1, 0) in the example, expressing that VM0 has passed one word
to VM1.

Scheduling

At line 29, VM0 runs VM1 to allow VM1 to receive the handle and retrieve page 𝑝 .
To reason about such scheduling, we introduce a resumption condition for VM1. A
resumption condition for a VM𝑖 , denoted as RC1@𝑖 {Ψ}, captures the resources Ψ that
need to be handed over to VM𝑖 to resume its execution. We use resumption conditions
to express communication protocols (reminiscent of session types [Honda et al.,
2011; Yoshida and Gheri, 2020]) between VMs, and to transfer resources between
VMs along the scheduling control flow. Accordingly, the proof rule for Run, SS-run,
uses a resumption condition. Concretely, we have to show the following to apply
SS-run when the primary VM, VM0, is about to run VM𝑖:

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 62

1 The VM being run is not the primary VM itself.

2 VM0has to satisfy the resumption condition of VM𝑖 ,Ψ𝑖 . The fraction 1/2 indicates
that the resumption condition is split into two halves, and only one half is
required. We elaborate on this point later.

3 Wemay pick the resumption condition of VM0, Ψ0, that VM𝑖 will have to satisfy
to yield back.

4 The magic wand 𝑃 −∗ 𝑄 is separation logic’s resource-aware implication. It is
used here to express that with resources required by the rule (the first line)
and 5 , we can show Ψ𝑖 , intuitively the resources transferred to VM𝑖 , and the
left over Φrest , i.e. the resources that are required by the rule, but not needed
to show Ψ𝑖 , that are still owned by VM0 afterwards.

5 Other resources required to justify Ψ𝑖 .
By picking the right Ψ𝑖 and Ψ0, we describe the protocol according to which shared
resources are transferred between the VMs. In our example, we know that to run
VM1, VM0 has to have written 𝑥 to the page 𝑝 , shared the page, sent the handle, and
run VM1. We express this in Ψ𝑖 as follows:

Ψ𝑖 ≜ 𝑝
mem↦−→ 𝑥 ∗ Tran@ℎ tran↦−→ (0, 1, {𝑝}, Share) ∗ Tran@ℎ rtrv↦−→ False ∗

Mb@1 rx↦−→ prx ∗ RXState@1 ↦→ Some(1, 0) ∗ prx mem↦−→ ℎ ∗ R0@0
reg
↦−→ Run ∗

R1@0
reg
↦−→ 1 ∗ RC1/2@0 {Ψ0}

Note that when VM1 yields back control to VM0, it needs to have established VM0’s
resumption condition, so we also include RC1/2@0 {Ψ0} in Ψ𝑖 . VM1 thus can refer
to Ψ0 and show it when yielding. In our example, we want to show that VM1 has
incremented 𝑥 by 2 and yielded. We express this in Ψ0:

Ψ0 ≜ 𝑝
mem↦−→ 𝑥 + 2 ∗ R0@0

reg
↦−→ Yield ∗ R1@0

reg
↦−→ 1

To justify 4 , we let Φothr be Ψ𝑖 except for its last three assertions, and Φrest naturally
be the resources that are in the premise but not required by Ψ𝑖 .

We get Φrest and RC1/2@0 {Ψ0} after applying the rule. To explain how to get
resources stated in Ψ0 out, we first introduce RCHolds@𝑖 . It assumes the resumption
of VM𝑖 and can interact with the resumption condition of VM𝑖 by RC-hold. Intuitively
speaking, the rule says that if we know the resumption condition of a VM, and
the VM is indeed resumed, then the condition holds. ⊲Ψ means that Ψ holds later,
i.e. after taking a step in the underlying model (this is used to break circularity of
definitions [Jung et al., 2016, 2015]). Back to the example, we already getRC1/2@0 {Ψ0}
in the postcondition, so we would be able to apply this rule and proceed with the
proof with the transferred-back resources in Ψ0 if we have RCHolds@0 as well. For
now, readers only need to know that we can actually get it for free, because we have
baked it into the definition of weakest preconditions in a way that we can get it out
when a switching just happened.

63 4.3. Reasoning about Communicating VMs

Halting and Suspension

After loading the word 𝑥 + 2 at 𝑝 to R0, the execution of VM0 is terminated by a halt.
The proof rule updates the execution mode from Normal to Halted, and thus we
obtain the postcondition of our initial specification, m = Halted ∧ R0@0

reg
↦−→ 𝑥 + 2,

and conclude the proof.
The proof of VM0 does not consider the code of VM1, due to the ‘VM-modularity’

of VMSL. All we needed was an abstract characterisation of the protocol governing
the interaction between VM0 and VM1, as captured by the resumption conditions.

The proof of VM1 is similarly done without considering the code of VM0, but
concludes in a different way, as VM1 does not terminate, but instead suspends via
the Yield at line 18. Because our protocol specifies it will not be scheduled again, it
suffices to show that when we resume it, we get an immediate contradiction.

4.3.3 More on Single-step Weakest Preconditions and Resumption Condi-
tions

The example above shows how single-step weakest preconditions and resumption
conditions are the two key components that make reasoning with VMSL manageable.
We now discuss them in more detail, and point out how an expressive higher-order
separation logic like Iris makes reasoning sound and tractable.

Single-step Weakest Preconditions

Single-step weakest preconditions allow us to reason about a single instruction at a
time. Rule WP-SSWP shows the relation between weakest preconditions and single-
step weakest preconditions: informally, it says that (setting aside the antecedent of
the separating implication in the postcondition) to reason about a list of instructions,
we can reason about the first one, and then the rest. This gives us, for our assembly
language, the type of sequential composition we expect from higher-level languages.
We can always apply WP-SSWP to transform a goal formulated in terms of weakest
precondition into one formulated in terms of single-step weakest precondition, so
that we can apply proof rules for individual instructions, and then proceed with the
reasoning of the remaining instructions.

Resumption Conditions

We achieve modular reasoning between VMs through resumption conditions, which
provide a form of rely-guarantee reasoning tailored for cooperative multitasking
between VMs. To ensure that the entire logic integrates with resumption conditions,
we bake RCHolds into the definition of weakest preconditions, so that we have
to prove RCHolds when relinquishing control, and in exchange we can assume it
when getting control back (as in the postcondition of WP-SSWP). This allows us to
write specifications for individual VMs, and prove them separately without having
to reason about other VMs’ private state, and only having to reason about the

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 64

private resources of the current VM and the shared resources that are transferred
according to the communication upon scheduling. If a yielding (or scheduling) just
happened, we immediately get to assume RCHolds, and we can obtain ownerships of
the transferred resources stated in the resumption condition by RC-hold to continue
the reasoning.

Then, to combine the proofs of the local specifications, we have to make sure
that the resumption conditions are consistent and compatible, i.e. combined together,
they form a unified global protocol, and therefore the combined global specification
is valid. To do so, we use the fractional permissions of separation logic [Bornat et al.,
2005; Boyland, 2003]: we split the RC of a secondary VM in two halves, and let the
primary VM and that secondary VM own one half each. Owning half is enough
for both VMs, since SS-run requires merely half to run the secondary, and RC-hold
requires merely half to obtain ownership of the resources in the RC. In the example
above, the protocol is specified by the RC of VM1 with the RC of VM0 embedded
into it. The RC of VM1 is split into two fractions owned by the two VMs so that they
conform to the same protocol.

Many concurrent separation logics, including Iris, already define a standard
mechanism to reason about concurrent programs: invariants. However, resumption
conditions are more convenient for the scenarios we consider, as they only require
the user to consider interference from other VMs when it occurs, namely at the point
of yielding; invariants would force us to consider it (and show that it is not present)
at every step of the program. Iris also defines ‘non-atomic’ invariants, which are a
closer fit for our scenarios, as they can group multiple execution steps as a single
critical section when holding an exclusive token. However, they do not address the
issue completely: a sharing mechanism like invariants is still required to transfer
those exclusive token between VMs.

Recursive resumption conditions We have shown in the example above how
we can embed one resumption condition into another to construct a run-and-yield
protocol between two VMs. In fact, our logic more generally supports recursively
defined resumption conditions, which are useful for reasoning about examples
where the number of switchings is unknown or unbounded. Consider a ‘ping-pong’
example, in which a primary VM and a secondary VM𝑖 just keep running each other;
we can model this protocol as follows:

Ψ𝑖 ≜ R0@0
reg
↦−→ Run ∗ R1@0

reg
↦−→ 𝑖 ∗

RC1/2@0
{
R0@0

reg
↦−→ Yield ∗ R1@0

reg
↦−→ 𝑖 ∗ RC1/2@𝑖 {Ψ𝑖}

}
The use of RC in Ψ𝑖 ensures that Ψ𝑖 is well-defined by the soundness of Iris higher-
order ghost states and guarded recursion. Technically, RCs are defined using so-called
saved propositions, which means that the recursive occurrence of Ψ𝑖 is automatically
guarded (even without an explicit ‘later’ modality ⊲) and hence Ψ𝑖 is well-defined.
Using a logic with guarded recursion like Iris means we do not need to be concerned

65 4.4. Reasoning in the Presence of Unknown VMs

about soundness of these definitions, as one would have to be if working directly
over the operational semantics.

Formalising in Iris

We formalise VMSL using Iris because it allows us to capture and generalize the
well-established ideas behind the two logical constructs. We use Iris’s primitives
and leverage its advanced features, such as higher-order ghost states and guarded
recursion, as demonstrated in the recursive example above. The resulting solution is
sound and compatible with existing Iris logical constructs thanks to our foundational
approach. We use the combination of resumption conditions and invariants in
Section 4.4, and believe such compatibility would also be useful to tackle for example
interrupts and proper concurrency. Moreover, our solution is language/model-
agnostic, therefore can be instantiated with different low-level languages and used
to the reasoning of them – e.g., VMSL is obtained by instantiating it with the HVC
model.

4.4 Reasoning in the Presence of Unknown VMs

In our full motivating example in Figure 4.1, VM0 runs an unknown VM2 before
running VM1 to let it retrieve the shared page. We assume that page pp2, a page that
VM0 and VM1 have no access to, is the only page that VM2 has access to except for
its mailbox pages. Since the hypervisor provides isolation between VMs, we would
like to show that the effect of VM2 is contained, in the sense that it cannot interfere
with the sharing of the page 𝑝 , nor change its contents. We capture this by showing
that the same specification holds for VM0 as in the previous section.

This kind of scenario underpins many use cases of the kind of thin hypervisor we
are modelling. For instance, if a secondary VM running some safety-critical service
only interacts with the primary VM (running the operating system for scheduling and
simple memory sharing), then other VMs cannot manipulate or break the secondary
VM through malicious writes to memory.

We leverage the basicmemory integritymechanism of themachine to show robust
safety for some key scenarios, that is, safety even in the presence of interactions with
arbitrary unknown VMs trying to violate memory isolation, including by making
hypercalls to attempt to get access to the private memory of other VMs. There are
two overall shapes of scenarios:

1. When the primary VM is safe, strong properties hold for the whole system.

2. When the primary VM is compromised, because the primary VM is where the
scheduler resides, and because it therefore interacts with all the secondary
VMs (at least for scheduling), these strong properties do not hold, but some
weaker properties still hold for known secondary VMs.

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 66

Proving robust safety Proving robust safety for a machine with only known
VMs is straightforward, as the property is captured by VMSL:

1. For each known VM, we prove a weakest precondition.

2. We apply the adequacy theorem, which combines the proved weakest pre-
conditions of all VMs together, to get a valid global execution of the whole
machine.

However, this approach does not work directly if an extra unknown VM is considered.
To be able to apply the adequacy theorem, we first have to establish a weakest
precondition for that unknown VM under conditions that are compatible with the
resources used for the other VMs. Because we do not have a concrete program, we
do not know whether the program will behave properly, or try to maliciously write
to a memory cell that exclusively belongs to another VM, or share memory with
other VMs via hypercalls, or any combination of these. Therefore, the questions we
face are how to obtain a weakest precondition for an unknown VM, and whether we
can use VMSL to establish one.

Inspired by models for capabilities [Devriese et al., 2016; Georges et al., 2024;
Swasey et al., 2017], our answer is that we can do so using logical relations. We
define two logical relations that are compatible with each other, one for each of the
two scenarios. We introduce the logical relation for the first scenario and illustrate
it on the example of Figure 4.1 in Section 4.4.1, and describe how the second logical
relation is derived by extending the first in Section 4.4.2.

4.4.1 A Logical Relation for Unknown Secondary VMs

To prove examples like Figure 4.1, we define a unary logical relation R whose
fundamental theorem gives us a weakest precondition for any unknown secondary
VM𝑖 . Our logical relation states that, given the state of the page table and in-flight
transactions that determine which memory pages VM𝑖 has or may get access to, as
defined by InterpAccess, the execution of VM𝑖 can be safely resumed, as defined by
InterpExecute:

R(𝑖) ≜ InterpAccess(𝑖) −∗ InterpExecute(𝑖)

Then, the fundamental theorem of the logical relation (FTLR) just states that the logical
relation holds for any VMID 𝑖 except for 0:

∀𝑖 . 𝑖 ≠ 0 → R(𝑖)

From the perspective of proving the FTLR, InterpAccess can be regarded as a predicate
specifying the exact resources we need to prove the execution of VM𝑖 . We define
InterpExecute in terms of a weakest precondition to capture that if the execution of
the VM is resumed, with the resources needed to resume it, then we can execute the
VM until it stops or suspends again:

InterpExecute(𝑖) ≜ RCHolds@𝑖 −∗ wp Normal @ 𝑖 {⊤}

67 4.4. Reasoning in the Presence of Unknown VMs

It is sufficient for the postcondition to be ⊤, because we do not need to know what
the state of the unknown VM is at the point of halting (in fact, we would not be able
to specify it anyway).

Defining InterpAccess

During the execution, VM𝑖 may execute any valid instructions, and so we cannot
make assumptions about the content of memory of VM𝑖 that would restrict its
behaviours. Therefore, we have to reason about all possible cases of its execution in
the proof of FTLR (which we do by using the proof rules of VMSL).

The definition of InterpAccess for a VM𝑖 follows two principles:
1. It must allow us to characterise the behaviour of VM𝑖 enough to prove our

desired safety property, whatever instructions VM𝑖 executes. The way this
manifests in the proof is that it must include enough resources for us to be
able to apply our proof rules for any instructions.

2. It should not needlessly limit our ability to reason about other VMs. Giving
to VM𝑖 resources that VM 𝑗 could own means we might not have necessary
resources to prove the specification of VM 𝑗 . Therefore, InterpAccess(𝑖) should
contain just enough resources to reason about VM𝑖 .

These two principles make InterpAccess(𝑖) the footprint of running an arbitrary
program on VM𝑖 . Figure 4.7 shows the top-level definition of InterpAccess.

In general, InterpAccess(𝑖) is parametrised by 𝑠acc , the set of pages that VM𝑖
has access to, and 𝜏 , the map from Word to Transaction representing all in-flight
transactions. Intuitively, the behaviour of VM𝑖 , in particular its interactions with
other VMs, is (and can only be) restricted by information carried by these two
variables. For instance, VM𝑖 cannot share a page whose PageID is not in 𝑠acc , nor
retrieve pages sharedwith another VMaccording to𝜏 . Themain goals of InterpAccess
is therefore to interpret these variables with resources, following the two principles
above.

Among all the resources of InterpAccess(𝑖), some are exclusively owned by VM𝑖 ,
and some have to be shared between VM𝑖 and other VMs due to the communication
allowed by HVCs. The shared part is transferred from the primary to VM𝑖 upon
resumption (viaΨ𝑖) and is given back to the primary upon yielding (viaΨ0), using RCs.
Ψ𝑖 and Ψ0 are parametrised by an extra 𝜏 ′, to represent new transactions allocated or
updated during the suspension of VM𝑖 . The connection between 𝜏 and 𝜏 ′ is captured
by the relation 𝜏 ∼ 𝜏 ′, that is that, the transactions in which VM𝑖 is the sender or
receiver in 𝜏 cannot be touched by other VMs during its suspension, and therefore
remain unchanged in 𝜏 ′. This relation allows us to unify the two, safely replacing 𝜏
with 𝜏 ′. We then only work with 𝜏 ′, which includes all ongoing transactions when
VM𝑖 is actually executed.

We present this definition by first considering the resources interpreting 𝑠acc
and 𝜏 ′ as a whole, without distinguishing between exclusively owned and shared, to

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 68

InterpAccess(𝑖) ≜ ∀𝑠acc, 𝜏 . 1Pgt@𝑖
acc↦−→ 𝑠acc ∗ 2PgtOea(𝑠oea)∗

3MemPages(𝑠oea ∪ excl_pages(𝜏)) ∗ 4PgtTranP(𝜏)∗
5RC1/2@𝑖 {Ψ𝑖} ∗ . . .

Ψ𝑖 ≜ ∃𝜏 ′. 𝜏 ∼ 𝜏 ′ ∧ 6 TranHandles(𝜏 ′) ∗ 7PgtTranS(𝜏 ′)∗
8MemPages(shared_pages(𝜏 ′)) ∗ 9RC1/2@0 {Ψ0} ∗ . . .

Figure 4.7: The shape of the definition of InterpAccess(𝑖). All predicates are implicitly
parametrised by 𝑖 if 𝑖 is mentioned in their definitions. We refer readers to the Coq
formalisation for the full definition.

argue why the unknown VM needs them, and later argue why and how to divide
them into owned and shared portions.

Intepreting 𝑠acc

The interpretation of 𝑠acc is split as follows: First, 1 states that these pages are
accessible to VM𝑖 , which is required by all the proof rules (e.g. 3 of SS-mov). Second,
2 provides page table resources for pages that VM𝑖 owns and has exclusive access to
(denoted as 𝑠oea and computed from 𝑠acc and 𝜏), which is defined as∗𝑝∈𝑠oea Pgt@𝑝

own↦−→
𝑖 ∗ Pgt@𝑝 excl↦−→ True (or PgtOE(𝑠oea, 𝑖, True) in short). Those resources are required
by the proof rules (e.g. 6 of SS-share) if VM𝑖 shares pages that are in 𝑠oea.

These two components are exclusively owned by VM𝑖 since no other VMs may
require them. Another necessary but partially shared component is the memory of
𝑠acc ,MemPages(𝑠acc), which is required by rules for memory access instructions. We
divide 𝑠acc (and the predicate correspondingly) in two parts: memory pages that VM𝑖
has exclusive access to, and the remainder that is shared with other VMs. The former
is captured by 𝑠oea plus pages that are lent to VM𝑖 , collected by excl_pages(𝜏 ′), as in
3 ; the latter is collected by shared_pages(𝜏 ′) as in 7 .

Interpreting 𝜏′

In general, three kinds of resources could be necessary to allow VM𝑖 to perform
memory sharing HVCs on 𝑡 : Tran@ℎ tran↦−→ 𝑡 .meta is necessary to refer to 𝑡 for any
sharing HVCs; Tran@ℎ rtrv↦−→ 𝑡 .retri is necessary to retrieve the access to shared pages
𝑡 .pgs; and PgtOE(𝑡 .pgs, _, _) is necessary to update the status of the shared pages.

These resources are split into fractions such that some are owned by VM𝑖 , and
some are shared. The owned and shared fractions are used to interpret transactions
of 𝜏 and 𝜏 ′ respectively, and unified later by 𝜏 ∼ 𝜏 ′ (so they both interpret 𝜏 ′). For
instance, a points-to for transactions is split into three fractions that must agree on
their values. One third in some cases is owned by VM𝑖 , and at least another one third
is shared in all cases. The points-tos for the page table are split and unified in the

69 4.4. Reasoning in the Presence of Unknown VMs

Table 4.2: Select cases of how a transaction 𝑡 is interpreted. Column one gives
metadata and state of 𝑡 , where 𝑗 and 𝑘 are VMIDs of two other VMs. Columns two
to four give the required fractions of the three kinds of required resources. 1/3 + 2/3
under column two means Tran@ℎ tran↦−→1 𝑡 .meta is required in total, with 1/3 of it
owned by the unknown VM𝑖 , and 2/3 shared.

sndr, rcvr, type, retri Tran@ℎ tran↦−→ meta Tran@ℎ rtrv↦−→ meta PgtOE(pgs, _, _)
𝑖, 𝑗, Share, False 1/3 + 2/3 1 1/3 + 2/3
𝑖, 𝑗,Donate, False 1 1 1
𝑗, 𝑖, Share, True 2/3 1/2 + 1/2 2/3
𝑗, 𝑖, Lend, True 2/3 1/2 + 1/2 2/3
𝑗, 𝑘, _, _ 1/3 0 2/3

same way, and the splitting is then lifted to PgtOE. At least two fractions of PgtOE
that interpret 𝑡 are shared, which allows us to derive the fact that pages shared by
two transactions are disjoint by leveraging the exclusivity of PgtOE2/3 that is derived
from that of the underlying page table points-tos.

Now let us zoom in on several representative cases outlined in Table 4.2 to
see why those resources are distributed like this. In case “𝑖, 𝑗, Share, False”, VM𝑖
is the sender, and therefore the owner of the shared pages. All fractions of the
three resources are required as the sender could Reclaim access, recycling the two
transaction points-tos and updating PgtOE by the proof rule. The owned fractions
allow VM𝑖 to remember that it has shared 𝑡 .pgs even after a suspension. The receiver
doesn’t need them to Retrieve or Relinquish. In case “𝑖, 𝑗,Donate, False”, all resources
are shared, as the receiver could Retrieve, which gives it ownership of the pages
𝑡 .pgs. In case “ 𝑗, 𝑖, Lend, True”, VM𝑖 as the receiver does not own page table resources
nor the points-tos for transaction, as there is no way for it to get ownership of those
pages (and full ownership of the three resources is not required by the proof rules
of Retrieve or Relinquish). However, it owns half of the retrieval points-to, so that
it can remember the fact that it has retrieved after a suspension. In the last case
“ 𝑗, 𝑘, _, _”, VM𝑖 is neither the sender nor the receiver (which is the case of VM2 in
our example), only the minimum amount of resources is required (in our example,
Tran@ℎ tran↦−→1/3 (0, 1, {𝑝}, Share) and Pgt@𝑝 own↦−→ 0 ∗ Pgt@𝑝 excl↦−→ False).

Resources specified in Table 4.2 are distributed in 4 , 6 , and 7 . 6 includes the
least amount of fractions required by all cases, i.e. 1/3, 0, and 2/3, of the three kinds of
resources respectively, for each transaction in 𝜏 ′:

∗
ℎ ↦→𝑡 ∈𝜏 ′

Tran@ℎ tran↦−→1/3 𝑡 .meta ∗ PgtOE2/3(𝑡 .pgs, 𝑡 .sndr, (𝑡 .type =?Share))

Remaining owned and shared fractions are distributed in 4 and 7 respectively with
definitions of similar shapes as 6 .

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 70

General Protocols

9 in Figure 4.7 is one half of the resumption condition specifying which resources are
supposed to be returned back to the primary VM to resume its execution. Generally
speaking, the same resources transferred to VM𝑖 are passed back, plus the recursive
resumption condition of VM𝑖 which allows the primary to run VM𝑖 multiple times.

Ψ0 ≜ ∃𝜏 . TranHandles(𝜏) ∗ PgtTranS(𝜏) ∗MemPages(shared_pages(𝜏)) ∗
. . . ∗ RC1/2@𝑖 {Ψ𝑖}

We call such a protocol specified by the two resumption conditions the general
protocol of VM𝑖 . It is general in the sense that it specifies necessary resources to
support arbitrary execution of VM𝑖 , for arbitrary numbers of resumptions, and it is
used to reason about unknown VMs. In the case where the primary VM is unknown,
we sometimes need an additional mechanism for reasoning about sharing between
communicating VMs, see the example considered in Section 4.4.2.

Proving the FTLR

To show that the FTLR holds, we have to consider all possible instructions since the
program of the VM is unknown. For each instruction, we apply the corresponding
general proof rule of VMSL. See the Coq formalisation for the proof.

Instantiating the FTLR

We now demonstrate how we use the logical relation to reason about the full motiv-
ating example by instantiating the FTLR. Recall that our approach is to

1. show a weakest precondition for each of the three VMs, assuming resources
describing the initial state of the machine; and

2. combine them to apply the adequacy theorem, which provides these resources.
The weakest precondition for VM1 can be proved as for the simplified example.

To show the weakest precondition for VM2, we instantiate the FTLR with VMID 2.
We then have to pick proper 𝑠acc and 𝜏 such that the required resources are disjoint
and consistent with resources required by the other two known VMs. That is, all
initial resources are exclusively owned by one VM, and the protocols specified in
resumption conditions agree with each other. We let 𝜏 be ∅, since at the beginning
there are no transactions, and we let 𝑠acc be {𝑝tx2 ;𝑝rx2 ; pp2}. To show the weakest
precondition for VM0, which now runs VM2 before VM1, we have to show the
resumption condition of VM2 specified in InterpAccess(2). In particular, we let 𝜏 ′ be
{ℎ ↦→ (0, 1, {𝑝}, Share, False)}, whose interpretation in TranHandles will disallow
any malicious HVCs, such as retrieving access to 𝑝 , by VM2. The same resources are
included in Ψ0 and given back, so this transfer does not affect the reasoning about
the two known VMs after running VM2.

71 4.4. Reasoning in the Presence of Unknown VMs

VM1VM0 VM3VM2

arbitrary HVCs

run
x:=42

yield
arbitrary HVCs

run
arbitrary HVCs

yield
arbitrary HVCs

run
read x

Figure 4.8: A compromised primary VM is also contained: memory integrity (illus-
trating defensive code).
This assumes VM1 and VM3 initially exclusively share a page 𝑝 containing location
𝑥 .

Capturing Safety

The fact that we are able to prove (using our logical relation) that VM0 and VM1 can
safely share a page, even though VM2 runs in between and gets the opportunity to
try to interfere, shows that our underlying machine-with-HVCs model is secure, in
the sense that executing those HVCs will not break isolation unintentionally.

4.4.2 A Logical Relation for Unknown Primary VMs

We have shown how to reason in the presence of unknown secondary VMs using
our first logical relation. However, secondary VMs also get some guarantees when
the primary VM is unknown (and possibly compromised). For example, consider
the scenario in Figure 4.8: only two secondary VMs, VM1 and VM3, are known,
and a page 𝑝 with 42 stored in it is shared between them. We would like to show
that VM3 can read that same value from the page, even with the unknown primary
VM0 in addition to the unknown secondary VM2. In this example, as before, we can
instantiate the FTLR to get a weakest precondition for VM2, but we cannot do the
same for VM0.

To deal with scenarios with an unknown primary VM,we develop a second logical
relation, whose FTLR gives a weakest precondition for the primary VM. We ensure
that this second logical relation is also compatible with our previous logical relation.
This enables us to show safety of scenarios with both arbitrary unknown primary
and secondary VMs, including the example above. In such scenarios, programs of

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 72

known secondaries have to be written defensively, as they may be scheduled at any
point. In this section, we show how we design and use this second logical relation,
and refer the reader to the Coq formalisation for the full definition.

The statement of the FTLR of the new logical relation is symmetrical to the
previous one: we now require 𝑖 to be 0. As before, InterpExecute is defined as just
wp 0 @ Normal {⊤}, and moreover RCHolds is not needed as we always run the
primary first. The difference is in InterpAccess, which generalises the former to
support running arbitrary secondary VMs, namely the extra power of the primary
VM. From the perspective of resources, the new InterpAccess includes

1. resources that supports VM0’s execution except for running other VMs, which
is identical to what is required by a secondary VM as in Section 4.4.1; and

2. resources required by resumption conditions of all secondary VMs to support
running these VMs, which is basically their resumption conditions plus the
union of resources required by them.

The crux of defining the new InterpAccess is specifying all the resumption
conditions, i.e. protocols between all secondaries and the primary. For unknown
secondaries, as shown in the previous subsection, we can use the general protocol.
For known secondaries, because we want our FTLR to be generic in their code, the
protocol cannot depend on their code (so, here, we cannot take the approach we
used for the example in Figure 4.1). Moreover, we cannot use the general protocol
for known code either, as it is too general to be used to prove e.g. the example
in Figure 4.8. The technical problem arises from: (1) the very loose assumption
on the content of memory, which is quantified over existentially in the general
protocol. That is, we want to show the shared page 𝑝 contains a specific number,
but the general protocol only gives us that there is some number in 𝑝 . (2) the fact
that resumption conditions only allow transferring resources along the scheduling
control flow via the primary VM (as illustrated on the left of Figure 4.9). With the
cooperative scheduling mechanism we model, secondary VMs can only yield to the
primary VM, not directly from one secondary VM to another. This means that in
this example, the shared page 𝑝 can only be transferred between VM1 and VM3 with
VM0 as a middleperson.

Our Approach

Instead, we exclude the page 𝑝 from the general protocol, and share it between
VM1 and VM3 in another way (which we can do since 𝑝 is not accessible to VM0).
To do this, we use invariants as a complementary resource sharing mechanism,
for resources that cannot or should not be shared via the general protocol. In this
example, assuming 𝑝’s value is always 42 after VM1 writes to it, we can establish a
trivial invariant, as illustrated in Figure 4.9, with the memory resources of page 𝑝 .

73 4.5. Related Work

VM1 VM3 VM2

VM0

VM2VM3VM1

VM0
(−𝑝)

(−𝑝)
𝑝

Figure 4.9: An illustration of how resources are shared among VMs in Figure 4.8.
Regular arrows represent the resources of the general protocol, where (−𝑝) means
the resources of page 𝑝 are excluded. Instead, those resources are shared via an
invariant represented as the dashed arrow.

How We Implement Our Approach

Recall that the general protocol specifies the resources a secondary shares with all
other VMs, although they are only ever transferred via the primary. It indicates that
it is safe to run an unknown primary without resources that secondaries shared with
other secondaries in the general protocol. We therefore can divide the resources
of the general protocol into slices, one for each pair of VMIDs, which only contain
one-to-one shared resources. This way, we can now safely remove secondary-to-
secondary slices from the general protocol between a secondary and the primary. We
then parametrise the logical relation by the secondary-to-secondary slices, thereby
allowing the user of the FTLR to decide which of those slices are (partially) transferred
via the unknown primary. For instance, resources that VM1 shares using its general
protocol are divided into three slices containing resources that it shares with (1)
VM0; (2) VM2; and (3) VM3. We say the slice from VM1 to VM2 is full if it contains
all related resources required by the general protocol between VM1 and the primary.
We then instantiate the FTLR with full slices (1) and (2), and (3) minus the memory
of page 𝑝 , to exclude that page from the VM1-to-VM3 slice. By doing so, yielding
of VM1 will not require the resources for page 𝑝 , and therefore we can use it to
establish the invariant. Moreover, by letting slices from VM2 to other VMs be full, we
can actually recover the general protocol of VM2, therefore making the two logical
relations compatible.

4.5 Related Work

Hypervisor and OS verification There are several lines of work on hypervisor
verification, including HASPOC [Baumann et al., 2016, 2019], SeKVM [DBL, 2021; Li
et al., 2021; Tao et al., 2021], Hyper-V [Leinenbach and Santen, 2009], and seL4 [Klein
et al., 2014, 2009].

The HASPOC project is aimed at designing a secure virtualisation platform
for ARMv8, for which they prove information-flow security. They introduce an
idealised model in which information-flow security holds by construction, and prove
a bisimulation between it and the concrete platform model. In their model, each
VM’s memory is isolated and cannot be shared; instead, inter-VM communication is
restricted to a messaging mechanism similar to the one we model.

The main focus of SeKVM is on hypervisor verification. As part of it, they

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 74

capture generic isolation properties between virtual machines and their hypervisor
(based on KVM) in the form of non-interference results about their combined model
of the machine and the hypervisor, capturing both integrity and secrecy. They
support memory sharing in a much more restrictive way, only allowing a VM to
share encrypted data with the less privileged portion of the hypervisor to support
I/O virtualization.

Microsoft’s Hyper-V is an industrial hypervisor partially verified with the VCC
verification suite [Cohen et al., 2009], and their verification effort focuses on low-
level concurrent C code. Most of their verification effort relates the hypervisor
implementation to its specification, but not on validating that top-level specification,
nor on its security properties.

seL4 is a formally verified OS kernel. Whereas in our setting, scheduling is
outsourced to a primary VM, in their setting, scheduling is done by seL4 itself. In
addition to functional correctness, seL4 includes a proof of some non-interference
properties [Murray et al., 2013], which they prove over the kernel specification. The
integrity result for seL4 [Sewell et al., 2011] considers a small operating system that
manages a set of capabilities with various authorities (write, read, send, receive, grant,
etc.) over various objects. Their operating system corresponds to the combination
of our hypervisor and a "receptive" primary that waits for requests, checks they are
allowed, and executes them. In that setting, they consider what kind of capabilities
are accessible through privilege escalation. This is similar to the way in which
our logical relations have to consider what can be acquired transitively through
transactions and memory.

These efforts primarily focus on verifying the implementation of system software
(including APIs exposed to clients). Our work is complementary, in that our approach
factors the integrity (but not the secrecy) part of their security results into a logic
to reason about concrete programs using hypercall APIs, and a logical relation
that captures isolation. This, in contrast to their approaches, enables us to give
specifications and verify individual concrete scenarios, whereas, in our terms, their
results are concerned with composing exclusively unknown VMs.

In addition, these lines of work make drastic simplifying assumptions, as the
actual behaviour of page tables, especially in the presence of concurrency, is only
beginning to be understood precisely enough for verification [Simner et al., 2022].
Nonetheless, there is some work on hypervisor verification against authoritative
models: Nienhuis et al. [Nienhuis et al., 2020] and Bauereiss et al. [Bauereiss et al.,
2022] prove security properties above full-scale, authoritative, formal ISA models of
the CHERI and Morello capability architectures. These properties are finer-grained
than ours thanks to capabilities, but weaker in that they are architectural invariants,
and thus cannot rely on properties of known code. Sammler et al. [Sammler et al.,
2022] develop a separation logic above authoritative, formal ISA models of Arm-A
and RISC-V by specialising the ISA definition to partially concrete opcodes through
(unverified) symbolic evaluation [Armstrong et al., 2021]. They focus on verifying
local specifications of known code, including some exception handlers.

75 4.5. Related Work

Reasoning about low-level code The details of low-level code make it a natural
target for mechanisation, and there is extensive work on the topic. Our work
follows in the footsteps of the CAP [Feng and Shao, 2005; Ni and Shao, 2006; Ni
et al., 2007; Yu and Shao, 2004] family of Hoare logics for low-level code, which
tackle for example code pointers and cooperative multitasking (which we return to
later). In mechanising their logics directly in Coq, without an intermediate logic
like Iris, they identify challenges concerning higher-order code (via code pointers),
separation, rely-guarantee reasoning, etc., and also note opportunities offered by
mechanisation, for example ‘open’ proof rules that are defined as lemmas over the
operational semantics rather than hard-coded into the logic. Concurrently with the
CAP work, mechanised variants of separation logic have long been used to reason
about assembly code [Cai et al., 2007; Jensen et al., 2013; Kennedy et al., 2013; Myreen
and Gordon, 2007]. Iris generalises this approach, building on separation logic to
encapsulate the logical constructions that are helpful to reason about programming
languages in a language-independent way. Our work (like Georges et al. [Georges
et al., 2021]) demonstrates how such a rich logic does indeed make it tractable to
tackle many of the challenges of low-level code identified by the CAP line of work.

Single-step weakest preconditions Decomposing reasoning about a sequence
of instructions into reasoning about each instruction one by one is quite intuitive,
but often raises proof engineering challenges, and some solutions are ‘folklore’. For
example, Erbsen et al. [Erbsen et al., 2021, §4.3] capture individual steps, and compose
them with an ‘eventually’ operator similar to a transitive closure. Our single-step
weakest precondition, like the standard Iris weakest precondition, is defined purely
in terms of the type of operational semantics that Iris takes as input, and thus factors
out this aspect of instantiating Iris for low-level code, independently of the language.
For example, we believe that our approach could be used by the capability machine
formalisation of Georges et al. [Georges et al., 2021] to simplify some of their proof
engineering.

Cooperative multitasking and resumption conditions Programming over the
fragment of the FF-A hypercall API we consider, where secondary VMs run until they
explicitly yield to the primary VM, is effectively a form of cooperative multitasking
with a programmed scheduler. Again, we follow in the footstep of the CAP line
of work [Feng and Shao, 2005; Yu and Shao, 2004], but benefit from a modern,
mechanised separation logic. Moreover, in our terms, the CAP setting corresponds
to only composing known secondary VMs sharing some pages with a primary that
merely schedules secondary VMs. Using our logical relations which capture bounds
on the effect of arbitrary code, we go further, and capture the composition of known
and unknown code.

Capability machines Capabilities [Arm, 2021; Carter et al., 1994; Watson et al.,
2019; Wilkes and Needham, 1979] are an alternative hardware mechanism for access

Chapter 4. VMSL: A Separation Logic for Mechanised Robust Safety of Virtual
Machines Communicating above FF-A 76

control, in the form of dynamically checked unforgeable tokens of authority, typically
granting some type of finer-grained access to a portion of memory. Proofs of safety
for capability machines have also used unary, unityped logical relations, e.g. [Georges
et al., 2024, 2022; Skorstengaard et al., 2019]. However, these logical relations are
quite different from ours, because of the different underlying mechanisms. Their
logical relation involves recursion through the heap, as a capability can give access a
portion of the heap which gives access to further capabilities; whereas in our setting,
there is a clear stratification of page tables ‘above’ the memory accessible to VMs.
Because we do not have this recursion, a VM does not need to hand over all of its
memory to a global invariant, and instead can locally keep the resources for the
memory that it does not share, which leads to more direct reasoning at the expense
of some complexity in the definition of our logical relation.

4.6 Conclusion

We have formalised a substantial fragment of Arm’s FF-A ABIs as an operational
semantics in which HVCs are primitive steps and we have demonstrated that the
model is secure, in the sense that VMs running unknown and possibly malicious code
cannot break isolation unintentionally. In more detail, we have developed VMSL,
a novel separation logic for modular reasoning about known VMs communicating
above FF-A. In particular, VMSL supports ‘VM-local’ reasoning via its notion of
resumption conditions, which capture interaction between VMs and thereby reduces
reasoning about their interaction to sequential reasoning. Moreover, we have shown
how to use the logic to develop logical relations that capture the intended isolation
guarantees and which can be used to formally prove robust safety for communicating
known VMs that interact with VMs running unknown code. Finally, we have applied
these to prove security in key scenarios that capture the typical interaction cases
between VMs with various trust relations.

Futurework includes extending ourmodel with concurrency and non-cooperative
scheduling. We are also interested in adapting our model to the pKVM [Deacon,
2020; Google LLC, 2021; Perret, 2020] ABIs, which is different from the FF-A ABIs
but similar in spirit. It would also be interesting to show that an implementation of
a hypervisor is a formal refinement of (a more detailed version of) our model.

5

An Axiomatic Basis for Computer
Programming on Relaxed Hardware

Architectures: The AxSL Logics

Abstract

Very relaxed concurrency memory models, like those of the Arm-A,
RISC-V, and IBM Power hardware architectures, underpin much of com-
puting but break a fundamental intuition about programs, namely that
syntactic program order and the reads-from relation always both induce
order in the execution. Instead, out-of-order execution is allowed except
where prevented by certain pairwise dependencies, barriers, or other
synchronisation. This means that there is no notion of the ‘current’
state of the program, making it challenging to design (and prove sound)
syntax-directed, modular reasoning methods like Hoare logics, as usable
resources cannot implicitly flow from one program point to the next.

We present AxSL, a family of separation logics for relaxed hardware
memory models, and instantiate it on sequential consistency and on the
Arm-A memory model. The Arm-A instance captures the fine-grained
reasoning underpinning the low-overhead synchronisation idioms used
by high-performance systems code. We mechanise AxSL in the Iris
separation logic framework, illustrate it on key examples, and prove it
sound with respect to the axiomatic memory model of Arm-A.

By instantiating AxSL on different memory models, we demonstrate
the generality of our approach, and show that it is largely generic in
the axiomatic model and in the instruction-set semantics, offering a
potential way forward for compositional reasoning for other models,
and for the combination of production concurrencymodels and full-scale
ISAs.

77

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 78

5.1 Introduction

Systems code, such as operating system and hypervisor kernel code, is a prime target
for software verification, being security-critical yet relatively small. However, it
is highly concurrent, which raises two questions: What model to verify it above?
And what verification theory to use? For example, the Arm-A architecture is used
in essentially all mobile devices, and its base (“user”) relaxed concurrency model is
now reasonably well-understood and stable [Arm Ltd., 2023, Ch.B2],[Alglave et al.,
2021, 2014; Deacon, 2016; Flur et al., 2017; Pulte et al., 2018]. However, there is
little program verification theory or tooling that applies directly to Arm-A, nor to
similarly relaxed architectures.

In this paper, we develop a family of separation logics that can be instantiated on
relaxed hardware memory models, and yet is expressive, supporting local reasoning
with higher-order ghost state and invariants, and mechanised in Coq/Rocq, using
the Iris program logic framework [Jung et al., 2018b, 2015]. We then instantiate this
logic on the Arm-A “user” concurrency model, which is particularly challenging
for program-logic reasoning because it (like RISC-V and IBM Power, but unlike
x86) permits load-store reordering, as in the classic “load buffering” LB shape of
Figure 5.1. This means that the union of program order (po) and the reads-from
relation (rf) is not guaranteed to be acyclic — but for compositional reasoning, one
wants to attach assertions to particular program points, and program logics usually
rely on the strength of program order captured by that acyclicity; they let resources
implicitly flow in the proof context from one program point to the next. Previous
program logics have either assumed po ∪ rf acyclic (which requires extra barriers),
e.g. FSL++ [Doko, 2021; Doko and Vafeiadis, 2017], GPS [Turon et al., 2014], and
iRC11 [Dang et al., 2020], or lack ghost state, e.g. FSL [Doko and Vafeiadis, 2016],
which makes the logic substantially less expressive and more awkward to use, or
give extremely weak guarantees for non-synchronised reads, e.g. RSL [Vafeiadis and
Narayan, 2013]. The Lace logic [Bornat et al., 2015a] targeted relaxed architectural
models but lacked a proof of soundness, and the Ogre and Pythia logic [Alglave
and Cousot, 2017] is a refinement of Owicki-Gries [Owicki and Gries, 1976] that is
parameterised by (and sound for) a range of relaxed models, but (like Owicki-Gries)
lacks thread-local modular reasoning.

𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 1 𝑑 : str [𝑥] 1

𝑎:R 𝑥 1

𝑏:W 𝑦 1

𝑐:R 𝑦 1

𝑑 :W 𝑥 1
po porf

rf

Figure 5.1: LB+pos

In contrast to those previous program logics, to allow sound usage of ghost
resources even in the presence of LB, we prevent implicit flow of usable resources
between program points along po, allowing it only when actual synchronisation is
present — for example, for the Arm-A memory model, along the ordered-before or-

79 5.1. Introduction

dering (ob). Different relaxed hardware architectures expose different combinations
of ways to impose such synchronisation: address dependencies, release writes, etc.
We allow explicit reasoning about those if need be, by exposing the structure of the
axiomatic model, letting one reason about the low-cost ordering that the architecture
under consideration guarantees from various forms of dependency (RSL, FSL, FSL++,
GPS, and iGPS are all for C11 or RC11, without dependencies).

Stepping back, why would one want to reason directly above an architecture con-
currencymodel? After all, high-level language concurrencymodels, e.g. C/C++11 [Batty
et al., 2011; Boehm andAdve, 2008] and the Linux kernelmemorymodel, LKMM [Alglave
et al., 2018; McKenney et al., 2020], were designed to obviate the need to program
and reason about specific underlying architectures, with extensive work on the cor-
rectness of their compilation schemes [Batty et al., 2012; Lahav et al., 2017; Manerkar
et al., 2016; Sarkar et al., 2012], and one would not envisage manual proof about
large bodies of assembly code. There are three main reasons.

𝑥 = 0 ∧ 𝑦 = 0
𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 𝑟1 𝑑 : str [𝑥] 𝑟2

𝑎:R 𝑥 42

𝑏:W 𝑦 42

𝑐:R 𝑦 42

𝑑 :W 𝑥 42
po data po data

rf
rf

Figure 5.2: LB+datas

First, those C/C++ language-level models are fundamentally flawed for highly
relaxed code because of the out-of-thin-air problem [Becker, 2011, §23.9p9] [Batty
et al., 2015]: they allow arbitrary values to be created, e.g. for the Figure 5.2 LB+datas
shape of relaxed atomic accesses and source-language data dependencies. Thin-air
values are not believed to arise for conventional compilers and hardware, but it has
proven challenging to define tractable semantics that exclude them while remaining
sound w.r.t. conventional compiler and hardware optimisations — especially compiler
dependency removal and hardware load-store reordering. The LKMM forbids thin-
air outcomes by assuming some dependencies are respected, and in specific coding
idioms they often are, but in general they can be removed by conventional compiler
optimisations. There have been many attempts to solve this problem [Chakraborty
and Vafeiadis, 2019; Jeffrey and Riely, 2016; Kang et al., 2017; Lee et al., 2020; Paviotti
et al., 2020; Pichon-Pharabod and Sewell, 2016], but so far none have been adopted —
sowe simply do not yet have any high-level language semantics suitable for reasoning
about deployed highly relaxed code. In contrast, architecture concurrency models
for Arm-A, x86, RISC-V, IBM Power, and others, are now well-established [Alglave
et al., 2021, 2014; Arm Ltd., 2023; Deacon, 2016; Flur et al., 2017; Owens et al., 2009;
Pulte et al., 2018; Sarkar et al., 2011, 2009; Waterman and Asanović, 2019], and do not
suffer from the thin-air problem: these architectures guarantee respect for certain
syntactic dependencies, ruling out thin-air. These architectural models thus give us
a solid foundation that we can reason above.

Second, ultimately, the machine-code binary is what runs — and therefore one
wants to verify down to the (concurrent) machine semantics, even if the bulk of

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 80

one’s source-language verification is at the C level or above. There are several
possible approaches to this: for example, one might have a source language with
more restricted concurrency (without relaxed accesses), and then some verified
compilation result down to the machine semantics [Cho et al., 2022; Tao et al., 2021].
But production systems-code in practice does use relaxed accesses for performance,
and hence reasoning about them is an important problem. We thus aim here to
first understand how to reason directly about the binary, where we have a good
underlying model; future work can then use this as the basis for verified compilation
or other verification approaches for higher-level code.

Third, systems code relies, in small but crucial parts, on assembly which is
not C-language expressible — e.g. for particular barriers, and for management of
systems features of the underlying architecture (instruction and data cache man-
agement [Simner et al., 2020], virtual memory [Simner et al., 2022][Arm Ltd., 2023,
B2.3], exceptions, etc.). We do not cover systems semantics here, but our approach
is designed to generalise to it.

Contributions We develop a family of separation logics for relaxed hardware
architectures, AxSL, that is expressive, supporting reasoning with higher-order
ghost state and invariants, and mechanised in Coq/Rocq, using the Iris program logic
framework.

We then instantiate AxSL on two memory models: sequential consistency, and
on the Arm-A concurrency model. For both, we use an idealised instruction set
architecture (ISA), but our approach is designed to generalise: our idealised ISA
semantics and base logic are defined above themicroinstructions of the Sail “outcome”
interface [Gray et al., 2015][Pulte et al., 2018, §6.1][Pulte, 2018, §2.3], so they should
generalise straightforwardly to the full ISA of Arm-A or RISC-V. For the concurrency
model, our approach is largely generic in the structure of the axiomatic model,
so this work offers a path towards similar logics for other architecture axiomatic
models (e.g. the RISC-V “user” model, which is similar to that of Arm-A), or, more
speculatively, to extensions covering systems semantics, as has been developed for
example for Arm [Simner et al., 2022, 2020]. Moreover, both the Arm-A architecture
reference manual and RISC-V specify their concurrency architecture in this axiomatic
style [Arm Ltd., 2023, Ch.B2] and are actively maintained and occasionally changed,
so (while semantics for new features have been developed in multiple styles), it is
desirable to be able to track the reference-manual version with minimal effort.

Plan We describe the program-logic and relaxed-memory context in Section 5.2.
We explain the key ideas of our logic informally in Section 5.3. In Section 5.4, we
describe the two languages we consider, and how we give their semantics in a way
that makes it possible to build an expressive logic featuring higher-order ghost
state. We present one language for SC, combining a simplified assembly language
with sequential consistency; and one for Arm-A, combining a simplified assembly
language featuring dependencies with the real LB-permitting Arm-A axiomatic

81 5.1. Introduction

concurrency model.1 In Section 5.5, we describe the rules of our AxSL logic and
exercise them on small, representative examples. We do this in three stages, first we
present how to deal with axiomatic memory models ignoring relaxed memory, then
we show how to structure the logic to deal with a relaxed memory model but in the
simple setting of sequential consistency, and finally we deal with an actual relaxed
memory model, namely that of Arm-A. In Section 5.6, we define the model of AxSL
in Iris, following the same three stages, and present our non-standard definition of
weakest precondition. In Section 5.7, we present our non-standard proof of adequacy
of AxSL in Iris. In Section 5.8, we discuss some technical aspects and limitations of
our work. We discuss related work in Section 5.9, and how our work can be used
and extended further in Section 5.10. The Arm-A instance of AxSL, its soundness
and the examples are formalised in Coq using the Iris separation logic framework;
the full development is available at https://github.com/logsem/AxSL.

Difference with the original paper This article is an extended version of the
original paper presented at POPL 2024 [Hammond et al., 2024]. In particular, it
makes our contributions more accessible, especially to those who are less familiar
with relaxed memory and the memory model of Arm-A, it elaborates the definitions
to be self-contained, and it makes technical improvements to the proof technique. In
detail:

• We introduce our novel ‘opax’ type of semantics using a simple language with
a simple memory model (namely sequential consistency) in Section 5.4.3.

• We explain the novel ideas of AxSLArm in that simpler setting, building two
logics for that simple SC language: AxSLSC and AxSLSCExt. These two simpler
logics work as explanatory steps when building up the syntax and the semantic
model of the AxSLArm.

– We show how to define a first straightforward logic, AxSLSC, on top of
our novel ‘opax’ style of semantics in Section 5.5.2, and how to define a
semantic model for it in Section 5.6.3.

– We then show how to define a second, more elaborate logic, AxSLSCExt,
that uses the ideas that make AxSLArm work in the setting of relaxed
memory, but still in the simple setting of sequential consistency in Sec-
tion 5.5.3, and present its semantic model in Section 5.6.4.

• We give a self-contained presentation of the definitions of the model of
AxSLArm, using precise definitions that were omitted in the original paper
because of space constraints, in Section 5.6.5.

• We expand the explanation of various technical definitions and proofs, and
add illustrations to make the technical material more accessible.

1To avoid adding overwhelming complexity to an already complex topic, we only consider the
“user” Arm-A memory model of 2018 [Pulte et al., 2018], and not more recent extensions and changes:
no mixed-size accesses, no instruction fetching, no virtual memory, and no pick dependencies, although
these extensions are all in the shape that our approach supports.

https://github.com/logsem/AxSL

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 82

• We refine the model of AxSLArm, leading to some technical improvements that
we elaborate on in Section 5.8.1, in particular a better proof of adequacy.

Moreover, by demonstrating the ideas of AxSLArm on a different (albeit simple)
memory model, we have shown that our novel approach to defining semantics and
program logics generalises.

5.2 Context: Program Logics and Relaxed Concurrency

Early work on program verification, in a sequential setting, could assume the exist-
ence of a simple program state of memory values, updated by each instruction, and
program proof could be done by annotating a flowchart (as per Turing [Morris and
Jones, 1984; Turing, 1949] and Floyd [Floyd, 1967]), or syntactic program points (as
per Naur [Naur, 1966] and Hoare [Hoare, 1969]), with assertions on that state. In
this setting, a fact about a part of the state untouched by some instruction remains
true (and usable for program proof) after the instruction, though managing such
framing had to be done manually. The first separation logics, of Reynolds, O’Hearn,
and Yang [O’Hearn et al., 2001; Reynolds, 2002], refined this view with a separating
conjunction, allowing assertions to express ownership of some part of such a state,
with an explicit frame rule. Simple concurrent separation logics, e.g. CSL [Brookes,
2007; O’Hearn, 2007], are broadly similar except that ownership of parts of the state
can be transferred at lock acquire and release points: facts about owned parts of the
state remain true from one program point to the next, except where the state they
mention is explicitly modified by the intervening instruction.

In a relaxed-memory concurrent setting, however, there is no simple notion of
program state, acted on by all threads in some global interleaving: threads do not
execute in-order, and different threads can observe events in incompatible orders. To
capture this, the underlying semantics have quite different forms to classical sequen-
tial or sequentially consistent concurrent semantics. Two styles of semantics for
architectural relaxed-memory concurrency are common: abstract-microarchitectural
operational models explain how the allowed observable behaviour arises from expli-
cit speculative execution and event propagation, with roll-back when speculation
turns out to violate some constraint, e.g. [Higham et al., 2007; Owens et al., 2009;
Pulte et al., 2018; Sarkar et al., 2011], while axiomatic models define the allowed
observable behaviour more concisely as predicates on candidate complete execution
graphs, e.g. [Alglave et al., 2010, 2014; Gharachorloo, 1995; Kohli et al., 1993], but
do not straightforwardly support the incremental construction of valid executions.
A third, “Promising”, style is, very roughly, intermediate between the two [Pulte
et al., 2019]. All are challenging to work with, in different ways, as we discuss in
Section 5.3.2.

We base the current work on axiomatic models. In these, a program gives rise
to a large set of candidate complete execution graphs, each with a function from
event IDs to events, and a program order relation over event IDs (po) within each
thread, and various other base relations. An axiomatic concurrency model typically

83 5.2. Context: Program Logics and Relaxed Concurrency

𝑎:R 𝑥 0

𝑏:W 𝑦 0

𝑐:R 𝑦 0

𝑑 :W 𝑥 0
po data po data

rf
rf

Figure 5.3: An SC execution of LB+datas

defines compound relations derived from these, e.g. for Arm-A — which we will
use as our main case study — the model of Figure 5.4 defines an observed before
(ob) relation that captures synchronisation, and imposes constraints on those, in
particular that ob is acyclic. The semantics of a program is the set of all candidate
complete execution graphs that satisfy those properties and are consistent with the
intra-instruction semantics. For example, the candidate execution for LB+pos in
Figure 5.1 is allowed by the Arm-A axiomatic model because the plain po relation,
between reads and writes to different addresses, is not included in the ordered-before
ob that is required to be acyclic (or in the internal or atomicity requirements). The
candidate execution for LB+data at the bottom of Figure 5.2 is forbidden in Arm-A
because the intra-thread syntactic data dependencies create data edges, which are
included in the Arm-A locally ordered before lob relation, and that and the inter-
thread reads-from relation rfe are both contained in ob. For contrast the candidate
execution for LB+data in which 𝑎 reads from (rf) the initial state in Figure 5.3 is
allowed.

For some, relatively simple, forms of relaxed concurrency, one can adapt sep-
aration logic relatively straightforwardly. For example, rely/guarantee reasoning
with acquire/release reads and writes lets one do thread-modular proofs, in which a
thread might gain some resource at an acquire read, manipulate it freely, and then
pass it on with a release write – with the resource still persisting from one program
point to the next between those points (except where explicitly modified by this
thread), as a read-acquire is ordered with all po-successors and a write-release with
all po-predecessors.

The effect of reading from a shared variable on the thread’s logical state is
accounted for thread-locally by relying on a protocol or invariant to abstract the
possible actions of other threads. The protocol constrains what logical resources
are transferred when accessing shared variables. In a candidate execution, one can
see this as annotating the incoming (to reads) and outgoing (from writes) reads-
from edges, for the part of the graph for each thread, with the resources that get
transferred along them (Figure 5.5).

In this view, as described for RSL, the events of the execution graph act following
flow implications: “the annotation is locally valid around that action [when] basically
the sum of the annotated heaps on the incoming edges should equal the sum of the
annotated heaps on the outgoing edges, modulo the effect of [the] action”.

FSL generalises RSL to reason about C11’s release and acquire fences, but its
assertions are still persistently freely usable along po, so they have to choose between

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 84

1 (* Coherence-after *)
2 let ca = fr | co
3 (* Observed-by *)
4 let obs = rfe | fre | coe
5 (* Dependency-ordered-before *)
6 let dob = addr | data
7 | ctrl; [W]
8 | (ctrl | (addr; po)); [ISB]; po; [R]
9 | addr; po; [W]

10 | (ctrl | data); coi
11 | (addr | data); rfi
12 (* Atomic-ordered-before *)
13 let aob = rmw
14 | [range(rmw)]; rfi; [A | Q]
15 (* Barrier-ordered-before *)
16 let bob = po; [dmb.full]; po | [L]; po; [A]
17 | [R]; po; [dmb.ld]; po
18 | [A | Q]; po
19 | [W]; po; [dmb.st]; po; [W] | po; [L]
20 | po; [L]; coi
21 (* Locally ordered-before *)
22 let lob = dob | aob | bob
23 (* Ordered-before *)
24 let ob = (obs | lob)+
25 (* Internal visibility requirement *)
26 acyclic po-loc | ca | rf
27 (* External visibility requirement *)
28 irreflexive ob
29 (* Atomicity requirement *)
30 empty rmw & (fre; coe) as atomic

Figure 5.4: Arm-A axiomatic model by Deacon [Pulte et al., 2018] (with lob separated
out, following later Arm models [Alglave et al., 2021]), in herd’s cat syntax [Alglave
et al., 2014] for relational algebra. Here |, &, ;, and + are relational union, intersection,
composition, and transitive closure; [W], [R], [L], [A] and [Q] are the identity relations
over all write, read, release, acquire and acquirePC events; [ISB], [dmb.full], [dmb.st],
[dmb.ld] are the identity on those barrier events; addr, data, and ctrl are the syntactic
dependency-relation subsets of program order po; po-loc relates same-address memory
accesses in po; co is coherence over writes; the derived fr relates reads to coherence
successors of the write they read from; rmw is the successful read/write-exclusive
pairs; and the rf, co, and fr relations are subdivided into their “internal” (same-thread)
and “external” (different-thread) parts, suffixed i and e respectively. The main “axiom”
requires that ordered-before (ob) is irreflexive.

soundness in the presence of load buffering (FSL) and support for ghost state, at the
cost of requiring po ∪ rf acyclic (FSL++). We describe these and related logics in
more detail in Section 5.9.

5.3 Key Ideas

5.3.1 The First Problem: Relaxed Thread-local Ordering

The biggest challenge for reasoning about the more relaxed behaviour of mainstream
(non-TSO) relaxed architectures, including Arm-A, RISC-V, and IBM Power, arises
from the fact that they all permit out-of-order execution of program-ordered loads
and stores, except where there is some dependency or barrier. This means that a

85 5.3. Key Ideas

a: 𝑟1 := ldracq [𝑥]

b: strrel [𝑦] 𝑟1

𝑐:Wrel 𝑥 𝑣

𝑎:Racq 𝑥 𝑣

𝑏:Wrel 𝑦 𝑣

𝑑 :Racq 𝑦 𝑣

po 𝑆1

po 𝑆2

po 𝑆3

rf

𝜑 𝑣

rf 𝜓 𝑣

Figure 5.5: Thread-local part of a candidate execution, annotated with the
logical resources flowing on edges. The thread program is on the left. Resources
𝑆1,2,3 are those in hand at each program point, and the protocol specifies the re-
sources 𝜑 𝑣 and 𝜓 𝑣 passed along the release-acquire edges for 𝑥 and 𝑦.

𝑎: 𝑟1 := ldr [𝑥]
𝑏: 𝑟2 := ldr [𝑥 ′]
𝑐: str [𝑦] 𝑟1
𝑑 : str [𝑦′] 𝑟2

𝑎:R 𝑥 𝑣1

𝑏:R 𝑥 ′ 𝑣2

𝑐:W 𝑦 𝑣1

𝑑 :W 𝑦′ 𝑣2

po

po

po

data

data

Figure 5.6: Intra-thread concurrency

resource gained on a load cannot be deemed to implicitly persist through to any
program-order-later store where it might be passed on. For example, consider a
thread consisting of two interleaved copies of the left thread of LB+datas (operating
on disjoint addresses), as in Figure 5.6. The data dependencies order 𝑎 with 𝑐 , and 𝑏
with 𝑑 , but that is all the ordering we get. In particular, nothing orders the last read
𝑏, before the first write 𝑐 – in contrast to the release/acquire case.

The Arm-A axiomatic model’s locally-ordered-before (lob) relation specifies
what thread-local ordering is respected, as introduced by barriers, synchronising
accesses (store release, acquire reads, etc.), and register-to-register dependencies. All
but the strongest barriers and synchronising accesses impose only a partial ordering
and allow some intra-thread concurrency. In particular, some register dependencies
merely impose a pairwise ordering of events; as such, they are particularly cheap,
and are one of the motivations to directly write assembly for high-performance code,
for example in the Linux kernel’s pervasive RCU library.

Our first key idea is that by attaching resources only to locally-ordered-before
edges, rather than all of program order, we can make a sound logic even for relaxed
architectures exhibiting load buffering and intra-thread concurrency. However, for
practical and compositional reasoning, we want to annotate a program text, not the

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 86

large set of its candidate executions. Moreover, to identify when ordering will arise
from register dependencies to program-order-later events, it suffices to keep track
of the source of each register value. Concretely, a load 𝑎 into register 𝑟 of a value 𝑣 ,
from some location following a protocol 𝜑 , will give us

(𝑟 r↦→ 𝑣@{𝑎}) ∗ (𝑎 ↬ (𝜑 𝑣))

Here our register points-to assertion 𝑟 r↦→𝑣@𝐸 keeps track of the set 𝐸 of (thread-local)
events that it stems from, along with 𝑟 ’s current value 𝑣 , while 𝑎 ↬ (𝜑 𝑣) records the
resources gained (according to protocol 𝜑) from the load, tying them to its event ID
𝑎. (The 𝜑,𝜓, . . . are per-location value-based protocols, which we later generalise.)

These register points-to and tied resources then do flow down to later program
points (except where transferred away), but, crucially, they can only be used for an
event 𝑏 when 𝑎 is locally-ordered-before 𝑏, e.g. where 𝑏 is a program-order and data-
dependent write after 𝑎, which might consume some or all of the resources in passing
them to another thread. It is tempting to try to combine these two assertions into
one, bypassing the indirection, as 𝑟 r↦→ 𝑣&(𝜑 𝑣), but this breaks down for all but the
simplest use cases: moving the contents of a register into another must distribute the
resources, or use indirection as we do via events. Lace logic [Bornat et al., 2015b] had
a somewhat similar mechanism, but more explicitly in terms of edges than sources,
which fits their setting where they dictate ordering (à la Crary and Sullivan [Crary
and Sullivan, 2015]) better, but is less convenient for ours, where ordering emerges
in program order. In general, of course, there may be many dynamic instances –
and hence memory events – arising from each static instruction; that can also be
dealt with within the logic, by existential quantification and counters for event
IDs [Alglave and Cousot, 2017; Lamport, 1977].

Crucially, we allow any Iris proposition to be tied to an event. This includes any
piece of ghost state gs, embedded into an Iris proposition as gs . Ghost state is very
flexible [Dinsdale-Young et al., 2013, 2010; Jung et al., 2018b, 2015; Svendsen and
Birkedal, 2014], and, as usual in Iris, we use it both (1) to track the physical state
(by enforcing in the definition of weakest precondition that it keeps in sync with
physical state introduced in Sections 5.3.2 and 5.4.3), but piecemeal, so that we for
example can talk about the state of a single register; and (2) to track the logical state
of a program, for example with an exclusive permission to commit to a value, where
owning such a permission to commit refutes observing another thread having done
something that required having committed to a value (as in Section 5.5.6). In a sense,
ghost state instruments the physical state of the operational semantics, but unlike
physical state, ghost state can be updated freely by a view shift 𝑃 ⇛ 𝑄 , as long as
the update is frame-preserving, meaning that it does not contradict other pieces of
ghost state; the view shift can be viewed as a generalised implication. Finally, our
𝑎 ↬ 𝑃 assertion is itself defined using ghost state, using the fact that Iris ghost state
is higher-order, in the sense that it is mutually defined with Iris propositions.

Using these assertions, we can write concrete proofs for synchronisation in-
volving thread-local dependencies, as sketched in Figure 5.7, without relying on the

87 5.3. Key Ideas

1
{
𝑟1

r↦→ _ ∗ 𝑅0
}

// 𝑆1
2 𝑎: 𝑟1 := ldr [𝑥]
3

{
∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ (𝑎 ↬ (𝜑 𝑣1)) ∗ 𝑅0

}
// 𝑆2

4 𝑏: str [𝑦] 𝑟1 (𝑅0 ∗ 𝜑 𝑣1) ⇛ (𝜓 𝑣1)
5

{
𝑟1

r↦→ 𝑣1@{𝑎}
}

// 𝑆3

Figure 5.7: Proof sketch for a plain-access (non-release/acquire) version of Figure 5.5.
The flow implication is on line 4.

program-order strength of release-acquire reasoning we illustrated in Figure 5.5.
(This proof sketch is more complicated than needed for LB+datas, which has a very
simple proof just asserting all writes write 0, but it generalises to variations of LB, as
we show in Section 5.5.) The initial logical state of the thread on line 1, 𝑆1, includes
a register points-to for 𝑟1 containing unknown, irrelevant data, which we write with
an underscore: 𝑟1 r↦→ _, and some potential extra logical state 𝑅0. The load 𝑎 reads
some value 𝑣1, so now we have 𝑟1 r↦→ 𝑣1@{𝑎} and 𝑎 ↬ (𝜑 𝑣1). When performing
the store 𝑏 on line 4, the proof rule requires us to establish the corresponding flow
implication. Because the store has a data dependency on 𝑎, we get to use not only
the ambient 𝑅0, but also the 𝜑 𝑣1 tied to 𝑎, to establish (because this is a store) the
protocol for 𝑣1 for 𝑦,𝜓 𝑣1. The flow implication for 𝑏 that the proof rule requires us
to establish is thus (𝑅0 ∗ 𝜑 𝑣1) ⇛ (𝜓 𝑣1).

If the data dependency between 𝑎 and 𝑏 is removed (so the store, e.g. now of a
constant, can execute early, and hence the relaxed LB behaviour of Figure 5.1, where
both reads read a non-zero value, is allowed by Arm-A), then the proof does not
go through anymore, as desired, because the flow implication for 𝑏 no longer has
𝜑 𝑣1 available. This illustrates how our assertions allow us to soundly use ghost
state to reason about relaxed architectures exhibiting load buffering and intra-thread
concurrency.

Framing We are separating resources flowing from different sources to different
targets by necessity. Relatedly, one of the points of separation logic is allow separate
resources to flow side-by-side, for convenience (specifically, for modularity). In the
example of Figure 5.6, reasoning about 𝑐 is not allowed to use the resource from 𝑏,
only from 𝑎 — thanks to framing, it does not need to mention the resource from 𝑏

either (similarly, reasoning about 𝑑 is not allowed to use the resource from 𝑎, and
does not need to mention them either). In addition to framing a tied resource off, we
also support splitting tied resources, so that given an instruction that merely needs
𝑎 ↬ 𝑃 , we can split 𝑎 ↬ (𝑃 ∗𝑄) into (𝑎 ↬ 𝑃) ∗ (𝑎 ↬ 𝑄) and frame the latter off, as
in Figure 5.8, see Section 5.6.5.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 88

𝑎: 𝑟 := ldr [𝑥]{
𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ (𝑃 ∗𝑄)

}{
𝑟 r↦→ 𝑣@{𝑎} ∗ (𝑎↬𝑃) ∗ (𝑎↬𝑄)

}{
𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑃

}
𝑏: str [𝑦] 𝑟 // uses 𝑃{

𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤
}{

𝑟 r↦→ 𝑣@{𝑎}
}{

𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑄
}

𝑐: str [𝑧] 𝑟 // uses 𝑄{
𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤

}
Figure 5.8: Splitting tied resources

5.3.2 The Second Problem: Operationalising the Relaxed Arm-A Model

The next challenge is that of selecting – or developing – a version of the Arm-A
concurrency architecture to underlie the soundness proof for our logic. A priori,
one might use existing abstract-microarchitectural operational [Pulte et al., 2018],
axiomatic [Pulte et al., 2018], or Promising-Arm [Pulte et al., 2019] models, which are
proved equivalent (for the features covered by all). We would like to express the logic
as an instantiation of Iris [Jung et al., 2018b, 2015], an expressive separation logic
framework, to get the benefits of its higher-order ghost state, guarded recursion, and
existing mechanisation. That requires the underlying semantics to be phrased as a
small-step operational semantics, for the logical setup for higher-order ghost state
to apply, and it should work ‘enough’ along program order for the soundness proof
of our syntax-directed proof rules to be tractable.

The abstract microarchitectural operational model is explanatory, based on
hardware intuition, and it is operational, but it is in this respect too close to hardware,
with explicit out-of-order execution; it also splits memory reads and writes into
multiple fine-grained events. The axiomatic model as normally presented is not
straightforwardly operational: phrased as acyclicity requirements on the ob and
certain other derived relations of a whole-program complete candidate execution,
expressed using relational algebra with fixpoints over basic relations po, data, rf, etc.
One might imagine constructing an operational model from the axiomatic model
by fiat, with a state that is a set of events, and steps that add an arbitrary event and
recheck the axiomatic-model validity predicate, but for Arm-A (and similarly RISC-V
and IBM Power), because po ∪ rf is not acyclic, this cannot straightforwardly follow
program order, as reads would have to sometimes read from events that have not yet
been introduced. One might follow ob, but that would be at odds with the structure
of the soundness proof. Or one might permit such reads to read new symbolic values,
and propagate those through the instruction semantics, but that adds substantial

89 5.3. Key Ideas

complexity.
Instead, we develop a novel operationalisation of the axiomatic memory model

in a mixed operational-axiomatic style (Section 5.4), our second key idea. This opax
semantics is sufficiently close to a small-step operational semantics that it is not too
difficult to instantiate the Iris logical framework to it, it works enough along program
order for the soundness proof of our syntax-directed proof rules to be tractable, and
it remains manifestly equivalent to the reference axiomatic model.

Executions in our opax semantics are with respect to an ambient complete candid-
ate execution graph that satisfies the axiomatic model validity predicate (but uncon-
strained by the thread-local ISA semantics), which is picked non-deterministically
at the start. The semantics executes threads individually: there is no substantive
interleaving, nor interaction directly between threads, only between single threads
and the ambient memory graph. The instructions of each thread execute in order,
keeping only thread-local state – the next memory event identifier, the contents of
registers, sources of control dependencies, etc. Each instruction acts as an assertion
about the existence of a corresponding memory event at a particular position in the
ambient execution graph, and the thread is stuck if an appropriate memory event
does not exist in the graph (in which case that specific execution is stuck in the
opax semantics, but of course the assembly program itself does not get stuck). This
explicitly manipulates a non-thread-local graph; but in the logic, we manage to hide
this non-thread-locality in normal cases (as we show in Section 5.5).

Candidate graphs in which one or more thread(s) get stuck are simply ignored.
This is unusual: getting stuck is not an error; it indicates rather that this particular
graph is not consistent with the thread-local semantics of instructions. This was
inspired by a related approach taken for the Islaris logic [Sammler et al., 2022] for
reasoning about sequential Arm-A machine-code, which faced a similar challenge in
that rather different context2. In a sense, this opax model is merely permuting the
order of the usual construction of the axiomatic model: it starts by guessing a valid
execution graph (that is, an execution graph that follows the constraints), and then
checks that each thread’s contribution in the graph does indeed correspond to an
execution of the thread.

One could instead try to work directly over Promising-Arm [Pulte et al., 2019],
which is also operational enough for our current purposes in the above senses.
In Promising-Arm, apart from promises of future writes (which can all be done
at the start of execution, and which also inspire our up-front nondeterministic
choice of graph) each thread executes in program order; threads interact through a
linear history of writes, keeping track of certain integer timestamps (indices into the
history of writes), which constrain how instructions can interact with the history.
Timestamps keep track of lower bounds on the sources of register values (and some

2To reason above the full Arm-A ISA semantics without being overwhelmed with irrelevant detail,
Islaris simplified the semantics of each instructionwith respect to chosen assumptions, e.g. about Arm-A
system register values and alignment facts, using Isla SMT-assisted symbolic execution [Armstrong
et al., 2021]. The resulting symbolic traces contain asserts on some paths, which (when they fail to hold)
discard those paths from the instruction semantics – which the Islaris instantiation of Iris exploits.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 90

whole-thread bounds for barriers), abstracting the set of source events for each.
These integer timestamps might be technically easier to work with than graphs, but
we found the explicit nodes with explicit edges of the axiomatic model helpful in
developing our model of assertions. In a sense, our opax semantics is a reformulation
of an axiomatic model made to look more like a promising model, but with the
advantage that changes to the axiomatic model apply directly.

Note that, while our opax semantics technically qualifies as an operational
semantics, it falls short of most usual expectations of such. In particular, there is no
reasonable sense in which it is executable.

By putting an axiomatic model in the required shape, we need a non-standard
definition of weakest precondition (Section 5.6.5) and a non-standard proof of ad-
equacy (Section 5.7) (even more so as our threads are executed independently), but
we still benefit from more fundamental Iris features like higher-order ghost state,
which one would not want to reconstruct.

Developing a separation logic directly over an axiomatic memory model has
previously been done either using a non-standard semantics of assertions (e.g. RSL,
FSL, and GPS, which, as noted by Kaiser et al. [Kaiser et al., 2017, §1.2], requires
significant effort), or by defining an equivalent, operational model (e.g. iGPS [Kaiser
et al., 2017] and ORC11 [Dang et al., 2020]), which is challenging when the model
allows very relaxed behaviour.

5.3.3 The Third Problem: Structuring the Adequacy Proof

Finally, given a proof in AxSLArm using our new assertions, we then need an adequacy
theorem (Section 5.7), which, given a family of thread-local proofs in our logic, gives a
statement about a whole program in themeta-logic, soundw.r.t. the Arm-A semantics.
To prove such an adequacy theorem, we need to address a tension between our proof,
which is syntax-directed, and therefore in program order, and synchronisation, which
is along rf — even though there can be cycles in po ∪ rf, which prevents doing an
induction on it. Our third key idea is that, to solve this tension, we can split
the proof of adequacy in two phases: first along po, and then along ob. The first
phase, along po, uses thread-local resources to establish, for each thread, and for
each memory event of that thread, that the flow implication for that event holds.
The second phase, along ob, stitches the flow implications together. For example,
this second phase walks through the thread of Figure 5.6 twice, for the two disjoint
components of ob: once from 𝑎 to 𝑐 , and once from 𝑏 to 𝑑 (with both orderings being
possible).

5.4 The Languages

As the focus of this paper is on real-world concurrency rather than realistic in-
struction set architectures, we consider a simplified assembly language, TinyArm,
in which to write simple Arm-A concurrency-model programs. However, we give
its semantics by elaborating it into the outcome interface type of Sail [Gray et al.,

91 5.4. The Languages

2015][Pulte et al., 2018, §6.1][Pulte, 2018, §2.3] (Section 5.4.1), translating instructions
into sequences of their semantic “microinstructions”: primitive register and memory
accesses, and Arm-A fences. These are what our logic actually reasons about. Using
our basic rules for the interface events, we then give high-level rules for our toy
instructions. This means the logic should extend naturally to the full Sail semantics
for a large fragment of the Arm-A instruction-set architecture (ISA), using either
the Sail-generated Coq/Rocq definitions for the ISA, or (as in Islaris [Sammler et al.,
2022]) the output of the Isla symbolic evaluator for Sail [Armstrong et al., 2021],
both of which express the intricate real semantics of instructions in terms of that
same outcome interface type.

Our simplified language is shown in Figure 5.9. Loads and stores are paramet-
erised by an ordering strength, os, either plain, release/acquire, or weak-acquire, and
a variety, vr : non-exclusive or exclusive. The output register of a store is used only
for the success/fail value of a store exclusive; a dummy register is used for other
stores.

Besides TinyArm, Figure 5.9 also depicts the syntax of TinySc, an even simpler
language in which we write concurrent programs for a sequentially consistent (SC)
memory model. We use this compact language to demonstrate the core idea of opax
which is the formal foundation that two logics in Section 5.5 build upon. TinySc
is syntactically a sublanguage of TinyArm, where we elide the os and vr and omit
the barriers. Therefore, in the rest of this section, we present their semantics by
detailing one and then merely explaining how the other relates to it.

5.4.1 The Elaboration Semantics of Instructions into the Sail Outcome
Interface

The Sail outcome interface defines the intra-instruction semantics for each instruc-
tion, independently from the behaviour of registers and memory. It does this in terms
of abstract microinstructions, formally a free monad of effects on outcomes, with
constructors RegRead, RegWrite, MemRead, MemWrite, etc. Each of these takes
the appropriate arguments, and the free monad constructor Next pairs it with a con-
tinuation which takes any register or memory read result and gives the subsequent
intra-instruction semantics.

We show how to elaborate TinyArm instruction using the interface, especially
how to handle Arm’s architectural dependencies, and then how to reuse the elabora-
tion for TinySc instructions by merely ignoring those Arm specifics.

The Elaboration of TinyArm Instructions

Given an ordering strength os, a variety (exclusive or non-exclusive) vr , and address
𝑥 , and dependencies 𝑑 ∈ Dep ≜ 𝑃 (Reg)×𝑃 (𝑁) (composed of register dependencies r,
and intra-instruction event dependencies m),MemRead os vr 𝑥 𝑑 has type (roughly)
Outcome Word, wrapped in the instruction monad IMon 𝐴 which has constructors
Next𝑇 : Outcome 𝑇 → (𝑇 → IMon 𝐴) → IMon 𝐴 and Ret :𝐴 → IMon 𝐴. Rather

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 92

𝑖TinyArm ::= instructions
nop
| 𝑟 := 𝑡 register assignment
| br x branch to address x
| bne 𝑡 x conditional branch
| 𝑟 := ldros,vr [𝑡addr] memory load
| 𝑟 := stros,vr [𝑡addr] 𝑡data memory store
| dmb sy | dmb st | dmb ld | isb Arm-A fences

𝑟 := ldr [𝑡addr] ≜ 𝑟 := ldrplain,nexcl [𝑡addr]
𝑟 := ldar [𝑡addr] ≜ 𝑟 := ldrrelacq,nexcl [𝑡addr]
stlr [𝑡addr] 𝑡data ≜ 𝑟 := strrelacq,nexcl [𝑡addr] 𝑡data

𝑟 ∈ Reg ≜ {𝑟0, 𝑟1, . . .}
𝑣, x ∈ Word ≜ 0..264 − 1
op ::= + | − | ×
os ::= plain | relacq | weakacq
𝑡 ::= 𝑣 | 𝑟 | 𝑡1 op 𝑡2
vr ::= nexcl | excl

𝑖TinySc ::= nop | 𝑟 := 𝑡 | br x | bne 𝑡 x | 𝑟 := ldr [𝑡addr] | 𝑟 := str [𝑡addr] 𝑡data

Figure 5.9: Instructions and syntactic sugar of TinyArm and TinySc

than give an exhaustive definition, we sketch how a few special cases of our instruc-
tions elaborate into (a meta-level Coq program over) this Sail outcome interface in
Figure 5.10. A plain, non-exclusive load 𝑟 := ldr [𝑡addr], into register 𝑟 from address
𝑡addr, elaborates into a plain (and non-exclusive) memory read from that address
with address dependencies given by the auxiliary function DJ−K (in our simplified
language, dependencies can be computed from the syntax), the value of which is
bound to 𝑣 , followed by a register write to 𝑟 of 𝑣 with dependencies ⟨∅, {0}⟩ meaning
that the register write has no register dependency and a dependency on the 0th
MemRead of the instruction. See the corresponding reduction rule A-reg-write of
our semantics in Section 5.4.3 for how the real dependencies are computed from this
bookkeeping type Dep. Finally, the elaboration is followed by a program counter
increment (which we write with a bind >>= to be systematic).

A non-exclusive store release stlr [𝑡addr] 𝑡data, at 𝑡addr of 𝑡data, elaborates into
the elaboration of the evaluation of terms 𝑡addr and 𝑡data to some 𝑥 and 𝑣 , using the
auxiliary function TJ−K, followed by a release (and non-exclusive) memory write to
𝑥 of 𝑣 with address data dependencies and again a PC increment (the dummy register

93 5.4. The Languages

J𝑟 := ldr [𝑡addr]K ≜ TJ𝑡addrK >>= 𝜆𝑥 .Next (MemRead plain nexcl 𝑥 (DJ𝑡addrK))
(𝜆𝑣 .Next (RegWrite 𝑟 𝑣 ⟨∅, {0}⟩) (𝜆() . Ret ())) >> IncPC

Jstlr [𝑡addr] 𝑡dataK ≜ TJ𝑡addrK >>= 𝜆𝑥 .TJ𝑡dataK >>= 𝜆𝑣.
Next (MemWrite rel nexcl 𝑥 𝑣 (DJ𝑡addrK) (DJ𝑡dataK))
(𝜆() . Ret ()) >> IncPC

Jbne 𝑡 xK ≜ TJ𝑡K >>= 𝜆𝑣.Next (BranchAnnounce 𝑥 DJ𝑡K)(
𝜆(). if 𝑣 = 0 then IncPC

else Next (RegWrite pc x ⟨∅, ∅⟩) (𝜆() . Ret ())

)
IncPC ≜ Next (RegRead pc) (𝜆𝑣.Next (RegWrite pc (𝑣 + 4) ⟨∅, ∅⟩)

(𝜆() . ()))

TJ𝑣K ≜ Ret 𝑣
TJ𝑟K ≜ Next (RegRead 𝑟) Ret
TJ𝑡1 op 𝑡2K ≜ TJ𝑡1K >>= 𝜆𝑣1. TJ𝑡2K >>= 𝜆𝑣2. Ret (𝑣1OJopK 𝑣2)
DJ𝑣K ≜ ∅
DJ𝑟K ≜ {𝑟 }
DJ𝑡1 op 𝑡2K ≜ DJ𝑡1K ∪ DJ𝑡2K

Figure 5.10: A few cases of the elaboration of TinyArm into the outcome interface
(eliding some details), where ldr is the syntactic sugar of ldrplain,nexcl and stlr is the
syntactic sugar of strrel,nexcl. The computation of intra-instruction dependencies is
highlighted.

is not mentioned). We use the Sail interface BranchAnnounce outcome to capture
dependencies of branches, which we elaborate into evaluation of their condition,
followed by, depending on whether the condition holds (using the conditional of the
meta-language), either a write of the given address x to the program counter, or a
normal program counter increment.

The Elaboration of TinySc Instructions

We just reuse the elaborations of plain, non-exclusive load and store of TinyArm as the
elaborations of load and store of TinySc respectively, and identical elaborations for
other shared instructions. The elaboration is further simplified by ignoring register
dependencies (defining DJ−K to 𝜆_. ∅), since register dependencies do not matter for
SC. For the sake of simplicity, we omit the constant arguments of microinstructions,
and for example only write MemRead 𝑥 for MemRead plain nexcl 𝑥 ∅, when we
present the microinstructions for TinySc.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 94

5.4.2 The Conventional Axiomatic Concurrency Model Semantics

A program working over the Sail outcome interface can then be glued onto a memory
model, either operational, axiomatic, or promising. For an axiomatic memory model,
this is usually done by recursively computing the set of thread-local instruction-
semantics pre-executions of (the control-flow unfoldings of) each thread, allowing
arbitrary concrete values for register andmemory reads, and then taking the cartesian
product of these sets, which ensures that all the pre-executions are consistent with
(the instruction semantics of) the program. For each such pre-execution, one enu-
merates the set of candidate executions, decorating the pre-execution with rf and co
relations (unconstrained except for some well-formedness properties). Finally, one
filters those with the axiomatic-model validity predicate.

5.4.3 Our Opax Concurrency Model Semantics

As discussed in Section 5.3.2, it is not clear how to define a syntax-directed program
logic over this axiomatic style of semantics. Hence, we reformulate the combination
of axiomatic model and instruction semantics in our novel opax semantics, mixing
operational and axiomatic styles. We first present the language-agnostic shape of this
new style of semantics, and then give concrete opax semantics definitions for TinySc
and TinyArm. Similarly to how the instruction elaboration of TinyArm extends the
instruction elaboration of TinySc with bookkeeping, the instantiation of TinyArm as
an opax semantics extends the instantiation of TinySc with bookkeeping local states
for register dependencies, etc.

Opax Candidate Executions

Unlike the conventional definition of candidate execution, an opax candidate ex-
ecution has a different meaning. It consists of the usual events and relations, but
we swap the validity check with the program consistency check. That is, an opax
candidate execution has to be well-formed and satisfies the axiomatic-model validity
predicate, but is not assumed to be consistent with a program. We define it using
the outcome interface. Formally, an opax candidate execution (graph) X comprises
a collection of events in the form of a function lab from event IDs (of type Eid) to
events, and various relations between events of type Eid × Eid, where an event is
of type Outcome 𝑇 ×𝑇 , that is, a pair of an outcome request and its response. The
validity predicate usually consists of acyclicity requirements on compound relations
(defined using base relations), and differs from model to model. The well-formedness
condition for relations is standard, except for po, for which the constraint depends on
the implementation of Eid (we elaborate on this soon). The semantics of a program
is then defined as the set of opax candidate executions consistent with the program.
We give two formal instantiations following this new notion below.

95 5.4. The Languages

Opax Candidate executions of SC An opax candidate execution for SC is defined
as

X ≜ ⟨lab, po, rf, co, fr, sc⟩
with reads of arbitrary values and writes of values, and with arbitrary reads-from (rf),
coherence (co), and fr (equivalent to rf−1; co) relations between them. The validity
requirement is the acyclicity of sc ≜ po ∪ rf ∪ co ∪ fr, where 𝑒 sc 𝑒′ means event 𝑒
happens before 𝑒′.

Opax Candidate executions of Arm-A An opax candidate execution for Arm-A
is defined as

X ≜ ⟨lab, po, rf, co, fr, ctrl, addr, data, rmw, . . . (compound relations)⟩

with new ctrl, data, and addr dependencies, and rmw base relation for exclusives.
The compound relations and validity requirements are defined in Figure 5.4.

The Shape of the Opax Semantics

The opax semantics works in two phases. In the first phase, execution of a whole
program starts by guessing a complete opax candidate execution graph X for the pro-
gram. This execution graph is well-formed and valid, but is otherwise unconstrained,
and in particular is for now unrelated to the program itself.

In the second phase, each thread is executed independently: interaction happens
only via the execution graph. For simplicity, we assume a fixed instruction memory
𝐼 , which is simply a map from addresses to opcode values, and 𝑛 threads, with initial
program counter values 𝑐1, . . . , 𝑐𝑛 . (Instruction fetching could be accurately modelled
in the memory model, as per Simner et al. [Simner et al., 2020], but this would lead
to significant complexity.)

Each thread state s is either Ctd 𝐶 (“continued”), which represents an ongoing
thread execution, or Done 𝑇 , which represents a completed thread execution. Here
𝐶 is a tuple ⟨𝑝,𝑇 ⟩ where 𝑝 is the remaining microinstruction program in the Sail
outcome interface for the current instruction, and 𝑇 is the thread state which is
dependent on the language and the concurrency model.

For each thread tid, 𝑠init(𝑐tid) is its initial thread state, with pc set to 𝑐tid and
microinstruction program Ret () (before the first instruction has started). Execution
of a thread terminates when it has finished execution of the current microinstruction
program and the program counter points outside of instruction memory. Thread
transitions 𝑠 tid,X ,𝐼−−−−−→h 𝑠

′ are indexed by the thread ID, execution graph, and instruction
memory, and are deterministic.

Successful whole system execution requires each thread to execute to completion
independently:

Whole-system-execution
(𝑠init 𝑐1)

1,X ,𝐼−−−→∗
h Done ⟨_⟩ . . . (𝑠init 𝑐𝑛)

𝑛,X ,𝐼−−−−→∗
h Done ⟨_⟩

⟨𝑐1 ∥ . . . ∥ 𝑐𝑛, 𝐼 , X⟩ −→tp ✓

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 96

It is worth-noting that the only source of non-determinism is the guessing step;
all following thread-local reductions are deterministic. A similar pattern appears in
operational semantics with a quantified scheduler, where picking the scheduler is
non-deterministic, and the interleaving is determined by the scheduler.

A stuck thread is not an error state: it rather indicates that the guessed graph
does not correspond to this program. RuleWhole-system-execution of our semantics
ignores these wrongly guessed graphs, leaving only the execution graphs of the
program.

In the rest of this subsection, we give the instantiations of the opax semantics
for the two languages. We start with the semantics of TinySc, which is compact and
makes it easy to demonstrate the core idea, and then show the semantics of TinyArm,
explaining how to handle the complexities that come with Arm-A: access kinds and
dependencies.

Opax Semantics for TinySc

For TinySc, we instantiate thread state 𝑇 with a tuple ⟨regs, IT ⟩ to track a register
state regs - a finite map from register names to values - and an intra-instruction state
IT which comprises a thread local event counter cntr .

We sketch selected rules of the thread operational semantics in Figure 5.11. A
thread executes by executing the current microinstruction program until it ends, at
which point all microinstructions of the current instruction must have been executed
(checked by instr-done), and then (rule S-reload) fetching the next instruction at the
address in register pc by looking it up in 𝐼 , and decoding it into a newmicroinstruction
program. The program execution terminates when pc is outside the instruction
memory (rule S-term), at which point there must not be further events by this thread
in the graph (checked by prog-done).

The event identifier of the current microinstruction 𝑒 = ⟨tid, IT .cntr⟩ comprises
a thread identifier (zero being reserved for the ‘initial’ thread that contains all the
initial writes), and the event counter IT .cntr which is an ordered pair comprising an
instruction counter and an intra-instruction event counter.

AMemReadmicroinstruction can execute (rule S-mem-read) only when there is a
corresponding memory read event in the execution graph; otherwise, this instruction
(and thus this thread) is stuck. This event has to have the appropriate po edges to
it. To check po edges, the intra-instruction counter of IT .cntr gets incremented
with next-e after executing every microinstruction; the instruction counter gets
incremented with next-i, which additionally resets the intra-instruction counter
when finishing up an instruction (in S-reload). po edges are special, in the sense
that a po edge between two non-initial events can be checked for by determining
whether their identifiers have same thread id and their local event counter values
are lexicographically ordered. This is part of the well-formedness condition of the
execution graph. This indicates that we do not need to explicitly check if there is a
po edge between two events in the graph – we only need to increment the counters
correctly.

97 5.4. The Languages

S-mem-read
X .lab(𝑒) = R x 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (MemRead x) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 𝑣, ⟨regs, next-e(IT)⟩⟩

S-mem-write
X .lab(𝑒) = W x 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (MemWrite x 𝑣) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 (), ⟨regs, next-e(IT)⟩⟩

S-reg-write
X .lab(𝑒) = RegW 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (RegWrite 𝑟 𝑣) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 (), ⟨regs[𝑟 ↦→ 𝑣], next-e(IT)⟩⟩

S-reg-read
X .lab(𝑒) = RegR 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩ regs(𝑟) = 𝑣

Ctd ⟨Next (RegRead 𝑟) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 (), ⟨regs, next-e(IT)⟩⟩

S-reload
regs(pc) = x 𝐼 (x) = opcode decode(opcode) = 𝑝 instr-done(X , IT .cntr)

Ctd ⟨Ret (), ⟨regs, ?𝑅, IT ⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝑝, ⟨regs, next-i(IT)⟩⟩

S-term
regs(pc) = x x ∉ dom(𝐼) prog-done(X , IT .cntr)

Ctd ⟨Ret (), ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→h Done ⟨regs, IT ⟩

Figure 5.11: Selected reduction rules of opax semantics for TinySc

A RegWritemicroinstruction can similarly execute (rule S-reg-write) only when
there is a corresponding register write event in the execution graph. The graph
register write event needs to agree with the thread-local register state regs on the
value of the write. (This register event is not used in the axiomatic memory models
for either SC or Arm-A, because the former does not need it and the latter instead uses
primitive dependency relations, but the interface includes it to support operational
models and other axiomatic models.)

Opax Semantics for TinyArm

We define the opax semantics for TinyArm by extending the TinySc semantics with
instrumentation to track Arm-A dependencies and access kinds. Concretely, we first
extend the thread state𝑇 with the set srcsctrl of sources of control dependencies, and
the previous exclusive read event 𝑒rmw. Then, we augment every register in regs with
dependency information alongside its value. Finally, we add the list of identifiers of
intra-instruction read events seen so far mrd as a new field of IT .

The two selected rules in Figure 5.12 illustrate how these extensions check
dependency edges. A non-exclusive MemRead microinstruction now has to have
the appropriate addr and ctrl edges to it (rule A-mem-read-nexcl), as checked using

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 98

the thread state (the set of data dependencies 𝑑addr and the control dependency
sources srcsctrl respectively). Unlike how we treat po, here we have to check if those
dependency edges exist in the graph explicitly. The event ID 𝑒 is appended to the
intra-instruction memory read list IT .mrd by auxiliarly function intra-read-app, so
that later register microinstructions can obtain 𝑒 by providing a position in the list
to check a dependency from 𝑒 if the register value is computed from the read value
𝑣 (we demonstrate this with the elaboration of load in Figure 5.10 in the following
paragraph).

A RegWrite microinstruction (rule A-reg-write) now also updates the depend-
ency of the register 𝑑reg for the local registers in regs. The dependency 𝑑reg is a set
of event identifiers computed from two sources tracked with 𝑑 : the union of the
dependencies of every register in 𝑑.r (the left iterated union), and intra-instruction
event dependencies that are memory reads whose indices are in 𝑑.m (the right it-
erated union). For instance, in the elaboration of load in Figure 5.10 where 𝑑 is
instantiated to ⟨∅, {0}⟩, 𝑑reg is computed to be {𝑒} when IT .mrd is [𝑒] (that is, we
take the 0th event from the list), where 𝑒 is the event ID of the memory read event
preceding the register write. Therefore, we conclude that the data of the register 𝑣
comes from 𝑒 , and update regs accordingly.

A-mem-read-nexcl
X .lab(𝑒) = Ros,nexcl x 𝑣 𝑒 = ⟨tid, IT .cntr⟩ {⟨𝑒𝑑 , 𝑒⟩ | 𝑒𝑑 ∈ srcsctrl} = to(𝑒,X .ctrl)

{⟨𝑒𝑑 , 𝑒⟩ | 𝑟 ∈ 𝑑addr.r ∧ regs(𝑟) = ⟨_, srcs𝑑⟩ ∧ 𝑒𝑑 ∈ srcs𝑑 } = to(𝑒,X .addr)
intra-read-app(IT , 𝑒) = IT ′

Ctd ⟨Next (MemRead os nexcl x 𝑑addr) 𝐾, ⟨regs, srcsctrl, ?𝑅, IT ⟩⟩
tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 𝑣, ⟨regs, srcsctrl, ?𝑅, next-e(IT ′)⟩⟩

A-reg-write
X .lab(𝑒) = RegW 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩

𝑑reg =
©­«

⋃
{srcs𝑑 | 𝑟 ∈𝑑.r∧regs (𝑟)=⟨_,srcs𝑑 ⟩}

srcs𝑑
ª®¬ ∪

(⋃
i∈𝑑.m

{IT .mrd [𝑖]}
)

Ctd ⟨Next (RegWrite 𝑟 𝑣 𝑑) 𝐾, ⟨regs, ?𝑅, IT ⟩⟩
tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 (), ⟨regs[𝑟 ↦→ ⟨𝑣, 𝑑reg⟩], ?𝑅, next-e(IT)⟩⟩

Figure 5.12: Selected reduction rules of our operationalised semantics. We write ?𝑅
to stand for the rest of a 𝑅. We write to(𝑒,R) for the set of edges of type R with target
𝑒 . The instrumentation to deal with Arm dependencies is highlighted in yellow.

Stuckness

The guessing step and the fact that executions can get stuck mean that this model
is not executable as such, but this is not problematic for a logic. First, we discard
stuck executions by assuming unstuckness in the definition of weakest preconditions.
Second, the guessing does not appear in the definition of weakest preconditions,
which takes the guessed graph as a parameter; instead, the guessing is handled by a

99 5.5. The Logics

quantification in the adequacy theorem, when the proofs of the individual threads
are combined.

Infinite Executions

Handling infinite executions in memory models exhibiting load buffering is currently
an open problem. The problem manifests in axiomatic models in the form of an
infinite regress, where an event is justified by a program-order-later event, itself
justified by another program-order-later event, ad infinitum, without an eventual
grounding, but because this is not a cycle, most axiomatic models do not reject
this kind of execution. The same underlying problem appears in the promising and
operational models of Arm-A under a different guise. We do not attempt to tackle
this problem, and our opax semantics sticks to the axiomatic model as-is.

5.5 The Logics

The goal of this section is to build up to AxSLArm. We do this incrementally, introdu-
cing two intermediate logics to explain the different building blocks of AxSLArm.

(1) We start by tackling only the challenge of defining a logic on top of an opax
semantics, and illustrate it with our first logic: AxSLSC. We start from a simple
setting: sequentially consistent (SC) concurrency: the question here is how to deal,
in a logic like Iris, with a fixed execution graph representing the shared memory. This
is merely the first step: AxSLSC is built on the right foundations (namely, an opax
semantics) to scale to relaxed concurrency, but it still bakes in too much ordering in
its structure.

(2) We then move on to describe our novel style of assertions compatible with
relaxed memory, and illustrate it with our second logic: AxSLSCExt, a logic with
both foundations and an assertion style compatible with relaxed concurrency. For
simplicity, AxSLSCExt stays in the context of sequential consistency, but follows
the fine-grained resource management style sketched in Section 5.2. In particular,
AxSLSCExt employs ‘tied-to’ assertions and flow implications in order to be compatible
with relaxed concurrency.

(3) Finally, we present AxSLArm, our logic for the relaxed memory of Arm. The
final challenge is to deal with the subtleties of such a memory model: syntactic
dependencies, external vs. internal reads, exclusives, etc.

For each of the three logics, we present a selection of its proof rules followed by
examples. The proof rules (and the Hoare triples used in them) of the three logics are
defined at two abstraction levels: the underlying rules are for microinstructions, and
are proven sound against the semantics of Hoare triples described in Section 5.6.5,
while the high-level rules explicitly used in proofs of programs are for the surface
instructions of Figure 5.9, derived from the former by reasoning about instruction
elaboration (Section 5.4.1). Before diving into the three logics, we first discuss the
resource transfer mechanism that they employ.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 100

5.5.1 Resource Transfer with Protocols

Concurrent separation logic (CSL) uses invariants to share and transfer resources.
However, invariants are unsound in the context of relaxed concurrency [Dang et al.,
2020; Turon et al., 2014]. Intuitively, this is because, with relaxed concurrency,
threads may have different views on the shared memory, thus owning potentially
inconsistent resources describing those views, while classic CSL invariants require
the transferred resources to be consistent across all threads.

Furthermore, even though invariants have been shown to work well with heap
reasoning, it is unknown how they work in conjunction with graph reasoning. Recall
that in CSL, to share memory resources (e.g. some points-tos), one usually allocates
some invariant with them, and then distributes the duplicates of the invariant to the
threads. The threads then may obtain the ownership of the resources (temporarily)
by opening the invariant for loading and storing. In the graph-based approach
that we present in this section, one is not required to own any shared memory
assertions to access the shared memory; instead, one makes assertions about the
graph representing memory. It is not clear to us how this can be made to work with
invariants, in particular how to make connections between the newly-gained graph
assertions and the resources shared by invariants.

In AxSL, we instead, inspired by previous relaxed memory logics including RSL
andGPS, use a notion of protocol for resource transfer (compatible with the invariants
we use for exclusives in Section 5.5.7). A protocol Φ is a rely/guarantee-style protocol
that enables thread-local reasoning by expressing the intended resource transfer
across an entire program. For each location 𝑥 , Φ(𝑥), referred to as a per-location
protocol, is a simple variant of the per-location invariants of GPS. (For simplicity, we
only consider static protocols with a single state) We discuss their relation in detail
in Section 5.9. Our Hoare triples are simply parametrised by this fixed protocol,
which should be agreed upon by all threads.

Our triples ensure the protocol Φ(𝑥) holds at every event involving location 𝑥 ,
which enables resource transfer between those events. In particular, as we will see
in the proof rules, every read event of 𝑥 obtains the resource specified by Φ(𝑥) from
the external write that it is reading from, and every write must supply that resource.
A protocol for 𝑥 takes as arguments a value 𝑣 and an event ID 𝑒 . The event ID 𝑒 is
associated with the write event that fullfills the protocol. This event ID argument 𝑒
is used for explicit reasoning about the execution graph, as illustrated in the message
passing example below. For example, it makes it possible to state “there exists a
write to a certain address of a certain value that is lob-before 𝑒” using our library of
graph ghost state properties. For simpler cases, this last argument can be elided, as
we have so far.

5.5.2 Dealing with Opax Semantics: The AxSLSC Logic

AxSLSC is a thin logical layer above our opax semantics of TinySc. It essentially
exposes all the details of the opax semantics to the users of the logic, which gives the

101 5.5. The Logics

logic an unique shape and new reasoning principles compared to classic operational-
based CSLs. The distinction primarily comes from the diverging representations of
the shared memory of the underlying semantics. Since the opax semantics guesses a
fixed execution graph upfront, in AxSLSC, we can only deal with persistent knowledge
on graph events and memory orders, rather than the usual points-to assertions
that represent the state of a shared and dynamic heap at individual locations (We
show how to close this gap by recovering points-tos in AxSLSC in Section 5.8.2).
To understand how AxSLSC works, in particular its graph-based compositional
reasoning, we show some of its proof rules, and then verify a message passing
example.

Proof Rules for Microinstructions

SC-ht-micro-memread{
1PoPred(𝑒po) ∗ ∀𝑒, 𝑣, 𝑒𝑤 .

(
2GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) ∗ 3Φ(x, 𝑣, 𝑒𝑤)

⇛ 4𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤, 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

) }
MemRead x{
𝑣 . ∃𝑒, 𝑒𝑤 . 5PoPred(𝑒) ∗ GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) ∗ 𝑃 (𝑒, x, 𝑣, 𝑒𝑤, 𝑒po)

}
tid,Φ

SC-ht-micro-memwrite{
1PoPred(𝑒po) ∗ ∀𝑒. 2GraphFactsW(𝑒, x, 𝑣, 𝑒po) ⇛ 3Φ(x, 𝑣, 𝑒)

}
MemWrite x 𝑣{
() . ∃𝑒. 4PoPred(𝑒) ∗ GraphFactsW(𝑒, x, 𝑣, 𝑒po)

}
tid,Φ

SC-ht-micro-regwrite
{𝑟 r↦→ _} RegWrite 𝑟 𝑣 {() . 𝑟 r↦→ 𝑣}tid,Φ

Figure 5.13: Seleted proof rules of AxSLSC

Figure 5.13 depicts three slightly specialised proof rules for microinstructions
MemRead,MemWrite, andRegWrite. We first explain the rule SC-ht-micro-memread
forMemRead in detail, which is proved sound against the opax rule S-mem-read.

Our microinstruction Hoare triple forMemRead has the form

{𝑃}MemRead x {𝑣 .𝑄}tid,Φ

which states that, for aMemRead on thread tid following protocol Φ, if one provides
the resources specified in the precondition 𝑃 , then the MemRead results in the
updated resources𝑄 of the postcondition, which can refer to the resulting read value
𝑣 passed to the continuation to continue reasoning about the thread. The event ID
of the associated memory read event is existentially quantified in 𝑄 as 𝑒 .

The rule has two main aspects, as do the other low-level rules forMemRead and
MemWrite: low-level graph reasoning, and high-level resource transfer.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 102

First, for directly conducting graph reasoning with respect to the axioms of the
memory model, we use a bookkeeping assertion 1 PoPred(𝑒po) to capture the 𝑒po
parts of the opax thread state𝑇 . Intuitively, the assertion keeps track of the event that
will become the po immediate predecessor of the memory event 𝑒 that associates with
the next microinstruction, and thus allow us to conclude facts about new incoming
po edge 𝑒po po 𝑒 , that is included in GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po). It gets updated
accordingly in the postcondition, as 5 . The predicate 2 GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po)
includes all graph assertions we can conclude for the read event. Besides the incoming
po edge, it also includes an event assertion 𝑒:R 𝑥 𝑣 indicating that the event is assigned
with ID 𝑒 , and another edge assertion 𝑒𝑤 rf 𝑒 to relate the read with the write 𝑒𝑤
that it is reading from. It is worth noting that all graph assertions are persistent
knowledge that can be freely duplicated, which reflects the fact that the graph is fixed
once guessed in opax. Furthermore, we can stop the reasoning (by contradiction)
if some graph facts gathered together imply a violation of the validity predicate
of the axiomatic memory model, since this further implies that we are reasoning
about a graph that does not represent a valid execution result of the program. We
demonstrate this idiom in the message passing example below.

Second, to support high-level reasoning via resource transfer, the precondition
has a user-supplied 4 𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤, 𝑒po) on the right side of an Iris view shift ⇛ (a
separation implication that permits resource update), which also appears in the
postcondition, meaning that 𝑃 is obtained after the read. This view shift constrains
what we can conclude in 4 given the facts about the new read and the protocol
resource 3 received from the write 𝑒𝑤 being read. Note that we have to give back
the same protocol resource Φ after concluding 𝑃 , to ensure that the resource remains
available for other potential reads of the same write 𝑒𝑤 . In a sense, this view shift
allows us to temporarily obtain the ownership of the protocol resource of 𝑒𝑤 at this
memory read, akin to CSL invariants that can only be opened for a single program
step. As we will see later in AxSLSCExt, this view shift is a specialised form of the
notion of flow implication.

The rule SC-ht-micro-memwrite forMemWrite is similar, except that Φ is on the
right side of the view shift, indicating that it is sent away.

The rule SC-ht-micro-regwrite updates a points-to assertion for register 𝑟 to
mirror the change to 𝑇 .regs in the opax rule A-reg-write.

Proof Rules for Instructions

Moving from microinstructions to the instructions composed out of them, we can
write a derived high-level proof rule for each instruction. These high-level rules
can be further specialised to specific programming idioms and their assumptions to
make reasoning practical.

Before looking at the proof rules, we make our treatment of instructions precise.
As usual, reasoning about a machine with instructions in (and fetched from) specific
addresses in memory, rather than a language with an abstract syntax of statements,
causes a slight impedance mismatch with Hoare logic: the thread state does not

103 5.5. The Logics

concrete
addresses

symbolic
addresses

instruction
instances

memory
events

1000:

1000 + 4:

1000 + 8:

𝑎: str [x] 42

𝑏: strrel [y] 1

𝑐: r := ldr [𝑧]

𝑎:W x 42

𝑏:Wrel y 1

𝑐:R z 2

Figure 5.14: Conflating (left columns) a numerical instruction address (1000, 1000+4,
1000+8) with a symbolic instances address (𝑎, 𝑏, 𝑐), and (right columns) an instruction
instance (str [x] 42, ...) with its unique memory event (W x 42, ...).

include instructions, but merely the address of the “current” instruction. However, a
normal-looking Hoare triple can be recovered by using some indirection [Myreen
et al., 2007; Myreen and Gordon, 2007; Myreen et al., 2008][Myreen, 2009, §3.4][Erb-
sen et al., 2021, §4.3][Liu et al., 2023b]. We use Hoare triples for presentation, but use
weakest preconditions in our formalisation. Our Hoare triples for a single instruction
𝑖 are of the form {𝑃} a: 𝑖 {a′: 𝑄}tid,Φ, where a is the address of the instruction, and
a′ is the address of the next instruction. This instruction triple is implemented
using register points-to of pc: the precondition 𝑃 is combined with pc r↦→ a, and 𝑄 is
combined with pc r↦→ a′ for the appropriate a′ — which is a+ 4 (as per the elaboration
of IncPC) except for branch instructions.

For presentation purposes, for programswithout branching (and thus no looping),
we can (as illustrated in Figure 5.14) conflate instruction instances with instructions,
and thus conflate instruction identifiers 𝑎, 𝑏, 𝑐 , etc. with numerical addresses for
instructions in memory 𝑎, 𝑎+4, 𝑎+8, etc. For languages where an instruction instance
leads to a single memory event (as we have so far), we can conflate instruction
instance identifiers withmemory event identifiers. In other cases, we use the counters
of the opax semantics, although they can often be quantified over in reasoning rather
than considered in detail, merely keeping the information that they are smaller than
the current counter (and thus po-before the current event).

For instance, the rule SC-ht-inst-ldr in Figure 5.15 is for a load instruction
at address 𝑎 with an immediate address 𝑥 , which is elaborated into MemRead 𝑥
followed by RegWrite followed by IncPC.

This rule is slightly specialised to only taking an immediate address, and is
derived by a SC-ht-micro-memread followed by and SC-ht-micro-regwrite. Similarly,
one can prove a specialised instruction rule SC-ht-inst-str for a store with immediate
operators by SC-ht-micro-memwrite. We use these two instruction rules in the
message passing example below.

Message Passing

We now demonstrate the graph reasoning capability that opax-based logics have,
and how we achieve local reasoning with protocols, by exercising AxSLSC on a

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 104

SC-ht-inst-ldr{
𝑟 r↦→ _ ∗ PoPred(𝑒po) ∗ ∀𝑒, 𝑣, 𝑒𝑤 .

(
GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

⇛ 𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤, 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

) }
a: 𝑟 := ldr [x]{
𝑎 + 4: 𝑟 r↦→ 𝑣 ∗ ∃𝑒𝑤 . PoPred(𝑎) ∗ GraphFactsR(𝑎, x, 𝑣, 𝑒𝑤, 𝑒po) ∗ 𝑃 (𝑎, 𝑣, 𝑒𝑤)

}
tid,Φ

SC-ht-inst-str{
PoPred(𝑒po) ∗ ∀𝑒.

(
GraphFactsW(𝑒, x, 𝑣, 𝑒po) ⇛ Φ(x, 𝑣, 𝑒)

) }
a: str [x] 𝑣{
𝑎 + 4: PoPred(𝑎) ∗ GraphFactsW(𝑎, x, 𝑣, 𝑒po)

}
tid,Φ

Figure 5.15: Two instruction proof rules with instruction triples. 𝑎 + 4 in the post-
condition indicates the address of the next instruciton.

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str [flag] 1 𝑑 : 𝑟2 := ldr [data]

Figure 5.16: MP in SC: 𝑟1 = 1 → 𝑟2 = 42

message-passing litmus test.
The example has two threads: one sending, and one receiving. The sending

thread writes a value (in this case 42) to a ‘data’ address in order to transfer it between
threads, then writes 1 to a ‘flag’ address to indicate that the data write has been
completed. The receiving thread reads from the flag address to check whether a
message has been passed to it, and then reads from the data location.

Specification We want to be able to prove that if the load of the flag reads 1, then
the load of the data will read 42; formally, 𝑟1 r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ (𝑣 = 1 → 𝑣 ′ = 42).

Picking the protocol The proof sketch of Figure 5.17 relies on extensive graph
reasoning. We first specify the protocol used in the proof. For the data address, we
pick Φ(data, 𝑣, 𝑒) ≜ Initial(𝑒) ∨ 𝑣 = 42, where Initial(𝑒) denotes that the event is an
initial write that necessarily has value 0. It is not possible to require that 𝑣 be 42 in
all cases, because the initial write would then not satisfy the protocol. For the flag
address, we pick

Φ(flag, 𝑣, 𝑒) ≜ Initial(𝑒) ∨
(
𝑣 = 1 ∗ 𝑒:W flag 1 ∗ ∃𝑒′. 𝑒′:W data 42 ∗ 𝑒′ po 𝑒

)
requiring that a non-initial write to the flag address is only allowed if it is a write of
value 1, on the sending thread, which is po after a write of 42 to the data address.

Note that the only information we pass between threads with this protocol are
persistent graph facts. It means that we can always duplicate and keep the complete

105 5.5. The Logics

protocol resources in the thread when reading. With the protocol in hand, we can
give a proof sketch for each thread.

Sending thread:

1
{
PoPred(−)

}
2 GraphFactsW(𝑎, data, 42,−)

⇛
Φ(data, 42, 𝑎) ∗ 𝑎:W data 423

4 𝑎: str [data] 42
5

{
PoPred(𝑎) ∗ 𝑎:W data 42

}
6 GraphFactsW(𝑏, flag, 1, 𝑎) ∗ 𝑎:W data 42

⇛
Φ(flag, 1, 𝑏)7

8 𝑏: str [flag] 1
9

{
PoPred(𝑏) ∗ 𝑎:W data 42 ∗ 𝑏:W flag 1 ∗ 𝑎 po 𝑏

}
Receiving thread:

10
{
PoPred(−) ∗ 𝑟1 r↦→ _ ∗ 𝑟2 r↦→ _

}
11 ∀𝑣, 𝑒𝑤 .GraphFactsR(𝑐, flag, 𝑣, 𝑒𝑤,−) ∗ Φ(flag, 𝑣, 𝑒𝑤)

⇛
Φ(flag, 𝑣, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒𝑤) ∗ 𝑐:R flag 𝑣 ∗ 𝑒𝑤 rf 𝑐12

13 𝑐: 𝑟1 := ldr [flag]
14

{
PoPred(𝑐) ∗ ∃𝑣, 𝑒 . 𝑟1 r↦→ 𝑣 ∗ Φ(flag, 𝑣, 𝑒) ∗ 𝑐:R flag 𝑣 ∗ 𝑒 rf 𝑐

}
15 ∀𝑣 ′, 𝑒𝑤 .GraphFactsR(𝑑, data, 𝑣 ′, 𝑒𝑤, 𝑐) ∗ Φ(data, 𝑣 ′, 𝑒𝑤)

⇛
Φ(data, 𝑣 ′, 𝑒𝑤) ∗ (𝑣 = 1 → 𝑣 ′ = 42)16

17 𝑑 : 𝑟2 := ldr [data]
18

{
PoPred(𝑑) ∗ ∃𝑣, 𝑣 ′. 𝑟1 r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ (𝑣 = 1 → 𝑣 ′ = 42)

}
Figure 5.17: Proof sketch of MP in AxSLSC.

Sending thread On the sending thread, we are required to show first that the data
write 𝑎 satisfies the protocol on data, which we can do straightforwardly because
the right branch of the protocol only requires that the write has value 42. We apply
SC-ht-inst-str twice for the two writes. At the write of the data, we learn PoPred(𝑎)
and 𝑎:W data 42 in line 5. We are then required to show that the flag write satisfies
the flag protocol. We can do so by instantiating the existential on the right hand
side of the protocol with 𝑎, which is a write to data of 42, as required, and can be
shown to be po-before the current event because it is the current po-predecessor.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 106{

PoPred(−)
}

𝑎:str [data] 42

𝑏:str [flag] 1 {

{
PoPred(𝑎) ∗
𝑎:W data 42

}
𝑏:str [flag] 1 {


PoPred(𝑏) ∗
𝑎:W data 42 ∗
𝑏:W flag 1 ∗
𝑎 po 𝑏



𝑎:str [data] 42

𝑏:str [flag] 1

𝑎:W data 42

𝑏:str [flag] 1{ {

𝑎:W data 42

𝑏:W flag 1
po

Figure 5.18: The proof (here, of the writer side of MP) in progress (proof steps are
indicated by{) unfolds the program into a graph: either implicitly via assertions
in the top row, or visualised as an explicit graph in the bottom row.

We illustrate how to unfold the two instructions to resources, in particular graph
facts, in the proof in Figure 5.18.

Receiving thread The receiving thread is where interesting graph reasoning
happens. We apply SC-ht-inst-ldr twice for the two reads. We read from the flag,
learning 𝑟1 r↦→𝑣 and Φ(flag, 𝑣, 𝑒) for some write 𝑒 in line 14 (we get Φ by duplicating it
in line 12). Finally, we consider the data read. We learn 𝑟2 r↦→𝑣 ′ and Φ(data, 𝑣 ′, 𝑒𝑤) for
some 𝑣 ′ and 𝑒𝑤 , and are required to prove 𝑣 = 1 → 𝑣 ′ = 42. The graph reasoning in
line 15 & 16 starts by case splitting on Φ(data, 𝑣 ′, 𝑒𝑤). We have 𝑣 ′ = 42 immediately
in the right case. In the left case, we derive a contradiction from Initial(𝑒𝑤) and 𝑣 = 1
with graph facts. That is, an fr from 𝑑 to 𝑒′, the write to data in the sending thread,
can be derived given 𝑒𝑤 being the initial write, which closes a ℎ𝑏 cycle

𝑑 fr 𝑒′ po 𝑒 rf 𝑐 po 𝑑

violating the SC axiom.

5.5.3 Tracking Flow of Resources: The AxSLSCExt Logic

AxSLSCExt extends the syntax of AxSLSC with a notion of tied-to assertion: 𝑎 ↬ 𝑃

means that 𝑃 is tied to event 𝑎. This extension allows us to track sources of resources
and how resources flow between individual events precisely, instead of mixing
resources regardless of their sources as in AxSLSC. It is worth noting that this does
not add any additional expressiveness power to the logic - in fact AxSLSC is already
a fine logic for SC - but is a robust solution that is also applicable to the relaxed

107 5.5. The Logics

concurrency of Arm-A for which an AxSLSC-like construction is unsound. Recall
that in SC, sc is the acyclic synchronisation relation, thus passing resources along
it (or its subrelations) is sound. In fact, for thread local reasoning, it suffices to
flow resources along po, which is included in sc and is also the reasoning order.
In AxSLSC (and other CSLs for SC), we implicitly unify the resource flowing order
and the reasoning order, but in AxSLSCExt we separate them by making the former
explicit with the tied-to assertion. We elaborate this idea with the AxSLSCExt version
of AxSLSC rules depicted in Figure 5.13.

Proof Rules for Microinstructions

There are substantial similarities between AxSLSCExt rules and their AxSLSC counter-
parts. We have the same bookkeeping assertions for the immediate po predecessor,
which is updated in the postcondition; and the same clauses universally quanti-
fied by the new event 𝑒 accompanied by the graph fact about it. The two main
distinctions are the use of the tied-to assertions, and the new FlowSCX predicates
for high-level resource transfer between nodes. Let us take a closer look at them in
SCExt-ht-micro-memread.

This rule allows us to explicitly reason about resources flowing to 𝑒 along po
edges. If there is such an incoming edge, say from 𝑒′ to 𝑒 , and we have an 𝑒′ ↬ 𝑃 ,
then the flow implication FlowSCR can use 𝑃 in its premise. In total, the resources
that flow into 𝑒 , and thus are considered in the flow implication for 𝑒 , consist of (the
separating conjunction of) all such local resources (which need not be persistent)
that flow along po edges, as collected in the partial event-to-resource map𝑚 (for
thread-internal resource flow), combined with the (usually persistent) resources
flowing from external events (here, the quantified external write 𝑒𝑤 that 𝑒 is reading
from), as specified by the protocol Φ.

To apply the rule, the user has to supply a finite map𝑚 to specify how to flow
thread-local resources to the current node to show the flow implication (3). Assertion
1 ∗(𝑒′po ↦→𝑃po) ∈𝑚 (𝑒′po ↬ 𝑃po), collecting the resources in𝑚 for the premise of the flow
implication. The map𝑚 is constrained by assertion 2 in the hypothetical reasoning,
which requires that an event 𝑒′po can only occur in the domain of 𝑚 when there
will be (given the graph facts) an po edge to the new MemRead event. Finally,
as a result of the hypothetical reasoning on the last line of the precondition, we
get the (user-supplied) result 𝑃 (x, 𝑣, 𝑒𝑤) of the flow implications 3 , tied to the new
memory event 𝑒 , as 4 . This flow implication FlowSCR replicates the view shift of
SC-ht-micro-memread except for the now explicit local resource transfer from po
predecessors (the iteratedd separation conjunction). Both this and FlowSCW for
MemWrite are instances of the general definition of the flow implication.

Message Passing

We revisit MP to showcase the resource flow reasoning with tied-tos in AxSLSCExt.
This time, we use the same protocol, but adapt the specification (changes highlighted

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 108

{
PoPred(−)

}
𝑐:𝑟1 := ldr [flag]

𝑑 :𝑟2 := ldr [data]{


PoPred(𝑐) ∗
𝑐:R flag 1 ∗
∃𝑒. 𝑐 ↬ Φ(flag, 1, 𝑒)
. . .


𝑑 :𝑟2 := ldr [data] {



PoPred(𝑑) ∗
𝑐:W data 𝑣 ∗
𝑐 ↬ ⊤ ∗
𝑑 :W flag 𝑣 ′ ∗
𝑑 ↬ (𝑣 = 1 → 𝑣 ′ = 42) ∗
𝑐 po 𝑑
. . .


𝑐:𝑟1 := ldr [flag]

𝑑 :𝑟2 := ldr [data]

𝑐:R flag 𝑣
Φ(flag, 𝑣, . . .)↫→

𝑑 :𝑟2 := ldr [data]{ {

𝑐:R flag 𝑣
⊤↫→

𝑑 :R data 𝑣 ′
(𝑣 = 1 → 𝑣 ′ = 42)
↫→

po

Figure 5.19: The proof (here, of the reader side of MP, in AxSLSCExt) in progress.
Resources tied-to a node (in yellow) ‘dangle’ off it. Between the second{, we flow
Φ(flag, 𝑣, . . .) from 𝑐 to 𝑑 along po, by consuming it from 𝑐 and using it to conclude
(𝑣 = 1 → 𝑣 ′ = 42) at 𝑑 .

in yellow) to account for explicit resource flowing, as follows:

𝑟1
r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ ∃𝑒. 𝑒 ↬ (𝑣 = 1 → 𝑣 ′ = 42) ∗ (∃𝑒′. 𝑒 po 𝑒′ ∨ 𝑒 = 𝑒′ ∗ PoPred(𝑒′))

In general, 𝑃 holds whenever 𝑎 ↬ 𝑃 appears in a postcondition, since one can flow
𝑃 from 𝑎 to a hypothetical terminating event along po. In this new specification,
the implication 𝑣 = 1 → 𝑣 ′ = 42 is embedded in a tied-to for an event 𝑒 , which is
po-before the terminating event, as stated in the last clause.

We look at a proof sketch of the receiving thread depicted in Figure 5.21 (with
an illustration in Figure 5.19); the proof of the sending thread is nearly identical to
that of AxSLSC as no local resource flowing is happening in the thread. This time in
the receiving thread, to get the protocol resource Φ(flag, . . .) from the flag load, we
have to justify FlowSCR with argument 𝑃 being instantiated with Φ, as in line 2 & 3.
After that, in line 4, the transferred Φ is tied to the memory read 𝑐 , which claims a
constraint that one can only access Φ if is po after 𝑐 . To conclude the specification
with the graph facts in Φ, we have to flow it to the second load. We therefore let
the user-assigned 𝑚 of the read rule be a singleton map [𝑐 ↦→ Φ(flag, . . .)], and
show that 𝑐 is indeed a po predecessor of 𝑑 by PoPred(𝑐)3. Then, we show the flow
implication FlowSCR for the load of data in line 6 & 7, with 𝑃 being 𝑣 = 1 → 𝑣 ′ = 42,
where we perform the same graph reasoning as in the AxSLSC MP proof. Finally, we
have the desired implication tied to event 𝑑 , which suffices to show the specification.

3In this example, the protocol resource we flow is persistent, but we can also flow non-persistent
resources

109 5.5. The Logics

SCExt-ht-micro-memread
PoPred(𝑒po) ∗ 1∗(𝑒′po ↦→𝑃po) ∈𝑚 (𝑒′po ↬ 𝑃po) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) −∗
(2Po(dom(𝑚), 𝑒) ∗ 3 FlowSCR(Φ, 𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃))

) 
MemRead x{
𝑣 . ∃𝑒, 𝑒𝑤 . PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) ∗ 4 𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)

}
tid,Φ

SCExt-ht-micro-memwrite
PoPred(𝑒po) ∗ ∗(𝑒po ↦→𝑃po) ∈𝑚 (𝑒po ↬ 𝑃po) ∗

∀𝑒.
(
GraphFactsW(𝑒, x, 𝑣, 𝑒po) −∗
(Po(dom(𝑚), 𝑒) ∗ FlowSCW(Φ, 𝑒, x, 𝑣,𝑚, 𝑃))

) 
MemWrite x 𝑣{
() . ∃𝑒. PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒po) ∗ 𝑒 ↬ 𝑃 (x)

}
tid,Φ

FlowSCRΦ(𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃) ≜((∗(_ ↦→𝑃po) ∈𝑚 𝑃po
)
∗ Φ(x, 𝑣, 𝑒𝑤)

)
⇛ Φ(x, 𝑣, 𝑒𝑤) ∗ 𝑃 (x, 𝑣, 𝑒𝑤)

FlowSCWΦ(𝑒, x, 𝑣,𝑚, 𝑃) ≜
(∗(_↦→𝑃po) ∈𝑚 𝑃po

)
⇛ Φ(x, 𝑣, 𝑒𝑤) ∗ 𝑃 (x)

Figure 5.20: AxSLSCExt version of the AxSLSC rules shown in Figure 5.13. The new
syntax and changes are highlighted. The user provides𝑚, a thread-local map from
events to the resources consumed.

1
{
PoPred(−) ∗ 𝑟1 r↦→ _ ∗ 𝑟2 r↦→ _

}
2 ∀𝑣, 𝑒𝑤 .Φ(flag, 𝑣, 𝑒𝑤)

⇛
Φ(flag, 𝑣, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒𝑤)3

4 𝑐: 𝑟1 := ldr [flag]
5

{
PoPred(𝑐) ∗ ∃𝑣, 𝑒 . 𝑟1 r↦→ 𝑣 ∗ 𝑐 ↬ Φ(flag, 𝑣, 𝑒) ∗ 𝑐:R flag 𝑣 ∗ 𝑒 rf 𝑐

}
6 ∀𝑣 ′, 𝑒𝑤 .GraphFactsR(𝑑, data, 𝑣 ′, 𝑐) ∗ Φ(data, 𝑣 ′, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒)

⇛
Φ(data, 𝑣 ′, 𝑒𝑤) ∗ (𝑣 = 1 → 𝑣 ′ = 42)7

8 𝑑 : 𝑟2 := ldr [data]
9

{
PoPred(𝑑) ∗ ∃𝑣, 𝑣 ′. 𝑟1 r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ 𝑑 ↬ (𝑣 = 1 → 𝑣 ′ = 42)

}
Figure 5.21: Proof sketch of the receiving thread of MP in AxSLSCExt. The explicit
reasoning of resource flow is highlighted.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 110

5.5.4 Handling Arm-A Concurrency: The AxSLArm Logic

Using AxSLSCExt for TinySc as the base, we build AxSLArm for TinyArm. The changes
we make to AxSLSCExt to obtain AxSLArm are twofold. First, we extend the surface
assertion language. Similar to how we extend the opax semantics of TinySc to obtain
the counterpart of TinyArm, we add new assertions dedicated to reason about Arm’s
dependencies, etc., and augment existing ones. Second, we change the resource
flowing order. We shift from reasoning about resource flow along po to Arm’s lob to
reflect the change of the synchronisation order from SC’s sc to Arm’s ob. Arm-A’s
relaxed concurrency is fundamentally different from SC in the sense that po in
Arm-A does not impose an intra-thread ordering, which implies that transferring
resources along po is unsound. Thus, in AxSLArm, we instead rely on lob, the local
fragment of which enforces synchronisation. We elaborate on these two changes
with the rule forMemRead in Section 5.5.4.

Proof Rules for Microinstructions

We now explain one of the key proof rules ht-micro-memread-rdep-ext in Figure 5.22
for aMemRead with ordering strength os, variety vr , address x, and address depend-
encies 𝑑 , focusing on the new components introduced to handle Arm-A’s memory
model. To keep the exposition manageable, the rule is specialised to a read from a dis-
tinct thread (an external read), with empty intra-instruction dependencies (i.e. only
syntactic register dependencies). We illustrate this rule schematically in Figure 5.23.

ht-micro-memread-rdep-ext
1NoLocalWrites(x) ∗ 2𝑑 = (dom(regs), ∅) ∗
PoPred(𝑒po) ∗ 3CtrlPreds(srcsctrl) ∗
4∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟

r↦→ 𝑣@𝐸 ∗ ∗(𝑒lob ↦→𝑃lob) ∈𝑚 (𝑒lob ↬ 𝑃lob) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
5GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs) −∗
(6 Lob(dom(𝑚), 𝑒) ∗ 7 FlowR(Φ, 𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃))

)


MemRead os vr x 𝑑 (𝑣, 𝐷) .
∃𝑒, 𝑒𝑤 . 𝐷 = {𝑒} ∗ 8NoLocalWrites(x) ∗
PoPred(𝑒) ∗ CtrlPreds(srcsctrl) ∗ 9∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟

r↦→ 𝑣@𝐸 ∗
GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs) ∗ 𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)

tid,Φ

Figure 5.22: A proof rule of AxSLArm for theMemRead microinstruction, specialised
for a thread that has no writes to the location read. The changes to SCExt-ht-micro-
memread are highlighted.

The first two clauses of the precondition capture the specialisation mentioned
above: 1 NoLocalWrites(x) captures the fact that there are no thread-local writes
on the same address x up until this point in the program order; with this in hand,
one knows that only external writes can be read from by thisMemRead, and thus

111 5.5. The Logics

𝑒po

𝑚
𝑒lob

regs
𝑟 r↦→ _@{𝑒lob}

𝑒

po

𝑃lob ∗ 𝑃 ′↫→

{
𝑒po

𝑚
𝑒lob

regs
𝑟 r↦→ _@{𝑒lob}

𝑒𝑤 :W_ x 𝑣

𝑒:Ros,vr x 𝑣

po
addr ⊆ lob
𝑃lobrfe

Φ(x, 𝑣, 𝑒𝑤) 𝑃 (x, 𝑣, 𝑒𝑤)↫→

𝑃 ′↫→

Figure 5.23: A visualisation of ht-micro-memread-rdep-ext for external read event 𝑒 ,
with logical annotations and newly gained graph facts highlighted. { indicates
the update of resources from the precondition to the postcondition. The protocol
specifies Φ(x, 𝑣, 𝑒𝑤) transferred along the rfe edge to 𝑒 , which is returned to be
transferred to other potential reads. Local events 𝑒lob, which are shown to become lob
predecessors due to the use of some register 𝑟 , let the corresponding 𝑃lob resource,
previously tied to 𝑒lob, flow along the newly-learned lob edge, to be combined with
the protocol, and the result 𝑃 (x, 𝑣, 𝑒𝑤) gets tied to 𝑒 .

resource transfer along obs is possible. This fact is unchanged after theMemRead,
and is thus restored by the postcondition as 8 . 2 𝑑 = (dom(regs), ∅) requires that
thisMemRead depends on exactly the registers in the domain of the (partial) register
file regs of 4 (non-involved registers can be framed off to apply this rule via the
normal frame rule familiar from separation logics), and not on any intra-instruction
memory read (the ∅ of event IDs). The collection of register points-to for regs of 4 is
unchanged and thus restored in the postcondition as 9 . Note that a register points-to
assertion now also maps a register to a set of events 𝐸 that are the sources of its
data, with notation @𝐸. This change captures the corresponding extension to the
register file in the opax semantics. The GraphFacts predicate in 5 now takes more
arguments, and gives more graph assertions like the dependency edges. Bookkeeping
assertion 3 CtrlPreds(srcs𝑐𝑡𝑟𝑙) captures the srcsctrl part of the opax thread state 𝑇
which works like PoPred. The user-supplied 𝑚 constrained by Po(dom(𝑚), 𝑒) in
SCExt-ht-micro-memread is now constrained by 6 Lob which instead requires the
domain of𝑚 to consist of lob predecessors of the read. The flow equation 7 and
FlowSCR explained in AxSLSCExt share the same definition.

The postcondition is parametrised by an additional dependency set 𝐷 (the set
of event IDs that 𝑣 stems from) for intra-instruction dependencies. In this rule, this
set is {𝑒}, where 𝑒 is the existentially quantified event ID of the associated memory
read event, which is passed to the continuation, to, for instance, a register read to
establish the dependency from this read event to the register’s data.

Specialising Proof Rules for Examples

The Arm-A memory model is intrinsically complex, so there is no ‘perfect’ rule that
is both simple and general. Therefore, we again derive some further specialised
instruction rules for reasoning about examples.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 112

We explain how AxSLArm can be used to reason about Arm-A concurrency com-
positionally, using two key examples: message-passing (Section 5.5.5) and versions
of load buffering (Section 5.5.6), describing our high-level proof rules along the way.
These examples also demonstrate two styles of proof: a low-level proof for (Arm’s
version of) MP that is similar to that of AxSLSCExt, showing how one can tackle subtle
reasoning about the Arm-A memory model if needed; and a high-level proof for
LB that abstracts physical state with simple, easy-to-use ghost state, demonstrating
the convenience of AxSLArm. For MP, we only sketch the proof of the receiving
thread, highlighting the differences to the MP proof done in AxSLSCExt. For LB,
we go through the proof in more detail, and present the specialised rules for the
instructions used in the proof along the way, and explain how it fails (as desired) if
the necessary synchronisation is removed.

5.5.5 Graph Reasoning in AxSLArm: MP+rel+addr

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: strrel [flag] 1 𝑑 : 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

Figure 5.24: MP+rel+addr: 𝑟1 = 1 → 𝑟2 = 42

We give an example illustratingmore complex reasoning about thememory event
graph, on an Arm-A version of message passing. Comparing to the SC counterpart,
two synchronisations are inserted to ensure intra-thread order. The flag write of the
sending thread is a release write to ensure that the two writes are suitably ordered
(this can also be achieved in other ways, for example with a dmb st). The two reads
of the receiving thread are ordered by using the result of the flag read to compute
the address of the data read, resulting in an address dependency between the two
reads. In this example, the address dependency is artificial, but similar shapes arise
naturally when a message-passing idiom is used to transfer a pointer to a data
structure between threads.

Overview The proof has roughly the same shape as the previous ones, in particular
we conclude 𝑟2 is 42 with a contradiction on the validity of the graph in the case of
reading the initial value 0 from data when the flag is set.

Protocol The protocol we specify is almost identical to the one used for the SC
variant, except for two minor adjustments (highlighted in yellow) at flag due to the
now relaxed memory model.

Φ(flag, 𝑣, 𝑒) ≜ Initial(𝑒) ∨
(
𝑣 = 1 ∗ 𝑒:W flag 1 ∗ (tid (𝑒) = 1) ∗
∃𝑒′. 𝑒′:Wrel data 42 ∗ 𝑒′ po 𝑒

)
First, we additionally require in the right disjunct that the write is from Thread 1
(the sending thread) with tid (𝑒) = 1. This allows us to conclude that the load of

113 5.5. The Logics

flag on the receiving side has to read from this external write, resulting in an rfe
edge which contributes to the later graph reasoning because it ensures inter-thread
synchronisation (in contrast, rfi in Arm-A does not enforce such a synchronisation).
Second, for the same reason, we strengthen the write to data to be a release write,
which allows us to conclude a lob edge between the two writes of the sending thread.

Proof Sketch We look at the proof sketch of the receiving thread, focusing on
the reasoning of the data dependency between two loads, and the Arm version
of the contradiction proof. We learn 𝑟1 r↦→ 𝑣@{𝑐} after reading from the flag, and
𝑐 ↬ Φ(flag, 𝑣, 𝑏) for some 𝑏. The @{𝑐} part of the register points-to tells us that the
value 𝑣 comes from 𝑐 . Therefore, when we consider the data read, we have 𝑐 data 𝑑
because of the artificial data dependency using 𝑟1. The fact that data is in lob allows
us to use the resources tied to 𝑐 . We learn 𝑟2 r↦→ 𝑣 ′@{𝑑} and 𝑑 ↬ Φ(data, 𝑣 ′, 𝑒)
for some 𝑣 ′ and 𝑒 , and are required to prove 𝑣 = 1 → 𝑣 ′ = 42. Case splitting on
Φ(data, 𝑣 ′, 𝑒), we have 𝑣 ′ = 42 immediately in the right case. In the left case, we
derive a contradiction from Initial(𝑒) and 𝑣 = 1. In detail, the contradiction is as
follows: from Φ(flag, 1, 𝑏) we learn 𝑏:Wrel flag 1 and 𝑎:W data 42 for some 𝑎 such
that 𝑎 po 𝑏. Since 𝑒 is an initial write to the same address as 𝑎, we know 𝑒 co 𝑎,
and since 𝑒 rf 𝑑 , we know 𝑑 fr 𝑎 and therefore 𝑑 ob 𝑎, since 𝑑 and 𝑎 are on different
threads. Because 𝑏 is a release write po-after 𝑎, we have 𝑎 ob 𝑏; because 𝑐 reads
from 𝑏 on a different thread (recall the new bits of the protocol), we have 𝑏 ob 𝑐;
and finally, because there is a data dependency between 𝑐 and 𝑑 , we have 𝑐 ob 𝑑 .
By transitivity of ob, we obtain 𝑎 ob 𝑑 , and together with 𝑑 ob 𝑎, we obtain 𝑑 ob 𝑑 ,
which contradicts the irreflexivity of ob.

5.5.6 High-Level Reasoning in AxSLArm: Load Buffering

We detail how to obtain a high-level proof of LB+artificialdata+data (Figure 5.25),
a version of the LB litmus test with an artificial (but still architecturally respected)
data dependency on Thread 1, and a normal data dependency on Thread 2. This
version of LB is interesting because this specification cannot be proven using just
an invariant about the values of the write, as it can for LB+datas [Jeffrey and Riely,
2016, §6]: it requires reasoning about the order of the writes.

Specification We would like to show that the example exhibits no load buffering
behaviour on Arm-A, i.e., that Thread 1 cannot read 1 (while Thread 2 can read either
the initial value 0, or the value 1 that Thread 1 writes), as in the Figure 5.25 specific-
ation. We give two versions of the postcondition: one still involving tied assertions,
corresponding to the final state of the threads, and one where the assertions have
been pulled out, as used in our formal definition of weakest preconditions, as we
describe in Section 5.6.5.

Protocol The first step of the proof is to come up with an appropriate protocol
Φ that abstracts the interference of the threads, and thus enables thread-modular

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 114

Thread 1 Thread 2{
𝑟1

r↦→ _ ∗ . . .
} {

𝑟2
r↦→ _ ∗ . . .

}
𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1) 𝑑 : str [𝑥] 𝑟2{
∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)

} {
∃𝑣2. 𝑟2 r↦→ 𝑣2@{𝑐}∗
𝑐 ↬ (𝑣2 = 0 ∨ 𝑣2 = 1)

}
{
𝑟1

r↦→ 0@_
} {

∃𝑣2. 𝑟2 r↦→ 𝑣2@_ ∗ (𝑣2 = 0 ∨ 𝑣2 = 1)
}

Figure 5.25: LB+artificialdata+data and its (informal) specification

reasoning. For this LB shape, it suffices to transfer the information that the write of
1 by Thread 1 has been executed, in the sense that this write is ob-before the event
to which this information is tied. To capture this logically, we use a simple form of
ghost state: the ‘oneshot resource algebra’ of Iris [Jung et al., 2018b, §2]. The oneshot
has two states: pending represents the exclusive permission to make a decision to
choose a value, and shot(𝑣) represents the information that the decision has been
made to choose value 𝑣 . In particular, pending ∗ pending is a contradiction, and so
is pending ∗ shot(𝑣) , but we can view-shift pending into shot(𝑣), pending ⇛
shot(𝑣) , to express the logical decision to commit to 𝑣 . Using this, we can formalise
our protocol: for both locations 𝑥 and 𝑦, either the value is 0, or it is 1, in which case
we also have shot(1) .

Proof sketch Using this protocol, the proof follows the sketch in Figure 5.26 using
the specialised instruction proof rules explained later in Section 5.5.6. On line 1, we
give Thread 1 the exclusive permission pending to choose a value, which it will need
when it writes 1; moreover, we will use pending in the flow implication of the load
from 𝑥 in line 4 to show that it must read 0. 4Line 2 states the incoming resources of
the flow implication: the disjunction obtained from the protocol, and the pending
from the context. In the flow implication, we can then do a case analysis on the
disjunction, and in the case of 𝑣1 ≠ 0, we can derive a contradiction by combining
pending with shot(𝑣); therefore, we must be in the case 𝑣1 = 0, still with pending in
hand, as per line 3. On line 5, because we have used the pending from the context
in the flow implication for 𝑎, we get it back, but tied to 𝑎. This deals with the load.
Now, for the store on line 8, we need, as part of the flow implication, to establish
the protocol for the written value, 1. For our protocol, we have to take the second
disjunct, and so we have to provide shot(1). Because of the artificial dependency,
the flow implication gives access to the resources tied to 𝑎, and thus to pending, as
per line 6. The pending can be view-shifted, as part of the flow implication, into

4We also start Thread 1 with the knowledge that it has made no writes to location 𝑥 , and sym-
metrically Thread 2 to 𝑦, to exclude an internal reads-from. Internal reads-from do not imply ob on
Arm-A, and thus has a significantly weaker premise for its flow implication, without Φ(𝑥, 𝑣1, _).

115 5.5. The Logics

Φ(_, 𝑣, _) ≜ 𝑣 = 0 ∨ (𝑣 = 1 ∗ shot(1))

Thread 1:

1
{
𝑟1

r↦→ _ ∗ NoLocalWrites(𝑥) ∗ pending ∗ . . .
}

2 (
𝑣1 = 0 ∨

(
𝑣1 = 1 ∗ shot(1)

))
∗ pending

⇛
𝑣1 = 0 ∗ pending3

4 𝑎: 𝑟1 := ldr [𝑥]
5

{
∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬

(
𝑣1 = 0 ∗ pending

)
∗ . . .

}
6 pending

⇛
shot(1)7

8 𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1)
9

{
∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)

}
Thread 2:

10
{
𝑟2

r↦→ _ ∗ NoLocalWrites(𝑦) ∗ . . .
}

11 𝑐: 𝑟2 := ldr [𝑦]
12

{
∃𝑣2. 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬ Φ(𝑦, 𝑣2, 𝑐) ∗ . . .

}
13 𝑑 : str [𝑥] 𝑟2
14

{
∃𝑣2. 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬

(
𝑣2 = 0 ∨

(
𝑣2 = 1 ∗ shot(1)

))}
Figure 5.26: Proof sketch of LB+artificialdata+data.

any shot(𝑣), and thus in particular into shot(1), as per line 7. This satisfies the flow
implication, and thus concludes the proof sketch for Thread 1.

Thread 2 relies on the same dependencies, but is much simpler: given our protocol
Φ, we have Φ(𝑦, 𝑣2, 𝑐) = Φ(𝑥, 𝑣2, 𝑑), so Thread 2 merely forwards this Φ(_, 𝑣2, _) from
the load to the store, which the flow implication for the write allows because of the
data dependency.

Abstraction Using the oneshot resource algebra allows us to reason thread-
modularly: the proof of Thread 1 does not involve any graph reasoning about
the intricacies of the Arm-A memory model, merely reasoning about abstract state.
This is already useful for this small proof sketch (and the corresponding mechanised
proof). Thread 2 does not require any inspection of the value or the resource being
forwarded, merely plumbing through the flow implication, and the derivation of the
contradiction in the impossible case of the load of Thread 1 relies on simple ghost

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 116

theory. Moreover, the proof is quite flexible: the proof sketch only requires trivial
modifications if (e.g.) we replace the store of 1 + 𝑟1 − 𝑟1 by a store of 𝑟1.

The proof sketch above crucially relies on the artificial data dependency of the
store on the load, as it should: without it, if the store were merely str [𝑦] 1, it could be
executed out of order with respect to the load, thusmaking the relaxed load behaviour
observable. More concretely, without the dependency, the flow implication for the
store would not include the resource tied to the memory read event 𝑎, and would
therefore be of the shape ⊤ ⇛ shot(1) , which is not provable.

Proof Rules for Instructions

We explain the specialised instruction proof rules used in the LB proof, focusing
on (highlighted in yellow) how the rules for Arm-A (Figure 5.27) differ from the
(non-specialised) rules for SC (Figure 5.15).

Load The proof rule that we use for the load in both threads, ht-ins-ldr-pln-ext, is
specialised to the instruction: a plain, non-exclusive load with an immediate address
𝑥 . It is further specialised to the assumption that there are no prior writes to 𝑥 by
this thread, as otherwise the memory model guarantees no synchronisation and thus
makes resource transfer unsound.

The first line of the precondition deals with bookkeeping of the po-predecessor,
the program counter, and the local writes. The second line requires ownership of the
register 𝑟 that will be written to by the load, and requires the flow implication for this
instruction, which flows the protocol Φ for this address to the 𝑅 that will be tied to
this event — with the appropriate address, value, and memory event parameters. The
postcondition then updates the bookkeeping of line 1 accordingly, and keeps the fact
that this thread has no writes to 𝑥 . The key part of the postcondition, highlighted on
the last line, is that 𝑅 is then tied the new memory read event 𝑒 , which is the source
of the contents of register 𝑟 .

Store The proof rule that we use for the store in Thread 1, ht-ins-str-pln-artificialdata,
is similarly specialised to the instruction: a plain, non-exclusive store with an im-
mediate address 𝑥 and an artificial value dependency on register 𝑟 with result 𝑣 . It
is further specialised to the assumption that there is an assertion 𝑃 that is tied to
the source of register 𝑟 . Again, the first lines of the pre- and postcondition deal with
bookkeeping. The second lines deal with the latest write to the address. The key of
the precondition, highlighted on line 3, requires (1) ownership of register 𝑟 together
with the knowledge that its source is some memory event 𝑒𝑑 , (2) 𝑃 is tied to the
source memory event 𝑒𝑑 , and (3) the flow implication, which flows the resource 𝑃
into the protocol for the written value. The postcondition is then just bookkeeping,
𝑃 having been consumed by the instruction.

The proof rule for the store in Thread 2 is almost identical, merely requiring
knowing the value 𝑣 ′ of register 𝑟 , and the flow implication requiring the protocol
be established for that value, Φ(𝑥, 𝑣 ′, 𝑒).

117 5.5. The Logics

ht-ins-ldr-pln-ext{
PoPred(𝑒po) ∗ NoLocalWrites(𝑥) ∗ 𝑟 r↦→ _ ∗
∀𝑒, 𝑣, 𝑒𝑤 . (Φ(𝑥, 𝑣, 𝑒𝑤) ⇛ 𝑅(𝑥, 𝑣, 𝑒𝑤) ∗ Φ(𝑥, 𝑣, 𝑒𝑤))

}
a: 𝑟 := ldr [𝑥]{
a + 4: ∃𝑣, 𝑒𝑤 .

PoPred(𝑎) ∗ NoLocalWrites(𝑥) ∗
𝑎 ↬ (𝑅(𝑥, 𝑣, 𝑒𝑤)) ∗ 𝑟 r↦→ 𝑣@{𝑎}

}
tid,Φ

ht-ins-str-pln-artificialdata
PoPred(𝑒po) ∗
(NoLocalWrites(𝑥) ∨ LastLocalWrite(𝑥, _)) ∗
𝑟 r↦→ _@{𝑒𝑑 } ∗ 𝑒𝑑 ↬ 𝑃 ∗ ∀𝑒. (𝑃 ⇛ Φ(𝑥, 𝑣, 𝑒))


a: str [𝑥] (𝑣 + 𝑟 − 𝑟){
a + 4: PoPred(𝑎) ∗ LastLocalWrite(𝑥, 𝑎) ∗

𝑟 r↦→ _@{𝑒𝑑 }

}
tid,Φ

Figure 5.27: Proof rules for the instructions in the left thread of LB+artificialdata+data.

5.5.7 Supporting Exclusives

We describe how the logic we have seen so far can be extended, with only minor
changes, with new proof rules for Arm-A exclusives.

Arm-A features atomic read-modify-write operations in two forms: atomic in-
structions (compare-and-swap, fetch-and-add, etc.), and the combination of load-
exclusive/store-exclusive pairs. The rules we have described so far only support
‘non-exclusive’ loads and stores. We now explain how we can give strong rules
for read-modify-writes that support transfer of non-duplicable resources: a load
exclusive 𝑎 of 𝑣 from 𝑥 should, if the subsequent store exclusive succeeds, give a
non-duplicable resource 𝑃 which does not need to be given back because of the
exclusivity.

trylock(ℓ) ≜
𝑟1 := ldrx [ℓ]
if (𝑟1 ≠ unlocked) return false
𝑟2 := strx [ℓ] locked
dmb sy
return (𝑟2 = success)

unlock(ℓ) ≜ strrel [ℓ] unlocked

Figure 5.28: Try-lock pseudocode

if trylock(ℓ) if trylock(ℓ)
str [𝑥] 1 𝑟1 := ldr [𝑥]
str [𝑦] 1 𝑟2 := ldr [𝑦]
unlock(ℓ) unlock(ℓ)

Figure 5.29: Example of mutual exclusion
with postcondition 𝑟1 = 𝑟2

To support atomic read-modify-writes, we do not need to change our definition

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 118

of protocols, but merely to pick a specific shape of protocol. The protocol relies
on invariants, which we implement using the standard Iris construction combining
higher-order ghost state and appropriate view shifts in the definition of weakest
precondition [Jung et al., 2018b]. Given a proposition 𝑃 , 𝑃 is an invariant containing
𝑃 , which is duplicable, and which can thus be transferred using our protocols. Using
an invariant, we can then use the escrow pattern [Kaiser et al., 2017] to trade an
exclusive token for the non-duplicable resource, with enough bookkeeping to capture
the uniqueness of a successful read-modify-write on a given write. Therefore, the
only change we need to make to support exclusives is merely to associate, in the
definition of weakest precondition, an exclusive token ExTok(𝑒) to each event 𝑒 , and
to make that token available to the rule for that event. We implement this idea in
Section 5.6.5.

Using our proof rules, we prove the classical specification for simple try-lock
(see Figure 5.28), which we then use to prove a basic mutual exclusion example (in
Figure 5.29): if a writer takes the lock before writing to two variables, then a reader
that takes the lock and reads from the two variables has to read the values before or
after, but not a mixture.

5.5.8 Further Examples

To validate how AxSLArm works generally with the memory model of Arm-A, how
it is likely to continue working with future changes, and how it could be ported to
other memory models, we verify further examples that exercise different parts of the
memory model. LB+dmbsy+data (Figure 5.30) relies on the po; [dmb.full]; po clause
of bob (see Figure 5.4) to obtain the key lob edge on the left, but the proof is otherwise
the same as for LB+artificialdata+data in Section 5.5.6. LB+ctrls (Figure 5.31) relies
on the ctrl; [W] clause of dob in both threads, but is otherwise the same. Similarly,
MP+rel+dmbsy (Figure 5.32) relies on bob in the right thread, and so doesMP+rel+ctrl-
isb (Figure 5.33) via the more complex (ctrl| (addr; po)); [ISB]; po; [R] edge which
appears incrementally, but their proofs are otherwise as in Section 5.5.5. To illustrate
that AxSLArm can reason about communication between many threads, we verify
an iterated version of MP, namely ISA2+rel+data+acq (Figure 5.34) [Sarkar et al.,
2011]; the proof is just an iterated version of the proof of MP. Finally, to illustrate
that reasoning about coherence is still possible, albeit unpleasant (which we discuss
further in Section 5.8.4), we verify two coherence tests: CoWW (Figure 5.35) and
CoRR (Figure 5.36); the proofs work by symbolic execution followed by discarding
the executions with cycles in co.

5.6 Model and Soundness

A model of Hoare triples for a language of microinstructions is said to be sound if
the following two conditions hold: (1) the model must allow us to show that proof
rules are valid with respect to the language semantics (soundness), i.e. that the
transformation of logical resources reflects the transition of physical states; (2) we

119 5.6. Model and Soundness

𝑎: 𝑟1 := ldr [𝑥] 𝑑 : 𝑟2 := ldr [𝑦]
𝑏: dmb sy 𝑒: str [𝑥] 𝑟2
𝑐: str [𝑦] 1

Figure 5.30: LB+dmbsy+data: 𝑟1 = 0 ∧
(𝑟2 = 0 ∨ 𝑟2 = 1)

𝑎: 𝑟1 := ldr [𝑥] 𝑑 : 𝑟2 := ldr [𝑦]
𝑏: if (𝑟1 == 0) 𝑒: if (𝑟2 == 1)
𝑐: str [𝑦] 1 𝑓 : str [𝑥] 𝑟2

Figure 5.31: LB+ctrls: 𝑟1 = 0 ∧ (𝑟2 =

0 ∨ 𝑟2 = 1)

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: strrel [flag] 1 𝑑 : dmb sy

𝑒: 𝑟2 := ldr [data]

Figure 5.32: MP+rel+dmbsy: 𝑟1 = 1 →
𝑟2 = 42

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: strrel [flag] 1 𝑑 : if (𝑟1 == 1)

𝑒: isb
𝑓 : 𝑟2 := ldr [data]

Figure 5.33: MP+rel+ctrl-isb: 𝑟1 =

1 → 𝑟2 = 42

𝑎: str [x] 42 𝑐: 𝑟1 := ldr [y] 𝑒: 𝑟2 := ldr [z]
𝑏: strrel [𝑦] 1 𝑏: str [𝑧] 𝑟1 𝑑 : 𝑟3 := ldr [𝑥]

Figure 5.34: ISA2+rel+data+acq: 𝑟2 = 1 → 𝑟3 = 42

must be able to show that, if a program is verified against a Hoare triple, then all
valid executions of the program indeed satisfy certain properties (adequacy).

With these two principles in mind, we present the semantic models of the three
logics presented in the previous section. We also sketch how to prove the soundness
of proof rules using the models, and briefly touch on how the model definitions
contribute to adequacy (we leave the details to Section 5.7).

Following the structure of the previous section, we build up the model of AxSLArm
in Iris gradually with several intermediate steps, tackling one challenge at a time.

First, we recall the model of usual Iris logics built atop of a heap-based operational
semantics, in a setting with SC concurrency and a fixed number of threads. We
emphasise some core components of the model that are crucial for soundness and
adequacy.

Next, we sketch the model of AxSLSC based on our opax semantics for TinySc.
We explain how it deals with the shape of opax semantics to achieve modular graph-
based reasoning, and give an intuitive explanation on why models as such do not
scale to the relaxed concurrency of Arm.

Then, we present the model of AxSLSCExt which is fundamentally distinct, due
to our now explicit treatment of resource flowing. We concentrate on the flow
implications, on how it works together with tied-to assertions to ensure soundness,
and why this idea scales to relaxed concurrency.

Finally, we show the full semantic model of AxSLArm, which shares the same
structure as that of AxSLSCExt, but differs due to the shift of the synchronisation
order from SC’s sc to Arm’s ob. We omit the soundness proof of the proof rules of

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 120

𝑎: str [x] 37
𝑏: str [x] 42

Figure 5.35: CoWW: 𝑎 co→ 𝑏

𝑎: str [x] 42 𝑏: 𝑟1 := ldr [x]
𝑐: 𝑟2 := ldr [x]

Figure 5.36: CoRR: 𝑟1 = 42 → 𝑟2 = 42

AxSLArm as it is mostly orthogonal to the memory model, thus similar to the one for
AxSLSCExt.

This section presupposes some basic knowledge of Iris. See [Jung et al., 2018b]
for background on Iris.

5.6.1 Preliminary: A General Recipe for Building Logics Using Iris

Iris can be instantiated by an operational semantics respecting a few conditions. The
framework comes with a recipe for building logics and their adequacy proofs for
typical heap-based operational semantics. We now recall this recipe, which we refer
to as the general recipe. Readers who are familiar with this general recipe may skip
this subsection.

Base operational semantics To instantiate Iris, one normally needs to provide a
concurrent language whose semantics has:

• a set of expressions Exp, and values 𝑣 : Val ⊆ Exp

• a notion of physical state 𝜎 : St shared among all threads

• a per-thread step relation→tid ⊆ (Exp × St) × (Exp × St) that specifies how
the program of thread tid may transform the shared state for a primitive step

For simplicity, we only consider a language with a fixed number of threads, i.e.
without the ability to fork new threads.

Weakest precondition Given such a semantics, one can follow the general recipe
to first define a notion of weakest precondition. Here, we only show the key parts
of the definition, and we refer the reader to [Jung et al., 2018b] for a full definition
that supports concurrency. Intuitively, wp 𝑒 {𝑄}tid requires postcondition 𝑄 to
hold if 𝑒 terminates with a value in thread tid. A Hoare triple {𝑃} 𝑒 {𝑄}𝑡𝑖𝑑 is then
defined as �(𝑃 −∗ wp 𝑒 {𝑄}tid). The definition of weakest precondition has two
cases, depending on whether the program 𝑒 is a value:

• If 𝑒 is a value, the weakest precondition requires that the postcondition holds
after a resource update: ¤|⇛𝑄 (𝑒)

• Otherwise, for all physical updates from global state 𝑠 , the logical resources
are required to be updated to mirror them, using a state interpretation (SI)
which is a predicate that gives the physical state a logical interpretation in Iris:

SI(𝑠) ⇛ (∀𝑒′, 𝑠′. (𝑒, 𝑠) →tid (𝑒′, 𝑠′) ⇛ SI(𝑠′) ∗ wp 𝑒′ {𝑄}tid)

121 5.6. Model and Soundness

Formally, it says that for any physical transition (𝑒, 𝑠) →tid (𝑒′, 𝑠′) of thread
tid, there must be a corresponding logical transition formulated as a view
shift SI(𝑠) ⇛ SI(𝑠′). The recursive occurrence of the weakest precondition
further requires this correspondence to hold for all subsequent steps of the
thread. (Here we omit substantial technical details dealing with invariants and
guarded recursion.)

State interpretation Normally, to achieve local reasoning, one would define SI as
an authoritative view of the physical state 𝑠 , and only reason about fragmental views
distributed to threads, separating 𝑠 so that one does not need to reason about the
parts of 𝑠 that are not touched by a thread (known as framing). For instance, for an
SC language with a global abstract heap (a map from locations to values) 𝑠 , one can
define the full view over 𝑠 as SI(𝑠) ≜ •𝑠 and a fragmental view for an individual
location 𝑙 as 𝑙 ↦→ 𝑣 ≜ ◦{𝑙 ↦→ 𝑣} using the Auth ghost state constructor of Iris, such
that (1) the two views are consistent: SI(𝑠) ∗ 𝑙 ↦→ 𝑣 ⊢ 𝑠 (𝑙) = 𝑣 , and (2) we can update
them together: SI(𝑠) ∗ 𝑙 ↦→ 𝑣 ⇛ SI(𝑠 [𝑙 ↦→ 𝑣 ′]) ∗ 𝑙 ↦→ 𝑣 ′.

Adequacy Next, we show the statement of a typical adequacy theorem, and
highlight the role of the state interpretation SI in the proof of the theorem. The
theorem has the following notable assumptions (again, we omit substantial details):

• a thread pool step relation→tp ⊆ (list(Exp)×St)×(list(Exp)×St) that specifies
the scheduling of threads — all possible interleavings of primitive steps,

• a terminating thread pool trace ([𝑒0, · · · , 𝑒𝑛], 𝑠𝑖) →∗
tp ([𝑒′0, · · · , 𝑒′𝑛], 𝑠𝑡) where

𝑠𝑖 is the initial state, 𝑠𝑡 is the terminating state, and all 𝑒′s are values,

• a series of weakest preconditions with postconditions 𝜑0, . . . , 𝜑𝑛 , one for each
thread

The conclusion is that the postconditions 𝜑𝑖 (𝑒′𝑖) for all 𝑖 hold. This theorem allows
one to extract meta-logical results from the program logic, showing that verification
done in the program logic is valid with respect to the meta logic.

Proof of adequacy The proof of adequacy proceeds by allocating the initial
logical interpretation SI(𝑠𝑖) to establish the physical-logical correspondence for 𝑠𝑖 .
We then continue by induction on the trace to show that the correspondence is
preserved throughout the execution. In the induction case, when we have a head
step (𝑒𝑖 , 𝑠) →tid (𝑒′𝑖 , 𝑠′) for thread tid and SI(𝑠), we unfold the definition of weakest
precondition of thread 𝑖 , which gives us SI(𝑠) ⇛ SI(𝑠′). Since we own SI(𝑠), we
apply the view shift to obtain SI(𝑠′). The case is concluded by applying the induction
hypothesis which requires SI(𝑠′) and the remaining reduction steps. In the end, we
reach the final state 𝑠𝑡 , at which point we get the postcondition by the value case of
the weakest precondition.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 122

(𝑒0,0, 𝑠0)

(𝑒0,1, 𝑠1)

(𝑒0,2, 𝑠4)

0

0

(𝑒1,0, 𝑠2)

(𝑒1,1, 𝑠3)

(𝑒1,2, 𝑠5)

1

1

SI(𝑠2)

SI(𝑠3)

SI(𝑠5)

SI(𝑠0)

SI(𝑠1)

SI(𝑠4)

Figure 5.37: An example program execution with two threads, above an SC memory
model. →0 and→1 are the head reductions (the program order and the reasoning
order) of the two threads. The indices of 𝑠 indicate the global order of updating 𝑠
(induced from→tp), and⇛ indicates the order we update the logical interpretations
of 𝑠 in the adequacy proof. These two orders coincide, and they subsume the
reasoning order.

Two orders A crucial observation about this proof that will become relevant
when we adapt the general recipe to work with an opax semantics is that the proof
implicitly works with two orders: the order that the physical state evolves in, and
the order in which the transformations of the corresponding logical interpretations
are collected by weakest preconditions. The first order is induced by the thread pool
reduction→tp of the semantics, which is a serialisation of all accesses to the physical
state (from the perspective of the axiomatic model, a linear extension of sc). The
second order is program order. From the model of the weakest precondition, we
can see that a view shift is required for each local reduction→tid of the semantics.
Figure 5.37 illustrates the relationship between these two orders. More generally, we
observe that, in most logics, the second order is program order, since it is intuitive
to reason about programs along program order, whereas the first order may vary
depending on the concurrency model.

Now, a crucial observation is the following: the reason we can complete the proof
in one pass (with one induction), with a single induction on the former order, is that
in the case of SC, the second order is included in the first: po ⊆ sc. As discussed in
Section 5.3, in the case of Arm, these two orders are incompatible, in the sense that
their union may be cyclic, and so they together do not form an inductive structure
that we can rely on in the proof. This poses a challenge to the adequacy proof, and
partially explains why the general recipe does not work for the relaxed concurrency
of Arm.

5.6.2 Notations for Weakest Preconditions

In the rest of this section, we discuss variants of weakest preconditions, for our three
logics at two abstraction levels. We now clarify the convention of notations we will
use for them. We will use superscripts SC, SCExt, and Arm to denote that assertions
we are talking about belong to AxSLSC, AxSLSCExt, and AxSLArm respectively.

123 5.6. Model and Soundness

5.6.3 Model and Soundness of AxSLSC

AxSLSC has a simple semantic model and a one-pass adequacy proof similar to most
Iris program logics. AxSLSC shares the exact core idea of updating logical resources
respecting the transformation of physical states as in the general recipe. Following
the recipe, we let the thread state of the opax semantics s be the expression; the
complete state Done ⟨_⟩ be the value; the pair of execution graph and instruction
memory ⟨X , 𝐼 ⟩ be the physical state 𝜎 ; and tid−−→h be the per-thread step. The notation
s

tid,X ,𝐼−−−−−→h s′ used in Figure 5.11 is syntactic sugar for ⟨s, ⟨X , 𝐼 ⟩⟩ tid−−→h ⟨s′, ⟨X , 𝐼 ⟩⟩. With
this configuration, we define a base weakest precondition wpbSCtid,Φ s {𝑄} that takes an
opax state s (the “expression”) and a postcondition 𝑄 which is a predicate over the
terminating state, in the spirit of the aforementioned general recipe, in Figure 5.38.

A clearer interface On top of wpbSC, which we will explain soon, we define the
weakest precondition wpSCtid,Φ 𝑝 {𝑄} that merely takes a microinstruction program 𝑝 ,
as a cleaner interface hiding s away. We implement this using usual Iris machinery:

wpSCtid,Φ 𝑝 {𝑄} ≜ ∀𝑇 . 1 LSI(𝑇)tid ⇛ wpbSCtid,Φ Ctd ⟨𝑝,𝑇 ⟩
{
𝑇 ′. 𝑄 ∗ 2 LSI(𝑇 ′)tid

}
tid,Φ

We have a local state interpretation 1 LSI(𝑇)tid interpreting 𝑇 for the current thread
tid. LSI relates (local) logical assertions to the corresponding part of 𝑇 . It allows
us to universally quantify 𝑇 and use the assertions to only track the parts that
are necessary for further reduction from the opax state. The 2 LSI(𝑇 ′)tid in the
postcondition of the wpSC requires a new interpretation for the updated local state
𝑇 ′. Note that it is a thread-local predicate which only involves assertions of a thread
(indexed by a thread ID) (for Iris experts, thread-local assertions use distinct ghost
names).

wpbSCtid,Φ 𝑠 {𝑄} ≜(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎. 3Valid(𝜎.X) −∗ 4 (� SI(𝜎)) −∗ ∀𝑠′. 5 ⟨𝑠, 𝜎⟩ tid−−→h ⟨𝑠′, 𝜎⟩ −∗
∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩,

(
IsValidEid(𝑒,X) ∗ 6 𝑠pg ⊇ Sc(𝜎.X , 𝑒) ∧ 𝑒 ∉ 𝑠pg .

7 SIP(Φ, 𝜎 .X , 𝑠pg) ⇛ SIP(Φ, 𝜎 .X , 𝑠pg ∪ {𝑒}) ∗ 8wpbSCtid,Φ 𝑠
′ {𝑄}

)
∨(9¬IsValidEid(𝑒,X) ∗ wpbSCtid,Φ 𝑠′ {𝑄})

ª®®®®¬
ª®®®®®®¬

Figure 5.38: The model of wpbSC. Technical details regarding guarded recursion are
omitted.

Overall structure Following the general recipe, the definition of wpbSC has two
cases, depending on whether 𝑠 is a “value”. In the value case, we just get the local

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 124

state 𝑇 and assert postcondition 𝑄 (𝑇) after a ghost update. In the other case, there
are two aspects of the definition which are somewhat non-standard compared to the
general recipe: (1) it maintains consistency between the execution of the thread in
the opax semantics and the global execution graph, to ensure sound graph reasoning;
(2) it enforces rely-guarantee protocols on the graph to implement resource transfer.

Persistent graph as memory Having an ongoing execution Ctd 𝐶 , we obtain
assertions over the “physical state” 𝜎 . However, unlike in the recipe when we just
assume SI(𝜎) for heap 𝜎 , now we have 4 � SI(𝜎). It is a persistent interpretation of 𝜎 ,
a pair of execution graph (the “shared memory”) and instruction memory, reflecting
the fact that in opax both of them are constant. Additionally, 3 Valid(𝜎.X) assumes
the validity condition of the execution graph, which helps us rule out ill-formed
or inconsistent graphs — we discard a graph when we obtain information from
the semantics that conflicts with this assumption (as demonstrated at the logic
level in examples in Section 5.5). Next, as in the general recipe, we assume that
we can make progress by taking a per-thread step (5), which updates the state to
𝑠′. The weakest precondition should hold recursively for 𝑠′ (as 8) — the weakest
precondition predicate is defined as the (guarded) fixed point satisfying the recursive
equation. 5 We also need a case distinction using IsValidEid to check whether the
event ID 𝑒 corresponds to an event. In the case when we run out of microinstructions
and have to reload (the microinstruction program of) the next instruction (namely 𝑒
is invalid, as 9), we simply proceed with 𝑠′. This case disctinction is just our ad-hoc
way of handling the reloading step of opax, and there might be other more systematic
solutions.

Enforcing protocols Finally, we have to show that for the current microinstruc-
tion (the first one in 𝐶.𝑝), the associated event with ID 𝑒 preserves the protocol Φ
for the rely-guarantee style reasoning. Concretely, we use the progress set 𝑠pg , a set
of event IDs, to track how far we are from enforcing the protocol on all nodes of the
guessed graph 𝜎.X , and from checking the consistency between the guessed graph
𝜎.X and the program. It contains the set of the events that have been confirmed to
conform the protocol and have corresponding microinstructions. We need to show
that for an 𝑠pg that contains (at least) all sc predecessors but not 𝑒 , as assumed by
6 , the protocol holds on 𝑒 (so we make progress by adding 𝑒) given it holds on all
events in 𝑠pg (as 7), as illustrated in Figure 5.39. The predicate SIP(Φ,X , 𝑠pg) is an
interpretation of the progress set given a protocol Φ, which enforces the protocol on
all write events in 𝑠pg , as captured by:

SIP(Φ,X , 𝑠pg) ≜ ∗𝑒∈𝑠pg ∀𝑥, 𝑣 . (X .lab(𝑒) = W 𝑥 𝑣) ⇛ Φ(𝑥, 𝑣, 𝑒)

The view shift 7 means that we can rely on all sc-before events (i.e. those that
are visible to the current event) conforming the protocol to guarantee that 𝑒 also

5Our definition does not require that 𝑠 can take a step in that case; thus, our definition does not
enforce progress.

125 5.6. Model and Soundness

conforms the protocol. This view shift is crucial for proving the soundness of resource
transfer happening in the proof rules. In particular, in the case of 𝑒 being a read
event, 𝑠pg ⊇ Sc(X , 𝑒) of 6 ensures that the protocol holds at all possible writes that it
may read from (since they are all sc-before), which allows us to transfer the protocol
resource along the rf from the actual write to this read. In the case of 𝑒 being a write
event, SIP(. . . , 𝑠pg ∪ {𝑒}) requires the protocol resource of 𝑒 .

𝑠pg

𝑒po
Sc(X , 𝑒)

𝑒

po𝑒𝑤

rf

{

𝑠pg∪{𝑒}

𝑒

Figure 5.39: An illustration on the evolving of the progress set 𝑠pg at a read event 𝑒 .

Soundness of Proof Rules

In the elaboration of the model above, we have intentionally left the precise definition
of the predicates LSI and SI undefined, since their implementations are irrelevant
to the model (and to the adequacy proof), and only pertain to the soundness of the
proof rules. Indeed, to show soundness of the proof rules for AxSLSC, it suffices that
the predicates satisfy the selection of properties in Figure 5.40.

LSI-reg-agree
LSI(𝑇)tid ∗ 𝑟 r↦→ 𝑣 ⊢ 𝑇 .regs(𝑟) = 𝑣

LSI-reg-update
𝑇 ′.regs = 𝑇 .regs[𝑟 ↦→ 𝑣 ′]

LSI(𝑇)tid ∗ 𝑟 r↦→ 𝑣 ⇛ LSI(𝑇 ′)tid ∗ 𝑟 r↦→ 𝑣 ′

LSI-po-agree
LSI(𝑇)tid ∗ PoPred(𝑒) ⊢ ⟨tid,𝑇 .IT .cntr⟩ > 𝑒

LSI-po-update
⟨tid,𝑇 ′.IT .cntr⟩ > 𝑒′

LSI(𝑇)tid ∗ PoPred(𝑒) ⇛ LSI(𝑇 ′)tid ∗ PoPred(𝑒′)

SI-edge-agree
Rel is a relation

SI(𝜎) ∗ 𝑎 Rel 𝑏 ⊢ (𝑎, 𝑏) ∈ 𝜎.X .Rel

SI-edge-alloc
Rel is a relation (𝑎, 𝑏) ∈ 𝜎.X .Rel

SI(𝜎) ⊢ 𝑎 Rel 𝑏

Figure 5.40: Selected properties of state interpretation and local state interpretation.
Generally speaking, for mutable fields of 𝑇 , we require agreement and update rules,
while for the immutable graph X , we do not require an update rule.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 126

Single-step weakest preconditions Weakest preconditions specify the beha-
viours of a whole microinstruction program execution, while we need a mechanism
to specify the behaviours of a single microinstruction to formulate the proof rules for
it. Inspired by previous verification work for low-level languages [Erbsen et al., 2021;
Jensen et al., 2013; Liu et al., 2023b; Myreen and Gordon, 2007], we use single-step
base weakest precondition sswpbSCtid,Φ 𝑠 {𝑠′. 𝑄} which means that𝑄 holds after taking
one reduction step (namely executing one microinstruction) from state 𝑠 . We define
sswpbSC simply by replacing the recursive occurrence of wpbSC with 𝑄 in the defin-
ition of wpbSC. The single-step base weakest precondition formally corresponds to
a single unfolding of the base weakest precondition, as captured by:

sswpb-wpb
sswpbSCtid,Φ 𝑠

{
𝑠′.wpbSCtid,Φ 𝑠

′ {𝑄}
}
⊣⊢ wpbSCtid,Φ 𝑠 {𝑄}

Crucially, the right-to-left direction allows us to decompose a microinstruction
program to only focus on one microinstruction at a time. This essentially plays the
role of the bind rule in logics for high-level languages.

Further, we define the single-step weakest precondition sswpSC 𝑝 {𝑄}tid,Φ, and
finally define the microinstruction Hoare triple used by the proof rule for microin-
struction 𝑖 as

{𝑃} 𝑖 {𝑄}tid,Φ ≜ �
(
∀𝑝. (𝑃 ∗ ∃𝐾. (Next 𝑖 𝐾) = 𝑝) −∗ sswpSCtid,Φ 𝑝 {𝑄}

)
where we require that the first microinstruction of 𝑝 is 𝑖 .

We use single-step microinstruction Hoare triples to specify proof rules, and
then show the soundness result of AxSLSC:

Theorem 5.6.1. The AxSLSC proof rules for microinstructions are sound.

Proof sketch. We describe the general approach for a proof of soundness of a proof
rule here. There are four major steps in the proof after unfolding the model of
assertions. First, we use the agreement rules (Figure 5.40) between the assertions
in the precondition and the interpretation to partially recover the state 𝑠 . Next, we
take the opax step for the microinstruction, obtaining new facts about the execution
graph and an updated state 𝑠′. At the same time, we perform resource transfer
according to the protocol Φ. Finally, we allocate and update assertions to mirror the
update of the local state (again using the LSI and SI rules in Figure 5.40) and the
resource transfer.

5.6.4 Model and Soundness of AxSLSCExt

The AxSLSCExt logic extends the assertion language of AxSLSC with tied-to assertions,
which make it possible to reason about resource flowing between nodes. As a logic
also built atop of an opax shape semantics, its model shares substantial similarities
with that of AxSLSC. The key difference is how it keeps track of all tied-to assertions
to enable sound transfer of tied resources between events. As noted, explicitly

127 5.6. Model and Soundness

tracking resource transfer between events does not add more expressive power to
AxSLSCExt, but makes it more general in the sense that both its model and adequacy
result are robust for more (relaxed) concurrency models. This is reminiscent of how
invariants are tracked in the weakest precondition for the standard Iris program
logic [Jung et al., 2018b]. We present the model in Figure 5.41 and highlight how the
model manages tied-to assertions below.

wpbSCExttid,Φ 𝑠 {𝑄} ≜(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎.Valid(𝜎.X) −∗ (� SI(𝜎)) −∗ ∀𝑠′. ⟨𝑠, 𝜎⟩ tid−−→h ⟨𝑠′, 𝜎⟩ −∗
∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩, 𝜏 .

(
IsValidEid(𝑒,X) ∗ 1 SIT(𝜏) ⇛

∃𝜏 ′. 2 SIT(𝜏 ′) ∗ 3 FlowImp(𝜎.X ,Φ, 𝑒, 𝜏, 𝜏 ′) ∗ wpbSCExttid,Φ 𝑠′ {𝑄}
)

∨(¬IsValidEid(𝑒,X) ∗ wpbSCExttid,Φ 𝑠′ {𝑄})

ª®®®®¬
ª®®®®®®¬

FlowImp(𝑒,X ,Φ, 𝜏, 𝜏 ′) ≜
∃𝜏in, 𝜏res, 𝑅. 4Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ∗ 5𝜏 ′ = 𝜏res [𝑒 ↦→ 𝑅] ∗
∀𝑠pg ⊇ PredOf (X .sc, 𝑒) ∧ 𝑒 ∉ 𝑠pg .

6
(∗(𝑒 ↦→𝑅in) ∈𝜏in 𝑅in

)
∗ SIP(Φ,X , 𝑠pg) ⇛ SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 7𝑅

Figure 5.41: The model of base weakest precondition of AxSLSCExt. The key changes
to that of AxSLSC are highlighted in yellow. Again, the details handling guarded
recursion are omitted.

Interpretation for tied resources SIT of 1 interprets the full authoritative view
of all tied assertions, 𝜏 , which we keep as a logical map from event IDs to Iris
propositions. Since 𝜏 mentions Iris propositions and itself is interpreted as an Iris
proposition, we leverage Iris’ support for higher-order ghost states to implement SIT.
The predicate SIT is defined in such a way that, together with the fragmental tied-to-
assertions, it enjoys agreement and update rules similar to those of the register map
shown before. (For Iris experts we remark that the rules are slightly different since
𝜏 is higher-order: specifically, we can only obtain the agreement later.) The next
line essentially allows us to update a fragment of 𝜏 (to 𝜏 ′, as 2) and the associated
tied assertions. Crucially, the update has to follow the flow implication 3 FlowImp,
which we now explain.

Flow implication The FlowImp(X ,Φ, 𝑒, 𝜏, 𝜏 ′) predicate regulates the flow and
update of resources (from 𝜏 to 𝜏 ′) that may happen at memory event 𝑒 . Intuitively,
the rule expresses that the sum of resources pushed to 𝑒 along its incoming sc edges
implies (with a view shift) the resources given out along outgoing sc edges, plus the
leftovers tied to 𝑒 .

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 128

𝑎 𝑃 ∗ 𝑃 ′↫→ 𝑏 𝑄 ∗𝑄 ′↫→
𝜏

𝑎 𝑃 ′↫→ 𝑏 𝑄 ′↫→
𝜏res 𝑎 𝑃↫→

𝑏 𝑄↫→

𝜏in(1)detach

SIP(. . . , 𝑠pg)∗

SIP(. . . , 𝑠pg ∪ {𝑒})∗𝑒 𝑅↫→

po ⇛
(2)exchange

𝑎 𝑃 ′↫→ 𝑏 𝑄 ′↫→
𝑒 𝑅↫→

𝜏 ′

(3)tie

Figure 5.42: A visualisation of the three actions of updating 𝜏 to 𝜏 ′, where we flow 𝑃

and𝑄 to 𝑒 along po from 𝑎 and 𝑏 respectively. 𝑅 is eventually tied to 𝑒 after exchange.

We divide the update from resource map 𝜏 to 𝜏 ′ into a sequence of three actions:
detach, exchange, and tie, as illustrated in Figure 5.42. The 4 Detach predicate
captures the detachment:

Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ≜ dom(𝜏in) ⊆ PredOf (X .po, 𝑒) ∗ ∀(𝑒 ↦→ 𝑅in) ∈ 𝜏in.
∃𝑅res = 𝜏res (𝑒), 𝑅 = 𝜏 (𝑒) . 𝑅 −∗ (𝑅in ∗ 𝑅res)

𝜏 is split into 𝜏in and 𝜏res, where 𝜏in is a fragment of 𝜏 which represents the resources
detached from the po predecessors of 𝑒 , as determined by the user-provided tied
assertions, and 𝜏res is the remaining global map, after detaching 𝜏in. 6 The last two
lines do the resource exchange, which is an augmented version of the view shift
presented in the model of AxSLSC. It now has the local resources of 𝜏in explicitly
given on the left as 6 , and the resource 7 𝑅 remaining on event 𝑒 on the right. The
map update 5 does the tying: the remaining resource 𝑅 is tied to 𝑒 , by extending the
map 𝜏res.

Stratification

The key difference between AxSLSC and AxSLSCExt is the tied-to assertions: 𝑎 ↬ 𝑃 .
The intent of 𝑎 ↬ 𝑃 is to express that 𝑃 holds at event 𝑎, which is po-before the
current event (if we ignore the case where 𝑃 is transferred to another thread). In
AxSLSCExt, this then allows us to transfer 𝑃 to the current event, or to any future
event of the thread, and so 𝑎 ↬ 𝑃 amounts exactly to 𝑃 . However, when we consider
an actual relaxed memory model in AxSLArm, this transfer step will be conditional on
ordering (in lob) from 𝑎 to the current event, and the indirection induced by 𝑎 ↬ 𝑃

allows us to express that 𝑃 is available under this condition.
6Since 𝜏 is higher-order, the official definition actually includes a later modality on the right of the

separation implication in the definition of Detach, but we have omitted that from the presentation for
simplicity.

129 5.6. Model and Soundness

The effect of tying 𝑃 to 𝑎 in AxSLSCExt is to constrain the use of 𝑃 : it isolates 𝑃
from the reasoning along po that we do using wpSCExt. This stratification is reflected
in the model wpbSCExt: the update of tied resources as performed by the view shift
in FlowImp cannot affect the recursive wpbSCExt for 𝑠′: we cannot use the updated
resource to directly reason about 𝑠′. In Figure 5.41, this is reflected bywpbSCExt being
pulled out of the view shift. This is to contrast with AxSLSC (see Figure 5.38), where
wpbSC is on the right side of the view shift, and can therefore observe the update.
This stratification is crucial for how we structure adequacy of AxSLArm, as we will
show in the next section.

Soundness of Proof Rules

Like in AxSLSC, we need to implement logical interpretation predicates and define a
notion of single-step weakest precondition and Hoare triple. The soundness proofs
for proof rules are then unsurprising, thanks to the substantial similarity between
the models of the two wpbs, except that now more effort is needed to show that the
update of 𝜏 to 𝜏 ′ satisfies the FlowImp predicate.

Theorem 5.6.2. The AxSLSCExt proof rules for microinstructions are sound.

5.6.5 Model and Soundness of AxSLArm

The model for AxSLSCExt is almost parametric in the memory model, in the sense
that it almost works directly for AxSLArm, a logic for TinyArm with relaxed Arm-A
concurrency. We elaborate the two key changes we make to adapt the AxSLSCExt
model to Arm-A below. This demonstrates that the structure of the model can easily
be adapted to another axiomatic memory model in which the synchronisation order
(ob) and its local fragment (lob) are specified.

Hoare Triples

As in the other two logics, we define our Hoare triple of AxSLArm for a microin-
struction program using its weakest precondition wpArm; and define the weakest
precondition using a base weakest precondition wpbArm for an ongoing local execu-
tion state.

The model of the base weakest precondition wpbArm has the same overall struc-
ture as in AxSLSCExt, with a notable difference: because it targets the relaxed memory
model of Arm-A, resources can only flow along the ob ordering. To enforce this, we
make two changes in the definition of wpbArm, as depicted in Figure 5.43:

• In FlowImp, we now require the quantified progress set 𝑠pg to include only ob
predecessors, so that one can only flow resources from nodes ordered with
respect to the current event.

• In Detach, we require the user-provided 𝜏in to mention only lob predecessors
of 𝑒 , to further constrain the flow of local resources.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 130

wpbArmtid,Φ 𝑠 {𝑄} ≜(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎.Valid(𝜎.X) −∗ (� SI(𝜎)) −∗ ∀𝑠′. ⟨𝑠, 𝜎⟩ tid−−→h ⟨𝑠′, 𝜎⟩ −∗
∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩, 𝜏 .

(
IsValidEid(𝑒,X) ∗ SIT(𝜏) ⇛

∃𝜏 ′. SIT(𝜏 ′) ∗ FlowImp(𝜎.X ,Φ, 𝑒, 𝜏, 𝜏 ′) ∗ wpbArmtid,Φ 𝑠
′ {𝑄}

)
∨(¬IsValidEid(𝑒,X) ∗ wpbArmtid,Φ 𝑠

′ {𝑄})

ª®®®®¬
ª®®®®®®¬

FlowImp(𝑒,X ,Φ, 𝜏, 𝜏 ′) ≜
∃𝜏in, 𝜏res, 𝑅.Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ∗ 𝜏 ′ = 𝜏res [𝑒 ↦→ 𝑅] ∗
∀𝑠pg ⊇ PredOf (X .ob, 𝑒) ∧ 𝑒 ∉ 𝑠pg .(∗(𝑒 ↦→𝑅in) ∈𝜏in 𝑅in

)
∗ SIP(Φ,X , 𝑠pg) ⇛ SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 𝑅

Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ≜ dom(𝜏in) ⊆ PredOf (X .lob, 𝑒) ∗ ∀(𝑒 ↦→ 𝑅in) ∈ 𝜏in.
∃𝑅res = 𝜏res (𝑒), 𝑅 = 𝜏 (𝑒). 𝑅 −∗ (𝑅in ∗ 𝑅res)

Figure 5.43: The model of base weakest precondition of AxSLArm. The diff from
AxSLSCExt (highlighted in yellow) reflects the shift of the synchronisation order from
sc to ob.

Soundness of Proof Rules

With these minor modifications from AxSLSCExt, this model works for AxSLArm, and
we can prove soundness of the proof rules for microinstructions:

Theorem 5.6.3. The AxSLArm proof rules for microinstructions are sound.

Proof sketch. The proof is the same as the one for AxSLSCExt, except that nowwe flow
resources along lob/ob instead of po/sc (which is possible thanks to the stratification
implemented by the model, as we remarked in Section 5.6.4), and we need to deal
with the dependency edges of Arm-A.

Supporting Framing and Invariants

In the same way that one is used to splitting resources in separation logic, one would
expect to be able to split 𝑎 ↬ (𝑃 ∗ 𝑄) into (𝑎 ↬ 𝑃) ∗ (𝑎 ↬ 𝑄). Recall that it is
useful for proving examples (see Figure 5.8). Modelling such splitting is, however,
quite challenging due to its higher-order nature. We address this challenge by first
implementing splitting with the help of the interpretation SIT: 𝑒 ↬ (𝑃 ∗ 𝑄) −∗
(∀𝜏 . SIT(𝜏) ⇛ (SIT(𝜏) ∗ 𝑒 ↬ 𝑃 ∗ 𝑒 ↬ 𝑄))). Here, the view shift allows us to update
tied assertions and the interpretation without changing the value of the global map
𝜏 . Then, the view shift structure is hidden by adapting the definition of the weakest
precondition to close it under this pattern.

131 5.6. Model and Soundness

Supporting invariants, on the other hand, only requires minor updates to the
weakest precondition definition: we just replace the plain view shift in FlowImp
with a more expressive view shift (a combination of the ‘later’ modality and the
‘fancy update’ modality) that allows opening and closing of invariants, similar to
[Jung et al., 2018b]. Importantly, these invariants do not enable resource transfer
(which would be unsound), as they did in CSL for non-relaxed concurrency. Instead,
we mainly use them to construct persistent wrappers for non-persistent resources
that we want to transfer via AxSLArm protocols, like escrows in GPS [Kaiser et al.,
2017; Turon et al., 2014].

Supporting Exclusives

We use the escrow pattern to support transferring non-duplicable resources at a
successful read-modify-write of a given write, as outlined in Section 5.5.

Given a location 𝑥 on which to use read-modify-writes to transfer an exclusive
resource 𝑃 , we put 𝑃 into the following invariant, as part of the protocol of 𝑥 :

Φ(𝑥, _, 𝑒𝑤) ≜ 𝑃 ∨
(
∃𝑒𝑟 , 𝑒′𝑤 . 𝑒𝑤 ((rf; [𝑒𝑟]; rmw) & co) 𝑒′𝑤 ∗ ExTok(𝑒′𝑤)

)
∗ . . .

A store 𝑒𝑤 to this location merely needs to establish the invariant by sending 𝑃
away (to satisfy the left disjunct). A load exclusive 𝑒𝑟 reading from 𝑒𝑤 can obtain the
invariant, but cannot do anything more with it by itself. A po-later successful store
exclusive 𝑒′′𝑤 that pairs with 𝑒𝑟 is guaranteed to be the unique store exclusive paired
with a load that reads-from the same 𝑒𝑤 . This unicity implies that 𝑒′′𝑤 is the quantified
𝑒′𝑤 (by graph reasoning), which allows us to open the invariant and refute the right
disjunct: With the exclusive token ExTok(𝑒′𝑤) obtained from the rule(as rmw is in
ob), and the same token from the protocol, we conclude a contradiction. Therefore,
a successful store exclusive makes it possible to get 𝑃 from the left disjunct when
opening the invariant.

We now describe the needed minor adaptions to the language semantics and
the logic. (1) We add an extra bookkeeping field srcsrmw (of type option(Eid)) to
the thread state 𝑇 of the opax. This new field is to remember the candidate load
exclusive 𝑒 that the next store exclusive may pair with, which we track with a new
bookkeeping assertion RmwPred(𝑒), similar to how we track srcsctrl with CtrlPreds.
(2) We extend SIT with a new interpretation for the domain of the global tied-to
map 𝜏 , such that it, together with ExTok(𝑒), satisfy the following properties that
guarantee the uniquness of a token

SIT-extok-alloc
𝑒 ∉ dom(𝜏) 𝜏 ′ = 𝜏 [𝑒 ↦→ _]
SIT(𝜏) ⇛ SIT(𝜏 ′) ∗ ExTok(𝑒)

extok-excl
ExTok(𝑒) ∗ ExTok(𝑒) ⊢ ⊥

Pulling Out Tied Resources

In some situations, for example when considering the postcondition of a whole
program, knowing exactly which event which resource comes from is not helpful.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 132

Instead, one can use a ‘normal’ postcondition by pulling out the tied resources
from tied-to assertions (which means that we cannot reuse the specification in the
proof of a larger program anymore). This only requires a minor change to the
semantics of wpbArm: we replace the ¤|⇛𝑄 in the case handling termination with
PullOutTied(tid, 𝑄):

PullOutTied(tid, 𝑄) ≈ ∀𝜏 . SIT(𝜏) −∗
(
SIT(𝜏) ∗

(∗{𝑅 | (𝑒 ↦→𝑅) ∈𝜏∧tid=𝑒.tid} 𝑅 ⇛ 𝑄
))

PullOutTied requires us to establish the postcondition 𝑄 , assuming that the pre-
dicates pulled out from local tied assertions hold. Technically, the definition of
PullOutTied(tid, 𝑄) makes use of the agreement rule for a local event 𝑒 , which
roughly says that SIT(𝜏) ∗ 𝑒 ↬ 𝑅 implies that 𝑒 ↦→ 𝑅 is in 𝜏 and thus that 𝑅 holds
(this is an approximate description, the formal details are a bit more subtle because
of the higher-order nature of the 𝜏 map mentioned above) — we have already seen
an example of how this is used, namely in the final reasoning step (in each thread)
in Figure 5.25.

Stuckness and Infinite Executions

As described in Section 5.4.3, we assume non-stuckness in the model of our weakest
preconditions. We do not need to show that the program does not get stuck, since
we only consider terminated opax traces, as we will see in the adequacy statement
in the next section.

Besides, because of the open problem with infinite executions in the memory
model (discussed in Section 5.4.3), our definitions of weakest preconditions does not
take measures to handle infinite executions either.

5.7 Adequacy

The adequacy of Iris logics is usually expressed as a meta-level theorem. Generally
speaking, this theorem about a program logic (in our case, Iris) extracts, from a
program specifications proven in the logic, a result in the meta logic in which the
program logic is implemented (in our case, this meta logic is Coq/Rocq). This theorem
shows that the program logic is sound, in the sense that the properties of programs
proved in the logic hold in the meta logic.

The crux of the adequacy proof is to compose thread-local reasoning results,
specified as weakest preconditions. For classic concurrent separation logics (in-
cluding most Iris-based program logics using the standard weakest precondition
construction, including iGPS), the proof of adequacy works by induction on the
program execution trace, as described in the general recipe in Section 5.6.1. The
adequacy proofs of AxSLArm differs from — and, we argue, generalises — the general
recipe (basically, the general recipe is our approach, instantiated with the same order
twice, see Section 5.7.2 for an example) in two respects: our novel opax semantics,
and the semantics model.

133 5.7. Adequacy

In this section, we first explain how to work with an opax semantics by showing
the adequacy of AxSLSC. In this adequacy proof, we need to handle the opax shape,
and the rely-guarantee style resource transfer. Next, we show the adequacy proof of
AxSLArm; we skip AxSLSCExt, since it has an almost identical semantic model, and
thus proof, to AxSLArm. This proof significantly differs from the previous general
recipe, due to the new semantic model that enforces stratification (as described in
Section 5.6.4). Because the stratification isolates the reasoning order (po) and the
resource flowing order (ob), we have to do two separate inductions on these two
separate orders.

5.7.1 Adequacy of AxSLSC

The statement of adequacy of AxSLSC is as follows:

Theorem 5.7.1 (Adequacy of AxSLSC). For any initial thread states ®𝐶 (each is a pair
⟨𝑝,𝑇 ⟩), meta-level propositions ®𝑃 (one for each thread), and valid execution graph X,
we have(

1
∧𝑛

tid=1 Ctd ®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h Done _

)
⇒

2∃Φ. ⊢
(
3 InitRes(Φ) ∗ (4 � SI(⟨X , 𝐼 ⟩)) ∗
∗𝑛

tid=1

(
5 LSI(®𝐶 (𝑡𝑖𝑑) .𝑇)tid ∗ 6wpStid,Φ

®𝐶 (tid) .𝑝
{⌈
®𝑃 (tid)

⌉})) ⇒(
7
∧𝑛

tid=1
®𝑃 (tid)

)
Here, ®𝑇 is a sequence of initial thread states (one for each thread). The first

hypothesis 1 ensures that the memory graph X reflects the behaviours of a complete
program by assuming terminating executions of all threads starting from Ctd ®𝐶 . The
second line assumes that we have proofs in AxSLSC of weakest preconditions (as
6), one for each thread, using the same protocol Φ. This is where we require that
the same protocol Φ is agreed upon between the thread-local proofs of the weakest
preconditions for each thread (as 2), as well as agreement about the execution graph
X and instruction memory 𝐼 via the state interpretation (4). In addition, we also
require the allocation of initial protocol resources 3 (for all initial writes). The
weakest preconditions 6 are for microinstructions, which takes the microinstruction
program ®𝐶 (tid).𝑝 . The postconditions are assumed to be the meta-level propositions
®𝑃 , lifted to AxSLSC by ⌈_⌉. (This lifting is similar to what happens in other Iris-
based program logics: it simply embeds a proposition 𝑃 from the meta-level as the
corresponding proposition in AxSLSC.) Next to the weakest precondition of the
thread, we require the local state interpretation 5 for the initial thread state ®𝐶 (tid) .𝑇 .
From these, adequacy tells us that 7 ®𝑃 hold in the meta-logic as well.

The value of the adequacy theorem is that it means that we do not need to
trust or even understand the intricacies of AxSLSC: once we have proved weakest
preconditions for each thread using the AxSLSC proof rules, then the adequacy
theorem guarantees that the postconditions ®𝑃 do indeed hold at the meta-level
(assuming each thread’s execution terminates).

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 134

𝑎

𝑏

𝑐

po

po

𝑑

𝑒

𝑓

po

po

{𝑎, 𝑏, 𝑑}

{𝑎, 𝑏, 𝑑, 𝑒}

{𝑎, 𝑏, 𝑑, 𝑒, 𝑐, 𝑓 }

{𝑎}

{𝑎, 𝑏}

{𝑎, 𝑏, 𝑑, 𝑒, 𝑐}

Figure 5.44: An example program execution graph with two threads, above an SC
memory model. Assuming sc edges from 𝑏 to 𝑑 , from 𝑒 to 𝑐 , and from 𝑐 to 𝑓 , ⇛
indicates the order we update SIP(Φ,X , 𝑠pg), the interpretation of the progress set in
the adequacy proof, where the sets of nodes indicates the advance of the progress
omitting initial nodes.

Proof Sketch. The overall proof strategy is that we first show ¤|⇛
⌈∧𝑛

tid=1
®𝑃 (tid)

⌉
, that

is the goal lifted to AxSLSC, and then show that all lifted meta level propositions
(under certain Iris modalities) hold in the meta logic. We only look at the first part,
as the latter is exactly the soundness result of the Iris base logic.

The proof starts by allocating SIP(Φ,X , 𝑠pg), where 𝑠pg is the set of all initial
(write) events, which means that we have to establish the protocol resources on all
initial nodes. This is derivable from InitRes(Φ) which essentially states the same
thing. Next, we can unfold the model of every wp. Given the local interpretation
LSI, we obtain one wpb from one wp. We then do induction on the sc order. The
proof then proceeds in a way that closely follows the adequacy proof of the general
recipe, as illustrated in Figure 5.44. That is, we follow the sc order, which is the order
that the program executes, to update logical resources using the view shift which
we obtain by unfolding the model of wpb. One major difference is that, unlike SI in
the general recipe, the resource we update now is SIP. Respecting the sc order, we
collect events into 𝑠pg via the update, and at the same time ensure that the protocol
Φ is maintained by all nodes.

Crucially, the proof would not go through if we did induction on the program
execution trace, which is what the general recipe does. This is because traces of the
opax semantics do not contain interleaving (they are merely thread-local traces),
but the resource transformation depends on interleaving. We therefore have to do
induction on a structure that contains the interleaving information, which is the sc
relation of the execution graph. Technically, the 𝑠pg ⊇ Pred(X .sc, 𝑒) condition in the
model of wpb enforces that one can only perform the resource update for 𝑒 (making
a progress) after all sc predecessors of 𝑒 have been handled.

135 5.7. Adequacy

5.7.2 Adequacy of AxSLSCExt and AxSLArm

We cover the adequacy of AxSLSCExt and AxSLArm together, as the similarities
between their semantic models mean that their adequacy proofs also proceed simil-
arly. We focus on the adequacy proof of AxSLArm, and only describe its difference to
the one for AxSLSCExt at the end of this subsection.

The statement of adequacy for AxSLArm is identical to Theorem 5.7.1, except for
that we now additionally require an SIT for an empty tied-to map in the second hypo-
thesis, meaning that, at the beginning, no resources are associated with any events.
However, the proof of adequacy significantly diverges from that of Theorem 5.7.1,
because of the stratification enforced by the semantic model of AxSLArm.

Theorem 5.7.2 (Adequacy of AxSLArm). For any initial thread states ®𝐶 , meta-level
propositions ®𝑃 (one for each thread), and valid execution graph X, we have(∧𝑛

tid=1 Ctd ®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h Done _

)
⇒

∃Φ. ⊢
(
InitRes(Φ) ∗ SIT(∅) ∗ (� SI(⟨X , 𝐼 ⟩)) ∗
∗𝑛

tid=1

(
LSI(®𝐶 (𝑡𝑖𝑑).𝑇) ∗ wpAtid,Φ Ctd ®𝐶 (tid) .𝑝

{⌈
®𝑃 (tid)

⌉})) ⇒(∧𝑛
tid=1

®𝑃 (tid)
)

Overview of the Proof

Following the stratification of the semantics model, our novel adequacy proof is also
stratified into two phases. We now outline the two phases informally.

Phase one, informally First, like in some previous logics based on axiomatic
models, including RSL [Vafeiadis and Narayan, 2013] and GPS [Turon et al., 2014], we
construct an annotated execution graph. This follows directly from the fact that the
opax semantics is essentially an operational wrapper on top of an axiomatic model.
Then we construct an annotation of the execution graph using flow implications
from our weakest precondition. At each reduction step of the semantics, the weakest
precondition remembers a flow implication for each node in the graph, and ensures
that all these flow implications can be chained.

Thus, we can collect the needed flow implications at all nodes by unfolding
the weakest preconditions of all threads along program order, and then connect
them together to obtain a full annotation. During the annotation construction, our
protocol plays a crucial role, since it specifies how resources flow across threads and
is agreed upon between them, guaranteeing that the flow implications of different
threads are compatible.

Phase two, informally Second, to get an Iris-style adequacy statement in which
we show all pure postconditions hold in the meta logic, we need to actually perform
all the resource transformations (namely the flow implications) of the annotated

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 136

𝑎

𝑏

po

𝑐

𝑑

po

{𝑏, 𝑐}

{𝑏, 𝑐, 𝑑}

{𝑎, 𝑏, 𝑐, 𝑑}

{𝑏}

Figure 5.45: An example program execution graph with two threads, above Arm-A
memory model. Assuming ob edges from 𝑏 to 𝑐 , from 𝑐 to 𝑑 , and from 𝑑 to 𝑎, ⇛
indicates the order we update SIP(Φ,X , 𝑠pg) in the second phase of the adequacy
proof, where the sets of nodes indicate the advance of 𝑠pg .

graph, starting from the initial resources. This step of our proof is novel, since
usually the resource transformations are simply performed on the fly in stronger
settings, thanks to the acyclicity of po ∪ rfe in these memory models. In those
settings, it is possible to update resources between program points according to the
flow implications (i.e. apply them to the resources) in po ∪ rfe during the unfolding,
since this order includes the po order in which weakest preconditions collect the
flow implications.

On the other hand, when working with a relaxed model like that of Arm-A, the
order that we rely on is ob, which does not include po, and our tied-to assertions
are employed to restrict po resource flow in AxSLArm. However, we still want
syntax-oriented weakest preconditions which collect flow implications along po,
as illustrated in Figure 5.45. This tension poses the main challenge to the proof
of adequacy, since one cannot do induction on the potentially cyclic po ∪ ob. We
resolve this tension by stratifying the usual proof procedure described in the general
recipe into two phases: phase one collects flow implications along po, and phase two
applies them along ob. We argue that this stratification, and the semantic model of
AxSLArm that enables it, are a generalisation of the usual Iris-based CSLs and their
one-pass adequacy proofs.

In the rest of the section, we explain our novel two-phase adequacy proof in
more detail, and leave the discussion on the relation to other adequacy proofs to
related work (Section 5.9).

Phase One

The goal of phase one is to show the following lemma, from which we show the
final adequacy statement in phase two.

137 5.7. Adequacy

Lemma 5.7.3. For a valid execution graph X,

∃𝜀, 𝜏 . 1 SIT(𝜏) ∗ (2 dom(𝜏) = dom(𝜀) = AllNodes(X)) ∗
(3∀𝑒 ↦→𝑚 ∈ 𝜀. dom(𝑚) ⊆ PredOf (X .lob, e)) ∗
∀𝑒 ↦→ 𝑅 ∈ 𝜏 .
∀𝑠pg ⊇ PredOf (X .ob, 𝑒) ∧ 𝑒 ∉ 𝑠pg .(

SIP(Φ,X , 𝑠pg) ∗ 4 ∗_↦→𝑅𝑖 ∈𝜀 [𝑒] 𝑅𝑖
)
⇛(

SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 5 ∗𝑒𝑜 ∈SuccOf (X .lob,e) 𝜀 [𝑒𝑜] [𝑒] ∗ 𝑅
)

Generally speaking, the lemma requires a well-formed annotation on every lob
edge of the execution graph. The edge annotation 𝜀 (of type Eid → Eid → iProp)
records the history of how resources evolve and are transferred soundly along lob in
a complete program execution (e.g. 𝜀 [𝑒] [𝑒′] is the annotation of 𝑒′ lob 𝑒), as inspired
by RSL/FSL. The first line of the lemma also requires a tied-to map 𝜏 , and its logical
interpretation 1 SIT(𝜏). This map is the final one after checking all events, which
records the resources that remain on the events after flowing all the resources. To
enforce that this map is indeed final, 2 requires that the domain of 𝜏 and 𝜀 is all
the nodes of the execution graph X . In the next line, we impose a well-formedness
condition on 𝜀: 3 says that, for all mappings of 𝑒 to𝑚 in 𝜀,𝑚 is a node-to-resource
map specifying the resources that flow to 𝑒 from its lob predecessors. The last three
lines relate 𝜏 and 𝜀: for all dangling resources 𝑅 on node 𝑒 in 𝜏 , a variant of the view
shift part of FlowImp holds for the protocol Φ, where 4 is the local resources flowing
into 𝑒 , and 5 is the resources flowing out from 𝑒 , both along lob.

Thanks to our definition of weakest precondition, the local edge annotations for
an event, which is essentially a resource transformer, can be easily derived from the
corresponding tied-to map update specified by the flow implication: we take 𝜏in as
𝜀 [𝑒] for every node 𝑒 . Furthermore, the fact that every such update follows the flow
implication guarantees that these local annotations can be composed both vertically
(in po) and horizontally (between threads) to get a global edge annotation, which is
captured as the lemma above.

Proof Sketch. In each thread, vertical composition is done by induction on the
thread’s trace to unfold the recursively defined weakest precondition. This allows us
to collect local annotations along po to obtain an annotation for the thread. Next, the
derived annotations are glued horizontally (between threads, by taking the union of
the local ones) to obtain a global annotation 𝜀, which is possible since all resource ex-
change across threads (as annotated on obs) are specified by the same rely-guarantee
protocol Φ.

Phase Two

Given the edge annotation 𝜀 from phase one, phase two stitches the flow implications
together by induction on ob, as illustrated in Figure 5.45.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 138

Proof Sketch. For the base case of the induction, we require the user to show that
the resources specified by Φ for the initial events of all memory locations can be
established. The allocated resources are then used as the starting point for the
application of the flow implications along (an order extension of) ob. Finally, we
combine the remaining tied-to assertions at the end of the process to show the
postconditions.

Adequacy of AxSLSCExt

The adequacy proof of AxSLSCExt differs from that of AxSLArm only in phase two:
we just need to make the induction of phase two follow sc instead of ob. This proof
is effectively the proof of adequacy of AxSLSC, but divided into two phases due to
the stratification imposed by the model. Recall that in the AxSLSC proof, we do
induction on the sc relation to collect flow implications and apply them on-the-fly.
Here in this proof, we collect the flow implications in phase one along po and apply
them in the sc order in phase two.

5.8 Technical Remarks and Limitations

5.8.1 Technical Improvements to the Original AxSLArm

Although the syntax of AxSLArm in Section 5.5 is almost identical to the original
AxSLArm [Hammond et al., 2024], the model presented in Section 5.6 is new, and
factored cleanly around well-defined abstractions. This has two benefits: first,
it makes the proof of adequacy significantly simpler, and second, it allows us to
apply the same recipe to different memory models, which we illustrate using SC in
AxSLSCExt.

Concretely, in the old model, we enforce the protocol on exactly the obs pre-
decessors of the current node, which causes two major inconveniences. First, in
the proof of adequacy, we have to unfold the (old) FlowImp predicate, and reason
about the protocol resources tied to the obs predecessors of a node explicitly. For
instance, we have to reason about whether an obs predecessor of a node 𝑒 is also an
obs predecessor of another node 𝑒′ (e.g., when two loads read from the same write)
in the phase two of the adequacy proof. This adds extra complexity to the proof.

Second, users of the logic can only send away persistent resources with the
(old) proof rule for stores. This is because we have to require the protocol resources
to be persistent, ensuring that they remained unchanged after applying the flow
implication (so they can be transferred to other nodes) in the adequacy proof.

With the improved model of this paper, we use the progress set 𝑠pg to track the
set of events on which we have ensured that the protocol holds, and abstract the
enforcement of the protocol on 𝑠pg with SIP. This abstraction avoids unfolding the
definition of SIP and reduces explicit resources reasoning.

139 5.8. Technical Remarks and Limitations

5.8.2 Recovering Points-Tos in AxSLSC

In this subsection, we discuss the connection between the graph reasoning of opax-
based logics and the heap reasoning of standard CSLs. Concretely, we show formally
that we can build a notion of points-tos with abstractions in AxSLSC.

Standard CSL points-tos We first recap the points-to assertion and two standard
proof rules using it in CSL. A usual CSL points-to assertion 𝑥 ↩→ 𝑣 means that the
latest value of location 𝑥 is 𝑣 on the shared heap. Owning this assertion grants one
the exclusive right to access 𝑥 with the two standard rules in Section 5.8.2. Our goal
is to obtain a definition of points-to that satisfies the same rules in AxSLSC.

Std-ht-micro-memread
{𝑥 ↩→ 𝑣}MemRead x {𝑤.𝑤 = 𝑣 ∗ 𝑥 ↩→ 𝑣}tid,Φ

Std-ht-micro-memwrite
{𝑥 ↩→ 𝑣}MemWrite x 𝑣 ′ {_. 𝑥 ↩→ 𝑣 ′}tid,Φ

Figure 5.46: Standard CSL read and write rules with points-tos (if we omit the
protocol Φ). We reformulate them with the microinstruction language and assume a
fixed number of hardware threads.

Raw Definition

In AxSLSC, we model 𝑥 ↩→ 𝑣 by leveraging the fact that all observed writes on
location 𝑥 are ordered by co, forming a sequence of write events, and that one can
only read from the latest write (head) of the sequence with value 𝑣 : reading from
outdated writes would violate the acyclicity requirement. We define a raw points-to
to capture these observations:

𝑥 ↩→raw 𝑣@𝑒lst ≜

∃𝛾𝑥 . ◦ [𝑥 ↦→ 𝛾𝑥]
𝛾 ∗ ∃ch. • (𝑒lst :: ch)

𝛾𝑥 ∗ IsLastWrite(𝑒lst, ch) ∗ 𝑒lst :W 𝑥 𝑣

This raw definition asserts that the globally co-latest write of 𝑥 has event ID 𝑒lst and
value 𝑣 . We use two ghost states in the definition to capture this. ◦ [𝑥 ↦→ 𝛾𝑥]

𝛾 is a
persistent fact binding location 𝑥 to an unique ghost name 𝛾𝑥 . 𝛾𝑥 is the ghost name
of a list of event IDs • (𝑒lst :: 𝑐ℎ)

𝛾𝑥 which models the sequence of writes of 𝑥 (the
head is the lastest). This ghost list ensures that updates of the sequence of the writes
are monotone (list only grows), and one can at anytime take (persistent) snapshots
of the list: ◦ 𝑐ℎ′ 𝛾𝑥 such that 𝑐ℎ′ is a sub-list. The IsLastWrite predicate establishes
that 𝑒lst is indeed the co-latest write in the list with graph facts, and finally, 𝑒lst :W 𝑥 𝑣

remembers the value 𝑣 .

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 140

Leveraging protocol To ensure that the sequence of writes is well-synchronised
with the program execution, that is, all writes one has reasoned about were added to
the sequence, and, dually, reads can only read from the writes in the sequence, we
use our rely-guarantee protocol Φ. As a first step, we fix the protocol using a new
predicateWriteOf (𝑥, 𝑒) as Φ(𝑥, 𝑣, 𝑒) ≜ WriteOf (𝑥, 𝑒) (this can be further generalised,
but we keep it simple for now):

WriteOf (𝑥, 𝑒) ≜ ∃𝛾𝑥 . ◦ [𝑥 ↦→ 𝛾𝑥]
𝛾 ∗ ∃ch. ◦ (𝑒 :: ch) 𝛾𝑥 ∗ 𝑒:W 𝑥 𝑣

The new predicate asserts that 𝑒 is an observed write event of 𝑥 , and thus is included
in the write sequence, depicted as SC-pt-raw-ag. As we will see below, this is crucial
for concluding that only the latest write is readable, mimicking the semantics of
points-tos.

SC-pt-raw-ag
𝑥 ↩→raw 𝑣@𝑒 ∗WriteOf (𝑥, 𝑒′)

𝑒′ co∗ 𝑒
SC-pt-raw-sht
𝑥 ↩→raw 𝑣@𝑒 ⇛ WriteOf (𝑥, 𝑒)

SC-pt-raw-upd
𝑒 co 𝑒′ ∗ 𝑒′:W 𝑥 𝑣 ′

𝑥 ↩→raw 𝑣@𝑒 ⇛ 𝑥 ↩→raw 𝑣
′@𝑒′

SC-pt-wo-pers
WriteOf (𝑥, 𝑒)

WriteOf (𝑥, 𝑒) ∗WriteOf (𝑥, 𝑒)

Figure 5.47: Selected operations of the raw points-to andWriteOf

Full Definition

The full points-to assertion is modelled as a monotone predicate over the po-latest
event 𝑒 of a thread, using the raw definition:

J𝑥 ↩→ 𝑣K ≜ 𝜆𝑒. ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

where the notation 𝑒 ≤R 𝑒′ means that either the two events are identical, or 𝑒 is
R-ordered before 𝑒′ (in contrast, ≥ means identical or after). We instantiate this
relation to sc, requiring that the latest write 𝑒lst happens before 𝑒 . We also need to
monotonise all other assertions of the base AxSLSC logic. Most of them are standard,
for instance below is how we monotonise the weakest precondition.

J{𝑃} 𝑖 {𝑤.𝑄 (𝑤)}tid,ΦK ≜
𝜆𝑒.∀𝑒′ ≥po 𝑒.

{
J𝑃K(𝑒′) ∗ PoPred(𝑒′)

}
𝑖
{
𝑣 . ∃𝑒′′ ≥po 𝑒

′. J𝑄 (𝑣)K(𝑒′′) ∗ PoPred(𝑒′′)
}
tid,Φ

Proving Standard CSL Rules

We now sketch the soundness proof of the two classic CSL rules in AxSLSC. The
proof starts with unfolding all the monotone predicates then proceeds using AxSLSC
proof rules.

141 5.8. Technical Remarks and Limitations

Store For Std-ht-micro-memwrite, after unfolding, we need to show:{
PoPred(𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

}
MemWrite 𝑥 𝑣 ′{
() . ∃𝑒′ ≥po 𝑒. PoPred(𝑒′) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣

′@𝑒lst ∗ 𝑒lst ≤sc 𝑒
′ }

tid,Φ

We proceed with the base rule SC-ht-micro-memwrite, picking 𝑒 as 𝑒po. We have the
following view shift as a sub-goal, which guarantees that the protocol is enforced
on the new write (namely the new write is added to the sequence as the latest):

∀𝑒𝑤 . (GraphFactsW(𝑒𝑤, x, 𝑣 ′, 𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒)
⇛ (WriteOf (𝑥, 𝑒𝑤)) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣

′@𝑒lst ∗ 𝑒lst ≤sc 𝑒𝑤

We update the raw points-to assertion to 𝑥 ↩→raw 𝑣
′@𝑒𝑤 by SC-pt-raw-upd and then

take a snapshot with SC-pt-raw-sht. The remaining goal 𝑒𝑤 ≤sc 𝑒𝑤 is trivial. Finally,
we conclude the proof with the rule of consequence.

Load In the case of Std-ht-micro-memread, we need to show:{
PoPred(𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

}
MemRead 𝑥{
𝑤. ∃𝑒′ ≥po 𝑒. 𝑤 = 𝑣 ∗ PoPred(𝑒′) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

′ }
tid,Φ

We proceed by applying SC-ht-micro-memread. We need to prove the following view
shift which captures that we are reading from a write that is in the sequence:

∀𝑒𝑟 ,𝑤, 𝑒𝑤 .
(
GraphFactsR(𝑒𝑟 , x, 𝑣, 𝑒𝑤, 𝑒) ∗
∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒 ∗WriteOf (𝑥, 𝑒𝑤)

)
⇛ 𝑤 = 𝑣 ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒𝑟 ∗WriteOf (𝑥, 𝑒𝑤)

By SC-pt-raw-ag, we know 𝑒𝑤 ≤co 𝑒lst , namely the write 𝑒𝑤 that we are reading
from is one of the observed writes. We show 𝑤 = 𝑣 by showing 𝑒𝑤 = 𝑒lst , that is,
we can only read from the latest write. This is done by showing a violation of the
acyclicity of sc in the other case when reading from an old write (𝑒𝑤 co 𝑒lst). The
problematic cycle is 𝑒lst sc 𝑒 po 𝑒𝑟 fr 𝑒lst where 𝑒𝑟 fr 𝑒lst is induced from 𝑒𝑤 rf 𝑒𝑟 and
𝑒𝑤 co 𝑒lst . Again, we conclude the proof with the rule of consequence.

5.8.3 Proof Effort for AxSLArmAxSLArm

Much of the effort was in the overall design of the logic to overcome the challenge
to soundness posed by load buffering. Shaping the idea to fit Iris, and detailing
the model of assertions and the definition of weakest preconditions, took over a
person-year, but the result has been robust to small changes, for example to add
exclusives. The adequacy theorem has the most significant proof: it took two or

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 142

three person-months to mechanise the original proof of the POPL 2024 paper after
initial design work. Afterwards, the proof was simplified thanks to the improvement
to the model described in Section 5.8.1, which took around a week. Writing and
proving an instruction proof rule takes about half a person-day now that we have
enough of them to flesh out a pattern. Finding an overall proof structure for a new
shape of litmus test takes a few person-days; in fact, it is very similar to what is
needed for example in RSL. Adapting a proof from one variant of a litmus test to
another is just a few hours’ work, and less than a hundred lines of Coq/Rocq.

Overall, the mechanisation for AxSLArm is divided as follows:

Item LoC
Prelude (incl. outcome interface and infrastructure) ∼4800
Language definition and lemmas ∼1100
Axiomatic model and lemmas ∼3000
Iris CMRAs ∼900
WPs and assertions ∼3700
Proof rules and their soundness proofs ∼2700
Adequacy ∼1100
Examples ∼3300

The purpose of this table is to give readers an impression on the scale of the
mechanisation. The numbers in this tabular are not intended for direct numerical
comparison with the numbers reported in the POPL 2024 paper [Hammond et al.,
2024], since the mechanisation has experienced refactoring and is therefore more
flexible than before.

5.8.4 Coherence

The memory model of Arm-A involves two main axioms: external, which requires
ordered-before to be acyclic, and internal, which requires po-loc | ca | rf to be
acyclic, which effectively enforces per-location sequential consistency (the atomicity
axiom is much more ‘local’ and easier to use, as per Section 5.5.7). This latter order is
sometimes also called coherence, or (to avoid confusion with the coherence relation,
co, which is merely part of it) extended coherence.

The way AxSLArm is defined in Iris above the opax semantics using the memory
model of Figure 5.4 means that it captures both axioms. However, the design of
the logic focuses on the external axiom, and leverages the acyclicity of ob to allow
sound transfer of resources along ob. This means that AxSLArm cannot soundly
allow transfer resources along the potentially cyclic combination of ob and extended
coherence, as the phase two induction proof of the adequacy needs an acyclic order.
It is always possible to reason about extended coherence by brute force in AxSLArm,
by explicit graph reasoning (as in Section 5.5.5), but this is unsatisfactory. This is
a definite limitation of AxSLArm, as many common programming and reasoning
idioms rely on reasoning about coherence, in particular full GPS protocols and the
notion of non-atomics.

143 5.9. Related Work

5.9 Related Work

There is extensive work on verification of relaxed memory models. Here we mainly
discuss the line of work on separation logics starting from RSL, and only mention
some other work that is closely related.

Overview RSL [Vafeiadis and Narayan, 2013], GPS [Turon et al., 2014]/GPS+ [He
et al., 2016], and FSL [Doko and Vafeiadis, 2016]/FSL++ [Doko, 2021; Doko and
Vafeiadis, 2017] are defined with respect to an axiomatic memory model, namely
that of C11/RC11, and their proofs of soundness are built from the ground up using
non-standard models of separation logic, which (as described by Kaiser et al. [Kaiser
et al., 2017, §1.2]) requires significant effort. Later logics like iGPS [Kaiser et al., 2017],
Cosmos [Mével et al., 2020], and iRC11 [Dang et al., 2020], rely on (re)formulating
the target relaxed memory model as an operational model to obtain an Iris-based
logic with advanced features like higher-order ghost states ‘for free’.

Very relaxed hardwarememorymodels The proofs of adequacy of RSL and FSL
are somewhat similar to ours, also being based on chaining flow implications along
a global acyclic synchronisation relation, C11’s happens-before (hb). However, the
memory model of C11 is substantially different from that of Arm, and in particular,
despite a similar role, hb is substantially different from ob: it is defined as hb ≜
(sb∪ sw)+, where sb is C11’s counterpart to po, and sw is C11’s loose counterpart to
obs. This allows them to freely persist resources along program order, and so their
flow implications refer to immediate program order successors and predecessors of
instructions, which means that they have their postcondition immediately in hand,
and do not need to collect tied resources. It also means that, unlike ours, their proof
of adequacy can be along program order.

FSL [Doko and Vafeiadis, 2016] extends RSL to make it possible to transfer
resources using C11 ‘relaxed’ access that are suitably fenced by guarding resources
withmodalities: a relaxed load, which imposes little order by itself, merely obtains∇𝑃 ,
which is not usable by itself, but which an acquire fence turns into 𝑃 . Symmetrically,
𝑃 itself cannot be sent away by a mere relaxed store, but a release fence turns 𝑃 into
Δ𝑃 , which a relaxed store can send away. Our 𝑎 ↬ 𝑃 assertion can be seen as an
indexed version of ∇𝑃 , keeping track of the source of the assertion in a way that is
compatible with ghost state, even with cycles in po ∪ rf.

FSL++ [Doko, 2021; Doko and Vafeiadis, 2017] extends FSL with a form of ghost
state (albeit one not as expressive as that of Iris), but this makes it unsound for
memory models that exhibit load buffering, and so FSL++ targets RC11 [Lahav et al.,
2017], a significant strengthening of C11 that requires that po ∪ rf is acyclic.

In a sense, FSL and FSL++ both allow reasoning along po, but put some guards
to limit transfer of physical resources. For FSL, which has no other resources, this
limits its expressivity but poses no soundness problem. For FSL++, this imposes
strong requirements on the underlying memory model.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 144

Our flow implications are inspired by those of RSL and FSL. However, thanks to
the phrasing of the memory model of Arm-A, we give a single, generic definition,
instead of one based on case analysis of instructions. In addition, the pervasive effect
of undefined behaviour (stemming from data races on non-atomics and uninitialised
reads) in C11 substantially complicates the definition of flow implications of RSL
and FSL.

Very relaxed programming language models SLR [Svendsen et al., 2018] tar-
gets the Promising Semantics [Kang et al., 2017] designed to fix the out-of-thin-air
problem of C11. SLR takes advantage of the extra strength to enable coherence
(sc-per-location) reasoning on relaxed accesses, but does not allow resource transfer
using relaxed accesses. SLR features an assertion to keep track of writes that is
somewhat similar to our NoLocalWrites and LastLocalWrite assertions:𝑊 𝜋 (𝑥, 𝑋)
imposes a lower bound 𝑋 on the set of writes done so far to location 𝑥 ; however,
they use it for coherence reasoning, rather than to bound internal reads.

Less relaxed memory models GPS [Turon et al., 2014] targets the subset of
C11 featuring release stores, acquire loads, and non-atomic accesses (on which data
races are undefined behaviour). GPS features ghost state (which is sound because
po ∪ rf is acyclic), per-location protocols (carrying state transition system tokens),
and escrows. Kaiser et al. [Kaiser et al., 2017] describe how the protocols and escrows
of GPS can be defined in terms of simpler components (like invariants) in Iris, and
this is part of our motivation for using Iris.

To enrich GPSwith the expressive power of Iris ‘for free’, iGPS [Kaiser et al., 2017]
is based on an operational reformulation of release-acquire. One of our contributions
is to show how to reason about an axiomatic memory model directly in Iris, avoiding
this operational reformulation. iRC11 [Dang et al., 2020] combines iGPS with FSL++.
It targets ORC11, an operational reformulation of a fragment of RC11.

Compass [Dang et al., 2022] is a specification framework for the ORC11 memory
model that gives programs specifications in terms of event graphs the inter-thread
edges of which are induced by data structure operations, for example from an
enqueue to the dequeue of the same value, which generalises rf.

Cosmo [Mével et al., 2020] is a logic for the multicore OCaml memory model.
The OCaml memory model is stronger and simpler than that of C11 in many respects
which Cosmo leverages extensively to derive simple but powerful reasoning rules.
Following iGPS, Cosmo is an instantiation of the standard Iris framework with
an operational semantics, following the general recipe, and has a layered design
featuring a base logic exposing memory model details and a high-level logic with
almost standard CSL proof rules.

Very strong models For other stronger models like TSO that have a simple
operational model, working that close to the axiomatic model is probably more a
burden, although possible. Significantly different abstractions would need to be built

145 5.9. Related Work

on top to capture this strength so that the logic is usable [Jacobs, 2014; Ridge, 2010;
Sieczkowski et al., 2015; Wehrman, 2012; Wehrman and Berdine, 2011; Zhang and
Feng, 2014].

Per-location protocols As the name suggests, a per-location protocol in GPS and
iGPS [Kaiser et al., 2017; Turon et al., 2014] is a logical assertion dedicated to resource
transfer between memory operations of a location, in contrast to invariants, which
are implicitly shared among all locations. Per-location protocols make it possible to
bind the physical value of a location to an abstract state of a state transition system
(STS), and ensures that the evolution of the value is consistent with the transitions
of the STS. This abstraction usually enables more high-level proofs (compared to
their counterparts in AxSL), and can be implemented using basic Iris building blocks
(invariants and ghost states), as in iGPS. The idea is based on the memory model
assumption that the accesses to individual locations have SC behaviours (SC-per-
location is also known coherence) which is often phrased in axiomatic memory
models as an acyclicity requirement on the (extended) coherence order, eco (e.g. the
Internal visibility requirement of Arm-A in Figure 5.4). Intuitively, given a pre-agreed
STS, the axiom prevents reading from an old state and forces to make a valid and
consistent transition when writing. In the fragments of C11 that GPS and iGPS are
based on, the synchronisation order po ∪ rf is included in eco, and so threads can
exchange resources describing the abstract states of the same location along the eco
edges by rely-guarantee reasoning.

As noted in Section 5.5.1, our AxSL protocol Φ is heavily inspired by GPS,
but tailored to only support relatively simple resource transfer, due to the limited
support for the coherence reasoning described in Section 5.8.4. Concretely, our logic
is parametric by a concrete stateless protocol whose implementation does not rely
on the coherence axiom. We leave implementing full stateful protocols in AxSL as
future work, since enabling meaningful proof rules with stateful protocols requires
a non-trivial extension to AxSL that solves more challenging circularity issues.
Fundamentally, such an extended logic would need to support flowing resources not
only along the coherence order and the synchronisation order respectively, but also
between the two orders — even though the union of these two orders is potentially
cyclic, as in Arm-A.

Dealing with backtracking The trick we use to express an axiomatic memory
model as an operational semantics of the shape that Iris expects is inspired by how
Islaris treats its event-enriched SMT language [Sammler et al., 2022]. Program
(declare-const 𝑥); 𝑠 can take a step to 𝑠 [𝑥 ↦→ 𝑣] for any value 𝑣 , and an (assert 𝑒); 𝑠
program can take a step in one of two ways: if 𝑒 evaluates to true, the program takes
a step to 𝑠; and if 𝑒 evaluates to false, the assert steps to the ‘execution discarded’
state. The definition of postcondition in Islaris then ignores discarded states.

Chapter 5. An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics 146

Tracking ordering and flowing The Lace logic [Bornat et al., 2015b] shares the
same core idea of explicitly tracking ordering between memory events (which they
call ‘laces’), and of flowing assertions along edges (which they call ‘embroidery’) of
an axiomatic memory model. Their setup looks quite different on the surface, as
their approach to ordering is top-down (in the style of Crary and Sullivan [Crary
and Sullivan, 2015]), stating which instructions they require ordering from, rather
than our bottom-up approach, in which we infer order from the instructions of
the program. The main difference is that they try to talk about variables (memory
locations), and so, to soundly flow assertions along edges, they need to check for
interference on said variables, which is a whole-program check. In addition, they
leave supporting separation as future work, and thus feature no notion of transfer
of resources. However, Lace features modalities to ease reasoning about coherence,
whereas it has to be done by graph reasoning in our logic. Lace was implemented
using a custom proof checker, with no proof of its soundness.

Trackingmemory events The Ogre and Pythia invariance proof method [Alglave
and Cousot, 2017] refines Owicki-Gries without auxiliary variables (which are un-
sound for relaxed memory [Lahav and Vafeiadis, 2015]) by working with memory
events (via program counters), and their “pythia” variables keep track of the values of
reads. Their method is parameterised by an axiomatic memory model expressed by
relational algebra in the .cat format [Alglave et al., 2014]. They show that their proof
method is sound and relatively complete, but their invariants are whole-program,
and they leave development of abstractions that make proofs tractable as future
work.

Tied-tos and flow implications We conjecture that the unpublished extension of
ribbon proofs to relaxed memory mentioned in [Wickerson et al., 2013] would have
had some similarities to our setup, with unclosed ribbons standing for tied assertions,
and flow implications imposing conditions on when ribbons can be joined.

5.10 Conclusion

The very relaxed concurrency memory models of hardware architectures like Arm-
A, in which synchronisation (ob for Arm-A) does not follow program order, make
syntax-directed and thread-modular reasoning challenging. The need to program
directly to the hardware architecture for performance and for access to systems
features makes this challenge unavoidable. Our family of logics, AxSL, addresses this
challenge through assertions that track how synchronisation is induced by the pro-
gram text, and makes reasoning tractable by flowing higher-order ghost state along
synchronisation. This allows us to capture and thus validate key synchronisation
idioms. Moreover, as demonstrated by our instantiation of AxSL to different memory
models, our approach relies essentially just on the acyclicity of the synchronisation
order, and should therefore apply to many hardware architectures.

147 5.10. Conclusion

This opens up a potential approach for reasoning about a wide range of axiomatic
models, and there are many important extensions to explore, e.g. to integrate with
the full Arm-A or RISC-V ISAs, to cover mixed-size accesses, and to cover systems
features including instruction-fetch and virtual memory. An important challenge
is to tackle reasoning involving not only synchronisation but also coherence, in
particular as leveraged by non-atomics, even though the union of synchronisation
and coherence can have cycles.

6

First Steps towards AxSL+

6.1 Introduction

Very relaxed memory models, such as the one employed in Arm-A, underpin many
high-performance systems and mobile devices. They challenge the conventional
assumptions that the union of program order (po) and the reads-from relation (rf) is
acyclic, therefore require advanced methodologies for program logic verification.

AxSL [Hammond et al., 2024; Liu et al., 2024] is an Iris-based concurrent sep-
aration logic framework that can be instantiated with such very relaxed memory
models and support local reasoning and higher-order ghost states. A key feature
of AxSL is that it enables sound resource transfer along the synchronisation order
that does not respect program order. In particular, AxSLArm, its instance for Arm-A,
is proven sound with respect to the synchronisation order of Arm-A, which many
program logics built for stronger memory models assuming po∪ rf acyclicity cannot
handle. Despite the advancements, reasoning about synchronisation order (ob) and
coherence (eco) of Arm-A simultaneously remains an open problem [Hammond
et al., 2024; Liu et al., 2024], which is necessary to offer expressive abstractions
capturing programming patterns of realistic concurrent code.

This work introduces AxSL+, an enriched AxSLArm aiming for tackling this
problem. For brevity, we omit the superscript indicating the memory model from
the logic names, referring to AxSLArm as AxSL throughout this paper. By extending
and generalising AxSL with a novel level-indexing mechanism, we present AxSL+NA,
a simple instance of AxSL+ that supports non-atomic points-to assertions that are
transferable along both ob and eco. This marks the first instance of mixed-order
thread-local reasoning, opening the door for more expressive abstractions requiring
passing resources along multiple orders. The level-indexing mechanism is also
generic and applicable to other multi-order memory models.

The structure of the paper is as follows:
• Section 6.2 discusses the extended coherence axiom of Arm-A and highlights
the primary challenge of reasoning about it alongside ob via a double message-
passing (Double MP) example.

149

Chapter 6. First Steps towards AxSL+ 150

1 (* SC-per-location *)
2 acyclic po-loc | ca | rf
3 (* External visibility *)
4 irreflexive ob
Figure 6.1: The two “axioms” of Arm-A axiomatic model by Deacon [Deacon, 2016;
Pulte et al., 2018], where ca is defined as fr | co

• Section 6.3 provides a technical overview of the level-indexing solution to this
challenge.

• Section 6.4 introduces AxSL+NA, a simple AxSL+ instance with non-atomic
points-to assertions, including its assertion language, specialised proof rules,
and a proof sketch of Double MP.

• Section 6.5 presents the semantic models for the weakest precondition and
the implementation of AxSL+NA.

• Section 6.6 outlines the adequacy proof of AxSL+.

• Section 6.7 discusses potential future improvements to AxSL+NA.

Remarks We provide additional technical details in this paper to enhance the
credibility of our results, as they are not yet mechanised. We assume that readers
are familiar with the AxSL papers.

6.2 Context

This section first recalls the extended coherence axiom of Arm-A, then explains why
mixing eco reasoning with ob reasoning to AxSL is necessary but hard.

6.2.1 Coherence in Arm-A model

The Arm-A memory model employs the ordered-before (ob) order as its synchron-
isation order. It also enforces coherence, the standard condition that concurrent
memory accesses to each location exhibit sequentially consistent behaviour, com-
monly referred to as SC-per-location. This coherence condition is formally expressed
as the acyclicity of the union of four orders: po-loc∪rf∪co∪fr, as shown in Figure 6.1.
For convenience, we refer to the union of these orders as eco (extended-coherence),
distinguishing it from the standard coherence order co, which only concerns writes.

While the definition of eco in Arm-A is standard, the fact that it is not included
in ob means that reasoning rules for eco-based abstractions do not arise as easily as
they do in stronger models in which eco is included in ob. Specifically, such logics
easily allow flowing resources between ob and eco. However, this is unsound in
Arm-A because such flowing relies on acyclicity of ob ∪ eco, as we recall below in
Section 6.2.3.

151 6.2. Context

𝑎: str [data] 42 𝑑 : 𝑟1 := ldr [flag]
𝑏: str [data] 43 if (𝑟1 = 1) :
𝑐: strrel [flag] 1 𝑒: 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

𝑓 : 𝑟3 := ldr [data]
𝑎:W data 42

𝑏:W data 43

𝑐:Wrel flag 1

𝑑 :R flag 1

𝑒:R data 43

𝑓 :R data 43

po

po

addr

po

rf
rf

Figure 6.2: DMP+rel+addr: 𝑟1 = 1 ⇒ 𝑟2 = 𝑟3 = 43

𝑎:W data 42

𝑏:W data 43

𝑐:Wrel flag 1

𝑑 :R flag 1

𝑒:R data 43

𝑓 :R data 43

po-locdata
NA↦→ 42

po; [Rel]data
NA↦→ 43

addr data
NA↦→ 43

po-loc data
NA↦→ 43

rfe

data
NA↦→ 43

Figure 6.3: The path that the non-atomic assertion for data flows and updates along

6.2.2 Mixing ob and eco Is Necessary

To understand why allowing resource flow along ob ∪ eco is necessary, consider
verifying the Double MP example in Figure 6.2 in a hypothetical Arm logic with eco-
based abstractions. In this example, the data location is free of data races, enabling
the use of the so-called ‘non-atomic points-to’ to track its value.

Non-atomic points-tos

Non-atomic locations (free of data races) can be reasoned about using sequential
consistency with non-atomic points-to assertions. data NA↦→ 𝑣 ensures only 𝑣 can
be read from data, prohibiting reads of outdated values to maintain coherence.
Reasoning rules for non-atomic locations require exclusive ownership of the assertion
for loads and stores, which prevents data races on them.

Focusing on one execution where the read 𝑑 of the flag reads 1 from 𝑐 (execution
on the right in Figure 6.2), we identify a path from the first write to the data, 𝑎, to
the last read of the data, 𝑔, that the non-atomic points-to assertion for data would
flow and update along as in Figure 6.3. In this path, the points-to assertion first
updates at the writes 𝑎 and 𝑏 to the data, passing between the two events along
po-loc. Next, to transfer the assertion to the reader thread, it flows to the write 𝑐 to
the flag along po; [Rel]. At the write 𝑐 to the flag, a resource transfer mechanism
such as a per-location protocol sends the points-to to the read 𝑑 of the flag along

Chapter 6. First Steps towards AxSL+ 152

rfe. After the read 𝑑 of the flag receives the assertion, it flows to the first read 𝑓 of
the data for reading along addr, and finally to the second read 𝑔 of the data along
po-loc. This path involves both ob and eco, specifically:𝑎 eco 𝑏 ob 𝑐 ob 𝑑 ob 𝑓 eco 𝑔.
Generally speaking, such switching pattern between ob and eco can occur multiple
times when using eco-based abstractions like non-atomic points-tos, and is the key
to make abstractions of this kind usable in the logic.

6.2.3 Mixing ob and eco Is Unsound

𝑎: str [z] 1 𝑐: 𝑟1 := ldr [y]
dmb st if (𝑟1 = 1) :

𝑏: str [y] 1 𝑑 : str [x] 1
𝑒: 𝑟2 := ldr [x]
𝑓 : 𝑟3 := ldr [z + 𝑟2 − 𝑟2]

𝑎:W z 1

𝑏:W y 1

𝑐:R y 1

𝑑 :W x 1

𝑒:R x 1

𝑓 :R z 0

[W]; dmb.st; [W] rfe
ctrl; [W]

rfi

addr

fre

Figure 6.4: PPOCA: 𝑟1 = 1 ∧ 𝑟3 = 0 is allowed

Adding eco-based abstractions introduces a broader circularity issue arising from
mixing eco and ob. The absence of an acyclicity condition for eco∪ob allows circular
dependencies in Arm-A. The allowed execution of PPOCA in Figure 6.4 manifests an
eco ∪ ob cycle: 𝑎 ob 𝑏 ob 𝑐 ob 𝑑 eco 𝑒 ob 𝑓 ob 𝑎. Allowing to flow resources along
such a cycle is clearly unsound.

6.2.4 Solution: Stratification

Resolving the circularity issue requires a flexible stratification strategy beyond
AxSL’s solution that only permit unidirectional resource exchange from po to ob.
Our proposed solution employs a generic stratification strategy that permits bounded
bi-directional resource exchange between eco and ob. We believe this approach
subsumes AxSL’s more restrictive solution and is broadly applicable to scenarios
involving multiple orders.

153 6.3. Technical Overview

6.3 Technical Overview

The major technical contributions of AxSL+ is a new semantic model that allows
mixed reasoning of both ob and eco using stratification. In this section, we provide
an intuitive explanation of the key ideas underpinning AxSL+.

We first recall how AxSL achieves sound ob reasoning by relying on flow implic-
ations, detailed in Section 6.3.1. We then demonstrate how the same principle can be
adapted to eco, facilitating isolated eco reasoning as an initial step towards mixed-
order reasoning, as discussed in Section 6.3.2. Once we have introduced this context,
in Section 6.3.3, we delve into the unsoundness that arises from naïvely combining
reasoning for the two orders. We then outline our solution using stratification: we
index resources with levels which count how many switches between orders have
been performed. Finally, we discuss the formalisation of our solution and how it
manifests in proof rules in Section 6.3.4.

6.3.1 AxSL Recap: Sound ob Reasoning with Flow Implications

The fundamental principle to ensure soundness of a relaxed memory logic with ghost
resources is to only allow passing and updating resources along some order, typically
the synchronisation order. This approach is central to AxSL for Arm-A, where the
synchronisation order is ob. To allow syntax-directed reasoning along program order,
AxSL employs some indirection using two key ideas: flow implications inspired by
RSL, and its novel tied-to assertions.

A tied-to assertion 𝑒 ↬ 𝑃 serves as a fine-grained modality guarding 𝑃 , which
can only be used by events that are ob-later than 𝑒 . A flow implication for an event
𝑒 is essentially a resource update (technically, an Iris view-shift) guarded by a flow
condition 𝐶ob:

𝐶ob(𝑒, 𝑃) −∗ (𝑃 ⇛ 𝑄 ∗ 𝑅)

Here, 𝐶ob ensures that the view-shift is applicable only when the incoming resource
𝑃 comes from events ob-ordered before 𝑒 . 𝑄 and 𝑅 denote the resources obtained
after the update, where 𝑅 remains tied to 𝑒 and 𝑄 flows out to other events.

We illustrate the flow implication as an annotated execution graph fragment
around 𝑒 as in Figure 6.5, where ob edges are annotated by the resources flowing
along them respectively.

𝑒
𝑃 𝑄

Figure 6.5: Flow implication for the event 𝑒 where 𝑒 is abstracted as the node, with
hypothetical ob edges pointing to and from the node. 𝑃 is the resource flowing in to
𝑒 ; 𝑄 is flowing out after the update 𝑃 ⇛ 𝑄 ∗ 𝑅; 𝑅 is the resource staying on 𝑒 , which
is omitted.

Chapter 6. First Steps towards AxSL+ 154

The process of reasoning about a program in AxSL involves collecting the flow
implications for all events within the execution graph of the program. The soundness
of the logic is validated by the existence of a fully annotated execution graph,
constructed by stitching together annotated fragments, each representing a flow
implication for an event. Formally, this entails creating a chain of resource updates
by using the flow implications. This construction is at the core of AxSL’s two-
step adequacy proof, which first uses induction along program order to collect
flow implications, and then follows this chain construction by induction on the
synchronisation order, ob. This ensures that the𝐶ob condition holds at each induction
step.

6.3.2 Adding Support for Just eco

The initial step towards AxSL+ involves adding independent support for eco to AxSL,
effectively constructing a logic solely for eco reasoning, and combining it with AxSL
for ob as a disjoint union. This simplification allows us to initially avoid addressing
the interaction between the two orders, which we address in Section 6.3.3.

A key observation is that the sound reasoning along ob provided by flow im-
plications is independent of the specific definition of the order: it depends solely on
the acyclicity of ob, which offers an induction principle. The ‘internal’ coherence
(SC-per-location) axiom of Arm-A ensures such an acyclicity condition for eco, and
so we can use the same approach along eco. To do this, we merely instantiate the
order-parameterised flow condition 𝐶 with eco, denoted as 𝐶eco. This results in a
new flow implication for eco, expressed as:

𝐶eco(𝑒, 𝑃) −∗ (𝑃 ⇛ 𝑄 ∗ 𝑅)

This flow implication enables tracking resource flows along eco.
By incorporating this flow implication into AxSL alongside the one for ob, we

establish the semantic foundation for isolated eco support. On the logic side, we
enrich AxSL’s assertion language, particularly the tied-to assertion, which tracks
resources tied to specific events. To accommodate both orders, we refine the syntax
by parameterising the tied-to assertion with an order R ∈ {ob, eco}. This gives us
two types of tied-to assertions, 𝑒ob↬𝑃 and 𝑒eco↬𝑃 , which track resources tied to
the two orders separately. Intuitively, 𝑒R ↬ 𝑃 means that 𝑃 is tied to event 𝑒 after a
sequence of flows and updates along R, and it can flow to events that are R-after 𝑒 .

While these semantic and syntactic extensions enable independent reasoning for
eco and ob, it does not yet provide a mechanism for transferring resources between
the two orders. However, such an exchange mechanism is essential, as argued in
Section 6.2.2, to achieve mixed-order reasoning.

6.3.3 Handling The Mix of the Two Orders

Aswe have pointed out in Section 6.2.3, mixing resources from two orders is generally
unsound because their union might be cyclic, which means that we cannot perform

155 6.3. Technical Overview

𝑒
𝑃 𝑄

𝑒
𝑃 𝑄

𝜑 𝜓

Figure 6.6: Two node-internal edges for flowing between the two orders

induction on it. Therefore, to exchange resource between the two orders, some
restrictions are required to break the potentially circularity. Before we delve into
our solution, we show more concretely the circularity issue we would encounter if
we approached the problem naïvely.

Circularity with explicit cross-order edges

The issue becomes evident when we explicitly represent the desired resource ex-
change between eco and ob at any node. Figure 6.6 illustrates this exchange using
two special internal edges (internal as the two nodes represent the same physical
event in the graph): resources flowing from ob to eco are denoted by→ annotated
with 𝜑 , and the reverse direction by → annotated with𝜓 . We refer to these internal
edges as order-switching edges.

Clearly, adding these order-switching edges naïvely creates cycles in the graph,
leading to unsound resource flow paths. The two order-switching edges can create
cycles by themselves, enabling resources to flow from a node back to itself. Order-
switching edges can also connect acyclic ob and eco paths to form cycles, as ob ∪
eco is not guaranteed to be acyclic in a consistent execution graph (as shown in
Section 6.2.3). Thus, resource flows between the two orders must be constrained to
ensure soundness.

Breaking circularity with level-indexing

In AxSL, the graph was annotated with a layer of resources. In AxSL+, to allow
sound mixing of reasoning along different orders, we use two ideas.

Levels First, we introduce some stratification via a notion of integer levels. Instead
of one layer of annotations, we have multiple layers, effectively adding a new di-
mension of annotations on top of the execution graph, as in Figure 6.7 (where we
repeat the graph unchanged at each level for ease of reference). Each annotation
(solid blue edges for ob annotations, and solid magenta edges for eco annotations) is
located at a given level, which indicates how many order-switching have been taken
to establish it.

Order-switching edges Second, we introduce order switching edges (solid orange
edges for ob to eco, and purple edges for eco to ob), which go from a given node at

Chapter 6. First Steps towards AxSL+ 156

Lvl 0
𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

Lvl 1
𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

Lvl 2
𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

Lvl 2
𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

“= 43”

Lvl 1
𝑎

𝑏

𝑐
“= 43”

𝑑

𝑒

𝑓

“= 43”

Lvl 0
𝑎

𝑏

𝑐

“= 42”
𝑑

𝑒

𝑓

Figure 6.7: Illustration of the path 𝑎 eco 𝑏 ob 𝑐 ob 𝑑 ob 𝑒 eco 𝑓 through Double MP
of Figure 6.3 with level-indexing.
We show two views: with all levels together with the complete path through them
at the top, and with each level individually with its partial path (including incoming
and outgoing partial edges) at the bottom.
Because there are two order switchings, we have three levels. We repeat the graph
at each level for ease of reference, highlighting with solid edges the annotations
at that level (the dashed edges are merely shown for convenience). Annotations
are represented in solid blue edges for ob and solid magenta edges for eco. Order
switching (at 𝑏 from level 0 to level 1, and at 𝑒 from level 1 to level 2) is represented
in solid orange edges for ob to eco, and purple edges for eco to ob.

a lower level to itself at a higher level, along this new dimension.
Together, this ensures that, when flowing along a path, going through an order-

switching edge strictly increases the level of the resources, thus ruling out cycles.

Implementing level indexing

In AxSL+, we implement this idea of level indexing by changing flow implications to
be level-indexed. For node 𝑒 at given level 𝑘 , we collect the following two symmetric
flow implications:

𝑘 𝑘 − 1 𝑘 𝑘 + 1
𝐶ob(𝑒, 𝑘, 𝑃ob) −∗ 𝑃ob ∗ 𝜑 ⇛ 𝑄ob ∗ 𝜓 ′

𝐶eco(𝑒, 𝑘, 𝑃eco) −∗ 𝑃eco ∗ 𝜓 ⇛ 𝑄eco ∗ 𝜑 ′

157 6.3. Technical Overview

The first implication states that ob resource 𝑃ob at level 𝑘 can combine with eco
resource 𝜑 from level 𝑘 − 1 to produce two resources: 𝑄ob in ob at level 𝑘 , and𝜓 ′ in
eco at level 𝑘 + 1. Figure 6.8 shows this flow diagrammatically, with two planes for
ob and eco.

𝑘 − 1

𝑘

𝑘 + 1

𝑒 𝑒

𝑒𝑒

𝜓

𝜑 𝑃eco

𝑄eco

𝑃ob

𝑄ob

𝑒 𝑒
𝜓 ′

𝜑 ′

𝑘 − 1

𝑘

𝑘 + 1

Figure 6.8: Level-indexing resources flowing through event 𝑒 at level 𝑘 .
Layers of annotations 𝑘 −1, 𝑘, and 𝑘 +1 are represented horizontally. We separate the
ob flow on the left from the eco flow on the right, with order-switching edges going
across (orange edges for ob to eco, and purple edges for the opposite direction).

There are two caveats to level level-indexing. First, to draw a conclusion in
AxSL+, we need to put an upper bound K to the order switching, on which AxSL+
is parameterised. Although there are cycles in ob ∪ eco, AxSL+ only considers finite
paths through them. Users of the logic need to pick an appropriate upper bound for
each individual example they want to verify with the logic.

Second, we can add a logical state to each order and leverage the fact that flow
implications have to be applied in a sequence respecting the corresponding order to
make sure that the involvement of the state also respects the order. For instance, we
can maintain and update a list of history of writes for every location along eco. This
is the key to implement eco-abstractions, which we return to in Section 6.5.

6.3.4 Formalising Level-indexing Rules

In this section, we discuss how we formalise level-indexing in AxSL+. We introduce
level-indexing through novel level-and-order-indexed tied-to assertions and level-
indexed flow implications that work together by following a set pattern.

Level-and-order-indexed tied-to assertions Our new tied-to assertion 𝑒𝑘R↬𝑃 is
indexed not only by an event 𝑒 , but also by a level 𝑘 , and by an order R. Intuitively,

Chapter 6. First Steps towards AxSL+ 158

this new assertion means that 𝑃 is tied to 𝑒 after 𝑘 order-switchings, and can flow
to other events at the same level 𝑘 along order R, or events at higher levels after
order-switching.

We now demonstrate how the monotonicity of level-indexing is implemented
by restricting the update of the new tied-to assertions, via a base pattern that all
proof rules of the AxSL+ follow. Concrete proof rules incorporating mixed-order
reasoning are derived by specialising this base pattern, as explained in Section 6.4.

In precondition:(
1∗((𝑘,𝑒) ↦→𝑃) ∈𝑚lob

(𝑒𝑘ob↬𝑃)
)
∗

(
2∗((𝑘,𝑒) ↦→𝑃) ∈𝑚po-loc (𝑒

𝑘
eco↬𝑃)

)
∗

∀𝑒, · · · . ©­«
GraphFacts(𝑒, · · ·) −∗(
3 Lob(dom(𝑚lob), 𝑒,K) ∗ 4PoLoc(dom(𝑚po-loc), 𝑒,K) ∗
7 FlowImp(𝑒,𝑚lob,𝑚po-loc, 𝑡ob, 𝑡eco,K, 0,⊤)

) ª®¬
In postcondition:

∃𝑒.GraphFacts(𝑒, · · ·) ∗(
5∗(𝑘 ↦→𝑃) ∈𝑡ob 𝑒

𝑘
ob↬𝑃 (· · ·)

)
∗

(
6∗(𝑘 ↦→𝑃) ∈𝑡eco 𝑒

𝑘
eco↬𝑃 (· · ·)

)
Figure 6.9: A sketch of the general pattern for manipulating the new tied-to assertions
in proof rules.

Pattern Figure 6.9 shows the base pattern of the update of tied-to assertions
specified by the pre- and postcondition of a proof rule for some event 𝑒 . Generally,
this pattern extends that of AxSL by adding levels to all the relevant resource-flowing
assertions for ob, and then duplicating this for eco. The pattern manages ob resource-
flowing in the same manner as AxSL, but now works with level-indexed tied-to
assertions for ob: clauses 1 , 3 , and 5 are as in AxSL, but level-indexed. Clause 1

now requires all ob tied-to assertions specified by𝑚lob, a thread local map of type
Lvl → Eid → iProp, such that𝑚lob [𝑘] [𝑒′] is the ob resource currently tied to event
𝑒′ at level 𝑘 , and will flow to the current event along lob, a local ob edge. Predicate
Lob of 3 is strengthened to also check whether all the levels in the mappings of𝑚lob

are valid, namely smaller than the upper bound K (in addition to the existing lob
predecessor check of AxSL). We will see in the next section that the Hoare triples
used to formulate proof rules are also parameterised by the same upper bound K .
Similarly, 𝑡ob, which specifies the final resources tied to the current node 𝑒 in the
postcondition is now also parameterised by levels, as per clause 5 . These three
components together effectively tracks how resources tied to ob predecessors (𝑚lob)
flow along ob edges and attach to 𝑒 as 𝑡ob after certain updates (and order switchings
with eco).

Symmetrically, we now have 2 , 4 , 6 handling eco reasoning. The key component
connecting the resources of the two orders is the new flow implication 7 , which

159 6.3. Technical Overview

FlowImp(𝑒,𝑚lob,𝑚po-loc, 𝑡ob, 𝑡eco,K, 𝑘, 𝑅) ≜
(K < 𝑘 → 𝑅) ∗©­­­­­­«

K ≥ 𝑘 →
1∃𝑈ob,𝑈eco.

2
((∗(_ ↦→𝑃in) ∈𝑚lob [𝑘] 𝑃in

)
⇛ (𝑡ob [𝑘] ∗𝑈ob)

)
∗

3

((∗(_↦→𝑃in) ∈𝑚po-loc [𝑘] 𝑃in
)
⇛ (𝑡eco [𝑘] ∗𝑈eco)

)
∗

4
(
(𝑈ob ∗𝑈eco) −∗ FlowImp(𝑒,𝑚lob,𝑚po-loc, 𝑡ob, 𝑡eco,K, 𝑘 + 1, 𝑅)

)
ª®®®®®®¬

Figure 6.10: Simplified level-indexed Flow Implication of AxSL+

regulates the resource exchange between ob and eco by enforcing the monotonicity
principle. Informally, it requires one to show that the transformation of the tied-to
assertions represented by the following transformation of the maps is valid up to
level K :

⟨𝑚lob,𝑚po-loc⟩ { ⟨𝑡ob, 𝑡eco⟩

Flow implication Figure 6.10 depicts a simplified but formal version of how
predicate FlowImp implements the idea of flowing to higher levels when switching
orders, and Figure 6.11 shows a diagrammatic representation. The full version used in
the semantic model also allows logical state updates, and is presented in Section 6.5.

At its core, FlowImp is a recursive definition that roughly repeats the original
flow implications of AxSL for the two orders, from 𝑘 to K . We start from the lowest
level 𝑘 and increment it until reaching K . In the terminating case, we require
ownership of resource 𝑅, which works as a continuation, in the sense that 𝑅 is the
accumulated resource coming from lower levels, which can be passed to levels higher
than K . This generic design enables flexibility that is especially induction friendly.
In the case where 𝑘 is not greater than K , we perform a local check at 𝑘 which
consists of three actions:

• First, we specify 𝑈ob and 𝑈eco, which are the resources that will flow to higher
levels (1) from both orders.

• We then (on lines 2 and 3) check the validity of the tied-to map update

⟨𝑚lob,𝑚po-loc⟩ { ⟨𝑡ob, 𝑡eco⟩

only at level 𝑘 using flow implications for the two orders separately. The
iterated separation conjunctions on the left of the view shifts are the resources
flowing in. Resources 𝑡ob [𝑘] and 𝑡eco [𝑘] on the right are the resources tied to
event 𝑒 afterwards. They further ensure that𝑈ob and𝑈eco are indeed available
after the resource update, such that it can be consumed later at higher levels.
These two lines are roughly of the form described in Section 6.3.3, with two
subtleties. First, resources 𝜑 and 𝜓 flowing from lower levels, which were

Chapter 6. First Steps towards AxSL+ 160

Lvl 𝑘 𝑈ob ∗𝑈eco

𝑚lob [𝑘] 𝑡ob [𝑘]

𝑚po-loc [𝑘] 𝑡eco [𝑘]

Lvl 𝑘 + 1 𝑈ob ∗𝑈eco

𝑚lob [𝑘 + 1] 𝑡ob [𝑘 + 1]

𝑚po-loc [𝑘 + 1] 𝑡eco [𝑘 + 1]

Figure 6.11: An illustration of the simplified FlowImp at level 𝑘 and 𝑘 + 1, edges
connecting the blocks are the permitted resource flowing paths.

explicitly shown on the left of the view shifts in Section 6.3.3, are now implicitly
assumed thanks to this recursive definition. Second, 𝑈ob and 𝑈eco on the right
of the view shifts include resources that may flow to any event at higher levels,
including but not limited to 𝜑 ′ and𝜓 ′ that flow to the node itself.

• Finally, we provide 𝑈ob and𝑈eco to higher levels by placing them on the left of
the separating implication 4 , with the recursive occurrence of FlowImp for
𝑘 + 1 on the right.

6.4 An AxSL+ Instance for Non-Atomics: AxSL+NA

In this section, we build AxSL+NA, a simple instance of AxSL+ specialised to non-
atomic reasoning, to validate the level-indexing idea presented in Section 6.3. In
particular, we use it to verify the Double MP example while avoiding the explicit
graph reasoning that AxSL had to resort to.

AxSL+NA is merely one possible instance of AxSL+, whose level-indexing mech-
anism enables a whole category of logics that can do mixed-order reasoning. In fact,
the semantic model that we develop in Section 6.5 and use for this instance is generic
and flexible, and we expect it can be used as the base of more elaborate logics.

The AxSL+NA logic presented in this section relies on that model to support eco-
based non-atomics for succinct local reasoning and ob-based protocols for resource
transfer. AxSL+NA builds upon the same Arm-like assembly language and its opax
semantics from AxSL, but introduces significant enhancements through extensions
to the assertion language and the addition of new proof rules.

In Section 6.4.1, we present the extensions made to the assertion language.
Then, we elaborate on eco-based non-atomic points-tos and ob-based protocols,
demonstrating their integration into the tied-to update pattern of Section 6.3.4 to

161 6.4. An AxSL+ Instance for Non-Atomics: AxSL+NA

𝑃,𝑄 ∈ iProp ::= 𝑒𝑘R↬𝑃 Tied-to
| {𝑃} 𝑖 {𝑄}tid,K Hoare triple

| 𝑥 NA↦→ 𝑣 [𝑒] Non-atomic points-to
| 𝑥 ◦

◦ R Order typing
| Prot(𝑥,Φ) Protocol
| 𝑟 r↦→ 𝑣@𝐸 | (other AxSL connectives) · · ·
𝑣 ∈ Val 𝑒 ∈ Eid 𝑥 ∈ Addr 𝑟 ∈ Reg

𝑘,K ∈ Lvl R ∈ {ob, eco}
Φ ∈ Val → Lvl → Eid → iProp

Figure 6.12: The assertion language of AxSL+, the extension to the language of AxSL
is highlighted. 𝑒𝑘R↬𝑃 is pronounced as 𝑃 is tied to event 𝑒 at level 𝑘 for order R.
𝑥

NA↦→ 𝑣 [𝑒] is pronounced as 𝑥 non-atomic points to 𝑣 witnessed by event 𝑒 . 𝑥 ◦
◦ R is

pronounced as 𝑥 is of order type R. Prot(𝑥,Φ) is pronounced as 𝑥 is governed by
protocol Φ.

create streamlined high-level proof rules in Section 6.4.2. Finally, we showcase the
rules by proving the Double MP example.

6.4.1 Assertion Language

The assertion language of AxSL+ extends AxSL through small but powerful general-
isations of existing assertions, and the introduction of new predicates. Figure 6.12
presents the assertions of AxSL+.

The extension of the assertion language consists of two components: first is
parameterising the tied-to assertion and Hoare triples with levels to enable bound
resource transfer between orders, as discussed in Section 6.4; second is the intro-
duction of new predicates to facilitate eco and ob reasoning. We elaborate their
semantics when we encounter them in the proof rules in Section 6.4.2.

6.4.2 Specialised Proof Rules

Like AxSL, AxSL+NA uses two layers of proof rules: a base layer of generic but
complex rules, and a surface layer of specialised but more user-friendly rules. For
simplicity, we present specialised proof rules for the specific instructions used in the
Double MP example of Figure 6.2 that we will use in Section 6.4.3.

In AxSL+NA, we have two kinds of proof rules: rules for non-racy locations, and
rules for racy locations. For the first kind, we support eco via non-atomic points-tos.
For the second kind, we support resource transfer along ob using protocols. We
rely on the order typing assertion 𝑥 ◦

◦ R to indicate which kind of rules is applicable

Chapter 6. First Steps towards AxSL+ 162

for location 𝑥 . This is a persistent assertion, meaning that this decision has to be
made upfront, and all threads have to agree with it. It is in principle also possible to
generalise AxSL+NA to reason about coherence for racy locations, or to reason about
two orders for a location; we remark on these in Section 6.7.

Proof rules are formulated with the new level-indexed Hoare triple {𝑃} 𝑖 {𝑄}tid,K ,
which intuitively means that instruction 𝑖 of thread tid updates resource 𝑃 to 𝑄 ,
given the upper bound K for order-switching. The protocol used to index Hoare
triples in AxSL is turned into a logical assertion.

eco-based non-atomics

Figure 6.13 depicts two rules for specific relaxed load and store that demonstrate
the use of non-atomic points-to assertions. The non-atomic points-to 𝑥 NA↦→ 𝑣 [𝑒]

ht-str-rlx-na-eco{
PoPred(𝑒po) ∗ 𝑥 ◦

◦ eco ∗ 1 𝑒0
𝑘
eco↬(𝑥 NA↦→ 𝑣0 [𝑒0]) ∗ 2 (𝑘 ≤ K) ∗

∀𝑒, 𝑣 .
(
GraphFacts(𝑒, x, 𝑣, 𝑒po) −∗ 3 (𝑒0 po-loc 𝑒)

) }
str [𝑥] 𝑣{
∃𝑒. PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑒po) ∗ 4 𝑒𝑘eco↬

(
𝑥

NA↦→ 𝑣 [𝑒]
) }

tid,K

ht-ldr-rlx-na-ob-addr{
PoPred(𝑒po) ∗ 𝑥 ◦

◦ eco ∗ 5 𝑒′𝑘ob↬(𝑥 NA↦→ 𝑣 [𝑒0]) ∗ 6 (𝑘 < K) ∗
𝑟 r↦→ _@_ ∗ 𝑟 ′ r↦→ _@{𝑒0}

}
𝑟 := ldr [𝑥 + 𝑟 ′ − 𝑟 ′]{
∃𝑒, 𝑣0. PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒po) ∗
7 𝑒𝑘+1eco ↬(𝑥 NA↦→ 𝑣 [𝑒] ∗ 8 𝑣0 = 𝑣) ∗ 𝑟 r↦→ 𝑣0@{𝑒} ∗ 𝑟 ′ r↦→ _@{𝑒0}

}
tid,K

Figure 6.13: AxSL+ proof rules for relaxed accesses, highly specialised for use a on
non-atomic locations.

intuitively means that the value of 𝑥 is 𝑣 , and the latest write has been witnessed
by a local event 𝑒 in a manner that prevents reading from outdated writes.. An
implementation of this assertion can be found in Section 6.5.2. Like regular points-
tos, holding this assertion means holding the exclusive permission to read and write
to this location, thus ruling out races.

We now take a closer look at ht-str-rlx-na-eco, which updates the value of the
points-to to 𝑣 for location 𝑥 with a store. To apply this rule, one has to provide the
points-to assertion 𝑥 NA↦→ 𝑣0 [𝑒0] that is currently tied to some node 𝑒0 at level 𝑘 , as in
1 . After the store, one would get 𝑥 NA↦→ 𝑣 [𝑒] tied to the current node 𝑒 at the same
level 𝑘 , as in 4 . We do not change the level as there is no order-switching happening.
To apply this rules, there are two side conditions: first, the level 𝑘 is in the scope

163 6.4. An AxSL+ Instance for Non-Atomics: AxSL+NA

that the triple considers (2); and second, 𝑒0 and 𝑒 are ordered by po-loc (3), which
allows the resource flow.

ht-ldr-rlx-na-ob-addr is a specialised rule for a load that has an artificial address
dependency on register 𝑟 ′. We have to bump the level here since an order-switching
from ob to eco is happening. The non-atomics points-to assertion flow from 𝑒0 in ob
at level 𝑘 (5) to 𝑒 in eco at level 𝑘 + 1 (7) along an addr ∈ lob edge. Importantly, the
equality between the result value of register 𝑟 and the value of the points-to 𝑣 (8) is
inside the tied-to assertion, meaning one cannot conclude it now, but only at level
𝑘 + 1. This is impractical, but is required for soundness: one of the goals of tied-to
assertions is to enforce stratification, which is fundamental to tackle the circularity
problem. Like before, there is a side condition for levels: 6 ensures that the bumped
value is still in bounds.

ob-based protocols

ht-ldr-rlx-at
NoLocalWrites(𝑦) ∗ PoPred(𝑒po) ∗ 𝑦 ◦

◦ ob ∗ Prot(𝑦,Φ) ∗
1 (∀𝑘 ∈ dom(𝑡) . 𝑘 ≤ K) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
GraphFacts(𝑒,𝑦, 𝑣, 𝑒𝑤, 𝑒po) −∗∗(𝑘 ↦→𝑄) ∈𝑡 (2Φ(𝑣, 𝑘, 𝑒𝑤) ⇛ Φ(𝑣, 𝑘, 𝑒𝑤) ∗𝑄 (𝑣, 𝑘, 𝑒𝑤))

) 
𝑟 := ldr [𝑦]{
∃𝑒, 𝑣, 𝑒𝑤 .NoLocalWrites(𝑦) ∗ PoPred(𝑒) ∗ GraphFacts(𝑒,𝑦, 𝑣, 𝑒𝑤, 𝑒po) ∗(
3 ∗(𝑘 ↦→𝑄) ∈𝑡 𝑒

𝑘
ob↬𝑄 (𝑣, 𝑘, 𝑒𝑤)

) }
tid,K

ht-str-rel-at
NoLocalWrites(𝑦) ∗ PoPred(𝑒po) ∗ 𝑦 ◦

◦ ob ∗ Prot(𝑦,Φ) ∗(
4 ∗((𝑘,𝑒) ↦→𝑃) ∈𝑚 (𝑒𝑘eco↬𝑃)

)
∗ (∀(𝑘, _) ∈ dom(𝑚) . 𝑘 ≤ K)

∀𝑒, 𝑣 .
(
GraphFacts(𝑒,𝑦, 𝑣, 𝑒po) −∗(
5 ∗K

𝑘=0
(
(∗(_ ↦→𝑃) ∈𝑚[𝑘−1] 𝑃) ⇛ Φ(𝑣, 𝑘, 𝑒)

)))


strrel [𝑦] 𝑣{
∃𝑒. LastLocalWrite(𝑦, 𝑒) ∗ PoPred(𝑒) ∗ GraphFacts(𝑒,𝑦, 𝑣, 𝑒po)

}
tid,K

Figure 6.14: AxSL+ proof rules for relaxed reads and writes, highly specialised for
protocols.

For racy location 𝑦, we enforce ob protocol Φ on it with assertion Prot(𝑦,Φ).
Unlike in AxSL, where it is indexed by only a value and an event ID, Φ here is
additionally indexed by a level, making it possible to transfer different resources at
different levels. The way resources are transferred is similar to that of AxSL, except
that now it does so for multiple levels.

Chapter 6. First Steps towards AxSL+ 164

ht-ldr-rlx-at is a load rule that receives resources specified by a map 𝑡 of type
Lvl → (Val → Lvl → Eid → iProp) from an external write 𝑒𝑤 (indicated by
NoLocalWrites). For every mapping 𝑘 ↦→ 𝑄 of 𝑡 , one has to show that 𝑄 (𝑣, 𝑘, 𝑒𝑤)
can be derived given the protocol resources Φ(𝑣, 𝑘, 𝑒𝑤) sent by 𝑒𝑤 as shown in 2 .
The received resources are tied-to event 𝑒 at their levels in the postcondition as 3 ,
as long as the levels of 𝑡 are in bounds (1).

ht-str-rel-at is a rule for release write that transfers eco resources specified
by a finite map𝑚 (4 , of type Lvl → Eid → iProp) to other ob events reading from
this write. The tied-to resources of𝑚 flow to current write 𝑒 along lob (this is given
because this write is a release write). We require that the ob protocol at all levels
are satisfied, so that when receiving the resources one has the freedom to choose
the (one or more) levels at which one receive them. Since an order-switching is
happening, when showing required protocol resources at level 𝑘 , one can only use
eco resources of𝑚 at level 𝑘 − 1, as seen in 5 . In general, it does not have to be
merely 𝑘 − 1, but can be anything lower than 𝑘 ; we show this specialised version for
simplicity.

Φ : Val → Lvl → Eid → iProp

Φ(1𝑉 , 1𝐿, 𝑒) ≜
(
∀𝑒𝑟 . 𝑒 rfe 𝑒𝑟 −∗ data

NA↦→ 43[𝑒𝑟]
)
∨ ^

Φ(1𝑉 , _, _) ≜ Emp

Φ(0𝑉 , _, _) ≜ Emp

Φ(_, _, _) ≜ ⊥

Figure 6.15: Protocol for Double MP. We sometimes use subscripts 𝐿 and 𝑉 for the
type of constants Lvl and Val to avoid ambiguity.

6.4.3 Double MP

With the proof rules presented above in hand, we now verify the Double MP example
of Figure 6.2 in a thread-local manner. We show a proof sketch in Figure 6.16, and a
diagram in Figure 6.17. In this example, we know that there are no races on location
data, and so we use non-atomic points-to for it. We use ob reasoning for location
flag, and set up its protocol as in Figure 6.15. The protocol transfers, at level 1, the
non-atomic assertion of data with value 43 wrapped in an invariant, when the flag is
set. This invariant implements a simple escrow pattern: one can obtain the points-to
in exchange for an exclusive token ^. We let the reader thread hold the token so
that it can take the points-to out of the invariant and use it for the two reads of data.

We set the upper bound as 2 as there are two order-switchings happening in the
proof. Figure 6.16 contains a sketch of the proof.

165 6.4. An AxSL+ Instance for Non-Atomics: AxSL+NA

Thread 1:

1
{
𝑒0

0
eco↬data

NA↦→ 0[𝑒0] ∗ IsInit(data, 𝑒0) ∗ . . .
}

2 𝑎: str [data] 42

3
{
𝑎0eco↬data

NA↦→ 42[𝑎] ∗ . . .
}

4 𝑏: str [data] 43

5
{
𝑏0eco↬data

NA↦→ 43[𝑏] ∗ . . .
}

6 data
NA↦→ 43[𝑏] ∗ 𝑏 lob 𝑐

⇛(
∀𝑒𝑟 . 𝑐 rfe 𝑒𝑟 −∗ data

NA↦→ 43[𝑒𝑟]
)
∨ ^7

8 𝑐: strrel [flag] 1

9
{
. . .

}
Thread 2:

10
{
^ ∗ 𝑟1 r↦→ _ ∗ 𝑟2 r↦→ _ ∗ 𝑟3 r↦→ _ ∗ NoLocalWrites(flag) ∗ . . .

}
11 (

∀𝑒𝑟 . 𝑐 rfe 𝑒𝑟 −∗ data
NA↦→ 43[𝑒𝑟]

)
∨ ^ ∗ ^ ∗ 𝑐 rfe 𝑑

⇛
data

NA↦→ 43[𝑑]12

13 𝑑 : 𝑟1 := ldr [flag]

14
{
∃𝑣 . 𝑟1 r↦→ 𝑣@{𝑑} ∗ 𝑑1ob↬

(
𝑣 = 0𝑉 ∨ 𝑣 = 1𝑉 ∗ data NA↦→ 43[𝑑]

)
∗ . . .

}
15 if 𝑟1 = 1 :

16
{
𝑟1

r↦→ 1@{𝑑} ∗ 𝑑1ob↬
(
data

NA↦→ 43[𝑑]
)
∗ . . .

}
17 𝑓 : 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

18
{
∃𝑣2. 𝑟2 r↦→ 𝑣2@{𝑓 } ∗ 𝑓 2eco↬

(
𝑣2 = 43 ∗ data NA↦→ 43[𝑓]

)
∗ . . .

}
19 𝑔: 𝑟3 := ldr [data]

20
{
∃𝑣2, 𝑣3. 𝑟3 r↦→ 𝑣3@{𝑔} ∗ 𝑔2eco↬

(
𝑣3 = 43 ∗ data NA↦→ 43[𝑔]

)
∗

𝑟2
r↦→ 𝑣2@{𝑓 } ∗ 𝑓 2eco↬(𝑣2 = 43) ∗ . . .

}
Figure 6.16: A thread-local sketch proof of Double MP. The lines whose numbers are
in green are the worth-noting side proof obligations. We omit the predetermined
and global knowledge 𝑥 ◦

◦ eco ∗𝑦 ◦
◦ ob ∗ Prot(𝑦,Φ), and the upper bound of 2. We skip

𝑒 as the event label to avoid confusion with variable 𝑒 used in binders. We do not
show the last step of pulling out tied resources.

Chapter 6. First Steps towards AxSL+ 166

In thread 1, we start with the points-to for data at level 0 with value 0 from the
initial write 𝑒0. By applying ht-str-rlx-na-eco, we update the value of data to 42 at
write 𝑎. We apply the same rule again for the second write 𝑏. After that, on line 5,
we have the points-to with value 43 tied to 𝑏 at level 0. Finally, use ht-str-rel-at for
the release write on flag, picking the map𝑚 = {(0, 𝑏) ↦→ data

NA↦→ 43[𝑏]}. We have to
show that we can satisfy the ob protocol Φ of flag at level 0 to 2. Level 0 and 2 are
trivial, line 6 and 7 shows the level 1 case where we show the protocol Φ(1𝑉 , 1𝐿, 𝑐)
by allocating the invariant using the points-to assertion. When establishing the
invariant, we show that we can update the witness of the points-to assertion from 𝑏

to any external read 𝑒𝑟 of 𝑐 , which is instantiated by 𝑑 in the other thread. Here we
can use the points-to assertion at level 0 because there is a order-switching from eco
to ob.

In thread 2, we start with the exclusive token ^, and the assumption that there
is no local write to flag, which allows ob resources transfer along rfe. We apply
ht-ldr-rlx-at for the read on line 13, picking 𝑡 = {1𝐿 ↦→ (𝜆𝑣 𝑘 𝑒. (𝑣 = 0𝑉) ∨ (𝑣 =

1𝑉 ∗data NA↦→ 43[𝑑]))}. This gives us the proof obligation (𝑣 = 0𝑉) ∨ (𝑣 = 1𝑉 ∗data NA↦→
43[𝑑]) ∗ Φ(𝑣, 1𝐿, 𝑐) given protocol resource Φ(𝑣, 1𝐿, 𝑐) at level 1. The left disjunct
of case 𝑣 = 0𝑉 is trivial; line 11 and 12 justify the right disjunct when 𝑣 = 1𝑉 . In
the latter case, we open the invariant and exchange the exclusive token with the
points-to assertion. Next, the branching allows us to eliminate the left disjunct, such
that the points-to is tied to 𝑑 at level 1 at line 16. We proceed with the ht-ldr-rlx-
na-ob-addr rule for the read of data with address dependency from 𝑑 , which allows
us to flow the points-to assertion from level 1 to 𝑓 at level 2 due to order-switching.
At line 18, we obtain the register assertion for 𝑟2 with value 𝑣2 and equality 𝑣2 = 43
tied to 𝑓 at level 2. We conclude the proof with a variant of the non-atomic load rule
that flows resources along eco without order-switching, which allows us to show
that 𝑟3’s value is 𝑣3 = 43 tied-to 𝑔 at level 2.

Figure 6.17 depicts the proof visually, focusing on the flowing path of the non-
atomic points-to we have seen in Figure 6.3, but lifted into the level-indexing setup.

6.5 Semantic Model

This section introduces the semantic model of AxSL+, built using the Iris base
logic. We use this model to establish the soundness of AxSL+. We demonstrate
the soundness of all proof rules with respect to this model and prove its adequacy
theorem, ensuring reliable verification results by excluding AxSL+ from the trusted
base. We touch on the first aspect at the end of this section, and defer the latter to
Section 6.6.

We first present the base weakest precondition model in Section 6.5.1, emphas-
ising general aspects that support sound mixed-order reasoning while keeping
interpretation predicates abstract for simplicity. In Section 6.5.2, we instantiate these
abstract predicates, define new assertions, and mention the key properties they

167 6.5. Semantic Model

𝑎:W data 42

𝑏:W data 43

𝑐:Wrel flag 1

Lvl 0

“= 42” po-loc

po;[Rel]

Lvl 1

“= 43”

𝑑 :R flag 42

𝑓 :R data 43

𝑔:R data 43
Lvl 0

addr

po-loc

“= 43”

Lvl 1

“= 43”

Lvl 2

“= 43” ∨^

Figure 6.17: Illustration of the flow of resources in the proof of DoubleMP of Figure 6.3
with level-indexing. We start the proof at level 0 at event 𝑎, flow the resource tracking
the value of the data location along the depicted path, and stop at level 2 at event 𝑔.
The same-thread paths are established during the thread-local proofs for the two
thread, and the different-thread path from event 𝑐 to 𝑑 is established by the protocol
for flag.

satisfy, which are essential to the soundness of the proof rules. Finally, Section 6.5.3
states the soundness theorem.

6.5.1 Semantic Model of Weakest Preconditions

This subsection details the logical foundation of the base weakest precondition in
AxSL+. The base weakest precondition operates on a local machine state 𝑠 which
can often be abstracted away through appropriate local constructs, as in the Hoare
triples used to formulate the proof rules. We direct readers to the original AxSL
paper for the abstractions implemented by other weakest preconditions and Hoare
triples, as their definitions remain unchanged from AxSL.

The base weakest precondition in Figure 6.18 retains the structure of AxSL,
with notable distinctions highlighted in yellow. These include the handling of level-
indexed tied-to assertions with the novel level-indexed flow implication FlowImp.
We elaborate on these components below while referencing AxSL for the unchanged
part. It is worth noting that, in the definitions, the treatments of ob and eco are

Chapter 6. First Steps towards AxSL+ 168

wpbKtid 𝑠 {𝑄} ≜(
𝑠 = Done 𝑇 ∧ ¤|⇛PullOutTied(tid, 𝑄 (𝑇))

)
∨©­­­­­­­­­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­­­­­­­­­«

∀X , 𝐼 .Valid(X) −∗ (�GI(⟨X , 𝐼 ⟩)) −∗ ∀𝑠′. ⟨𝑠, ⟨X , 𝐼 ⟩⟩ tid−−→h ⟨𝑠′, ⟨X , 𝐼 ⟩⟩ −∗
11∀𝑂. (� SIO(𝑂)) −∗ ∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩.

Case ValidEvt(𝑒,X) :
∀ 1𝑇ob,𝑇eco. 2 TIob(𝑇ob) ∗ 3 TIeco(𝑇eco) ⇛ ∃ 4𝑇 ′

ob,𝑇
′
eco. TIob(𝑇 ′

ob) ∗ TIeco(𝑇
′
eco) ∗

5∃𝑆ob, 𝑆eco. (∗R WFIfR (X , 𝑒,𝑂, 𝑆R,K)) ∗
6 FlowImp(X , 𝑒,𝑇ob,𝑇eco,𝑇 ′

ob,𝑇
′
eco, 𝑆ob, 𝑆eco,K, 0,⊤) ∗ wpbKtid 𝑠

′ {𝑄}
Otherwise :

· · ·

ª®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®®¬
Figure 6.18: Sketch of the definition of base weakest precondition. X is the execution
graph; 𝐼 is the instruction memory; 𝑒 is the event identifier of the current event.

identical modulo a small number of abstract predicates that the instantiation of the
model needs to provide. This symmetry is intentional, as it demonstrates the model’s
flexibility and generality, in particular that the treatment does not rely on any specific
structure of any order. Using the subscript R for order-parametric predicate and
variables, we write∗R 𝑃R to denote 𝑃ob ∗ 𝑃eco in the definitions, and write 𝑇R to
refer to the two copies of 𝑇 for the two orders in the text explanation to minimise
redundancy.

As in AxSL, the fundamental role of the base weakest precondition is to track
global maps for tied-to assertions and constrain their evolution. 𝑇R at 1 are the new
level-indexed global tied-to maps of type Lvl → Eid → iProp for the two orders.
These maps are interpreted by the tied-to interpretation predicates TIR at 2 and 3 ,
providing the authoritative view of all tied-to assertions. The predicates must adhere
to basic agreement and update rules with the tied-to assertions. One can make “local”
updates to the 𝑇R maps around the current node 𝑒 , resulting in 𝑇 ′

R (4), to reflect the
resource flow from certain nodes to 𝑒 . These updates must adhere to the new flow
implication 6 , ensuring that updates from 𝑇R to 𝑇 ′

R are correct for levels between 0
and K , with the resource ⊤ remaining (which effectively means ‘nothing’) at levels
higher than K . The so-called update level sets 𝑆R , satisfying the WFIf predicate,
are also required after the tied-to map update; we defer their explanation, and that
of the persistent order typing map 𝑂 (11), until their motivations are introduced in
Section 6.5.1.

169 6.5. Semantic Model

WFIfR (X , 𝑒,𝑂, 𝑆,K) ≜
∀R𝑠 = 𝑂 [Loc(𝑒,X)] . (R ∈ R𝑠 → WFR (𝑆,K)) ∗ (R ∉ R𝑠 → 𝑆 = ∅)

FlowImp(X , 𝑒,𝑇ob,𝑇eco,𝑇 ′
ob,𝑇

′
eco, 𝑆ob, 𝑆eco,K, 𝑘, 𝑅) ≜

(K < 𝑘 → 𝑅) ∗©­­­­­«
K ≥ 𝑘 →
∃𝑈ob,𝑈eco.(∗R FlowImpAtR (X , 𝑒, 𝑘,𝑇R [𝑘],𝑇 ′

R [𝑘], 𝑆R,𝑈R)
)
∗(

(𝑈ob ∗𝑈eco) −∗ FlowImp(X , 𝑒,𝑇ob,𝑇eco,𝑇 ′
ob,𝑇

′
eco, 𝑆ob, 𝑆eco,K, 𝑘 + 1, 𝑅)

)
ª®®®®®¬

FlowImpAtR (X , 𝑒, 𝑘, 𝜏, 𝜏 ′, 𝑆,𝑈) ≜
∃𝜏in, 𝑃 . TiedUpdR (X , 𝑒, 𝜏, 𝜏 ′, 𝜏in, 𝑃) ∗ StateUpdAtR (X , 𝑒, 𝑘, 𝜏in, 𝑆, 𝑃,𝑈)

StateUpdAtR (X , 𝑒, 𝑘, 𝜏in, 𝑆, 𝑃,𝑈) ≜(∗(_ ↦→𝑃in) ∈𝜏in 𝑃in
)
−∗©­«(𝑘 ∈ 𝑆) −∗ ©­«∀𝑀,𝜎. 7

(
PredOf (X .R, 𝑒) ⊆ dom(𝑀) ∗ (𝑀 [𝑒] # 𝑆≥𝑘) ∗
(∀𝑒′ ∈ PredOf (X .R, 𝑒) .WFR (𝑀 [𝑒′]≤𝑘 , 𝑘))

)
−∗

8 SIR (X , 𝜎, 𝑀) ⇛ ∃𝜎 ′. 9 SIR (X , 𝜎 ′, 𝑀 ∪p {𝑒 ↦→ {𝑘}}) ∗ 𝑃 ∗𝑈

ª®¬ª®¬
∗10 ((𝑘 ∉ 𝑆) ⇛ (𝑃 ∗𝑈))

Figure 6.19: The the definition of level-indexed flow implication. The machinery
controlling the state update order is highlighted in yellow. 𝑆≥𝑘 is a subset of 𝑆
that includes all levels of 𝑆 that are greater than or equal to 𝑘 , likewise to 𝑆≤𝑘 .
𝑀 ∪p {𝑒 ↦→ {𝑘}} is a point-wise union that add the current level 𝑘 to the update level
set of the current event𝑀 [𝑒]. WFR has to be monotone: ∀𝑆, 𝑘.WFR (𝑆≤𝑘+1, 𝑘 + 1) −∗
WFR (𝑆≤𝑘 , 𝑘) .

Level-indexed flow implication FlowImp with states

The simplified version of FlowImp was detailed in Section 6.3; here, we focus on the
difference and new components. The top-level definition of FlowImp in Figure 6.19
differs from the simplified version by incorporating the single-level flow implication
FlowImpAtR , which governs resource updates at the current event 𝑒 and level 𝑘 . The
parameters of FlowImp differ slightly from its simplified version, taking 𝑇R and 𝑇 ′

R ,
the global tied-to maps before and after the resource update at event 𝑒 . Additionally,
the parameters 𝑆R are passed directly to FlowImpAt.

Single-level flow implication FlowImpAtR

The single-level flow implication FlowImpAtR in Figure 6.19 tracks resource flow
for order R at a specific level. It extends the flow implication of AxSL for ob, with
adjustments for level indexing. It constrains the resource flow and updates happening
around 𝑒 captured by the update of the per-level tied-to map 𝜏 of type Eid → iProp

Chapter 6. First Steps towards AxSL+ 170

(which is exactly the type of the tied-to map of AxSL) to 𝜏 ′. The predicate TiedUpdR
adapted from AxSL ensures that this map update involves consuming 𝜏in from 𝜏

and attaching a new resource 𝑃 to 𝑒 . The resource update from 𝜏in to 𝑃 is governed
by StateUpdAtR , which generalises its AxSL counterpart to support level-indexing.
The update-enable sets 𝑆R are again simply passed to StateUpdAtR .

Flexible state update with StateUpdAtR

StateUpdAtR (X , 𝑒, 𝑘, 𝜏in, 𝑆, . . .) in Figure 6.19 tracks resource updates at event 𝑒 in
level 𝑘 . Its main advancement over its predecessor in AxSL is the introduction of
logical states, which are crucial to implement non-atomic points-tos by tracking
progress in the eco order. The predicate quantifies over a logical state 𝜎 , and links
updates of R-based resources to the update progress map𝑀 via a state interpretation
SIR , as in 8 and 9 . Updates are limited to one event and level at a time, and a
maximum of K updates can occur across events of an execution for order R. These
updates must adhere to a specific sequence for soundness. The map 𝑀 associates
events with their update level sets 𝑆 , representing levels where state updates have
been performed. For the current event 𝑒 , if 𝑘 is not in 𝑆 (case 10), the state update
is skipped, and resources flow as in the simplified FlowImp. Otherwise, updates
proceed if condition 7 is met. Figure 6.20 depicts an illustration of this case. 7

imposes constraints on𝑀 , which effectively controls when the update can be made.
The first line says that this update at event 𝑒 and level 𝑘 must occur after updates of
its predecessors and before updates of 𝑒 at higher levels; The second line involves the
new predicate WFR which requires that the sets of all 𝑒 predecessors in𝑀 are well-
formed up to the current level 𝑘 . One application of this well-formedness condition
is to enforce that updates at certain levels have to be performed, as we will see later
in Section 6.5.2. This well-formedness predicate is also employed byWPIfR in the
model of the base weakest precondition to selectively enable well-formedness of 𝑆 .
This depends on whether the order R is chosen for the event address (if any) in the
order select map 𝑂 , which maps locations to the set of orders enabled for reasoning.
The map 𝑂 is persistent (11) and user-determined. The integration of 𝑂 , 𝑀 , and 𝑆
provides selective and flexible state updates, allowing users to decide when to update
these order-based states by view-shifting the abstract interpretation predicates.
Section 6.5.2 elaborates on how the AxSL+ instance in Section 6.4 leverages this
flexibility to implement proof rules.

6.5.2 Instantiating the Model

To use the semantic model defined in the previous subsection, one must provide
concrete implementations for the abstract predicates using ghost states. Specifically,
these predicates include:

• interpretation GI for graph and instruction memory

• interpretation SIO for the order typing map

171 6.5. Semantic Model

lineralisation(R)

Lvl

𝑒𝑒2𝑒1𝑒0 R

0

𝑘

K

{𝑒 ↦→ {𝑘}}

𝑆

𝑀 [𝑒2]

𝑀 [𝑒1]

Figure 6.20: An illustration of the 𝑘 ∈ 𝑆 case of StateUpdR (X , 𝑒, 𝑘, 𝜏in, 𝑆, · · ·). The
x-axis is a linearisation of the order R. The y-axis is the levels starting from 0. 𝑒1
and 𝑒2 are the two R-predecessors of 𝑒 . The shapes for𝑀 [𝑒1] and𝑀 [𝑒2] include the
state updates accumulated by their flow implications. The shaded parts of the shapes
correspond to the updates that have been performed, and the blank parts correspond
to the updates that have not been performed. The condition on𝑀 requires that it can
only involve the shaded parts to perform the update at event 𝑒 at level 𝑘 (denoted by
the dot on the top right). After the update, the small area of 𝑆 containing the dot is
also shaded, reflected by adding 𝑒 ↦→ {𝑘} to𝑀 . Together, the conditions ensure that
all the updates have to be performed from left to right, and from bottom to top.

• state interpretations SIR

• well-formedness conditions for update level setWFR

• interpretations for global tied-to maps TIR
The instantiation, alongside with the model of the assertion language, are used to
prove the soundness of the proof rules. In this subsection, we detail definitions for
the logic instance AxSL+NA of Section 6.4, highlighting derivable properties crucial
to the soundness of the proof rules.

Protocols, SIob, and WFob

We define the type of the logical state 𝜎ob as Addr → (Val → Lvl → Eid → iProp),
mapping locations to protocol predicates governing the corresponding location.
The key idea behind this ob instantiation resembles that of AxSL: we require the
protocol resource Φ to hold for all write events at all levels, as depicted in 2 in
Figure 6.21. This is enforced by theWFob condition, ensuring the update level set
𝑆ob contains all levels. Figure 6.22 illustrates the shape of 𝑀ob enforced by WFob.
To track protocols for locations, we employ the higher-order savedPred resource
algebra (technically, Iris CMRA) to store them as ghost states, as shown in 1 . This
setup ensures agreement between the state interpretation and the protocol assertion

Chapter 6. First Steps towards AxSL+ 172

(omitting the later modality required by step-indexing):

SIob(X , 𝜎ob, 𝑀) ∗ Prot(𝑥,Φ) ⊢ 𝜎ob [𝑥] = Φ

This agreement allows concluding that Φ holds at all levels for the ob-before write
when reading externally from 𝑥 . Thus, the resources of the write, stored in the state
interpretation, are accessible to the read.

SIob(X , 𝜎ob, 𝑀) ≜(
∃𝑔 : Addr → Gname. •𝑔 𝛾ob ∗ ∗(𝑥 ↦→(Φ;𝛾)) ∈𝜎ob;𝑔 1 savedPred(Φ) 𝛾

)
∗

2 (∀(𝑒 ↦→ 𝑆) ∈ 𝑀.∀𝑥, 𝑣 .X .E[𝑒] = W 𝑥 𝑣 −∗ ∗𝑘∈𝑆 𝜎ob [𝑥] (𝑣, 𝑘, 𝑒))
Prot(𝑥,Φ) ≜ ∃𝛾 . ◦{𝑥 ↦→ 𝛾} 𝛾ob ∗ savedPred(Φ) 𝛾

WFob(𝑆, 𝑘) ≜ 𝑆 = {𝑘 ′ | 0 ≤ 𝑘 ′ ≤ 𝑘}

Figure 6.21: The instantiation of ob predicates and themodel of the protocol assertion.

lineralisation(ob)

Lvl

𝑒0 𝑒1 𝑒2 𝑒3

0

K
𝑀ob [𝑒0] 𝑀ob [𝑒1] 𝑀ob [𝑒2] 𝑀ob [𝑒3]

Figure 6.22: An illustration of the shape of𝑀ob. A dot indicates that there is a state
update to apply at the corresponding event and level. It has to contain the state
updates at all the levels from 0 toK for the events 𝑒0, 𝑒2, 𝑒3 of the locations on which
ob reasoning is enabled in 𝑂 ; and contains no updates (e.g. 𝑒1) otherwise.

Non-atomic points-tos, SIeco, and WFeco

We define 𝜎eco as Addr → List (Eid), mapping locations to their write history. 2 in
Figure 6.23 requires that the write list ℓ is sorted by co. The AgFrac RA in 1 maintains
two identical copies of ℓ , allowing updates when both are owned. One copy resides
in the state interpretation, the other in the non-atomic points-to assertion. This
assertion ensures that the latest write to 𝑥 is of value 𝑣 , by asserting that event 𝑒𝑤
with value 𝑣 is the last write in ℓ (3). To prevent outdated reads, 4 asserts that
the latest write must be ob ∩ ext-before or po-before event 𝑒 (if the events differ).
Typically, 𝑒 is set as the event tied to the assertion, ensuring 4 holds when the

173 6.5. Semantic Model

assertion is passed around locally and externally. Thus, reads from non-atomic
locations can only access the last write of ℓ , and writes only append to ℓ by updating
the assertion. The well-formedness condition for eco is weak: it only requires that at
most one update can be performed for an event to give the illusion that levels do not
exists, since the instantiation does not utilise the level information of𝑀 . Figure 6.24
depicts a shape of𝑀eco compatible with thisWFeco condition.

SIeco(X , 𝜎eco, 𝑀) ≜
(∀(𝑥 ↦→ ℓ) ∈ 𝜎eco,∀𝑒 ∈ ℓ . 𝑒 ∈ dom(𝑀)) ∗(
∃𝑔 : Addr → Gname. •𝑔 𝛾eco ∗ ∗(𝑥 ↦→(ℓ ;𝛾)) ∈𝜎eco;𝑔 1 AgFrag(ℓ, 1/2) 𝛾

)
∗

2 (∀𝑒, 𝑒′ ∈ dom(𝑀) .∀𝑥 = Loc(𝑒,X) . 𝑒 co 𝑒′ −∗ ∃𝑖, 𝑗 . 𝜎 [𝑥] [𝑖] = 𝑒 ∗ 𝜎 [𝑥] [𝑗] ∗ 𝑖 < 𝑗)

𝑥
NA↦→ 𝑣 [𝑒] ≜

∃𝛾, ℓ . ◦{𝑥 ↦→ 𝛾} 𝛾eco ∗ AgFrag(ℓ, 1/2) 𝛾 ∗
∃𝑒𝑤 . (𝑒𝑤 : W 𝑥 𝑣) ∗ 3 (𝑒𝑤 = last(ℓ)) ∗ 4 ((𝑒𝑤 (ob ∩ ext) 𝑒) ∨ (𝑒𝑤 po 𝑒) ∨ 𝑒 = 𝑒𝑤)

WFeco(𝑆, _) ≜ size(𝑆) ≤ 1

Figure 6.23: The instantiation of eco predicates and the model of the non-atomic
points-to assertion.

lineralisation(eco)

Lvl

𝑒𝑥0 𝑒𝑦0 𝑒𝑥1 𝑒𝑦1 𝑒𝑥2

0

K

Figure 6.24: An illustration of the shape of 𝑀eco. 𝑒𝑥0, 𝑒𝑥1, 𝑒𝑥2 are events of 𝑥 , and
𝑒𝑦0, 𝑒𝑦1 are events of 𝑦. The two sub-shapes contain the state updates of the events of
location 𝑥 and 𝑦, assuming eco reasoning is enabled on the two locations according
to 𝑂 . Each of these sub-shapes contains only one state update per event.

6.5.3 Soundness of Proof Rules

AxSL+ rules are proven sound with respect to its semantic model and the implement-
ation of the interpretation predicate presented in this section.

Chapter 6. First Steps towards AxSL+ 174

Theorem 6.5.1 (Soundness). AxSL+ proof rules are sound.

6.6 Adequacy

The statement of the adequacy theorem of AxSL+ builds on the one from AxSL, with
minor changes to account for level-indexing. The proof of this theorem, however,
diverges significantly from AxSL due to the introduction of level-indexed variables
and terms, and the addition of flexible state updates. These factors introduce sub-
stantial complexity while retaining the two-phase structure of the original proof.
Phase one involves constructing the level-indexed edge annotation and ensuring its
well-formedness, which is more intricate. Phase two, instead of merely relying on
induction over ob, requires three separate inductions: first on the level upper bound,
and then once on each order.

This section outlines the necessary adaptations for the adequacy theorem, fol-
lowed by a proof sketch that includes key intermediate steps and auxiliary lemmas.

Theorem 6.6.1 (Adequacy theorem of AxSL+). For any initial thread states ®𝐶 , meta-
level propositions ®𝜑 (one for each thread), valid execution graph X, and instruction
memory 𝐼 , we have(∧𝑛

tid=1 Ctd ®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h Done _

)
⇒

©­­­­­­«

∃ 1K, 𝜎ob, 𝜎eco,𝑂.

⊢ ¤|⇛
©­­­­«
(
∗R

∃𝑀. 2 InitStR (X , 𝜎R, 𝑀,𝑂,K) ∗
3 TIR ({(𝑘, 𝑒) ↦→ Emp | 0 ≤ 𝑘 ≤ K ∧ 𝑒 ∈ InitNodes(X)})

)
∗

4 �GI(⟨X , 𝐼 ⟩) ∗ 5 � SIO(𝐿) ∗
6 ∗𝑛

tid=1

(
wptid,K Ctd ®𝐶 (tid) .𝑝 {⌈®𝜑 (tid)⌉}

)
ª®®®®¬
ª®®®®®®¬
⇒

(∧𝑛
tid=1 ®𝜑 (tid)

)
where

InitStR (X , 𝜎, 𝑀,𝑂,K) ≜ 7PgWFR (X , 𝑀,𝑂,K, InitNodes(X)) ∗ 8 SIR (X , 𝜎, 𝑀)
and

PgWFR (X , 𝑀,𝑂,K, 𝐷) ≜ (∀(𝑒 ↦→ 𝑆) ∈ 𝑀.WFIfR (X , 𝑒,𝑂, 𝑆,K)) ∗ dom(𝑀) = 𝐷

Similarly to the adequacy of AxSL, the statement overall has three components:
the first line assumes a terminating execution of the program, the next line assumes
the verification of the program in AxSL+, and the last line is the conclusion that the
pure facts ®𝜑 proven in AxSL+ holds at the meta level. The theorem incorporates a
concrete level upper bound K (1), which acts as a key parameter. It also involves
an order typing map 𝐿, which is a persistent map determining reasoning at each
address, and which is logically interpreted as 5 . These two parameters vary between
proofs, and thus needed to be provided by the user alongside the initial states 𝜎R .
The interpretations of initial states 8 are required to be established in 2 , with a

175 6.6. Adequacy

consistent and well-formed initial update progress map𝑀 covering initial nodes as
in 7 . Furthermore, initial resources may be allocated along with state interpretations.
For each order R, the theorem requires an interpretation of the initial tied-to map
(3), mapping initial events to ‘empty’ at all levels. 4 and 5 are the interpretations of
persistent values, which are trivial to establish. Finally, the weakest preconditions of
all threads (6) are required, all parameterised by the same upper bound K .

6.6.1 Overview of the Proof

The proof of adequacy of AxSL+ follows the two-phase strategy of AxSL. In phase one,
the weakest preconditions are unfolded to collect flow implications along program
order. Phase two then applies these implications in sequence along ob (and now eco,
separately) to ensure sound resource transfer and state updates. Compared to AxSL,
the level-indexed semantic model introduces significant complexity.

We recall the key aspects of the AxSL proof and dedicate subsequent subsections
to detailed proof sketches for the revised phases.

In phase one of the AxSL adequacy proof, induction on the reduction trace of the
program while keeping track of the tied-to map interpretation, allows unfolding the
weakest preconditions of the threads. By pushing the tied-to interpretation through
the view shift in the model of weakest preconditions, we track updates to the tied-to
map based on flow implications. This process leads to the construction of an edge
annotation map, capturing resource flow along ob edge between events, represented
as a map of type Eid → Eid → iProp. By the end of this phase, the final tied-to map
records which resources are associated with which events after resource flow has
occurred. A new predicate establishes the relationship between the resources in
the edge annotation map and those in the (node annotation) tied-to map, ensuring
that if the resources indeed flow according to the edge annotation map, starting
from the initial resources, then the resources of the tied-to maps indeed ties to the
corresponding events.

Phase two of AxSL adequacy proof builds upon the results of phase one, replaying
the resource updates and flows recorded by the edge annotation map, but this time
along ob. By the end of this second induction, we obtain all the tied resources with
which we show the pure postconditions of the weakest preconditions. The adequacy
proof concludes by applying the Iris base adequacy theorem to extract postconditions
to the meta logic.

6.6.2 Phase 1: Collecting Flow Implications

The goal of phase one of the adequacy proof of AxSL+ is similar to that of AxSL:
collecting flow implications along program order, as formulated in Theorem 6.6.2.
Given the hypotheses from the adequacy statement (on the left of the entailment), the
proof of phase one begins with induction on the program reduction trace, unfolding
the weakest preconditions while propagating the interpretations of the tied-to maps
𝑇R . Concurrently, it collects level-indexed flow implications FlowImp. The result is

Chapter 6. First Steps towards AxSL+ 176

the final tied-to maps 𝑇R (1), which are well-formed, satisfying the assertions in 2 .
Importantly, this ensures that these maps include all non-initial events and levels up
to the specified upper bound, so phase two does not get stuck because of a missing
flow implication.

Two critical differences from the original phase one from AxSL emerge. First,
during unfolding, we also collect the update level sets 𝑆R , and use them to construct
global update progress maps𝑀R (3) that contain the well-formed update level sets of
all non-initial nodes (4). Second, because the tied-to maps and the flow implications
are now all level-indexed, we construct edge annotation maps in a more complicated
way. Specifically, one edge annotation map is created for each order at each level.
The new predicate FlowAnnot (5) recursively relates these annotation maps to the
tied-to maps. The edge annotation maps are existentially quantified and implicitly
defined within FlowAnnot for brevity. This new predicate also records all the state
updates allowed by the update progress maps𝑀R . The final outcome of this phase
is a separating implication, asserting that the pure post conditions 7 holds given all
tied resources at all events and levels in the final tied-to maps (6).

Lemma 6.6.2 (Phase 1: Collecting by Unfolding). Given initial tied-to maps 𝑇R and
order typing map 𝑂 ,(∧𝑛

tid=1 Ctd ®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h Done _

)
∗

(∗𝑛
tid=1wpb

K
tid Ctd ®𝐶 (tid) .𝑝 {⌈®𝜑 (tid)⌉}

)
∗

(∗R TIR (𝑇R) ∗ dom(𝑇R) = ({𝑘 |0 ≤ 𝑘 ≤ K} × InitNodes(X))) ∗
�GI(⟨X , 𝐼 ⟩) ∗ � SIO(𝑂)

⊢ ¤|⇛
∃ 1𝑇 ′

ob,𝑇
′
eco.

(∗R TIR (𝑇 ′
R) ∗ 2 TiedMapWF(X ,𝑇 ′

R,K)
)
∗(

∃ 3𝑀 ′
ob, 𝑀

′
eco.

(
4 ∗R PgWFR (X , 𝑀 ′

R,𝑂,K,NInitNodes(X))
)
∗

5 FlowAnnot(X ,𝑇 ′
ob,𝑇

′
eco, 𝑀

′
ob, 𝑀

′
eco,K, 0)

)
∗((

6 ∗R PullTied(𝑇 ′
R)

)
−∗ 7

∧𝑛
tid=1 ®𝜑 (tid)

)
where

PullTied(𝑇) ≜ ∗𝑒∈NInitNodes(X)

(∗K
𝑘=0𝑇 [𝑘] [𝑒]

)
6.6.3 Phase 2: Applying Flow Implications

Phase two of the adequacy proof of AxSL+ replays the resource updates and flows
recorded in the edge annotation maps of FlowAnnot (4), while concurrently per-
forming the optional state updates captured by the update progress maps𝑀R . The
auxiliary Theorem 6.6.3 serves as the cornerstone of phase two. It involves the final
tied-to maps𝑇R , the update progress maps𝑀R , and their well-formedness assertions
from phase one (1 and 2). Additionally, the lemma requires the initial states and
their interpretations (3) as provided in the adequacy statement hypothesis.

177 6.6. Adequacy

The conclusion of the lemma is behind an iterated update modality, enabling
updates across all levels for all non-initial nodes (5). The resulting final states 𝜎 ′R and
their interpretations (6) are consistent with the union of the update progress maps
for both initial and non-initial events. This consistency ensures that all state updates
recorded in FlowAnnot have been executed. Consequently, the tied resources in
𝑇R are derived, allowing to conclude the pure postconditions established in The-
orem 6.6.2. After showing this lemma, the final step of applying Iris base adequacy
on the postconditions is standard.

Lemma 6.6.3 (Phase 2: Applying by Inductions). Given the final tied-to maps 𝑇 ′
R ,

the level-enabled maps𝑀 ′
R , both collected from Theorem 6.6.2, and the initial states 𝜎R

with consistent update progress maps𝑀R ,

⊢ (
1 ∗R PgWFR (X , 𝑀 ′

R,𝑂,NInitNodes(X)) ∗ 2 TiedMapWF(X ,𝑇 ′
R,K)

)
−∗(

3 ∗R InitStR (X , 𝜎R, 𝑀R,𝑂,K)
)
−∗(

4 FlowAnnot(X ,𝑇 ′
ob,𝑇

′
eco, 𝑀

′
ob, 𝑀

′
eco,K, 0)

)
−∗(∗R ¤|⇛ 5 K×Size(NInitNodes(X))∃𝜎 ′R . 6 SIR (X , 𝜎
′
R, 𝑀R ∪𝑀 ′

R) ∗ 7PullTied(𝑇 ′
R)

)

lineralisation(R)

Lvl

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5
R R R R R

0

𝑘1

𝑘2

K

Figure 6.25: An illustration of the application of state updates in the adequacy proof
for order R. The dots represent the state updates collected by the progress update
map𝑀 at every node and level. The adequacy proof performs all of these updates in
the (lexicographic) order indicated by the arrows.

The key insight of the proof of Theorem 6.6.3 lies in handling dependencies
between updates systematically: higher-level updates rely on the completion of
lower-level updates, and within each level, the update for an event depends on
updates of its predecessors. This is achieved through induction on the upper bound
K , with nested inductions on the two orders. The update sequence is visualised in
Figure 6.25, illustrating the application sequence of state updates captured in𝑀 ′

R .

Chapter 6. First Steps towards AxSL+ 178

6.7 Further Steps

AxSL+NA of Section 6.4 demonstrates minimal mixed-order reasoning with non-
atomics and level-indexed ob protocol. In this section, we discuss several directions
for extending AxSL+NA, including those that can be directly implemented based on
the semantic model presented in Section 6.5, and those that we believe require more
work.

6.7.1 Basic Coherence Reasoning for Racy Locations

One limitation of the proof rules presented in Section 6.4 is that we can only reason
about coherence for non-racy locations. We can lift this limitation by defining a
history predicate Coh(𝑥, ℓ) that exposes the history of write ℓ for location 𝑥 , which
allows us to conduct basic coherence reasoning in the presence of data races. The
model of Section 6.5 is fully compatible with this new assertion. One only needs to
tweak the implementation of the eco state interpretation SIeco so that it captures more
information about coherence. In the rest of this subsection, we present properties
from which the derivation of the proof rules is straightforward. We can have two
variants of the predicate to handle the case of write-write races, or only write-read
races. For the former, the rules we could obtain with this history predicate is rather
weak:

hist-agree
SIeco(X , 𝜎, 𝑀) ∗ Coh(𝑥, ℓ) ⊢ ∃ℓ ′. ℓ ++ ℓ ′ = 𝜎 [𝑥]

hist-update
𝑒 : W 𝑥 𝑣 ∃ℓ1, ℓ2. last(ℓ1) eco 𝑒 ∗ ℓ1 ++ ℓ2 = 𝜎 [𝑥]

SIeco(X , 𝜎, 𝑀) ⇛ ∃ℓ ′2 = insert(ℓ2, 𝑒). SIeco(X , 𝜎 [𝑥 ↦→ (ℓ1 ++ ℓ ′2)], 𝑀 ∪p {𝑒 ↦→ {𝑘}})

hist-duplicate
𝑥 ∈ dom(𝜎)

SIeco(X , 𝜎, 𝑀) ⇛ SIeco(X , 𝜎, 𝑀) ∗ Coh(𝑥, 𝜎 [𝑥])

hist-persist
Coh(𝑥, ℓ) ⇛ Coh(𝑥, ℓ) ∗ Coh(𝑥, ℓ)

The implementation of the Coh(𝑥, ℓ) predicate holds a fragmental view ℓ of the
history of 𝑥 , while the eco state interpretation SIeco holds the full view (of which ℓ is
a prefix).

For locations with only write-read races, we assume there is only a single writer,
which holds the full and exclusive history with Coh(𝑥, ℓ)𝑊 . All the readers may still
own prefixes of the history with Coh(𝑥, ℓ)𝑅 , for which the same weak rules above

179 6.7. Further Steps

holds. However, we also have the following strong rules for the writer:

hist-sw-agree
SIeco(X , 𝜎, 𝑀) ∗ Coh(𝑥, ℓ)𝑊 ⊢ ℓ = 𝜎 [𝑥]

hist-sw-update
𝑒 : W 𝑥 𝑣 last(𝜎 [𝑥]) eco 𝑒

SIeco(X , 𝜎, 𝑀) ∗ Coh(𝑥, 𝜎 [𝑥])𝑊
⇛ SIeco(X , 𝜎 [𝑥 ↦→ (𝜎 [𝑥] ++ [𝑒])], 𝑀 ∪p {𝑒 ↦→ {𝑘}}) ∗ Coh(𝑥, (𝜎 [𝑥] ++ [𝑒]))𝑊

hist-sw-duplicate
Coh(𝑥, ℓ)𝑊 ⇛ Coh(𝑥, ℓ)𝑊 ∗ Coh(𝑥, ℓ)𝑅

hist-sw-combine
Coh(𝑥, ℓ)𝑊 ∗ Coh(𝑥, ℓ ′)𝑅 ⊢ ∃ℓ ′′. ℓ = ℓ ′ ++ ℓ ′′

The implementation of Coh(𝑥, ℓ)𝑊 holds half of the ghost state of the full view of ℓ ,
while Coh(𝑥, ℓ)𝑅 holds fragmental views as before. The former can also be used to
implement non-atomic points-to assertions.

6.7.2 eco Protocols

The Prot(𝑥,Φ) assertion in AxSL+ allows resources to be transferred between threads
along ob edges, facilitating local reasoning. Similarly, one can introduce a protocol
assertion to enable resource transfer along eco edges for a given location.

This can be implemented by enforcing the protocol predicates on all the writes
in the history. However, this protocol is stateless, meaning extra machinery must
be implemented to distinguish between two writes of the same value in the history
when sending resources. We conjecture that stateful eco-based protocols could make
resource transfer more flexible in AxSL+.

Per-location protocols in the GPS logic are an example of such protocols. They
have been shown to be robust and easy to use for verification of realistic programs.
However, porting per-location protocols to AxSL+ presents a challenging task, par-
ticularly when combined with level-indexing. We believe that implementing them
with tractable proof rules for resource transfer is difficult using the semantic model
of Section 6.5 as-is.

In the remainder of this subsection, we will first introduce GPS protocols, and
then elaborate on the challenges that arise when trying to integrate them into AxSL+.

GPS Per-location protocols

The per-location protocol predicate 𝑥 : 𝑠 𝜏 in GPS associates an abstract state 𝑠
(from a state transition system, STS) and a predicate 𝜏 with location 𝑥 , ensuring 𝜏 (𝑣, 𝑠)
holds for the value 𝑣 at location 𝑥 . This predicate abstracts away much reasoning
of the acyclic condition on eco, exposing only the reasoning of the monotonicity
of state transitions to the proof rules. For instance, the GPS write rule for atomics

Chapter 6. First Steps towards AxSL+ 180

ensures progress in the STS (i.e., the protocol) in a thread-local manner: to move
from a potentially outdated state 𝑠 to 𝑠′′, one only needs to show that for all 𝑠′ ⊒ 𝑠
in the STS, 𝑠′′ is reachable.

iGPS refines GPS with three per-location protocol variants: persistent protocols
(corresponding to the original protocols of GPS), single-writer protocols, and frac-
tional protocols, each designed for specific scenarios, with corresponding proof rules
of varying strength. We now elaborate on the first two.

Persistent protocols Persistent protocols, the most generic protocol variant from
GPS, have relatively weak reasoning rules for writes. Here, each thread can own
a copy of the protocol to track visible progress locally. This allows arbitrary data
races on the location, but the protocol does not track a globally latest state on its
own. More precisely, 𝑥 : 𝑠 𝜏 signifies that the location is at least at state 𝑠 from
the owning thread’s perspective. During reads, the state 𝑠 may update to 𝑠′ ⊒ 𝑠 ,
granting resource 𝜏 (𝑣, 𝑠′) for the read outcome 𝑣 , resulting in 𝑥 : 𝑠′ 𝜏 . This update
reflects potential read-write races: since other threads may have made the protocol 𝜏
progress to 𝑠′ with some writes, we might read from a later 𝑠′ according to coherence.
The rule for writes is even more restricted. This is because the writer thread has
no information on how other threads have already moved the protocol forward,
so it can only update the protocol state conservatively, taking into account how
other concurrent writes may advance the state. In conclusion, persistent protocols
supports both read-write and write-write races at the cost of restricted proof rules
(in particular for writes).

Single-writer protocols Single-writer protocols support stronger proof rules by
precluding reasoning about write-write races, requiring at most one writer, as the
name suggests. Single-writer protocols use two assertions: 𝑥 : 𝑠 𝜏 𝑅 is a reader
protocol, which can be seen as a (potentially outdated) snapshot of the state transition:
it asserts that the latest state of 𝜏 is at least 𝑠 . The read rule with this persistent
assertion is identical to the one with persistent protocols (and therefore accounts for
read-write races). 𝑥 : 𝑠 𝜏 𝑊 is a writer protocol, which can be seen as the full view: it
asserts that the latest state of 𝜏 is exactly 𝑠 . This assertion is non-duplicable, granting
exclusive write permission to advance 𝜏 to the holding thread. This exclusivity
enables freely updating 𝜏 ’s state with a stronger write rule.

Challenge in integrating GPS-style protocols

Integrating GPS-style protocols into AxSL+ is a challenging task. The introduction
of level-indexing complicates the justification of sound resource transfer when using
GPS-style protocols. To understand why this integration is difficult, and why we
claim that tractable proof rules for GPS protocols cannot be easily implemented
with the current semantic model, we examine the challenges that one faces when
attempting to do so.

181 6.7. Further Steps

In this attempt, we develop an implementation of GPS-style protocols and sketch
proof rules, and show how they suffer from usability issues. We expect that these
issues would be shared by any approach, as we suspect that the root cause lies in
the semantic model.

Figure 6.26 illustrates two specialised proof rules that we develop for the single-
writer variant of GPS-style protocols. Assertion 𝑥 : 𝑠 𝜏, 𝜉 represents the GPS-style
protocol in AxSL+, which additionally includes a function 𝜉 mapping abstract states
to levels. The level 𝜉 (𝑠) for a state 𝑠 corresponds to the level at which 𝜏 (𝑣, 𝑠, 𝑒) is
satisfied at event 𝑒 . While this solution is somewhat limiting, it offers a simple way
to track the level(s) at which resources for state 𝑠 are satisfied.

Tracking this information is crucial for ensuring the soundness of the rules, as
resource transfer must never flow to lower levels. This means that when receiving
resources for state 𝑠 , we must ensure that they are tied to the read event at a level
that is not smaller than 𝜉 (𝑠). This requirement is reflected in the proof rules in
Figure 6.26, which we now discuss in detail.

ht-str-rel-perloc-sw

PoPred(𝑒po) ∗ 1

(∗((𝑘,𝑒) ↦→𝑃) ∈𝑚 (𝑒𝑘ob↬𝑃)
)
∗

2 𝑒0
𝑘0
eco↬

(
∃𝑠 . 𝑦 : 𝑠 𝜏, 𝜉

𝑊
(𝑒0) ∗𝜓 (𝑠)

)
∗

(∀𝑠 .𝜓 (𝑠) −∗ 𝑠 ⊑ 𝑠′ ∗ 3K ≥ 𝜉 (𝑠′) ≥ max(𝐾 + 1, 𝑘0)) ∗

∀𝑒, 𝑣, 𝑒𝑤, 𝑣𝑤 .
©­«
GraphFacts(𝑒, x, 𝑣, 𝑒𝑤, 𝑣𝑤, 𝑒po) −∗(
Lob(dom(𝑚), 𝑒, 𝐾) ∗ (𝑒0 po-loc 𝑒) ∗
4
((∗(_↦→𝑃) ∈𝑚 𝑃

)
−∗ ∀𝑠 .𝜓 (𝑠) −∗ 𝜏 (𝑣𝑤, 𝑠, 𝑒𝑤) ⇛ 𝜏 (𝑣, 𝑠′, 𝑒)

))ª®¬


str [𝑦] 𝑣{
∃𝑒. PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒po) ∗ 5 𝑒

𝜉 (𝑠′)
eco ↬

(
𝑦 : 𝑠′ 𝜏, 𝜉

𝑊
(𝑒)

) }
tid,K

ht-ldr-rlx-perloc-sw
PoPred(𝑒po) ∗ 6 𝑒0

𝑘0
eco↬

(
∃𝑠 . 𝑦 : 𝑠 𝜏, 𝜉

𝑅
(𝑒0) ∗𝜓 (𝑠)

)
∗ 7 (K ≥ 𝑘 ′ ≥ 𝑘0) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
©­­­«
GraphFacts(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) −∗
(𝑒0 po-loc 𝑒) ∗

8

(
∀𝑠′. (∃𝑠 .𝜓 (𝑠) ∗ 𝑠 ⊑ 𝑠′) −∗

𝜏 (𝑣, 𝑠′, 𝑒𝑤) ⇛ 𝜏 (𝑣, 𝑠′, 𝑒𝑤) ∗𝑄 (𝑣, 𝑠′, 𝑒𝑤)

)ª®®®¬


𝑟 := ldr [𝑦]
∃𝑒, 𝑣, 𝑒𝑤 . PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒𝑤, 𝑒po) ∗

𝑒𝑘
′

eco↬
(
∃𝑠′. (∀𝑠,𝜓 (𝑠) −∗ 𝑠 ⊑ 𝑠′) ∗

9 𝑦 : 𝑠′ 𝜏, 𝜉
𝑅
(𝑒) ∗ (10𝑘 ′ ≥ 𝜉 (𝑠′) −∗ 11𝑄 (𝑣, 𝑠′, 𝑒𝑤))

) tid,K

Figure 6.26: Hypothetical sound proof rules with single-writer per-location protocols
in AxSL+.

ht-str-rel-perloc-sw is a rule for stores where the writer protocol is at some state
𝑠 that satisfies𝜓 (𝑠). The protocol is currently tied to some po-loc-before event 𝑒0 at

Chapter 6. First Steps towards AxSL+ 182

level 𝑘0, as seen in 2 . This rule allows us to advance the protocol to some later state
𝑠′ ⊒ 𝑠 . The rule loosely follows the shape of the original GPS rule, and is as strong
as expected. When showing the protocol resources at 𝑠′ in 4 , we can use resources
tied to lob-before events (as shown in 1). 3 is the crucial level condition ensuring
soundness: it requires that 𝐾 , the maximum level of the resources flowing in, plus
one order-switching, is not greater than the predetermined level of 𝑠′. In other words,
the resources for transfer cannot flow to lower levels. It also requires that 𝜉 (𝑠′) is
not smaller than 𝑘0, ensuring that the protocol assertion itself cannot flow to lower
levels. Intuitively, this condition ensures that the assertions and resources needed for
this resource transfer are available at 𝜉 (𝑠′), the level where the transfer is happening.
This is why we have the updated protocol tied at level 𝜉 (𝑠′) in 5 .

ht-ldr-rlx-perloc-sw is a rule for loads where the reader protocol is at state 𝑠 ,
tied to some 𝑒0 at level 𝑘0. This rule allows us to receive resources from some later
state 𝑠′, as in 8 . In the postcondition, we specify that the received resources 11 along
with the updated protocol 9 are tied to the read event at some user-selected level
𝑘 ′. This is where the usability issue arises (the rule we give is also weaker than the
corresponding GPS rule, which includes a choosable 𝑃 in the precondition, which
slightly alleviates but does not solve the usability problem we highlight). The actual
resources received are conditioned by 10 , meaning that they are only available if the
user-determined 𝑘 ′ is not smaller than 𝜉 (𝑠′), the level where the resources are sent.
This is problematic, as it renders the received resources barely usable. Indeed, the
only way to discharge this condition is when we are sure that we are at the final state
𝑠fin, in which case we can set 𝑘 ′ = 𝜉 (𝑠fin). This condition is otherwise unavoidable,
since the user of the rule cannot pick 𝑘 ′ based on the new state 𝑠′, as 𝑠′ is quantified
in the tied-to assertion.

This problem stems from the semantic model. When taking a step, the model of
the weakest precondition first requires the updated tied-to maps 𝑇 ′

R and then shows
that the update satisfies the flow implication. The state interpretation of eco, from
which we can know the updated protocol state 𝑠′, is only accessible within the flow
implication, meaning it is only available after selecting 𝑇 ′

R .
Looking at this issue more broadly, it is questionable whether a semantic model

without this problem even exists. Generally speaking, the desired proof rules seem
to require solving a circular dependency between the protocol states and levels.

Although we do not know how to completely resolve this issue, there may be
solutions that mitigate the impact of this extra condition. This is a key direction
to explore, as we believe that using GPS-style protocols for resource transfer can
significantly improve the scalability of AxSL+.

6.7.3 Modular Specifications for Concurrent Libraries

Another limitation of the current extension that we would like to address is the fixed
upper bound, which limits compositionality. The fixed upper bound only works well
when reasoning about a closed program. However, this is problematic when writing
down modular specifications for concurrent libraries because it is not possible to

183 6.8. Conclusion

determine in advance the number of levels needed by clients for order-switching.
Therefore, we would like to make this upper bound more flexible, by, for instance,
allowing it to be mutable. This would enable the combination of two specifications
by unifying their upper bounds. We anticipate that achieving this requires an even
more flexible semantic model.

6.8 Conclusion

The separation of coherence (eco) and synchronisation order (ob) of Arm-A poses a
challenge on sound and thread-modular reasoning of their combination. This makes
well-established coherence-based abstractions not immediately available in program
logics for Arm-A like AxSL that can reason about only ob. In this paper, we present
the idea of level-indexing as an extension to AxSL to support mixing reasoning about
ob and eco together. This allows us to capture key coherence patterns. We build a
simple AxSL+NA based on this idea, in which we construct a notion of non-atomic
points-to to ease reasoning about non-racy locations. The generic semantic model
AxSL+ is based only on acyclicity of orders, rather than any specific structure of ob
or eco. Thus, we believe that this approach can be applied not only to extensions
of the Arm-A model like virtual memory, but also to other memory model with
multiple acyclic orders.

6.8.1 Future Work

In future work, we aim to mechanise the results and address several key areas
of improvement for our approach. First, we will implement the plan outlined in
Section 6.7, which is expected to enhance the robustness of our framework by ad-
dressing the identified constraints and limitations. Second, we will validate the logic
with more diverse examples, including additional litmus tests and an approximate
counter [McKenney, 2024, §5], which provides a more realistic example. Finally, we
will explore the implementation of FSL-style modalities [Doko and Vafeiadis, 2016],
further broadening the expressiveness of our logic.

An alternative phrasing of coherence An alternative and equivalent formula-
tion of coherence is to forbid exactly five patterns in the execution graphs [Alglave,
2010]. It is interesting to investigate how to build coherence-based abstractions with
this formulation, and compare it with the formulation used in this paper.

6.8.2 Related Work

All related work of this paper has been discussed in the AxSL papers [Hammond
et al., 2024; Liu et al., 2024].

Bibliography

2021. 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. IEEE. doi:10.1109/SP40001.2021

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. 2015. Stateless Model Checking for TSO
and PSO. In Tools and Algorithms for the Construction and Analysis of Systems
- 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings (Lecture Notes in Computer Science, Vol. 9035), Christel Baier and
Cesare Tinelli (Eds.). Springer, 353–367. doi:10.1007/978-3-662-46681-0_28

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång,
Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal stateless model
checking for reads-from equivalence under sequential consistency. Proc. ACM
Program. Lang. 3, OOPSLA (2019), 150:1–150:29. doi:10.1145/3360576

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson.
2016. Stateless Model Checking for POWER. In Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9780), Swarat Chaudhuri
and Azadeh Farzan (Eds.). Springer, 134–156. doi:10.1007/978-3-319-41540-6_
8

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo.
2018. Optimal stateless model checking under the release-acquire semantics. Proc.
ACM Program. Lang. 2, OOPSLA (2018), 135:1–135:29. doi:10.1145/3276505

Jade Alglave. 2010. A shared memory poetics. Ph. D. Dissertation. L’université Paris
Denis Diderot. http://www0.cs.ucl.ac.uk/staff/j.alglave/these.pdf

Jade Alglave and Patrick Cousot. 2017. Ogre and Pythia: an invariance proof method
for weak consistency models, See Castagna and Gordon [2017], 3–18. doi:10.
1145/3009837.3009883

185

https://doi.org/10.1109/SP40001.2021
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
http://www0.cs.ucl.ac.uk/staff/j.alglave/these.pdf
https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/3009837.3009883

Bibliography 186

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM Trans.
Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. doi:10.1145/3458926

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern. 2018.
Frightening Small Children and Disconcerting Grown-ups: Concurrency in the
Linux Kernel. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS 2018,
Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James Tuck, Ricardo Bi-
anchini, and Vivek Sarkar (Eds.). ACM, 405–418. doi:10.1145/3173162.3177156

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak
Memory Models. In Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes in Computer
Science, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson (Eds.). Springer,
258–272. doi:10.1007/978-3-642-14295-6_25

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: modelling,
simulation, testing, and data-mining for weak memory. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali
(Eds.). ACM, 40. doi:10.1145/2594291.2594347

Andrew W. Appel. 2001. Foundational Proof-Carrying Code. In 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-
19, 2001, Proceedings. IEEE Computer Society, 247–256. doi:10.1109/LICS.2001.
932501

Andrew W. Appel. 2012. Verified Software Toolchain. In NASA Formal Methods - 4th
International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings
(Lecture Notes in Computer Science, Vol. 7226), Alwyn Goodloe and Suzette Person
(Eds.). Springer, 2. doi:10.1007/978-3-642-28891-3_2

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong
Shao, Stephanie Weirich, and Steve Zdancewic. 2017. Position paper: the science
of deep specification. In Philosophical Transactions of the Royal Society A, Vol. 375.
Issue 2104. doi:10.1098/rsta.2016.0331

Arm. 2021. Morello project. Retrieved July 6, 2021 from https://www.
morello-project.org/

Arm Ltd. 2022. Arm Firmware Framework for Arm A-profile version 1.1 -
DEN0077A. Technical Report. https://documentation-service.arm.com/
static/624d5f52dc9d4f0e74a54e5f

Arm Ltd. 2023. ARM Architecture Reference Manual (for A-profile architecture).
Arm Ltd. ARM DDI 0487J.a (ID042523), https://developer.arm.com/
documentation/ddi0487/latest/, Accessed 2023-07-04.

https://doi.org/10.1145/3458926
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1145/2594291.2594347
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1098/rsta.2016.0331
https://www.morello-project.org/
https://www.morello-project.org/
https://documentation-service.arm.com/static/624d5f52dc9d4f0e74a54e5f
https://documentation-service.arm.com/static/624d5f52dc9d4f0e74a54e5f
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/

187 Bibliography

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter
Sewell. 2021. Isla: Integrating Full-Scale ISA Semantics and Axiomatic
Concurrency Models, See Silva and Leino [2021], 303–316. doi:10.1007/
978-3-030-81685-8_14

Rini Banerjee, Kayvan Memarian, Dhruv Makwana, Christopher Pulte, Neel Krish-
naswami, and Peter Sewell. 2025. Fulminate: Testing CN Separation-Logic Spe-
cifications in C. Proc. ACM Program. Lang. 9, POPL, Article 43 (Jan. 2025), 33 pages.
doi:10.1145/3704879

Mark Batty, KayvanMemarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter
Sewell. 2015. The Problem of Programming Language Concurrency Semantics,
See Vitek [2015], 283–307. doi:10.1007/978-3-662-46669-8_12

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012.
Clarifying and compiling C/C++ concurrency: from C++11 to POWER. In Proceed-
ings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John
Field and Michael Hicks (Eds.). ACM, 509–520. doi:10.1145/2103656.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Math-
ematizing C++ concurrency. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55–66.
doi:10.1145/1926385.1926394

Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence
Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and Peter Sewell. 2022.
Verified Security for the Morello Capability-enhanced Prototype ArmArchitecture,
See Sergey [2022], 174–203. doi:10.1007/978-3-030-99336-8_7

Christoph Baumann, Mats Näslund, Christian Gehrmann, Oliver Schwarz, and Hans
Thorsen. 2016. A high assurance virtualization platform for ARMv8. In European
Conference on Networks and Communications, EuCNC 2016, Athens, Greece, June
27-30, 2016. IEEE, 210–214. doi:10.1109/EUCNC.2016.7561034

Christoph Baumann, Oliver Schwarz, and Mads Dam. 2019. On the verification of
system-level information flow properties for virtualized execution platforms. J.
Cryptogr. Eng. 9, 3 (2019), 243–261. doi:10.1007/S13389-019-00216-4

P. Becker (Ed.). 2011. Programming Languages — C++. ISO/IEC 14882:2011. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.

Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, and John Wickerson.
2022. View-Based Owicki-Gries Reasoning for Persistent x86-TSO, See Sergey
[2022], 234–261. doi:10.1007/978-3-030-99336-8_9

https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1145/3704879
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1109/EUCNC.2016.7561034
https://doi.org/10.1007/S13389-019-00216-4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
https://doi.org/10.1007/978-3-030-99336-8_9

Bibliography 188

Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi
(Eds.). 2011. NASA Formal Methods - Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011. Proceedings. Lecture Notes in Computer
Science, Vol. 6617. Springer. doi:10.1007/978-3-642-20398-5

Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ con-
currency memory model. In Proceedings of the ACM SIGPLAN 2008 Confer-
ence on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 68–78.
doi:10.1145/1375581.1375591

Richard Bornat, Jade Alglave, and Matthew J. Parkinson. 2015a. New Lace and
Arsenic: adventures in weak memory with a program logic. CoRR abs/1512.01416
(2015). arXiv:1512.01416 http://arxiv.org/abs/1512.01416

Richard Bornat, Jade Alglave, and Matthew J. Parkinson. 2015b. New Lace and
Arsenic: adventures in weak memory with a program logic. CoRR abs/1512.01416
(2015). arXiv:1512.01416 http://arxiv.org/abs/1512.01416

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson.
2005. Permission accounting in separation logic, See Palsberg and Abadi [2005],
259–270. doi:10.1145/1040305.1040327

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static
Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13,
2003, Proceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot
(Ed.). Springer, 55–72. doi:10.1007/3-540-44898-5_4

Stephen Brookes. 2007. A semantics for concurrent separation logic. Theor. Comput.
Sci. 375, 1-3 (2007), 227–270. doi:10.1016/J.TCS.2006.12.034

Hongxu Cai, Zhong Shao, and Alexander Vaynberg. 2007. Certified self-modifying
code. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation, San Diego, California, USA, June 10-13, 2007,
Jeanne Ferrante and Kathryn S. McKinley (Eds.). ACM, 66–77. doi:10.1145/
1250734.1250743

Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program Verifier
for Memory Safety of C Programs, See Bobaru et al. [2011], 459–465. doi:10.1007/
978-3-642-20398-5_33

Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994. Hardware
Support for Fast Capability-based Addressing. In ASPLOS-VI Proceedings - Sixth
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, USA, October 4-7, 1994, Forest Baskett and
Douglas W. Clark (Eds.). ACM Press, 319–327. doi:10.1145/195473.195579

https://doi.org/10.1007/978-3-642-20398-5
https://doi.org/10.1145/1375581.1375591
http://arxiv.org/abs/1512.01416
http://arxiv.org/abs/1512.01416
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/195473.195579

189 Bibliography

Giuseppe Castagna and Andrew D. Gordon (Eds.). 2017. Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. ACM. doi:10.1145/3009837

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019.
Verifying concurrent, crash-safe systems with Perennial. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM,
243–258. doi:10.1145/3341301.3359632

Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and
Nickolai Zeldovich. 2021. GoJournal: a verified, concurrent, crash-safe journal-
ing system. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch
(Eds.). USENIX Association, 423–439. https://www.usenix.org/conference/
osdi21/presentation/chajed

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with event
structures. Proc. ACM Program. Lang. 3, POPL (2019), 70:1–70:28. doi:10.1145/
3290383

Arthur Charguéraud. 2023. AModern Eye on Separation Logic for Sequential Programs.
Habilitation à diriger des recherches. Université de Strasbourg. https://inria.
hal.science/tel-04076725

Vijay Chidambaram. 2018. We found a bug in a verified file system! Twitter.
https://twitter.com/vj_chidambaram/status/1047505696533741568

Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022.
Sequential reasoning for optimizing compilers under weak memory concurrency.
In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala
and Isil Dillig (Eds.). ACM, 213–228. doi:10.1145/3519939.3523718

Edmund M Clarke. 1997. Model checking. In Foundations of Software Technology and
Theoretical Computer Science: 17th Conference Kharagpur, India, December 18–20,
1997 Proceedings 17. Springer, 54–56. doi:10.1007/BFb0058022

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A
Practical System for Verifying Concurrent C. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5674), Stefan Berg-
hofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer,
23–42. doi:10.1007/978-3-642-03359-9_2

https://doi.org/10.1145/3009837
https://doi.org/10.1145/3341301.3359632
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://inria.hal.science/tel-04076725
https://inria.hal.science/tel-04076725
https://twitter.com/vj_chidambaram/status/1047505696533741568
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/978-3-642-03359-9_2

Bibliography 190

Karl Crary and Michael J. Sullivan. 2015. A Calculus for Relaxed Memory, See
Rajamani and Walker [2015], 623–636. doi:10.1145/2676726.2676984

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA:
A Logic for Time and Data Abstraction. In ECOOP 2014 - Object-Oriented Pro-
gramming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8586), Richard E. Jones (Ed.).
Springer, 207–231. doi:10.1007/978-3-662-44202-9_9

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020.
RustBelt meets relaxed memory. Proc. ACM Program. Lang. 4, POPL (2020), 34:1–
34:29. doi:10.1145/3371102

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky,
Jeehoon Kang, and Derek Dreyer. 2022. Compass: strong and compositional library
specifications in relaxed memory separation logic. In PLDI ’22: 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM,
792–808. doi:10.1145/3519939.3523451

Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2020.
Dartagnan: Bounded Model Checking for Weak Memory Models (Competi-
tion Contribution). In Tools and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dub-
lin, Ireland, April 25-30, 2020, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 12079), Armin Biere and David Parker (Eds.). Springer, 378–382.
doi:10.1007/978-3-030-45237-7_24

Will Deacon. 2016. The ARMv8 Application Level MemoryModel. https://github.
com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

Will Deacon. 2020. Virtualisation for the Masses: Exposing KVM on An-
droid. http://linux-kernel.uio.no/pub/linux/kernel/people/will/
slides/kvmforum-2020-edited.pdf

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object
Capabilities with Logical Relations and Effect Parametricity. In IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016. IEEE, 147–162. doi:10.1109/EUROSP.2016.22

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and
Hongseok Yang. 2013. Views: compositional reasoning for concurrent programs,
See Giacobazzi and Cousot [2013], 287–300. doi:10.1145/2429069.2429104

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and
Viktor Vafeiadis. 2010. Concurrent Abstract Predicates. In ECOOP 2010 - Object-
Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25,

https://doi.org/10.1145/2676726.2676984
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/978-3-030-45237-7_24
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
http://linux-kernel.uio.no/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
http://linux-kernel.uio.no/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
https://doi.org/10.1109/EUROSP.2016.22
https://doi.org/10.1145/2429069.2429104

191 Bibliography

2010. Proceedings (Lecture Notes in Computer Science, Vol. 6183), Theo D’Hondt
(Ed.). Springer, 504–528. doi:10.1007/978-3-642-14107-2_24

Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-
Guarantee Reasoning. In Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings (Lecture Notes in Computer Science, Vol. 5502), Giuseppe Castagna (Ed.).
Springer, 363–377. doi:10.1007/978-3-642-00590-9_26

Marko Doko. 2021. Program Logic for Weak Memory Concurrency. Ph. D. Dissertation.
Kaiserslautern University of Technology, Germany. https://kluedo.ub.rptu.
de/frontdoor/index/index/docId/6679

Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences,
See Jobstmann and Leino [2016], 413–430. doi:10.1007/978-3-662-49122-5_20

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency
with FSL++, See Yang [2017], 448–475. doi:10.1007/978-3-662-54434-1_17

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala.
2021. Integration verification across software and hardware for a simple embedded
system. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 604–619. doi:10.1145/3453483.
3454065

Xinyu Feng. 2009. Local rely-guarantee reasoning. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce
(Eds.). ACM, 315–327. doi:10.1145/1480881.1480922

Xinyu Feng and Zhong Shao. 2005. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Proceedings of the 10th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2005,
Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce
(Eds.). ACM, 254–267. doi:10.1145/1086365.1086399

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for
model checking software, See Palsberg and Abadi [2005], 110–121. doi:10.1145/
1040305.1040315

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium
on Applied Mathematics 19 (1967), 19–32. https://people.eecs.berkeley.
edu/~necula/Papers/FloydMeaning.pdf

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-00590-9_26
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6679
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6679
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1086365.1086399
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf

Bibliography 192

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,
Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size
concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).
ACM, 429–442. doi:10.1145/3009837.3009839

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix
Trieu, Dominique Devriese, and Lars Birkedal. 2024. Cerise: Program Verification
on a Capability Machine in the Presence of Untrusted Code. J. ACM 71, 1 (2024),
3:1–3:59. doi:10.1145/3623510

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix
Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. 2021. Efficient
and provable local capability revocation using uninitialized capabilities. Proc. ACM
Program. Lang. 5, POPL (2021), 1–30. doi:10.1145/3434287

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le temps des cerises: efficient
temporal stack safety on capability machines using directed capabilities. Proc.
ACM Program. Lang. 6, OOPSLA1 (2022), 1–30. doi:10.1145/3527318

Kourosh Gharachorloo. 1995. Memory Consistency Models for Shared-Memory Multi-
processors. Ph. D. Dissertation. Stanford University. doi:10.5555/891506

Roberto Giacobazzi and Radhia Cousot (Eds.). 2013. The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy
- January 23 - 25, 2013. ACM. doi:10.1145/2429069

Patrice Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and Pierre Wolper. 1996.
Partial-Order Methods for the Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Springer-Verlag, Berlin, Heidelberg.

Google LLC. 2021. pKVM. https://android-kvm.googlesource.com/linux/+/
refs/heads/pkvm/

Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit
Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA archi-
tectural envelope definition, and test oracle, for IBM POWER multiprocessors.
In Proceedings of the 48th International Symposium on Microarchitecture, MICRO
2015, Waikiki, HI, USA, December 5-9, 2015, Milos Prvulovic (Ed.). ACM, 635–646.
doi:10.1145/2830772.2830775

Hafnium development team. 2022. Hafnium —A security-focussed type-1 hypervisor.
https://opensource.google/projects/hafnium

Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars Birkedal, and
Jean Pichon-Pharabod. 2024. An Axiomatic Basis for Computer Programming on

https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3527318
https://doi.org/10.5555/891506
https://doi.org/10.1145/2429069
https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/
https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/
https://doi.org/10.1145/2830772.2830775
https://opensource.google/projects/hafnium

193 Bibliography

the Relaxed Arm-A Architecture: The AxSL Logic. Proc. ACM Program. Lang. 8,
POPL (2024), 604–637. doi:10.1145/3632863

Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. 2016. Reasoning
about Fences and Relaxed Atomics. In 24th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, PDP 2016, Heraklion, Crete,
Greece, February 17-19, 2016. IEEE Computer Society, 520–527. doi:10.1109/PDP.
2016.103

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condi-
tion for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.
doi:10.1145/78969.78972

Lisa Higham, LillAnne Jackson, and Jalal Kawash. 2007. Specifying memory con-
sistency of write buffer multiprocessors. ACM Trans. Comput. Syst. 25, 1 (2007), 1.
doi:10.1145/1189736.1189737

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580. doi:10.1145/363235.363259

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko
Yoshida. 2011. Scribbling Interactions with a Formal Foundation. In Distributed
Computing and Internet Technology - 7th International Conference, ICDCIT 2011,
Bhubaneshwar, India, February 9-12, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6536), Raja Natarajan and Adegboyega K. Ojo (Eds.). Springer, 55–75.
doi:10.1007/978-3-642-19056-8_4

Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). 2013. Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013. ACM. doi:10.1145/2509136

Bart Jacobs. 2014. Verifying TSO Programs (Report CW660). Technical Report. https:
//lirias.kuleuven.be/bitstream/123456789/452373/1/CW660.pdf

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and
Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C
and Java, See Bobaru et al. [2011], 41–55. doi:10.1007/978-3-642-20398-5_4

Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures
Model of Relaxed Memory. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, Martin
Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 759–767. doi:10.1145/
2933575.2934536

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton
Podkopaev. 2022. The leaky semicolon: compositional semantic dependencies for

https://doi.org/10.1145/3632863
https://doi.org/10.1109/PDP.2016.103
https://doi.org/10.1109/PDP.2016.103
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/1189736.1189737
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/2509136
https://lirias.kuleuven.be/bitstream/123456789/452373/1/CW660.pdf
https://lirias.kuleuven.be/bitstream/123456789/452373/1/CW660.pdf
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/2933575.2934536

Bibliography 194

relaxed-memory concurrency. Proc. ACM Program. Lang. 6, POPL (2022), 1–30.
doi:10.1145/3498716

Jonas Braband Jensen, Nick Benton, and Andrew Kennedy. 2013. High-level sep-
aration logic for low-level code, See Giacobazzi and Cousot [2013], 301–314.
doi:10.1145/2429069.2429105

Ranjit Jhala and Isil Dillig (Eds.). 2022. PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022. ACM. doi:10.1145/3519939

Barbara Jobstmann and K. Rustan M. Leino (Eds.). 2016. Verification, Model Check-
ing, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.
Petersburg, FL, USA, January 17-19, 2016. Proceedings. Lecture Notes in Computer
Science, Vol. 9583. Springer. doi:10.1007/978-3-662-49122-5

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. Rust-
Belt: securing the foundations of the rust programming language. Proc. ACM
Program. Lang. 2, POPL (2018), 66:1–66:34. doi:10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order
ghost state. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 256–269. doi:10.1145/
2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and
Derek Dreyer. 2018b. Iris from the ground up: A modular foundation for higher-
order concurrent separation logic. J. Funct. Program. 28 (2018), e20. doi:10.1017/
S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning, See Rajamani andWalker [2015], 637–650. doi:10.
1145/2676726.2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafei-
adis. 2017. Strong Logic for Weak Memory: Reasoning About Release-Acquire
Consistency in Iris. In 31st European Conference on Object-Oriented Program-
ming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter
Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 17:1–17:29.
doi:10.4230/LIPICS.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A
promising semantics for relaxed-memory concurrency, See Castagna and Gordon
[2017], 175–189. doi:10.1145/3009837.3009850

https://doi.org/10.1145/3498716
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/3519939
https://doi.org/10.1007/978-3-662-49122-5
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPICS.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850

195 Bibliography

Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-Évariste Dagand.
2013. Coq: the world’s best macro assembler?. In 15th International Symposium
on Principles and Practice of Declarative Programming, PPDP ’13, Madrid, Spain,
September 16-18, 2013, Ricardo Peña and Tom Schrijvers (Eds.). ACM, 13–24. doi:10.
1145/2505879.2505897

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David A. Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4: formal
verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.
doi:10.1145/1743546.1743574

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. 2014. Comprehensive formal verification of an
OS microkernel. ACM Trans. Comput. Syst. 32, 1 (2014), 2:1–2:70. doi:10.1145/
2560537

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal
verification of an OS kernel.. In Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM, 207–220.
doi:10.1145/1629575.1629596

Prince Kohli, Gil Neiger, and Mustaque Ahamad. 1993. A Characterization of Scalable
Shared Memories. In Proceedings of the 1993 International Conference on Parallel
Processing, Syracuse University, NY, USA, August 16-20, 1993. Volume I: Architecture,
C. Y. Roger Chen and P. Bruce Berra (Eds.). CRC Press, 332–335. doi:10.1109/
ICPP.1993.15

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
2018. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang. 2, POPL (2018), 17:1–17:32. doi:10.1145/3158105

Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis.
2022. Truly stateless, optimal dynamic partial order reduction. Proc. ACM Program.
Lang. 6, POPL (2022), 1–28. doi:10.1145/3498711

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. 2023. Unblocking
Dynamic Partial Order Reduction. In Computer Aided Verification - 35th Inter-
national Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 13964), Constantin Enea and Akash Lal
(Eds.). Springer, 230–250. doi:10.1007/978-3-031-37706-8_12

https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/ICPP.1993.15
https://doi.org/10.1109/ICPP.1993.15
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-031-37706-8_12

Bibliography 196

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model checking
for weakly consistent libraries, See McKinley and Fisher [2019], 96–110. doi:10.
1145/3314221.3314609

Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking
for Hardware Memory Models. In ASPLOS ’20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzerland, March 16-
20, 2020, James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 1157–1171.
doi:10.1145/3373376.3378480 ASPLOS 2020 was canceled because of COVID-
19..

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker
for Weak Memory Models, See Silva and Leino [2021], 427–440. doi:10.1007/
978-3-030-81685-8_20

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: a
general, extensible modal framework for interactive proofs in separation logic.
Proc. ACM Program. Lang. 2, ICFP (2018), 77:1–77:30. doi:10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and
Lars Birkedal. 2017a. The Essence of Higher-Order Concurrent Separation Logic,
See Yang [2017], 696–723. doi:10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in
higher-order concurrent separation logic, See Castagna and Gordon [2017], 205–
217. doi:10.1145/3009837.3009855

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory
Models. In Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Lec-
ture Notes in Computer Science, Vol. 9135), Magnús M. Halldórsson, Kazuo
Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer, 311–323.
doi:10.1007/978-3-662-47666-6_25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017.
Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.).
ACM, 618–632. doi:10.1145/3062341.3062352

Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE Trans.
Software Eng. 3, 2 (1977), 125–143. doi:10.1109/TSE.1977.229904

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Computers 28, 9 (1979), 690–691.
doi:10.1109/TC.1979.1675439

https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TC.1979.1675439

197 Bibliography

Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W.
O’Hearn. 2022. Finding real bugs in big programs with incorrectness logic. Proc.
ACM Program. Lang. 6, OOPSLA1 (2022), 1–27. doi:10.1145/3527325

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil
Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0: global optimizations in
relaxedmemory concurrency. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM,
362–376. doi:10.1145/3385412.3386010

Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and
Lars Birkedal. 2024. Iris-MSWasm: Elucidating and Mechanising the Security
Invariants of Memory-Safe WebAssembly. Proc. ACM Program. Lang. 8, OOPSLA2
(2024), 304–332. doi:10.1145/3689722

Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V Hy-
pervisor with VCC. In FM 2009: Formal Methods, Second World Congress, Eind-
hoven, The Netherlands, November 2-6, 2009. Proceedings (Lecture Notes in Computer
Science, Vol. 5850), Ana Cavalcanti and Dennis Dams (Eds.). Springer, 806–809.
doi:10.1007/978-3-642-05089-3_51

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7
(2009), 107–115. doi:10.1145/1538788.1538814

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui.
2021. Formally Verified Memory Protection for a Commodity Multipro-
cessor Hypervisor. In 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, Michael D. Bailey and Rachel Greenstadt (Eds.).
USENIX Association, 3953–3970. https://www.usenix.org/conference/
usenixsecurity21/presentation/li-shih-wei

Zongyuan Liu, Lars Birkedal, and Jean Pichon-Pharabod. 2025. First Steps Towards
AxSL+. (2025).

Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and
Jean Pichon-Pharabod. 2024. An Axiomatic Basis for Computer Programming on
Relaxed Hardware Architectures: The AxSL Logics. (2024).

Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan
Askarov, and Lars Birkedal. 2023a. Supplementary material: Coq development of
VMSL. doi:10.5281/zenodo.7685774

Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan
Askarov, and Lars Birkedal. 2023b. VMSL: A Separation Logic for Mechanised
Robust Safety of VirtualMachines Communicating above FF-A. Proc. ACMProgram.
Lang. 7, PLDI (2023), 1438–1462. doi:10.1145/3591279

https://doi.org/10.1145/3527325
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3689722
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1145/1538788.1538814
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://doi.org/10.5281/zenodo.7685774
https://doi.org/10.1145/3591279

Bibliography 198

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2016. Counterexamples and Proof Loophole for the C/C++ to
POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507
(2016). arXiv:1611.01507 http://arxiv.org/abs/1611.01507

William Mansky and Ke Du. 2024. An Iris Instance for Verifying CompCert C
Programs. Proc. ACM Program. Lang. 8, POPL (2024), 148–174. doi:10.1145/
3632848

Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. 2025. Model
Checking C/C++ with Mixed-Size Accesses. Proc. ACM Program. Lang. 9, POPL
(2025), 2232–2252. doi:10.1145/3704911

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022.
RustHornBelt: a semantic foundation for functional verification of Rust programs
with unsafe code, See Jhala and Dillig [2022], 841–856. doi:10.1145/3519939.
3523704

Paul E. McKenney. 2024. Is Parallel Programming Hard, And, If So, What Can You
Do About It? https://doi.org/10.48550/arXiv.1701.00854

Paul E. McKenney, Ulrich Weigand, Andrea Parri, Boqun Feng, and Alan Stern.
2020. Linux-Kernel Memory Model. ISO/IEC JTC1 SC22 WG21 P0124R7. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html

Kathryn S. McKinley and Kathleen Fisher (Eds.). 2019. Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019. ACM. doi:10.1145/3314221

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: a concurrent
separation logic for multicore OCaml. Proc. ACM Program. Lang. 4, ICFP (2020),
96:1–96:29. doi:10.1145/3408978

F. Lockwood Morris and Cliff B. Jones. 1984. An Early Program Proof by Alan Turing.
IEEE Ann. Hist. Comput. 6, 2 (1984), 139–143. doi:10.1109/MAHC.1984.10017

Peter Müller (Ed.). 2020. Programming Languages and Systems - 29th European
Symposium on Programming, ESOP 2020, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings. Lecture Notes in Computer Science, Vol. 12075. Springer.
doi:10.1007/978-3-030-44914-8

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verific-
ation Infrastructure for Permission-Based Reasoning, See Jobstmann and Leino
[2016], 41–62. doi:10.1007/978-3-662-49122-5_2

http://arxiv.org/abs/1611.01507
https://doi.org/10.1145/3632848
https://doi.org/10.1145/3632848
https://doi.org/10.1145/3704911
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.48550/arXiv.1701.00854
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html
https://doi.org/10.1145/3314221
https://doi.org/10.1145/3408978
https://doi.org/10.1109/MAHC.1984.10017
https://doi.org/10.1007/978-3-030-44914-8
https://doi.org/10.1007/978-3-662-49122-5_2

199 Bibliography

Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From General
Purpose to a Proof of Information Flow Enforcement. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer
Society, 415–429. doi:10.1109/SP.2013.35

Magnus O. Myreen. 2009. Formal verification of machine-code programs. Ph. D. Disser-
tation. University of Cambridge. https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-765.pdf

Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. 2007. Hoare Logic
for ARM Machine Code. In International Symposium on Fundamentals of Software
Engineering, International Symposium, FSEN 2007, Tehran, Iran, April 17-19, 2007,
Proceedings (Lecture Notes in Computer Science, Vol. 4767), Farhad Arbab andMarjan
Sirjani (Eds.). Springer, 272–286. doi:10.1007/978-3-540-75698-9_18

Magnus O. Myreen and Michael J. C. Gordon. 2007. Hoare Logic for Realistic-
ally Modelled Machine Code. In Tools and Algorithms for the Construction and
Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4424), Orna Grumberg and Michael Huth (Eds.). Springer, 568–582.
doi:10.1007/978-3-540-71209-1_44

Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2008. Machine-Code
Verification for Multiple Architectures - An Application of Decompilation into
Logic. In Formal Methods in Computer-Aided Design, FMCAD 2008, Portland, Oregon,
USA, 17-20 November 2008, Alessandro Cimatti and Robert B. Jones (Eds.). IEEE,
1–8. doi:10.1109/FMCAD.2008.ECP.24

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco.
2014. Communicating State Transition Systems for Fine-Grained Concurrent
Resources, See Shao [2014], 290–310. doi:10.1007/978-3-642-54833-8_16

Peter Naur. 1966. Proof of algorithms by general snapshots. BIT 6, 4 (July 1966),
310–316. doi:10.1007/BF01966091

Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. 2008. Runtime Checking
for Separation Logic. In Verification, Model Checking, and Abstract Interpretation,
9th International Conference, VMCAI 2008, San Francisco, USA, January 7-9, 2008,
Proceedings (Lecture Notes in Computer Science, Vol. 4905), Francesco Logozzo,
Doron A. Peled, and Lenore D. Zuck (Eds.). Springer, 203–217. doi:10.1007/
978-3-540-78163-9_19

Zhaozhong Ni and Zhong Shao. 2006. Certified assembly programming with embed-
ded code pointers. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South Carolina,

https://doi.org/10.1109/SP.2013.35
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-765.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-765.pdf
https://doi.org/10.1007/978-3-540-75698-9_18
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/BF01966091
https://doi.org/10.1007/978-3-540-78163-9_19
https://doi.org/10.1007/978-3-540-78163-9_19

Bibliography 200

USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.).
ACM, 320–333. doi:10.1145/1111037.1111066

Zhaozhong Ni, Dachuan Yu, and Zhong Shao. 2007. Using XCAP to Certify
Realistic Systems Code: Machine Context Management. In Theorem Proving in
Higher Order Logics, 20th International Conference, TPHOLs 2007, Kaiserslaut-
ern, Germany, September 10-13, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4732), Klaus Schneider and Jens Brandt (Eds.). Springer, 189–206.
doi:10.1007/978-3-540-74591-4_15

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony C. J. Fox,
Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W.
Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2020.
Rigorous engineering for hardware security: Formal modelling and proof in the
CHERI design and implementation process. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1003–1020.
doi:10.1109/SP40000.2020.00055

Brian Norris and Brian Demsky. 2013. CDSchecker: checking concurrent data
structures written with C/C++ atomics, See Hosking et al. [2013], 131–150. doi:10.
1145/2509136.2509514

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput.
Sci. 375, 1-3 (2007), 271–307. doi:10.1016/J.TCS.2006.12.035

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning
about Programs that Alter Data Structures. In Computer Science Logic, 15th Inter-
national Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2142),
Laurent Fribourg (Ed.). Springer, 1–19. doi:10.1007/3-540-44802-0_1

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:
x86-TSO. In Theorem Proving in Higher Order Logics, 22nd International Con-
ference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lec-
ture Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel (Eds.). Springer, 391–407. doi:10.1007/
978-3-642-03359-9_27

Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel
Programs I. Acta Informatica 6 (1976), 319–340. doi:10.1007/BF00268134

Jens Palsberg and Martín Abadi (Eds.). 2005. Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005. ACM. doi:10.1145/1040305

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verific-
ation of a non-blocking stack. In Proceedings of the 34th ACM SIGPLAN-SIGACT

https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1007/978-3-540-74591-4_15
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/1040305

201 Bibliography

Symposium on Principles of Programming Languages, POPL 2007, Nice, France, Janu-
ary 17-19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 297–302.
doi:10.1145/1190216.1190261

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and
Mark Batty. 2020. Modular Relaxed Dependencies in Weak Memory Concurrency,
See Müller [2020], 599–625. doi:10.1007/978-3-030-44914-8_22

Thibaut Pérami, Zongyuan Liu, Nils Lauermann, Brian Campbell, Alasdair Arm-
strong, Thomas Bauereiss, and Peter Sewell. 2024. Reusable Rocq semantics of
modern relaxed architectures. (2024).

Quentin Perret. 2020. Protected KVM: Memory protection of KVM guests in Android.
https://linuxplumbersconf.org/event/7/contributions/780/

Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for relaxed
atomics that permits optimisation and avoids thin-air executions. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík
and Rupak Majumdar (Eds.). ACM, 622–633. doi:10.1145/2837614.2837616

Nadia Polikarpova and Ilya Sergey. 2019. Structuring the synthesis of heap-
manipulating programs. Proc. ACM Program. Lang. 3, POPL (2019), 72:1–72:30.
doi:10.1145/3290385

Christopher Pulte. 2018. The Semantics of Multicopy Atomic ARMv8 and RISC-V.
Ph. D. Dissertation. University of Cambridge, UK. https://doi.org/10.17863/
CAM.39379

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic and
operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018), 19:1–
19:29. doi:10.1145/3158107

Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter
Sewell, and Neel Krishnaswami. 2023. CN: Verifying Systems C Code with
Separation-Logic Refinement Types. Proc. ACM Program. Lang. 7, POPL (2023),
1–32. doi:10.1145/3571194

Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and
Chung-Kil Hur. 2019. Promising-ARM/RISC-V: a simpler and faster operational
concurrency model, See McKinley and Fisher [2019], 1–15. doi:10.1145/3314221.
3314624

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-Gries reason-
ing: a program logic for reasoning about persistent programs on Intel-x86. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 151:1–151:28. doi:10.1145/3428219

https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/978-3-030-44914-8_22
https://linuxplumbersconf.org/event/7/contributions/780/
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3290385
https://doi.org/10.17863/CAM.39379
https://doi.org/10.17863/CAM.39379
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3571194
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3428219

Bibliography 202

Sriram K. Rajamani and David Walker (Eds.). 2015. Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. ACM. doi:10.1145/2676726

Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-
Pharabod, Philippa Gardner, and Lars Birkedal. 2023. Iris-Wasm: Robust and
Modular Verification of WebAssembly Programs. Proc. ACM Program. Lang. 7,
PLDI (2023), 1096–1120. doi:10.1145/3591265

John C. Reynolds. 2002. Separation Logic: A Logic for SharedMutable Data Structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002,
Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74. doi:10.1109/
LICS.2002.1029817

Tom Ridge. 2010. A Rely-Guarantee Proof System for x86-TSO. In Verified Software:
Theories, Tools, Experiments, Third International Conference, VSTTE 2010, Edinburgh,
UK, August 16-19, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6217),
Gary T. Leavens, Peter W. O’Hearn, and Sriram K. Rajamani (Eds.). Springer, 55–70.
doi:10.1007/978-3-642-15057-9_4

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-
Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. 2022. Islaris: verification
of machine code against authoritative ISA semantics, See Jhala and Dillig [2022],
825–840. doi:10.1145/3519939.3523434

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams. 2012. Synchronising C/C++ and
POWER. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,
and Frank Tip (Eds.). ACM, 311–322. doi:10.1145/2254064.2254102

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011.
Understanding POWER multiprocessors. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM,
175–186. doi:10.1145/1993498.1993520

Susmit Sarkar, Peter Sewell, Luc Maranget, Shaked Flur, Christopher Pulte, Jon
French, Ben Simner, Scott Owens, Pankaj Pawan, Francesco Zappa Nardelli, Sela
Mador-Haim, Dominic Mulligan, Ohad Kammar, Jean Pichon-Pharabod, Gabriel
Kerneis, Alasdair Armstrong, Thomas Bauereiss, and Jeehoon Kang. 2010–2024.
RMEM: Executable operational concurrency model exploration tool for ARMv8,
RISC-V, Power, and x86. [web interface].

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The semantics of

https://doi.org/10.1145/2676726
https://doi.org/10.1145/3591265
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
http://www.cl.cam.ac.uk/users/pes20/rmem

203 Bibliography

x86-CC multiprocessor machine code. In Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah,
GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM,
379–391. doi:10.1145/1480881.1480929

Ilya Sergey (Ed.). 2022. Programming Languages and Systems - 31st European Sym-
posium on Programming, ESOP 2022, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings. Lecture Notes in Computer Science, Vol. 13240. Springer.
doi:10.1007/978-3-030-99336-8

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015a. Mechanized verifica-
tion of fine-grained concurrent programs. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 77–87.
doi:10.1145/2737924.2737964

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015b. Specifying and
Verifying Concurrent Algorithms with Histories and Subjectivity, See Vitek [2015],
333–358. doi:10.1007/978-3-662-46669-8_14

Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán Andrés Delbianco.
2016. Hoare-style specifications as correctness conditions for non-linearizable
concurrent objects. In Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 92–110.
doi:10.1145/2983990.2983999

Thomas Sewell, Simon Winwood, Peter Gammie, Toby C. Murray, June Andronick,
and Gerwin Klein. 2011. seL4 Enforces Integrity. In Interactive Theorem Proving -
Second International Conference, ITP 2011, Berg en Dal, The Netherlands, August
22-25, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6898), Marko C.
J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk (Eds.).
Springer, 325–340. doi:10.1007/978-3-642-22863-6_24

Zhong Shao (Ed.). 2014. Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings. Lecture Notes in Computer Science, Vol. 8410. Springer.
doi:10.1007/978-3-642-54833-8

Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. 2015.
A Separation Logic for Fictional Sequential Consistency, See Vitek [2015], 736–761.
doi:10.1007/978-3-662-46669-8_30

https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1007/978-3-030-99336-8
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2983990.2983999
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1007/978-3-642-54833-8
https://doi.org/10.1007/978-3-662-46669-8_30

Bibliography 204

Alexandra Silva and K. Rustan M. Leino (Eds.). 2021. Computer Aided Verification -
33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I. Lecture Notes in Computer Science, Vol. 12759. Springer. doi:10.1007/
978-3-030-81685-8

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard
Grisenthwaite, and Peter Sewell. 2022. Relaxed virtual memory in Armv8-A, See
Sergey [2022], 143–173. doi:10.1007/978-3-030-99336-8_6

Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-
Pharabod, Luc Maranget, and Peter Sewell. 2020. ARMv8-A System Semantics:
Instruction Fetch in Relaxed Architectures, See Müller [2020], 626–655. doi:10.
1007/978-3-030-44914-8_23

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019. StkTokens: enfor-
cing well-bracketed control flow and stack encapsulation using linear capabilities.
Proc. ACM Program. Lang. 3, POPL (2019), 19:1–19:28. doi:10.1145/3290332

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Pre-
dicates, See Shao [2014], 149–168. doi:10.1007/978-3-642-54833-8_9

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular Reasoning
about Separation of Concurrent Data Structures. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 169–188.
doi:10.1007/978-3-642-37036-6_11

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Va-
feiadis. 2018. A Separation Logic for a Promising Semantics. In Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture
Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 357–384.
doi:10.1007/978-3-319-89884-1_13

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional
verification of object capability patterns. Proc. ACM Program. Lang. 1, OOPSLA
(2017), 89:1–89:26. doi:10.1145/3133913

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and Ronghui Gu. 2021.
Formal Verification of a Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Prin-
ciples, Virtual Event / Koblenz, Germany, October 26-29, 2021, Robbert van Renesse
and Nickolai Zeldovich (Eds.). ACM, 866–881. doi:10.1145/3477132.3483560

https://doi.org/10.1007/978-3-030-81685-8
https://doi.org/10.1007/978-3-030-81685-8
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1145/3290332
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3477132.3483560

205 Bibliography

Alan M. Turing. 1949. Checking a large routine. In Report of a Confer-
ence on High Speed Automatic Calculating Machines. Mathematical Laborat-
ory, Cambridge, UK, 67–69. https://turingarchive.kings.cam.ac.uk/
publications-lectures-and-talks-amtb/amt-b-8

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak
memory with ghosts, protocols, and separation. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24,
2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 691–707. doi:10.1145/
2660193.2660243

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program
logic for C11 concurrency, See Hosking et al. [2013], 867–884. doi:10.1145/
2509136.2509532

Viktor Vafeiadis and Matthew J. Parkinson. 2007. A Marriage of Rely/Guarantee
and Separation Logic. In CONCUR 2007 - Concurrency Theory, 18th International
Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings (Lec-
ture Notes in Computer Science, Vol. 4703), Luís Caires and Vasco Thudichum
Vasconcelos (Eds.). Springer, 256–271. doi:10.1007/978-3-540-74407-8_18

Simon Friis Vindum and Lars Birkedal. 2023. Spirea: A Mechanized Concurrent
Separation Logic for Weak Persistent Memory. Proc. ACM Program. Lang. 7,
OOPSLA2 (2023), 632–657. doi:10.1145/3622820

Jan Vitek (Ed.). 2015. Programming Languages and Systems - 24th European Sym-
posium on Programming, ESOP 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings. Lecture Notes in Computer Science, Vol. 9032. Springer.
doi:10.1007/978-3-662-46669-8

Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set
Manual, Volume I: Unprivileged ISA, Document Version 20191213. Technical Re-
port. https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, He-
sham Almatary, Jonathan Anderson, John Baldwin, David Chisnall, Brooks
Davis, Nathaniel Wesley Filardo, Alexandre Joannou, Ben Laurie, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alex Richard-
son, Peter Sewell, Stacey Son, and Hongyan Xia. 2019. Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 7). Tech-
nical Report UCAM-CL-TR-927. University of Cambridge, Computer Laboratory.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html

https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1145/3622820
https://doi.org/10.1007/978-3-662-46669-8
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html

Bibliography 206

Ian Wehrman. 2012. Weak-Memory Local Reasoning. Ph. D. Dissertation. University
of Texas at Austin. http://hdl.handle.net/2152/19475

Ian Wehrman and Josh Berdine. 2011. A proposal for weak-
memory local reasoning. In Low-level languages and applications
(LOLA). https://www.microsoft.com/en-us/research/publication/
a-proposal-for-weak-memory-local-reasoning/

JohnWickerson, Mike Dodds, and Matthew J. Parkinson. 2013. Ribbon Proofs for Sep-
aration Logic. In Programming Languages and Systems - 22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceed-
ings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa
Gardner (Eds.). Springer, 189–208. doi:10.1007/978-3-642-37036-6_12

M. V. Wilkes and R. M. Needham. 1979. The Cambridge CAP Computer and Its
Operating System. Elsevier. https://www.microsoft.com/en-us/research/
publication/the-cambridge-cap-computer-and-its-operating-system/

Hongseok Yang (Ed.). 2017. Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings. Lecture Notes in Computer Science, Vol. 10201. Springer.
doi:10.1007/978-3-662-54434-1

Nobuko Yoshida and Lorenzo Gheri. 2020. A Very Gentle Introduction to Multiparty
Session Types. InDistributed Computing and Internet Technology - 16th International
Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 11969), Dang Van Hung and Meenakshi
D’Souza (Eds.). Springer, 73–93. doi:10.1007/978-3-030-36987-3_5

Dachuan Yu and Zhong Shao. 2004. Verification of safety properties for concurrent
assembly code. In Proceedings of the Ninth ACM SIGPLAN International Conference
on Functional Programming, ICFP 2004, Snow Bird, UT, USA, September 19-21, 2004,
Chris Okasaki and Kathleen Fisher (Eds.). ACM, 175–188. doi:10.1145/1016850.
1016875

Yang Zhang and Xinyu Feng. 2014. Program Logic for Local Reasoning in TSO.
(2014).

http://hdl.handle.net/2152/19475
https://www.microsoft.com/en-us/research/publication/a-proposal-for-weak-memory-local-reasoning/
https://www.microsoft.com/en-us/research/publication/a-proposal-for-weak-memory-local-reasoning/
https://doi.org/10.1007/978-3-642-37036-6_12
https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-computer-and-its-operating-system/
https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-computer-and-its-operating-system/
https://doi.org/10.1007/978-3-662-54434-1
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1145/1016850.1016875
https://doi.org/10.1145/1016850.1016875

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Formal Verification of Programs
	Scope and Thesis

	Background
	Separation Logic
	Iris: A Higher-Order Concurrent Separation Logic Framework
	Relaxed Memory Concurrency
	Further Related Work

	Results
	Coq/Rocq Mechanisations
	Personal Contributions
	Structure

	Publications
	VMSL: A Separation Logic for Mechanised Robust Safety of Virtual Machines Communicating above FF-A
	Introduction
	Formalising A Substantial Fragment of the HVC ABIs
	Reasoning about Communicating VMs
	Reasoning in the Presence of Unknown VMs
	Related Work
	Conclusion

	An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics
	Introduction
	Context: Program Logics and Relaxed Concurrency
	Key Ideas
	The Languages
	The Logics
	Model and Soundness
	Adequacy
	Technical Remarks and Limitations
	Related Work
	Conclusion

	First Steps towards AxSL+
	Introduction
	Context
	Technical Overview
	An AxSL+ Instance for Non-Atomics: AxSL+NA
	Semantic Model
	Adequacy
	Further Steps
	Conclusion

	Bibliography

