
W-Types and M-Types in Equilogical SpacesAndrej Bauer Lars BirkedalMay 17, 1999AbstractWe show that Equ has all W-types and all M-types. From this we con-clude that induction and coinduction principles for polynomial functorsare valid in the logic of equilogical spaces.1 W-Types and M-typesLet C be a a �nitely complete, locally cartesian closed category. For a morphismf : B ! A de�ne the \polynomial functor" Pf : C! C byPf (X) =Xa2AXf�1 (a)whereP is a dependent sum and f�1(a) is the �ber in B over a. More precisely,Pf (X) is the total space of the exponential(X �A �2�! A)(f : B!A)in the slice category C=A. For a morphism [g] : X ! Y , Pf [g] = [id jAj� gidjBj].The W-type W (f), if it exists, is an initial algebra for the functor Pf . TheM-type M (f), if it exists, is a �nal coalgebra for the functor Pf .2 W-Types in PEquA morphism in PEqu is an equivalence class [f ] : B ! A, but we often writef instead of [f ] where no confusion can arise. Wherever it makes sense, fshould be interpreted as a continuous map jBj ! jAj, and otherwise it shouldbe interpreted as the morphism represented by f .Let [f ] : B ! A be a morphism in PEqu. For an object X = (jXj;�X)in PEqu, Pf (X) is concretely de�ned as Pf (X) = (jAj�jXjjBj;�Pf (X)), where(a; u) �Pf (X) (a0; u0)if and only ifa �A a0 and 8 b; b02 jBj : (b �B b0 ^ f(b) �A a =) u(b) �X u0(b0)) :For a morphism [g] : X ! Y , Pf [g] = [id jAj � gid jBj]. The rest of this sectionconsists of a proof that Pf has an initial algebra W = W (f).1



(1) The underlying lattice jW j: The initial Pf -algebra W , if it exists, isisomorphic to Pf (W ). Thus, it makes sense to choose the underlying lattice jW jso that jW j �= jAj � jW jjBj. We know that such a lattice exists because domainequations can be solved in the category of algebraic lattices. In particular, wechoose the lattice jW j = 1Yk=0 jAjjBjk ;with an isomorphism h�;�i : jAj � jW jjBj! jW j, de�ned component-wise by:�0ha; ui = a�i+1ha; ui = �(b;~b)2 jBji+1 :�(�i(u(b)))(~b)� :(2) The partial equivalence relation�W : Let PER(jW j) be the completelattice of partial equivalence relations on jW j, ordered by inclusion �. De�nean operator �: PER(jW j)! PER(jW j) byha; ui �(�) ha0; u0iif and only ifa �A a0 and 8 b; b02 jBj : (b �B b0 ^ f(b) �A a =) u(b) � u0(b0)) :The operator � is a monotone operator on a complete lattice. Let �W be theleast �xed point of �.The operator � is de�ned on partial equivalence relations on jM j. Never-theless, it can be applied to an arbitrary binary relation R on jM j. If R is arelation on jM j, let �(R) be its symmetric closure, and let � (R) be its transitiveclosure. It is not hard to check that � satis�es�(�(R)) ��(�(R))� (�(R)) ��(� (R));and thus also � (�(�(R))) ��(� (�(R))) :(3) W is a Pf -algebra: To show that [h�;�i] : Pf (W )!W is a Pf -algebraall that has to be checked is that h�;�i preserves the partial equivalence rela-tion. Suppose (a; u) �Pf (W ) (a0; u0). This means thata �A a0 and 8 b; b02 jBj : (b �B b0 ^ f(b) �A a =) u(b) �W u0(b0))which is equivalent to ha; ui �(�W ) ha0; u0i, and since �W is a �xed point of �,this is just ha; ui �W ha0; u0i. 2



(4) Uniqueness of homomorphisms: Let [v] : Pf (V )! V be a Pf -algebra,and suppose [s]; [t] : W ! V are Pf -homomorphisms from W to V . Let � bethe partial equivalence relation on jW j, such that ha; ui � ha0; u0i if, and onlyif, all of the following hold:� (a; s � u) �Pf (V ) (a0; s � u0),� (a; t � u) �Pf (V ) (a0; t � u0),� (a; s � u) �Pf (V ) (a0; t � u0),� (a0; s � u0) �Pf (V ) (a; t � u).If ha; ui � ha0; u0i, then it follows from the �rst and the second conditions, thatsha; ui �V v(a; s � u) �V v(a0; s � u0) �V sha0; u0itha; ui �V v(a; t � u) �V v(a0; t � u0) �V tha0; u0i;which means that t and s preserve �. Similarly, using the third condition, itfollows from ha; ui � ha0; u0i thatsha; ui �V v(a; s � u) �V v(a0; t � u0) �V tha; ui:To show that [t] = [s], we demonstrate that �W � � by proving that � is apre�xed point of �. Suppose ha; ui �(�) ha0; u0i. Then a �A a0, and for allb; b0 2 jBj such that b �B b0 and f(b) �A a it is the case that u(b) � u0(b0).Because s and t preserve � and they coincide on it up to equivalence in V itfollows that:� s(u(b)) �V s(u0(b0)),� t(u(b)) �V t(u0(b0)),� s(u(b)) �V t(u0(b0)),� s(u0(b0)) �V t(u(b)).It is now clear that ha; ui � ha0; u0i.(5) Existence of homomorphisms: Let [v] : Pf (V ) ! V be a Pf -algebra.We show that there exists a Pf -homomorphism [w] :W ! V . Let 	: jV jjW j !jV jjW j be the operator de�ned by(	g)ha; ui = v(a; g � u):Let w 2 jW j ! jV j be the least �xed point of 	, so thatwha; ui = v(a;w � u):3



We need to show that [w] is a Pf -homomorphism. Let � be a partial equivalencerelation on jW j de�ned byha; ui � ha0; u0i () (a;w � u) �Pf (V ) (a0; w � u0):First, observe that w preserves �: if ha; ui � ha0; u0i, then (a;w � u) �Pf (V )(a0; w � u0), hencewha; ui = v(a;w � u) �V v(a0; w � u0) = wha0; u0i:To see that w preserves �W , we show that �W � �. This is the case because� is a pre�xed point of the operator �. Indeed, suppose ha; ui �(�) ha0; u0i.Then a �A a0, and for every b; b0 2 jBj such that b �B b0 and f(b) �A a wehave u(b) � u0(b0). Since w preserves �, it follows that w(u(b)) �V w(u0(b0)),therefore (a;w � u) �Pf (V ) (a0; w � u0), which is just ha; ui � ha0; u0i.3 M-Types in PEquIn this section we prove that every polynomial functor Pf in PEqu has a �nalcoalgebra M = M (f).(1) The underlying lattice jM j: Let jM j be the algebraic lattice jW j de�nedin Section 2. We consistently switch the notation from W's to M's to indicatethe duality between W-types and M-types.(2) The partial equivalence relation �M : Recall that in Section 2 we de-�ned a monotone operator � on the complete lattice PER(jM j) and consideredits least �xed point. Now let �M be the greatest �xed point of the operator �,and let M = (jM j;�M).(3) M is a Pf -coalgebra: To show that [h�;�i�1] : M ! Pf (M ) is a Pf -coalgebra all that needs to be checked is that h�;�i�1 preserves �M . The proofis analogous to the case of W-types and �W , since �M is a �xed point of �.(4) Uniqueness of homomorphisms: Let [n] : N ! Pf (N ) be a Pf -coalgebraand suppose that [s]; [t] : N ! M are Pf -coalgebra morphisms. We show that[s] = [t]. Let �0 be the relation on jM j de�ned byha; ui �0 ha0; u0iif and only if9x; x02 jN j : (x �N x0 ^ ha; ui �M s(x) ^ ha0; u0i �M t(x)) ;and let � be the least partial equivalence relation that contains �0. In otherwords, � is the transitive closure of the symmetric closure of �0.4



We show that � is a post�xed point of �, i.e., that � � �(�), from whichit follows that � � �M because �M is the greatest post�xed point of �. Then[s] = [t] holds because � is de�ned so that x �N x0 implies s(x) � t(x0).By the remarks at the end of the second paragraph in Section 2, in order toshow that � � �(�), we only need to check that �0 � �(�0). Suppose that forsome x; x0 2 jN j it is the case that x �N x0, ha; ui �M s(x) and ha0; u0i �M t(x).Taking into account that [s] and [t] are Pf -coalgebra morphisms, we see thatha; ui �M s(x) �M hn1(x); s � n2(x)iha0; u0i �M t(x0) �M hn1(x0); t � n2(x0)i;where n = (n1; n2) : jN j ! jAj � jN jjBj. Since �M is a �xed point of �, itfollows that a �A n1(x) �A n1(x0) �A a0: (1)Also, if b; b0 2 jBj, b �B b0, and f(b) �A a then n2(x)(b) �N n2(x0)(b0) andu(b) �M s(n2(x)(b));u0(b0) �M t(n2(x0)(b0)):By de�nition of �0, u(b) � u0(b0): (2)Putting (1) and (2) together, we get ha; ui �(�0) ha0; u0i, as required.(5) Existence of homomorphisms: Let [n] : N ! Pf (N ) be a Pf -coalgebra.We show that there is a Pf -coalgebra homomorphism [m] : N ! M . De�ne acontinuous operator 	: jM jjN j! jM jjN j by(	g)x = hn1(x); g � n2(x)i;where n = (n1; n2) : jN j ! jAj � jN jjBj. Let m be the least �xed point of 	, sothat for all x 2 jN j, m(x) = hn1(x);m � n2(x)i: (3)We need to prove that m represents a morphism [m] : N ! M . Let �0 be arelation on jM j de�ned by ha; ui �0 ha0; u0iif and only if9x; x02 jN j : (x �N x0 ^ ha; u0i �M m(x) ^ ha0; u0i �M m(x0)) ;and let � be the least partial equivalence relation that contains �0. Just likein the previous paragraph, we can easily check that � � �M by verifying that� � �(�).The map m represents a morphism [m] : N ! M because x �N x0 impliesm(x) � m(x0), which in turn implies m(x) �M m(x0). That [m] is a Pf -coalgebra homomorphism is expressed exactly by the �xed point property (3).5



4 Induction and Coinduction PrinciplesA polynomial functor is a functor built up from identity, constants, �nite prod-ucts, and �nite coproducts, see [HJ96] for a more precise de�nition.Since polynomial functors are special cases of the functors Pf , any polyno-mial functor T on the category of equilogical spaces has an initial algebra anda �nal coalgebra.Consider the logic of subobjects Sub(PEqu)��PEqu described in detail in [Bir99].(Here we do not consider dependencies.) De�ne Rel(PEqu)��PEqu by change-of-base:Rel(PEqu) //�� Sub(PEqu)��PEqu X 7!X�X // PEqu:Thus the �bre category Rel(PEqu)X over X 2 PEqu is the subobjects onX �X, i.e., binary relations on X.Every polynomial functor T : PEqu ! PEqu can be lifted to a functorPred(T ) : Sub(PEqu) ! Sub(PEqu), called the logical predicate liftingof T , by induction on the structucture of T as described in [HJ96]: Everyconstant A 2 PEqu occurring in T is replaced by the true predicate >A andthe bicartesian structure of PEqu used in T is replaced by the bicartesianstructure in Sub(PEqu) (i.e., ^ and _).Similarly, a polynomial functor T can be lifted to a functor Rel(T ) : Rel(PEqu)!Rel(PEqu), called the logical relation lifting of T , by induction on the struc-ture of T . Now we replace a constant A 2 PEqu occurring in T by the equalitypredicate Eq(A) = `�(A)(>A) 2 Sub(A � A) = Rel(A), where �(A) is thediagonal on A.Because PEqu is bicartesian closed with disjoint and stable coproducts(hence distributive), and Sub(PEqu)��PEqu is a �rst-order �bration, it admits com-prehension (subset types) and has quotient types, see [Bir99], we can concludefrom the general results in [HJ96], that the following induction and coinductionprinciples are valid.Induction Principle Let T be a polynomial functor and let c : TD ! D bethe initial T -algebra. Let s : TX ! X be any T -algebra and let ! : D ! X bethe unique algebra map. The following inference rule is valid, for any prediate' 2 Sub(�; x : X). �; x : TX j �;Pred(T )(')(x) ` '(s(x))�; d : D j � ` '(!d)6



Example 4.1. Let T be the functor X 7! 1 + N � X, with N the naturalnumbers object of PEqu. Write s = [n; c] : TL ! L for the initial algebra ofT . Let TD ! D above be TL ! L and let TX ! X above also be TL ! L,so ! = id . Let ' 2 Sub(�; l : L) be any predicate. Then the inference rulespecializes to the expected induction principle for lists� j � ` '(n) �;m : N; l : L j �; '(l) ` '(c(m; l))�; l : L j � ` '(l)Coinduction Principle Let T be a polynomial functor and let c : D ! TDbe the �nal T -coalgebra. Let s : X ! TX be any T -coalgebra and let ! : X ! Dbe the unique coalgebra map. The following inference rule is valid, for anyrelation R 2 Rel(X),�; x; y : X j �; R(x; y) ` Rel(T )(R)(sx; sy)�; x; y : X j � ` !x =D !y5 CommentsIf jBj and jAj are countably based algebraic lattices then also the lattice jW jis countably based. This means that !PEqu, the countably based version ofPEqu, has W-types and M-types as well.We thank Jaap van Osten and Steve Awodey.References[Bir99] L. Birkedal. Developing Theories of Types and Computability via Re-alizability. PhD thesis, School of Computer Science, Carnegie MellonUniversity, 1999. Forthcoming.[HJ94] C. Hermida and B. Jacobs. An algebraic view of structural induction.In L. Pacholski and J. Tiuryn, editors, Proceedings of Computer ScienceLogic 1994, number 933 in LNCS, pages 412{426, 1994.[HJ96] C. Hermida and B. Jacobs. Structural induction and coinduction ina �brational setting. Unpublished Manuscript, full version of [HJ94],September 1996.
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