W-Types and M-Types in Equilogical Spaces

Andrej Bauer Lars Birkedal

May 17, 1999

Abstract

We show that Equ has all W-types and all M-types. From this we conclude that induction and coinduction principles for polynomial functors are valid in the logic of equilogical spaces.

1 W-Types and M-types

Let \mathbf{C} be a a finitely complete, locally cartesian closed category. For a morphism $f: B \rightarrow A$ define the "polynomial functor" $P_{f}: \mathbf{C} \rightarrow \mathbf{C}$ by

$$
P_{f}(X)=\sum_{a \in A} X^{f^{-1}(a)}
$$

where \sum is a dependent sum and $f^{-1}(a)$ is the fiber in B over a. More precisely, $P_{f}(X)$ is the total space of the exponential

$$
\left(X \times A \xrightarrow{\pi_{2}} A\right)^{(f: B \rightarrow A)}
$$

in the slice category \mathbf{C} / A. For a morphism $[g]: X \rightarrow Y, P_{f}[g]=\left[i d_{|A|} \times g^{i d|B|}\right]$. The W-type $W(f)$, if it exists, is an initial algebra for the functor P_{f}. The M-type $M(f)$, if it exists, is a final coalgebra for the functor P_{f}.

2 W-Types in PEqu

A morphism in PEqu is an equivalence class $[f]: B \rightarrow A$, but we often write f instead of $[f]$ where no confusion can arise. Wherever it makes sense, f should be interpreted as a continuous map $|B| \rightarrow|A|$, and otherwise it should be interpreted as the morphism represented by f.

Let $[f]: B \rightarrow A$ be a morphism in PEqu. For an object $X=\left(|X|, \approx_{X}\right)$ in PEqu, $P_{f}(X)$ is concretely defined as $P_{f}(X)=\left(|A| \times|X|^{|B|}, \approx_{P_{f}(X)}\right)$, where

$$
\begin{gathered}
(a, u) \approx_{P_{f}(X)}\left(a^{\prime}, u^{\prime}\right) \\
\text { if and only if } \\
a \approx_{A} a^{\prime} \text { and } \forall b, b^{\prime} \in|B| \cdot\left(b \approx_{B} b^{\prime} \wedge f(b) \approx_{A} a \Longrightarrow u(b) \approx_{X} u^{\prime}\left(b^{\prime}\right)\right) .
\end{gathered}
$$

For a morphism $[g]: X \rightarrow Y, P_{f}[g]=\left[i d_{|A|} \times g^{\left.i d d_{|B|}\right]}\right.$. The rest of this section consists of a proof that P_{f} has an initial algebra $W=W(f)$.
(1) The underlying lattice $|W|$: The initial P_{f}-algebra W, if it exists, is isomorphic to $P_{f}(W)$. Thus, it makes sense to choose the underlying lattice $|W|$ so that $|W| \cong|A| \times|W|^{|B|}$. We know that such a lattice exists because domain equations can be solved in the category of algebraic lattices. In particular, we choose the lattice

$$
|W|=\prod_{k=0}^{\infty}|A|^{|B|^{k}}
$$

with an isomorphism $\langle\square, \square\rangle:|A| \times|W|^{|B|} \rightarrow|W|$, defined component-wise by:

$$
\begin{aligned}
\pi_{0}\langle a, u\rangle & =a \\
\pi_{i+1}\langle a, u\rangle & =\lambda(b, \vec{b}) \in|B|^{i+1} \cdot\left(\left(\pi_{i}(u(b))\right)(\vec{b})\right)
\end{aligned}
$$

(2) The partial equivalence relation \approx_{W} : Let $\operatorname{PER}(|W|)$ be the complete lattice of partial equivalence relations on $|W|$, ordered by inclusion \subseteq. Define an operator $\Phi: \operatorname{PER}(|W|) \rightarrow \mathbf{P E R}(|W|)$ by

$$
\begin{gathered}
\langle a, u\rangle \Phi(\approx)\left\langle a^{\prime}, u^{\prime}\right\rangle \\
\text { if and only if } \\
a \approx_{A} a^{\prime} \text { and } \forall b, b^{\prime} \in|B| \cdot\left(b \approx_{B} b^{\prime} \wedge f(b) \approx_{A} a \Longrightarrow u(b) \approx u^{\prime}\left(b^{\prime}\right)\right)
\end{gathered}
$$

The operator Φ is a monotone operator on a complete lattice. Let \approx_{W} be the least fixed point of Φ.

The operator Φ is defined on partial equivalence relations on $|M|$. Nevertheless, it can be applied to an arbitrary binary relation R on $|M|$. If R is a relation on $|M|$, let $\sigma(R)$ be its symmetric closure, and let $\tau(R)$ be its transitive closure. It is not hard to check that Φ satisfies

$$
\begin{aligned}
& \sigma(\Phi(R)) \subseteq \Phi(\sigma(R)) \\
& \tau(\Phi(R)) \subseteq \Phi(\tau(R))
\end{aligned}
$$

and thus also

$$
\tau(\sigma(\Phi(R))) \subseteq \Phi(\tau(\sigma(R)))
$$

(3) W is a P_{f}-algebra: To show that $[\langle\square, \square\rangle]: P_{f}(W) \rightarrow W$ is a P_{f}-algebra all that has to be checked is that $\langle\square, \square\rangle$ preserves the partial equivalence relation. Suppose $(a, u) \approx_{P_{f}(W)}\left(a^{\prime}, u^{\prime}\right)$. This means that

$$
a \approx_{A} a^{\prime} \text { and } \forall b, b^{\prime} \in|B| \cdot\left(b \approx_{B} b^{\prime} \wedge f(b) \approx_{A} a \Longrightarrow u(b) \approx_{W} u^{\prime}\left(b^{\prime}\right)\right)
$$

which is equivalent to $\langle a, u\rangle \Phi\left(\approx_{W}\right)\left\langle a^{\prime}, u^{\prime}\right\rangle$, and since \approx_{W} is a fixed point of Φ, this is just $\langle a, u\rangle \approx_{W}\left\langle a^{\prime}, u^{\prime}\right\rangle$.
(4) Uniqueness of homomorphisms: Let $[v]: P_{f}(V) \rightarrow V$ be a P_{f}-algebra, and suppose $[s],[t]: W \rightarrow V$ are P_{f}-homomorphisms from W to V. Let \sim be the partial equivalence relation on $|W|$, such that $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$ if, and only if, all of the following hold:

- $(a, s \circ u) \approx_{P_{f}(V)}\left(a^{\prime}, s \circ u^{\prime}\right)$,
- $(a, t \circ u) \approx_{P_{f}(V)}\left(a^{\prime}, t \circ u^{\prime}\right)$,
- $(a, s \circ u) \approx_{P_{f}(V)}\left(a^{\prime}, t \circ u^{\prime}\right)$,
- $\left(a^{\prime}, s \circ u^{\prime}\right) \approx_{P_{f}(V)}(a, t \circ u)$.

If $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$, then it follows from the first and the second conditions, that

$$
\begin{aligned}
& s\langle a, u\rangle \approx_{V} v(a, s \circ u) \approx_{V} v\left(a^{\prime}, s \circ u^{\prime}\right) \approx_{V} s\left\langle a^{\prime}, u^{\prime}\right\rangle \\
& t\langle a, u\rangle \approx_{V} v(a, t \circ u) \approx_{V} v\left(a^{\prime}, t \circ u^{\prime}\right) \approx_{V} t\left\langle a^{\prime}, u^{\prime}\right\rangle
\end{aligned}
$$

which means that t and s preserve \sim. Similarly, using the third condition, it follows from $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$ that

$$
s\langle a, u\rangle \approx_{V} v(a, s \circ u) \approx_{V} v\left(a^{\prime}, t \circ u^{\prime}\right) \approx_{V} t\langle a, u\rangle
$$

To show that $[t]=[s]$, we demonstrate that $\approx_{W} \subseteq \sim$ by proving that \sim is a prefixed point of Φ. Suppose $\langle a, u\rangle \Phi(\sim)\left\langle a^{\prime}, u^{\prime}\right\rangle$. Then $a \approx_{A} a^{\prime}$, and for all $b, b^{\prime} \in|B|$ such that $b \approx_{B} b^{\prime}$ and $f(b) \approx_{A} a$ it is the case that $u(b) \sim u^{\prime}\left(b^{\prime}\right)$. Because s and t preserve \sim and they coincide on it up to equivalence in V it follows that:

- $s(u(b)) \approx_{V} s\left(u^{\prime}\left(b^{\prime}\right)\right)$,
- $t(u(b)) \approx_{V} t\left(u^{\prime}\left(b^{\prime}\right)\right)$,
- $s(u(b)) \approx_{V} t\left(u^{\prime}\left(b^{\prime}\right)\right)$,
- $s\left(u^{\prime}\left(b^{\prime}\right)\right) \approx_{V} t(u(b))$.

It is now clear that $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$.
(5) Existence of homomorphisms: Let $[v]: P_{f}(V) \rightarrow V$ be a P_{f}-algebra. We show that there exists a P_{f}-homomorphism $[w]: W \rightarrow V$. Let $\Psi:|V|^{|W|} \rightarrow$ $|V|^{|W|}$ be the operator defined by

$$
(\Psi g)\langle a, u\rangle=v(a, g \circ u) .
$$

Let $w \in|W| \rightarrow|V|$ be the least fixed point of Ψ, so that

$$
w\langle a, u\rangle=v(a, w \circ u) .
$$

We need to show that $[w]$ is a P_{f}-homomorphism. Let \sim be a partial equivalence relation on $|W|$ defined by

$$
\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle \Longleftrightarrow(a, w \circ u) \approx_{P_{f}(V)}\left(a^{\prime}, w \circ u^{\prime}\right)
$$

First, observe that w preserves \sim : if $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$, then $(a, w \circ u) \approx_{P_{f}(V)}$ ($a^{\prime}, w \circ u^{\prime}$), hence

$$
w\langle a, u\rangle=v(a, w \circ u) \approx_{V} v\left(a^{\prime}, w \circ u^{\prime}\right)=w\left\langle a^{\prime}, u^{\prime}\right\rangle .
$$

To see that w preserves \approx_{W}, we show that $\approx_{W} \subseteq \sim$. This is the case because \sim is a prefixed point of the operator Φ. Indeed, suppose $\langle a, u\rangle \Phi(\sim)\left\langle a^{\prime}, u^{\prime}\right\rangle$. Then $a \approx_{A} a^{\prime}$, and for every $b, b^{\prime} \in|B|$ such that $b \approx_{B} b^{\prime}$ and $f(b) \approx_{A} a$ we have $u(b) \sim u^{\prime}\left(b^{\prime}\right)$. Since w preserves \sim, it follows that $w(u(b)) \approx_{V} w\left(u^{\prime}\left(b^{\prime}\right)\right)$, therefore $(a, w \circ u) \approx_{P_{f}(V)}\left(a^{\prime}, w \circ u^{\prime}\right)$, which is just $\langle a, u\rangle \sim\left\langle a^{\prime}, u^{\prime}\right\rangle$.

3 M-Types in PEqu

In this section we prove that every polynomial functor P_{f} in PEqu has a final coalgebra $M=M(f)$.
(1) The underlying lattice $|M|$: Let $|M|$ be the algebraic lattice $|W|$ defined in Section 2. We consistently switch the notation from W's to M's to indicate the duality between W-types and M-types.
(2) The partial equivalence relation \approx_{M} : Recall that in Section 2 we defined a monotone operator Φ on the complete lattice $\mathbf{P E R}(|M|)$ and considered its least fixed point. Now let \approx_{M} be the greatest fixed point of the operator Φ, and let $M=\left(|M|, \approx_{M}\right)$.
(3) M is a P_{f}-coalgebra: To show that $\left[\langle\square, \square\rangle^{-1}\right]: M \rightarrow P_{f}(M)$ is a $P_{f^{-}}$ coalgebra all that needs to be checked is that $\langle\square, \square\rangle^{-1}$ preserves \approx_{M}. The proof is analogous to the case of W-types and \approx_{W}, since \approx_{M} is a fixed point of Φ.
(4) Uniqueness of homomorphisms: Let $[n]: N \rightarrow P_{f}(N)$ be a P_{f}-coalgebra and suppose that $[s],[t]: N \rightarrow M$ are P_{f}-coalgebra morphisms. We show that $[s]=[t]$. Let \sim_{0} be the relation on $|M|$ defined by

$$
\begin{gathered}
\langle a, u\rangle \sim_{0}\left\langle a^{\prime}, u^{\prime}\right\rangle \\
\text { if and only if } \\
\exists x, x^{\prime} \in|N| \cdot\left(x \approx_{N} x^{\prime} \wedge\langle a, u\rangle \approx_{M} s(x) \wedge\left\langle a^{\prime}, u^{\prime}\right\rangle \approx_{M} t(x)\right),
\end{gathered}
$$

and let \sim be the least partial equivalence relation that contains \sim_{0}. In other words, \sim is the transitive closure of the symmetric closure of \sim_{0}.

We show that \sim is a postfixed point of Φ, i.e., that $\sim \subseteq \Phi(\sim)$, from which it follows that $\sim \subseteq \approx_{M}$ because \approx_{M} is the greatest postfixed point of Φ. Then $[s]=[t]$ holds because \sim is defined so that $x \approx_{N} x^{\prime}$ implies $s(x) \sim t\left(x^{\prime}\right)$.

By the remarks at the end of the second paragraph in Section 2, in order to show that $\sim \subseteq \Phi(\sim)$, we only need to check that $\sim_{0} \subseteq \Phi\left(\sim_{0}\right)$. Suppose that for some $x, x^{\prime} \in|N|$ it is the case that $x \approx_{N} x^{\prime},\langle a, u\rangle \approx_{M} s(x)$ and $\left\langle a^{\prime}, u^{\prime}\right\rangle \approx_{M} t(x)$. Taking into account that $[s]$ and $[t]$ are P_{f}-coalgebra morphisms, we see that

$$
\begin{aligned}
&\langle a, u\rangle \approx_{M} s(x) \\
&\left\langle\approx_{M}\left\langle n_{1}(x), s \circ n_{2}(x)\right\rangle\right. \\
&\left\langle a^{\prime}, u^{\prime}\right\rangle \approx_{M} t\left(x^{\prime}\right)
\end{aligned} \approx_{M}\left\langle n_{1}\left(x^{\prime}\right), t \circ n_{2}\left(x^{\prime}\right)\right\rangle, ~ \$
$$

where $n=\left(n_{1}, n_{2}\right):|N| \rightarrow|A| \times|N|^{|B|}$. Since \approx_{M} is a fixed point of Φ, it follows that

$$
\begin{equation*}
a \approx_{A} n_{1}(x) \approx_{A} n_{1}\left(x^{\prime}\right) \approx_{A} a^{\prime} \tag{1}
\end{equation*}
$$

Also, if $b, b^{\prime} \in|B|, b \approx_{B} b^{\prime}$, and $f(b) \approx_{A} a$ then $n_{2}(x)(b) \approx_{N} n_{2}\left(x^{\prime}\right)\left(b^{\prime}\right)$ and

$$
\begin{aligned}
u(b) & \approx_{M} s\left(n_{2}(x)(b)\right), \\
u^{\prime}\left(b^{\prime}\right) & \approx_{M} t\left(n_{2}\left(x^{\prime}\right)\left(b^{\prime}\right)\right) .
\end{aligned}
$$

By definition of \sim_{0},

$$
\begin{equation*}
u(b) \sim u^{\prime}\left(b^{\prime}\right) \tag{2}
\end{equation*}
$$

Putting (1) and (2) together, we get $\langle a, u\rangle \Phi\left(\sim_{0}\right)\left\langle a^{\prime}, u^{\prime}\right\rangle$, as required.
(5) Existence of homomorphisms: Let $[n]: N \rightarrow P_{f}(N)$ be a P_{f}-coalgebra. We show that there is a P_{f}-coalgebra homomorphism $[m]: N \rightarrow M$. Define a continuous operator $\Psi:|M|^{|N|} \rightarrow|M|^{|N|}$ by

$$
(\Psi g) x=\left\langle n_{1}(x), g \circ n_{2}(x)\right\rangle
$$

where $n=\left(n_{1}, n_{2}\right):|N| \rightarrow|A| \times|N|^{|B|}$. Let m be the least fixed point of Ψ, so that for all $x \in|N|$,

$$
\begin{equation*}
m(x)=\left\langle n_{1}(x), m \circ n_{2}(x)\right\rangle . \tag{3}
\end{equation*}
$$

We need to prove that m represents a morphism $[m]: N \rightarrow M$. Let \sim_{0} be a relation on $|M|$ defined by

$$
\langle a, u\rangle \sim_{0}\left\langle a^{\prime}, u^{\prime}\right\rangle
$$

if and only if

$$
\exists x, x^{\prime} \in|N| .\left(x \approx_{N} x^{\prime} \wedge\left\langle a, u^{\prime}\right\rangle \approx_{M} m(x) \wedge\left\langle a^{\prime}, u^{\prime}\right\rangle \approx_{M} m\left(x^{\prime}\right)\right)
$$

and let \sim be the least partial equivalence relation that contains \sim_{0}. Just like in the previous paragraph, we can easily check that $\sim \subseteq \approx_{M}$ by verifying that $\sim \subseteq \Phi(\sim)$.

The map m represents a morphism $[m]: N \rightarrow M$ because $x \approx_{N} x^{\prime}$ implies $m(x) \sim m\left(x^{\prime}\right)$, which in turn implies $m(x) \approx_{M} m\left(x^{\prime}\right)$. That [m] is a $P_{f^{-}}$ coalgebra homomorphism is expressed exactly by the fixed point property (3).

4 Induction and Coinduction Principles

A polynomial functor is a functor built up from identity, constants, finite products, and finite coproducts, see [HJ96] for a more precise definition.

Since polynomial functors are special cases of the functors P_{f}, any polynomial functor T on the category of equilogical spaces has an initial algebra and a final coalgebra.

Consider the logic of subobjects $\underset{\text { PEqu }}{\substack{\text { Sub(PEqu) }}}$ described in detail in [Bir99]. (Here we do not consider dependencies.) Define $\underset{\text { PEqu }}{\underset{\text { Rel }}{\text { PEqu) }}}$ by change-of-base:

Thus the fibre category $\operatorname{Rel}(\mathbf{P E q u})_{X}$ over $X \in \mathbf{P E q u}$ is the subobjects on $X \times X$, i.e., binary relations on X.

Every polynomial functor $T:$ PEqu $\rightarrow \mathbf{P E q u}$ can be lifted to a functor $\operatorname{Pred}(T): \operatorname{Sub}(\mathbf{P E q u}) \rightarrow \operatorname{Sub}(\mathbf{P E q u})$, called the logical predicate lifting of T, by induction on the structucture of T as described in [HJ96]: Every constant $A \in \mathbf{P E q u}$ occurring in T is replaced by the true predicate \top_{A} and the bicartesian structure of PEqu used in T is replaced by the bicartesian structure in $\operatorname{Sub}(\mathbf{P E q u})$ (i.e., \wedge and \vee).

Similarly, a polynomial functor T can be lifted to a functor $\operatorname{Rel}(T): \operatorname{Rel}(\mathbf{P E q u}) \rightarrow$ Rel(PEqu), called the logical relation lifting of T, by induction on the structure of T. Now we replace a constant $A \in \mathbf{P E q u}$ occurring in T by the equality predicate $\operatorname{Eq}(A)=\coprod_{\delta}(A)\left(\top_{A}\right) \in \operatorname{Sub}(A \times A)=\operatorname{Rel}(A)$, where $\delta(A)$ is the diagonal on A.

Because PEqu is bicartesian closed with disjoint and stable coproducts (hence distributive), and $\begin{gathered}\text { Sub(PEqu) } \\ \underset{\text { PEqu }}{\downarrow}\end{gathered}$ is a first-order fibration, it admits comprehension (subset types) and has quotient types, see [Bir99], we can conclude from the general results in [HJ96], that the following induction and coinduction principles are valid.

Induction Principle Let T be a polynomial functor and let $c: T D \rightarrow D$ be the initial T-algebra. Let $s: T X \rightarrow X$ be any T-algebra and let !: $D \rightarrow X$ be the unique algebra map. The following inference rule is valid, for any prediate $\varphi \in \operatorname{Sub}(\Gamma, x: X)$.

$$
\frac{\Gamma, x: T X \mid \Theta, \operatorname{Pred}(T)(\varphi)(x) \vdash \varphi(s(x))}{\Gamma, d: D \mid \Theta \vdash \varphi(!d)}
$$

Example 4.1. Let T be the functor $X \mapsto 1+N \times X$, with N the natural numbers object of PEqu. Write $s=[n, c]: T L \rightarrow L$ for the initial algebra of T. Let $T D \rightarrow D$ above be $T L \rightarrow L$ and let $T X \rightarrow X$ above also be $T L \rightarrow L$, so $!=i d$. Let $\varphi \in \operatorname{Sub}(\Gamma, l: L)$ be any predicate. Then the inference rule specializes to the expected induction principle for lists

$$
\frac{\Gamma|\Theta \vdash \varphi(n) \quad \Gamma, m: N, l: L| \Theta, \varphi(l) \vdash \varphi(c(m, l))}{\Gamma, l: L \mid \Theta \vdash \varphi(l)}
$$

Coinduction Principle Let T be a polynomial functor and let $c: D \rightarrow T D$ be the final T-coalgebra. Let $s: X \rightarrow T X$ be any T-coalgebra and let !: $X \rightarrow D$ be the unique coalgebra map. The following inference rule is valid, for any relation $R \in \operatorname{Rel}(X)$,

$$
\frac{\Gamma, x, y: X \mid \Theta, R(x, y) \vdash \operatorname{Rel}(T)(R)(s x, s y)}{\Gamma, x, y: X \mid \Theta \vdash!x=_{D}!y}
$$

5 Comments

If $|B|$ and $|A|$ are countably based algebraic lattices then also the lattice $|W|$ is countably based. This means that $\omega \mathbf{P E q u}$, the countably based version of PEqu, has W-types and M-types as well.

We thank Jaap van Osten and Steve Awodey.

References

[Bir99] L. Birkedal. Developing Theories of Types and Computability via Realizability. PhD thesis, School of Computer Science, Carnegie Mellon University, 1999. Forthcoming.
[HJ94] C. Hermida and B. Jacobs. An algebraic view of structural induction. In L. Pacholski and J. Tiuryn, editors, Proceedings of Computer Science Logic 1994, number 933 in LNCS, pages 412-426, 1994.
[HJ96] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Unpublished Manuscript, full version of [HJ94], September 1996.

