
Step-Indexed Logical Relations for Probability

Aleš Bizjak and Lars Birkedal

Aarhus University
{abizjak,birkedal}@cs.au.dk

Abstract. It is well-known that constructing models of higher-order
probabilistic programming languages is challenging. We show how to
construct step-indexed logical relations for a probabilistic extension of
a higher-order programming language with impredicative polymorphism
and recursive types. We show that the resulting logical relation is sound
and complete with respect to the contextual preorder and, moreover,
that it is convenient for reasoning about concrete program equivalences.
Finally, we extend the language with dynamically allocated references
and show how to extend the logical relation to this language. We show
that the resulting relation remains useful for reasoning about examples
involving both state and probabilistic choice.

1 Introduction

It is well known that it is challenging to develop techniques for reasoning about
programs written in probabilistic higher-order programming languages. A prob-
abilistic program evaluates to a distribution of values, as opposed to a set of
values in the case of nondeterminism or a single value in the case of determinis-
tic computation. Probability distributions form a monad. This observation has
been used as a basis for several denotational domain-theoretic models of proba-
bilistic languages and also as a guide for designing probabilistic languages with
monadic types [11, 17, 16]. Game semantics has also been used to give denota-
tional models of probabilistic programming languages [6, 8] and a fully abstract
model using coherence spaces for PCF extended with probabilistic choice was
recently presented [9].

The majority of models of probabilistic programming languages have been
developed using denotational semantics. However, Johann et.al. [10] developed
operationally-based logical relations for a polymorphic programming language
with effects. Two of the effects they considered were probabilistic choice and
global ground store. However, as pointed out by the authors [10], extending their
construction to local store and, in particular, higher-order local store, is likely to
be problematic. Also, recently, operationally-based bisimulation techniques have
been extended to call-by-value [4] and call-by-name [5] probabilistic extensions
of PCF. The operational semantics of probabilistic higher-order programming
languages has been extensively investigated in [12].

Step-indexed logical relations [1, 2] have proved to be a successful method for
proving contextual approximation and equivalence for programming languages
with a wide range of features, including computational effects.

2

In this paper we show how to extend the method of step-indexed logical rela-
tions to reason about contextual approximation and equivalence of probabilistic
higher-order programs. To define the logical relation we employ biorthogonal-
ity [13, 15], together with step-indexing. Biorthogonality is used to ensure com-
pleteness of the logical relation with respect to contextual equivalence, but it
also makes it possible to keep the value relations simple, see Figure 1. More-
over, the definition using biorthogonality makes it possible to “externalize” the
reasoning in many cases when proving example equivalences. By this we mean
that the reasoning reduces to algebraic manipulations of probabilities. This way,
the quantitative aspects do not complicate the reasoning much, compared to the
usual reasoning with step-indexed logical relations for deterministic languages
or languages with nondeterministic choice. To define the biorthogonal lifting
of value relations we use two notions of observation; the termination probabil-
ity and its stratified version approximating it. We define these and prove the
required properties in Section 3.

We develop our step-indexed logical relations for the call-by-value language
Fµ,⊕. This is system F with recursive types, extended with a single probabilistic
choice primitive rand . The primitive rand takes a natural number n and reduces
with uniform probability to one of 1, 2, . . . , n. Thus randn represents the uniform
probability distribution on the set {1, 2, . . . , n}. We choose to add rand instead
of just a single coin flip primitive to make the examples easier to write.

To show that the model is useful we use it to prove some example equiva-
lences in Section 5. We show two examples based on parametricity. In the first
example, we characterize elements of the universal type ∀α.α → α. In a deter-
ministic language, and even in a language with nondeterministic choice, the only
interesting element of this type is the identity function. However, since in a prob-
abilistic language we not only observe the end result, but also the likelihood with
which it is returned, it turns out that there are many more elements. Concretely,
we show that the elements of the type ∀α.α → α that are of the form Λ.v, for
a value v, correspond precisely to left-computable real numbers in the interval
[0, 1]. In the second example we show a free theorem involving functions on lists.
We show additional equivalences in the Appendix, including the correctness of
von Neumann’s procedure for generating a fair sequence of coin tosses from an
unfair coin, and equivalences from the recent papers using bisimulations [4, 5].

We add dynamically allocated references to the language and extend the
logical relation to the new language in Section 6. For simplicity we only sketch
how to extend the construction with first-order state. This already shows that
an extension with general references can be done in the usual way for step-
indexed logical relations. We conclude the section by proving a representation
independence result involving both state and probabilistic choice.

2 The language Fµ,⊕

The language is a standard pure functional language with recursive, universal
and existential types with an additional choice primitive rand . The base types

3

include the type of natural numbers nat with some primitive operations. The
grammar of terms e is

e ::= x | 〈〉 | n | 〈e1, e2〉 | λx.e | inl e | inr e | Λ.e | pack e | proji e | e1 e2 |
| match (e, x1.e1, x2.e2) | e[] | unpack e1 as x in e2 | unfold e | fold e |
| rand e | if1 e then e1 else e2 | P e | S e

We write n for the numeral representing the natural number n and S and P are
the successor and predecessor functions, respectively. For convenience, numerals
start at 1. Given a numeral n, the term randn evaluates to one of the numerals
1, . . . , n with uniform probability. There are no types in the syntax of terms,
e.g., instead of Λα.e and e τ we have Λ.e and e[]. This is for convenience only.

We write α, β, . . . for type variables and x, y, . . . for term variables. The no-
tation τ [~τ/~α] denotes the simultaneous capture-avoiding substitution of types ~τ
for the free type variables ~α in the type τ ; e[~v/~x] denotes simultaneous capture-
avoiding substitution of values ~v for the free term variables ~x in the term e.

We write Stk for the set of evaluation contexts given by the call-by-value
reduction strategy. Given two evaluation contexts E,E′ we define their composi-
tion E ◦E′ by induction on E in the natural way. Given an evaluation context E
and expression e we write E[e] for the term obtained by plugging e into E. For
any two evaluation contexts E and E′ and a term e we have E[E′[e]] = (E◦E′)[e].

For a type variable context ∆, the judgment ∆ ` τ expresses that the free
type variables in τ are included in ∆. The typing judgments are entirely standard
with the addition of the typing of rand which is given by the rule

∆ | Γ ` e : nat

∆ | Γ ` rand e : nat
.

The complete set of typing rules are in the Appendix. We write T(∆) for the
set of types well-formed in context ∆, and T for the set of closed types τ . We
write Val (τ) and Tm (τ) for the sets of closed values and terms of type τ ,
respectively. We write Val and Tm for the set of all1 closed values and closed
terms, respectively. Stk (τ) denotes the set of τ -accepting evaluation contexts,
i.e., evaluation contexts E, such that given any closed term e of type τ , E[e] is
a typeable term. Stk denotes the set of all evaluation contexts.

For a typing context Γ = x1:τ1, . . . , xn:τn with τ1, . . . , τn ∈ T, let

Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val (τi)}

denote the set of type-respecting value substitutions. In particular, if ∆ | Γ ` e :
τ then ∅ | ∅ ` eγ : τδ for any δ ∈ T∆ and γ ∈ Subst(Γδ), and the type system
satisfies standard properties of progress and preservation and a canonical forms
lemma.

The operational semantics of the language is a standard call-by-value seman-
tics but weighted with p ∈ [0, 1] which denotes the likelihood of that reduction.

1 In particular, we do not require them to be typeable.

4

We write
p
 for the one-step reduction relation. All the usual β reductions have

weight equal to 1 and the reduction from randn is

randn
1
n k for k ∈ {1, 2, . . . , n}.

The rest of the rules are given in Figure ?? in the Appendix. The operational
semantics thus gives rise to a Markov chain with closed terms as states.

3 Observations and biorthogonality

We will use biorthogonality to define the logical relation. This section provides
the necessary observation predicates used in the definition of the biorthogonal
lifting of value relations to expression relations. Because of the use of biorthog-
onality the value relations (see Figure 1) remain as simple as for a language
without probabilistic choice. The new quantitative aspects only appear in the
definition of the biorthogonal lifting (>>-closure) defined in Section 4.1. Two
kinds of observations are used. The probability of termination, Pr (e ⇓), which
is the actual probability that e terminates, and its approximation, the stratified
termination probability Pr

(
e ⇓k

)
, where k ∈ N denotes, intuitively, the number

of computation steps. The stratified termination probability provides the link
between steps in the operational semantics and the indexing in the definition of
the interpretation of types.

The probability of termination, Pr (· ⇓), is a function of type Tm→ I where
I is the unit interval [0, 1]. Since I is a pointed ω-cpo for the usual order, so is
the space of all functions Tm → I with pointwise ordering. We define Pr (· ⇓)
as a fixed point of a continuous function Φ on this ω-cpo: Let F = Tm→ I and
define Φ : F → F as

Φ(f)(e) =

1 if e ∈ Val∑
e

p
 e′

p · f (e′) otherwise

Note that if e is stuck then Φ(f)(e) = 0 since the empty sum is 0.
The function Φ is monotone and preserves suprema of ω-chains. The proof is

straightforward and can be found in the Appendix. Thus Φ has a least fixed point
in F and we denote this fixed point by Pr (· ⇓), i.e., Pr (e ⇓) = supn∈ω Φ

n(⊥)(e).
To define the stratified observations we need the notion of a path. Given

terms e and e′ a path π from e to e′, written π : e ∗ e′, is a sequence e
p1 e1

p2
e2

p3 · · · pn e′. The weight of π is the product of the weights of reductions in π.
We write R for the set of all paths and · for their concatenation (when defined).
For a non-empty path π ∈ R we write ` (π) for its last expression.

We call reductions of the form unfold (fold v)
1
 v unfold-fold reductions

and reductions of the form randn
1
n k choice reductions. If none of the reduc-

tions in a path π is a choice reduction we call π choice-free and similarly if none
of the reductions in π is an unfold-fold reductions we call π unfold-fold free.

5

We define the following types of multi-step reductions which we use in the
definition of the logical relation.

– e
cf

=⇒ e′ if there is a choice-free path from e to e′

– e
uff

=⇒ e′ if there is an unfold-fold free path from e to e′.

– e
cuff
=⇒ e′ if e

cf
=⇒ e′ and e

uff
=⇒ e′.

The following useful lemma states that all but choice reductions preserve
the probability of termination. As a consequence, we will see that all but choice
reductions preserve equivalence.

Lemma 3.1. Let e, e′ ∈ Tm and e
cf

=⇒ e′. Then Pr (e ⇓) = Pr (e′ ⇓).

The proof proceeds on the length of the reduction path with the strengthened
induction hypothesis stating that the probabilities of termination of all elements
on the path are the same. To define the stratified probability of termination that
approximates Pr (· ⇓) we need an auxiliary notion.

Definition 3.2. For a closed expression e ∈ Tm we define Red (e) as the
(unique) set of paths containing exactly one unfold-fold or choice reduction
and ending with such a reduction. More precisely, we define the function Red :
Tm→ P (R) as the least function satisfying

Red (e) =

{e 1
 e′} if e = E[unfold (fold v)]

{e p
 E[k]

∣∣ p = 1
n , k ∈ {1, 2, . . . , n}} if e = E[randn]{

(e
1
 e′) · π

∣∣ π ∈ Red (e′)
}

if e
1
 e′ and e

cuff
=⇒ e′

∅ otherwise

The power set P (R) is ordered by inclusion and the map defining Red (·) is
monotone, so the least fixed point exists.

Using Red (·) we define a monotone map Ψ : F → F that preserves ω-chains.

Ψ(f)(e) =

1 if ∃v ∈ Val, e

cuff
=⇒ v∑

π∈Red(e)

W (π) · f (` (π)) otherwise

and then define Pr
(
e ⇓k

)
= Ψk(⊥)(e). The intended meaning of Pr

(
e ⇓k

)
is the

probability that e terminates within k unfold-fold and choice reductions. Since
Ψ is monotone we have that Pr

(
e ⇓k

)
≤ Pr

(
e ⇓k+1

)
for any k and e.

The following lemma is the reason for counting only certain reductions. It
allows us to stay at the same step-index even when taking steps in the operational
semantics. As a consequence we will get a more extensional logical relation. The
proof is by case analysis and can be found in the Appendix.

Lemma 3.3. Let e, e′ ∈ Tm. If e
cuff
=⇒ e′ then for all k, Pr

(
e ⇓k

)
= Pr

(
e′ ⇓k

)
.

6

The following is immediate from the definition of the chain
{
Pr
(
e ⇓k

)}∞
k=0

and the fact that randn reduces with uniform probability.

Lemma 3.4. Let e be a closed term. If e
1
 e′ and the reduction is an unfold-

fold reduction then Pr
(
e ⇓k+1

)
= Pr

(
e′ ⇓k

)
. If the reduction from e is a choice

reduction, then Pr
(
e ⇓k+1

)
= 1
|Red(e)|

∑
e′∈Red(e) Pr

(
e′ ⇓k

)
.

The following proposition is needed to prove adequacy of the logical relation
with respect to contextual equivalence. It is analogous to the property used to
prove adequacy of step-indexed logical relations for deterministic and nondeter-
ministic languages. Consider the case of may-equivalence. To prove adequacy in
this case (cf. [3, Theorem 4.8]) we use the fact that if e may-terminates, then
there is a natural number n such that e terminates in n steps. This property
does not hold in the probabilistic case, but the property analogous to it still
holds and is sufficient to prove adequacy.

Proposition 3.5. For each e ∈ Tm we have Pr (e ⇓) ≤ supk∈ω
(
Pr
(
e ⇓k

))
.

Proof. We only give a sketch; the full proof can be found in the Appendix. We
use Scott induction on the set S =

{
f ∈ F

∣∣ ∀e, f(e) ≤ supk∈ω
(
Pr
(
e ⇓k

))}
. It

is easy to see that S is closed under limits of ω-chains and that ⊥ ∈ S so we
only need to show that S is closed under Φ. We can do this by considering the
kinds of reductions from e when considering Φ(f)(e) for f ∈ S.

4 Logical, CIU and contextual approximation relations

The contextual and CIU approximations are defined in a way analogous to the
one for deterministic programming languages. We require some auxiliary notions.
A type-indexed relation R is a set of tuples (∆,Γ, e, e′, τ) such that ∆ ` Γ and
∆ ` τ and ∆ | Γ ` e : τ and ∆ | Γ ` e′ : τ . We write ∆ | Γ ` e R e′ : τ for
(∆,Γ, e, e′, τ) ∈ R.

Definition 4.1 (Precongruence). A type-indexed relation R is reflexive if
∆ | Γ ` e : τ implies ∆ | Γ ` e R e : τ . It is transitive if ∆ | Γ ` e R e′ : τ and
∆ | Γ ` e′ R e′′ : τ implies ∆ | Γ ` e R e′′ : τ . It is compatible if it is closed
under the term forming rules, e.g.,2

∆ | Γ, x:τ1 ` e R e′ : τ2

∆ | Γ ` λx.e R λx.e′ : τ1 → τ2

∆ | Γ ` e R e′ : nat

∆ | Γ ` rand e R rand e′ : nat

A precongruence is a reflexive, transitive and compatible type-indexed relation.

The compatibility rules guarantee that a compatible relation is sufficiently
big, i.e., at least reflexive. In contrast, the notion of adequacy, which relates the
operational semantics with the relation, guarantees that it is not too big. In the
deterministic case, a relation R is adequate if when e R e′ are two related closed
terms, then if e terminates so does e′. Here we need to compare probabilities of
termination instead, since these are our observations.

2 We only show a few rules, the rest are analogous and can be found in the Appendix.

7

Definition 4.2. A type-indexed relation R is adequate if for all e, e′ such that
∅ | ∅ ` e R e′ : τ we have Pr (e ⇓) ≤ Pr (e′ ⇓).

The contextual approximation relation, written ∆ | Γ ` e .ctx e′ : τ , is defined as
the largest adequate precongruence and the CIU approximation relation, written
∆ | Γ ` e .CIU e′ : τ , is defined using evaluation contexts in the usual way,
e.g. [14], using Pr (· ⇓) for observations. The fact that the largest adequate
precongruence exists is proved as in [14].

Logical relation We now define the step-indexed logical relation. We present
the construction in the elementary way with explicit indexing instead of using a
logic with guarded recursion as in [7] to remain self-contained.

Interpretations of types will be defined as decreasing sequences of relations
on typeable values. For closed types τ and σ we define the sets VRel (τ, σ),
SRel (τ, σ) and TRel (τ, σ) to be the sets of decreasing sequences of relations
on typeable values, evaluation contexts and expressions respectively. The types τ
and σ denote the types of the left-hand side and the right-hand side respectively,
i.e. if (v, u) ∈ ϕ(n) for ϕ ∈ VRel (τ, σ) then v has type τ and u has type σ. The
order relation ≤ on these sets is defined pointwise, e.g. for ϕ,ψ ∈ VRel (τ, σ)
we write ϕ ≤ ψ if ∀n ∈ ωop, ϕ(n) ⊆ ψ(n). We implicitly use the inclusion from
VRel (τ, σ) to TRel (τ, σ). The reason for having relations on values and terms
of different types on the left and right-hand sides is so we are able to prove
parametricity properties in Section 5.

We define maps ·>τ,σ : VRel (τ, σ) → SRel (τ, σ) and ·⊥τ,σ : SRel (τ, σ) →
TRel (τ, σ). We usually omit the type indices when they can be inferred from
the context. The maps are defined as follows

r>τ,σ(n) =
{

(E,E′)
∣∣ ∀k ≤ n, ∀(v, v′) ∈ r(k),Pr

(
E[v] ⇓k

)
≤ Pr (E′[v′] ⇓)

}
and r⊥τ,σ(n) =

{
(e, e′)

∣∣ ∀k ≤ n, ∀(E,E′) ∈ r(k),Pr
(
E[e] ⇓k

)
≤ Pr (E′[e′] ⇓)

}
.

We write r>> = r>
⊥

for their composition from VRel (τ, σ) to TRel (τ, σ).
The following lemma establishes basic properties of the functions ·> and ·>>.

The function ·> is order-reversing and ·>> is order-preserving and inflationary.

Lemma 4.3. Let τ, σ be closed types and r, s ∈ VRel (τ, σ). Then r ≤ r>> and
if r ≤ s then s> ≤ r> and r>> ≤ s>>.

For a type-variable context ∆ we define VRel (∆) using VRel (·, ·)

VRel (∆) =
{

(ϕ1, ϕ2, ϕr)
∣∣ ϕ1, ϕ2 ∈ T∆,∀α ∈ ∆,ϕr(α) ∈ VRel (ϕ1(α), ϕ2(α))

}
where the first two components give syntactic types for the left and right hand
sides of the relation and the third component is a relation between those types.

The interpretation of types, J· ` ·K is by induction on the judgement ∆ ` τ .
Given a judgment∆ ` τ and ϕ ∈ VRel (∆) we have J∆ ` τK (ϕ) ∈ VRel (ϕ1(τ), ϕ2(τ))
where the ϕ1 and ϕ2 are the first two components of ϕ and ϕ1(τ) denotes sub-
stitution of types in ϕ1 for free type variables in τ . Moreover J·K is non-expansive

8

in the sense that J∆ ` τK (ϕ)(n) can depend only on the values of ϕr(α)(k) for
k ≤ n. The interpretation of types is defined in Figure 1. Note that the value
relations are as simple as for a language without probabilistic choice. The crucial
difference is hidden in the >>-closure of value relations.

J∆ ` natK (ϕ)(n) =
{

(k, k)
∣∣ k ∈ N, k > 0

}
J∆ ` τ → σK (ϕ)(n) = {(λx.e, λy.e′)

∣∣ ∀j ≤ n,∀(v, v′) ∈ J∆ ` τK (ϕ)(j),

((λx.e) v, (λy.e′) v′) ∈ J∆ ` σK (ϕ)>>(j)}
J∆ ` ∀α.τK (ϕ)(n) = {(Λ.e, Λ.e′)

∣∣ ∀σ, σ′ ∈ T, ∀r ∈ VRel (σ, σ′) ,

(e, e′) ∈ J∆,α ` τK (ϕ [α 7→ r])>>(n)}
J∆ ` ∃α.τK (ϕ)(n) = {(pack v, pack v′)

∣∣ ∃σ, σ′ ∈ T,∃r ∈ VRel (σ, σ′) ,
(v, v′) ∈ J∆,α ` τK (ϕ [α 7→ r]) (n)}

J∆ ` µα.τK (ϕ)(0) = Val (ϕ1(µα.τ))×Val (ϕ2(µα.τ))

J∆ ` µα.τK (ϕ)(n+ 1) = {(fold v, fold v′)
∣∣

(v, v′) ∈ J∆,α ` τK (ϕ [α 7→ J∆ ` µα.τK (ϕ)]) (n)}
Fig. 1. Interpretation of types. The cases for sum and product types are in Appendix.

Context extension lemmas To prove soundness and completeness we need lem-
mas stating how extending evaluation contexts preserves relatedness. We only
show the case for rand . The rest are similarly simple.

Lemma 4.4. Let n ∈ N. If (E,E′) ∈ J∆ ` natK (ϕ)
>

(n) are related evaluation

contexts then (E ◦ (rand []), E′ ◦ (rand [])) ∈ J∆ ` natK (ϕ)
>

(n).

Proof. Let n ∈ N and (v, v′) ∈ J∆ ` τK (ϕ)(n). By construction we have v = v′ =
m for some m ∈ N, m ≥ 1. Let k ≤ n. If k = 0 the result is immediate, so assume
k = ` + 1. Using Lemma 4 we have Pr

(
E[randm] ⇓k

)
= 1

m

∑m
i=1 Pr

(
E[i] ⇓`

)
and using the assumption (E,E′) ∈ J∆ ` natK (ϕ)

>
(n), the fact that k ≤ n and

monotonicity in the step-index the latter term is less than 1
m

∑m
i=1 Pr (E′[i] ⇓)

which by definition of Pr (· ⇓) is equal to Pr (E′[randm] ⇓).

We define the logical approximation relation for open terms given the inter-
pretations of types in Figure 1. We define ∆ | Γ ` e .log e′ : τ to mean

∀n ∈ N,∀ϕ ∈ VRel (∆) ,∀(γ, γ′) ∈ J∆ ` Γ K (ϕ)(n), (eγ, e′γ) ∈ J∆ ` τKϕ>>(n)

Here J∆ ` Γ K is the obvious extension of interpretation of types to interpretation
of contexts which relates substitutions, mapping variables to values. We then
have the following fundamental property of the logical relation.

Proposition 4.5. The logical approximation relation .log is compatible. In par-
ticular it is reflexive.

Proof. The proof is a simple consequence of the context extension lemmas. We
show the case for rand . We have to show that ∆ | Γ ` e .log e′ : nat implies

∆ | Γ ` rand e .log
rand e′ : nat. Let n ∈ N, ϕ ∈ VRel (∆) and (γ, γ′) ∈

9

J∆ ` Γ K (ϕ)(n). Let f = eγ and f ′ = e′γ′. Then our assumption gives us (f, f ′) ∈
J∆ ` natK (ϕ)

>>
(n) and we are to show (rand f, rand f ′) ∈ J∆ ` natK (ϕ)

>>
(n).

Let j ≤ n and (E,E′) ∈ J∆ ` natK (ϕ)
>

(j). Then from Lemma 6 we have

(E ◦ (rand []), E′ ◦ (rand [])) ∈ J∆ ` natK (ϕ)
>

(n) which suffices by the fact that

(f, f ′) ∈ J∆ ` natK (ϕ)
>>

(n).

We now want to relate logical, CIU and contextual approximation relations.
We start by showing adequacy of the logical relation.

Corollary 4.6. Logical approximation relation .log is adequate.

Proof. Assume ∅ | ∅ ` e .log e′ : τ . We are to show that Pr (e ⇓) ≤ Pr (e′ ⇓).

Straight from the definition we have ∀n ∈ N, (e, e′) ∈ J∅ ` τK>>(n). The empty
evaluation context is always related to itself (at any type). This implies ∀n ∈
N,Pr (e ⇓n) ≤ Pr (e′ ⇓) which further implies (since the right-hand side is inde-
pendent of n) that supn∈ω (Pr (e ⇓n)) ≤ Pr (e′ ⇓). Using Proposition 1 we thus
have Pr (e ⇓) ≤ supn∈ω (Pr (e ⇓n)) ≤ Pr (e′ ⇓) concluding the proof.

As a simple corollary, we have that for well-typed expressions, the supremum of
stratified observations is equal to the actual observation.

Corollary 4.7. If e ∈ Tm is well-typed then supn∈ω (Pr (e ⇓n)) = Pr (e ⇓).

We now have that the logical relation is adequate and compatible. This does
not immediately imply that it is contained in the contextual approximation
relation, since we do not know that it is transitive. However we have the following
lemma where by transitive closure we mean that for each ∆, Γ and τ we take
the transitive closure of the relation {(e, e′)

∣∣ ∆ | Γ ` e .log e′ : τ}. This is
another type-indexed relation.

Lemma 4.8. The transitive closure of .log is compatible and adequate.

Proof. Transitive closure of an adequate relation is adequate. Similarly the tran-
sitive closure of a compatible and reflexive relation (in the sense of Definition 3)
is again compatible (and reflexive).

And we arrive at the the main theorem.

Theorem 4.9 (CIU theorem). The relations .log, .CIU and .ctx coincide.

Proof. It is standard (e.g. [14]) that .ctx is included in .CIU. We show that the
logical approximation relation is contained in the CIU approximation relation
in the standard way for biorthogonal step-indexed logical relations. To see that
.log is included in .ctx we have by Lemma 7 that the transitive closure of .log

is an adequate precongruence, thus included in .ctx. And .log is included in the
transitive closure of .log. We have thus completed the cycle of inclusions.

Using the logical relation and Theorem 1 we can prove the following exten-
stionality properties. The proofs are standard and can be found in the Appendix.

10

Lemma 4.10 (Functional extensionality for values). Suppose τ, σ ∈ T(∆)
and let f and f ′ be two values of type τ → σ in context ∆ | Γ . If for all
u ∈ Val (τ) we have ∆ | Γ ` f u .ctx f ′ u : σ then ∆ | Γ ` f .ctx f ′ : τ → σ.

The extensionality for expressions, as opposed to only values, of function type
does not hold in general due to the presence of choice reductions. See Remark ??
for an example. We also have extensionality for values of the universal type.

Lemma 4.11 (Extensionality for the universal type). Let τ ∈ T(∆,α) be
a type. Let f, f ′ be two values of type ∀α.τ in context ∆ | Γ . If for all closed
types σ we have ∆ | Γ ` f [] .ctx f ′[] : τ [σ/α] then ∆ | Γ ` f .ctx f ′ : ∀α.τ .

5 Examples

We now use our logical relation to prove some example equivalences. We show
two examples involving polymorphism. In the Appendix we show additional
examples. In particular we show the correctness of von Neumann’s procedure for
generating a fair sequence of coin tosses from an unfair coin. That example in
particular shows how the use of biorthogonality allows us to “externalize” the
reasoning to arithmetic manipulations.

We first define fix : ∀α, β.((α→β)→(α→β)) → (α→β) be the term
Λ.Λ.λf.λz.δf (fold δf) z where δf is the term λy.let y′ = unfold y in f (λx.y′ y x).
This is a call-by-value fixed-point combinator. We also write e1⊕e2 for the term
if1 rand 2 then e1 else e2. Note that the choice is made before evaluating ei’s.

We characterize inhabitants of a polymorphic type and show a free theorem.
For the former, we need to know which real numbers can be probabilities of
termination of programs. Recall that a real number r is left-computable if there
exists a computable increasing (not necessarily strictly) sequence {qn}n∈ω of
rational numbers such that r = supn∈ω qn. In Appendix ?? we prove.

Proposition 5.1. For any expression e, Pr (e ⇓) is a left-computable real num-
ber and for any left-computable real number r in the interval [0, 1] there is a
closed term er of type 1→ 1 such that Pr (er 〈〉 ⇓) = r.

Inhabitants of the type ∀α.α → α In this section we use further syntactic
sugar for sequencing. When e, e′ ∈ Tm are closed terms we write e; e′ for (λ .e′) e,
i.e. first run e, ignore the result and then run e′. We will need the property that
for all terms e, e′ ∈ Tm, Pr (e; e′ ⇓) = Pr (e ⇓) ·Pr (e′ ⇓). The proof is by Scott
induction and can be found in the Appendix.

Using Proposition 3 we have for each left-computable real r in the interval
[0, 1] an inhabitant tr of the type ∀α.α→ α given by Λ.λx.er 〈〉;x.

We now show that these are the only inhabitants of ∀α.α → α of the form
Λ.λx.e. Given such an inhabitant let r = Pr (e[〈〉/x] ⇓). We know from Propo-
sition 3 that r is left-computable.

Given a value v of type τ and n ∈ N we define relations R(n) = {(〈〉, v)}
and S(n) = {(v, 〈〉)}. Note that the relations are independent of n, i.e. R and

11

S are constant relations. By reflexivity of the logical relation and the relational
actions of types we have

∀n, (e[〈〉/x], e[v/x]) ∈ R>>(n) and ∀n, (e[v/x], e[〈〉/x]) ∈ S>>(n) (1)

from which we conclude that Pr (e[〈〉/x] ⇓) = Pr (e[v/x] ⇓). We now show that v
and e[v/x] are CIU-equivalent. Let E ∈ Stk (τ) be an evaluation context. Let q =
Pr (E[v] ⇓). Define the evaluation context E′ = −; eq 〈〉. Then (E,E′) ∈ S>(n)
for all n which then means, using (1) and Proposition 1, that Pr (E[e[v/x]] ⇓) ≤
Pr (E′[e[〈〉/x]] ⇓). We then have

Pr (E′[e[〈〉/x]] ⇓) = Pr (e[〈〉/x] ⇓) ·Pr (eq 〈〉 ⇓) = r ·Pr (E[v] ⇓)

and so Pr (E[e[v/x]] ⇓) ≤ r ·Pr (E[v] ⇓).
Similarly we have (E′, E) ∈ R>(n) for all n which implies Pr (E[e[v/x]] ⇓) ≥

Pr (E′[e[〈〉/x]] ⇓). We also have Pr (E′[e[〈〉/x]] ⇓) = r ·Pr (E[v] ⇓).
So we have proved Pr (E[e[v/x]] ⇓) = r·Pr (E[v] ⇓) = Pr (e[v/x] ⇓)·Pr (E[v] ⇓).

It is easy to show by Scott induction, that Pr (E[tr[] v] ⇓) = Pr (er 〈〉 ⇓) ·
Pr (E[v] ⇓). We have thus shown that for any value v, the terms e[v/x] and
Pr (tr[] v ⇓) are CIU-equivalent. Using Theorem 1 and Lemmas 9 and 8 we can
thus conclude that the terms ∀α.λx.e and tr are contextually equivalent.

Remark 5.2. Unfortunately we cannot so easily characterize general values of the
type ∀α.α→ α, that is, those not of the form Λ.v for a value v. Consider the term
Λ.t 1

2
⊕ t 1

3
. It is a straightforward calculation that for any evaluation context E

and value v, Pr
(
E
[(
t 1
2
⊕ t 1

3

)
v
]
⇓
)

= 5
12Pr (E[v] ⇓) = Pr

(
E
[
t 5
12
v
]
⇓
)

thus

if Λ.t 1
2
⊕ t 1

3
is equivalent to any Λ.tr it must be Λ.t 5

12
.

Let E be the evaluation context E = let f = −[] in let x = f 〈〉 in f 〈〉.
We compute Pr

(
E
[
Λ.t 1

2
⊕ t 1

3

]
⇓
)

= 13
72 and Pr

(
E
[
Λ.t 5

12

]
⇓
)

= 25
144 showing

that Λ.t 1
2
⊕ t 1

3
is not equivalent to Λ.t 5

12
.

This example also shows that extensionality for expressions, as opposed to
values, of function type does not hold.

A free theorem We now show a free theorem for functions on lists. Let τ be
a type and α not free in τ . We write [τ] for the type of lists µα.(1 + τ × α),
nil for the empty list and cons : ∀α.α → [α] → [α] for the other constructor
cons = Λ.λx.λxs.fold (inr 〈x, xs〉). The function map of type ∀α.∀β.(α→ β)→
[α] → [β] is the function applying the given function to all elements of the list
in order.

Additionally, we define composition of terms f ◦ g as the term λx.f(g(x))
(for x not free in f and g).

We will now show that any term m of type ∀α.∀β.(α→ β)→ [α]→ [β] that is
equivalent to a term of the form Λ.Λ.λx.e satisfiesm[][] (f ◦ g) =ctx m[][]f ◦ map[][] g
for all values f and all deterministic and terminating g. By this we mean that for
each value v in the domain of g, there exists a value u in the codomain of g, such

12

that g v =ctx u. For instance, if g reduces without using choice reductions and
is terminating, then g is deterministic. There are other functions that are also
deterministic and terminating, though, for instance λx.〈〉 ⊕ 〈〉. In the Appendix
we show that these restrictions are not superfluous.

So let m be a closed term of type ∀α.∀β.(α→ β)→ [α]→ [β] and suppose
further that m is equivalent to a term of the form Λ.Λ.λx.e. Let τ, σ, ρ ∈ T be
closed types and f ∈ Val (σ → ρ) and g ∈ Tm (τ → σ) be a deterministic and
terminating function. Then

∅ | ∅ ` m[][](f ◦ g) =ctx m[][]f ◦ map[][]g : [τ]→ [ρ].

We prove two approximations separately, starting with .ctx. We use Theo-
rem 1 multiple times. We have α, β | ∅ ` m[][] : (α→ β)→ [α]→ [β]. Let R =
λn.{(v, u)

∣∣ g v =ctx u} be a member of VRel (τ, σ) and S ∈ VRel (ρ, ρ) be the
constant identity relation on Val (ρ). Let ϕ be a function mapping α to R and β

to S. From Proposition 2 we have (m[][],m[][]) ∈ J(α→ β)→ [α]→ [β]K (ϕ)
>>

(n)
for all n ∈ N.

We first claim that (f ◦ g, f) ∈ Jα→ βK (ϕ)(n) for all n ∈ N. Since f is a
value and has a type, it must be of the form λx.e for some x and e. Take j ∈ N,
related values (v, u) ∈ r(j), k ≤ j and (E,E′) ∈ S>(k) two related evaluation
contexts. We then have Pr (E′[f u] ⇓) = Pr (E′[f(g v)] ⇓) by Theorem 1 and the
definition of relation R. Using the results about Pr

(
· ⇓k

)
and Pr (· ⇓) proved

in Section ?? in the Appendix this gives us

Pr
(
E[f(g(v))] ⇓k

)
≤

∑
π:f(g(v)) ∗w

W (π) Pr
(
E[w] ⇓k

)
≤

∑
π:f(g(v)) ∗w

W (π) Pr (E′[w] ⇓)

and the last term is equal to Pr (E′[f(g v)] ⇓) which is equal to Pr (E′[f u] ⇓).

From this we can conclude (m[][] (f ◦ g),m[][] f) ∈ J[α]→ [β]K (ϕ)
>>

(n) for
all n ∈ N. Note that we have not yet used the fact that g is deterministic and
terminating. We do so now.

Let xs be a list of elements of type τ . Then it is easy to derive, by induction
on the length of the list, using the assumption on g, that there exists a list ys of
elements of type σ, such that map[][] g xs =ctx ys and it is similarly easy to show
that this list ys satisfies (xs, ys) ∈ J[α]K (ϕ)(n) for all n.

This gives us (m[][] (f ◦ g)xs,m[][] f ys) ∈ J[β]K (ϕ)
>>

(n) for all n ∈ N. Since
the relation S is the identity relation, it is easy to see that for all evaluation
contexts E of a suitable type, (E,E) ∈ S>(n) for all n, which gives

m[][] (f ◦ g)xs .CIU m[][] f ys =ctx m[][] f (map[][] g xs) =ctx (m[][] f ◦ map[][] g)xs

where the last equality is an instance of the fact that all except the choice
reductions preserve equivalence, which is very easy to see by showing that CIU-
equivalence is preserved by such reductions and then using Theorem 1.

We now conclude by using the fact that m is (equivalent to) a term of the
form Λ.Λ.λx.e and use Lemma 8 to conclude m[][] (f ◦ g) .ctx m[][] f ◦ map[][] g.

For the other direction, we proceed analogously. The relation for β remains
the identity relation, and the relation for R for α is {(v, u)

∣∣ v =ctx g u}.

13

6 Extension to references

We now sketch the extension of Fµ,⊕ to include dynamically allocated refer-
ences. For simplicity we add ground store only, so we do not have to solve a
domain equation giving us the space of semantic types and worlds. We show an
equivalence using state and probabilistic choice which shows that the addition
of references to the language is orthogonal to the addition of probabilistic choice
and, in particular, that the extension with higher-order dynamically allocated
references can be done as in earlier work on step-indexed logical relations.

We extend the language by adding the type ref nat and extend the grammar
of terms with ` | ref e | e1 := e2 | !e with ` being locations.

To model allocation we need to index the interpretation of types by worlds.
To keep things simple a world w ∈ W is partial bijection f on locations together
with, for each pair of locations (`1, `2) ∈ f , a relation R on numerals. We write
(`1, `2, R) ∈ w when the partial bijection in w relates `1 and `2 and R is the
relation assigned to the pair (`1, `2). Technically, worlds are relations of type
Loc2 × P ({n | n ∈ N}) satisfying the conditions described above.

The operational semantics has to be extended to include heaps, which are
modeled as finite maps from locations to numerals. Given a world, we define a
set of heaps that satisfy the world as

(h1, h2) ∈ bwc ↔ ∀(`1, `2, R) ∈ w, (h1(`1), h2(`2)) ∈ R

The interpretation of types is then extended to include worlds. The denotation of
a type is now an element ofW mon→ VRel (·, ·) where the order onW is inclusion.

Let WRel (τ, τ ′) =W mon→ VRel (τ, τ ′). The interpretation of the reference type
is J∆ ` ref natK (ϕ)(n) = λw.

{
(`1, `2)

∣∣ (`1, `2,=) ∈ w
}

where = is the equality
relation on numerals.

The rest of the interpretation stays the same, apart from some quantification
over “future worlds” in the function case to maintain monotonicity. We also need
to change the definition of the >>-closure to use the world satisfaction relation.
For r ∈WRel (τ, τ ′) we define an indexed relation (indexed by worlds) r>. The
relation r> at world w and step-index n, written r>(w)(n), is{

(E,E′)

∣∣∣∣ ∀w′ ≥ w,∀k ≤ n, ∀(h1, h2) ∈ bw′c ,∀v1, v2 ∈ r(w′)(k),
Pr
(
〈h1, E[v1]〉 ⇓k

)
≤ Pr (〈h2, E[v2]〉 ⇓)

}
and analogously for ·⊥.

We now sketch a proof that two modules, each implementing a counter
by using a single internal location, are contextually equivalent. The increment
method is special. When called, it chooses, uniformly, whether to increment
the counter or not. The two modules differ in the way they increment the
counter. One module increments the counter by 1, the other by 2. Concretely,
we show that the two counters pack (λ− .ref 1, λx.!x, λx.〈〉 ⊕ (x := S !x)) and
pack (λ− .ref 2, λx.!x div 2, λx.〈〉 ⊕ (x := S (S !x))) are contextually equivalent
at type ∃α.(1 → α) × (α → nat) × (α → 1). We have used div for the divi-
sion function on numerals which can easily be implemented as a deterministic
terminating function.

14

The interpretation of existentials J∆ ` ∃α.τK (ϕ)(n) now maps the world w
to {

(pack v, pack v′)
∣∣ ∃σ, σ′ ∈ T,∃r ∈WRel (σ, σ′) ,

(v, v′) ∈ J∆,α ` τK (ϕ [α 7→ r]) (w)(n)

}
To prove the counters are contextually equivalent we show them directly

related in the value relation. We choose the types σ and σ′ to be ref nat and
the relation r to be λw.

{
(`1, `2)

∣∣ (`1, `2,{(n, 2 · n)
∣∣ n ∈ N

})
∈ w

}
. We now

need to check all three functions to be related at the value relation.
First, the allocation functions. We only show one approximation, the other is

completely analogous. Concretely, we show that for any n ∈ N and any world w ∈
W we have (λ− .ref 1, λ− .ref 2) ∈ J1→ αK (r)(w)(n). Let n ∈ N and w ∈ W.
Take w′ ≥ w and related arguments v, v′ at type 1. We know by construction
that v = v′ = 〈〉 so we have to show that (ref 1, ref 2) ∈ JαK (r)

>>
(w′)(n).

Let w′′ ≥ w′ and j ≤ n and take two related evaluation contexts (E,E′) at

JαK (r)
>

(w′′)(j) and (h, h′) ∈ bw′′c. Let `(
′) 6∈ dom

(
h(′)
)

. We have

Pr
(
〈h,E[ref 1]〉 ⇓j

)
= Pr

(
〈h [` 7→ 1], E[`]〉 ⇓j

)
and Pr (〈h′, E′[ref 2]〉 ⇓) = Pr (〈h′ [`′ 7→ 2], E′[`′]〉 ⇓).

Let w′′′ be w′′ extended with (`, `′, r). Then the extended heaps are in bw′′′c
and w′′′ ≥ w′′. Thus E and E′ are also related at w′′′ by monotonicity. Similarly
we can prove that (`, `′) ∈ JαK (r)(j)(w′′′). This then allows us to conclude
Pr
(
〈h [` 7→ 1], E[`]〉 ⇓j

)
≤ Pr (〈h′ [`′ 7→ 2], E′[`′]〉 ⇓) which concludes the proof.

Lookup is simple to show. The more interesting case is the update, which
chooses to increase or not.

Let n ∈ N and w ∈ W. Let ` and `′ be related at JαK (r)(w)(n). We need to

show that (〈〉 ⊕ (` := S !`) , 〈〉 ⊕ (`′ := S (S !`′))) ∈ J1K (r)
>>

(w)(n). Take w′ ≥ w,
j ≤ n and (h, h′) ∈ bw′c. Take related evaluation contexts E and E′ at w′ and
j. We have the following two identities

Pr
(
〈h,E [〈〉 ⊕ (` := S !`)]〉 ⇓j

)
=

1

2
Pr
(
〈h,E [〈〉]〉 ⇓j

)
+

1

2
Pr
(
〈h,E [` := S !`]〉 ⇓j

)
Pr (〈h′, E′ [〈〉 ⊕ (`′ := S S !`′)]〉 ⇓) =

1

2
Pr (〈h′, E′ [〈〉]〉 ⇓) +

1

2
Pr (〈h′, E′ [`′ := S S !`′]〉 ⇓)

Since ` and `′ are related at JαK (r)(w)(n) and w′ ≥ w and (h, h′) ∈ bw′c we
know that h(`) = m and h′(`′) = 2 ·m for some m ∈ N.

Thus Pr
(
〈h,E [` := S !`]〉 ⇓j

)
= Pr

(
〈h1, E[〈〉]〉 ⇓j

)
where h1 = h [` 7→ m+ 1].

Similarly we have Pr (〈h′, E′ [`′ := S S !`′]〉 ⇓) = Pr (〈h2, E
′[〈〉]〉 ⇓) where h2 =

h′
[
`′ 7→ 2 · (m+ 1)

]
. The fact that h1 and h2 are still related concludes the

proof.
The above proof shows that reasoning about examples involving state and

choice is possible and that the two features are largely orthogonal.

7 Conclusion

We have constructed a step-indexed logical relation for a higher-order language
with probabilistic choice. In contrast to earlier work, our language also features

15

impredicative polymorphism and recursive types. We also show how to extend
our logical relation to a language with dynamically allocated local state. In fu-
ture work, we will explore whether the step-indexed technique can be used for
developing models of program logics for probabilistic computation that support
reasoning about more properties than just contextual equivalence. We are also
interested in extensions to include primitives for continuous probability distri-
butions.

References

1. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Proceedings of ESOP (2006)

2. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems
23(5) (2001)

3. Birkedal, L., Bizjak, A., Schwinghammer, J.: Step-indexed relational reasoning for
countable nondeterminism. Logical Methods in Computer Science 9(4) (2013)

4. Crubillé, R., Lago, U.D.: On probabilistic applicative bisimulation and call-by-
value -calculi. In: Proceedings of ESOP (2014)

5. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: Proceedings of POPL (2014)

6. Danos, V., Harmer, R.S.: Probabilistic game semantics. ACM Transactions on
Computational Logic 3(3) (2002)

7. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. Logical
Methods in Computer Science 7(2) (2011)

8. Ehrhard, T., Pagani, M., Tasson, C.: The computational meaning of probabilistic
coherence spaces. In: Proceedings of LICS (2011)

9. Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully ab-
stract for probabilistic PCF. In: Proceedings of POPL (2014)

10. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for
algebraic effects. In: Proceedings of LICS (2010)

11. Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings
of LICS (1989)

12. Lago, U.D., Zorzi, M.: Probabilistic operational semantics for the lambda calculus.
RAIRO - Theoretical Informatics and Applications 46 (2012)

13. Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10(3) (2000)

14. Pitts, A.M.: Typed operational reasoning. In: Pierce, B.C. (ed.) Advanced Topics
in Types and Programming Languages, chap. 7. MIT Press (2005)

15. Pitts, A.M.: Step-indexed biorthogonality: a tutorial example. In: Ahmed, A., Ben-
ton, N., Birkedal, L., Hofmann, M. (eds.) Modelling, Controlling and Reasoning
About State. No. 10351 in Dagstuhl Seminar Proceedings (2010)

16. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Proceedings of POPL (2002)

17. Saheb-Djahromi, N.: Cpo’s of measures for nondeterminism. Theoretical Computer
Science 12(1) (1980)

16

Appendix

A Language definitions and properties

τ ::= α | 1 | nat | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα.τ | ∀α.τ | ∃α.τ
v ::= x | 〈〉 | n | 〈v1, v2〉 | λx.e | inl v | inr v | Λ.e | pack v
e ::= x | 〈〉 | n | 〈e1, e2〉 | λx.e | inl e | inr e | Λ.e | pack e

| proji e | e1 e2 | match (e, x1.e1, x2.e2) | e[]
| unpack e1 as x in e2 | unfold e | fold e | rand e
| if1 e then e1 else e2 | P e | S e

E ::= − | 〈E, e〉 | 〈v,E〉 | inl E | inr E | packE
| projiE | E e | v E | match (E, x1.e1, x2.e2) | E[]

| unpack E as x in e | unfoldE | foldE
| if1 E then e1 else e2 | randE | PE | SE

Fig. 2. Types, terms and evaluation contexts. n are numerals of type nat.

α ∈ ∆
∆ ` α

∆ ` 1 ∆ ` nat
∆ ` τ1 ∆ ` τ2

∆ ` τ1 × τ2
∆ ` τ1 ∆ ` τ2

∆ ` τ1 + τ2

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆,α ` τ
∆ ` ∃α.τ

∆, α ` τ
∆ ` ∀α.τ

∆, α ` τ
∆ ` µα.τ

Fig. 3. Well-formed types. The judgment ∆ ` τ expresses ftv(τ) ⊆ ∆.

The following lemma uses definitions from Section 3.

Lemma A.1. Φ is monotone and preserves suprema of ω-chains.

Proof. Since the order in F is pointwise and multiplication and addition are
monotone it is easy to see that Φ is monotone.

To show that it is continuous let {fn}n∈ω be an ω-chain in F . If e is a value
the result is immediate. Otherwise we have

Φ

(
sup
n∈ω

fn

)
(e) =

∑
e

p
 e′

p ·
(

sup
n∈ω

fn

)
(e′)

17

and since suprema in F are computed pointwise we have

=
∑
e

p
 e′

p · sup
n∈ω

(fn(e′))

Using the fact that sum and product are continuous and that the sum in the
definition of Φ is finite we get

Φ

(
sup
n∈ω

fn

)
(e) = sup

n∈ω

∑
e

p
 e′

p · fn(e′)

= sup
n∈ω

Φ (fn) (e) =

(
sup
n∈ω

Φ(fn)

)
(e)

Example A.2. Let us compute probabilities of termination of some example pro-
grams.

– If v ∈ Val then by definition Pr (v ⇓) = 1.
– If e ∈ Tm \Val is stuck then Pr (e ⇓) = 0 by definition.

– Suppose there exists a cycle e
1
 e1

1
 e2

1
 · · · 1

 en
1
 e. Then Pr (e ⇓) =

Pr (e1 ⇓) = · · · = Pr (en ⇓) = 0.
It follows from the assumption that none of ek are values and since the sum
of outgoing weights is at most 1 we have that for each ek and e all other
weights must be 0. We thus get that Pr (e ⇓) = Pr (e1 ⇓) = · · · = Pr (en ⇓)
by simply unfolding the fixed point n-times. To show that they are all 0 we
use Scott induction. Define

S = {f ∈ F|f(e) = f(e1) = f(e2) = . . . = f(en) = 0} .

Clearly S is an admissible subset of F and ⊥ ∈ S. Using the above exis-
tence of the cycle of reductions it is easy to show that S ⊆ Φ [S]. Hence by
the principle of Scott induction we have Pr (· ⇓) ∈ S and thus Pr (e ⇓) =
Pr (e1 ⇓) = . . . = Pr (en ⇓) = 0.

This example also shows that we do really want the least fixed point of Φ, since
this allows us to use Scott-induction and prove that diverging terms have zero
probability of termination.

Remark A.3. It is perhaps instructive to consider the relationship to the termi-
nation predicate when we do not have weights on reductions. In such a case we
can consider two extremes, may- and must-termination predicates. These can
be considered to be maps Tm → 2 where 2 is the boolean lattice 0 ≤ 1. Let
B = Tm→ 2. Since 2 is a complete lattice so is B. In particular it is a pointed
ω-cpo. We can define may-termination as the least fixed point of Ψ : B → B
defined as

Ψ(f)(e) =

{
1 if e ∈ Val

max
e e′

f(e′) otherwise
.

18

Observe again that if e is stuck then Ψ(f)(e) = 0 since the maximum of an
empty set is the least element by definition.

Must-termination is slightly different. We need a special case for stuck terms.

Ψ ′(f)(e) =

1 if e ∈ Val

min
e e′

f(e′) ∃e′ ∈ Tm, p ∈ I, e p
 e′

0 otherwise

Let ↓ be the least fixed point of Ψ and ⇓ the least fixed point of Ψ ′. An
additional property that holds for ↓ and ⇓, because of the fact that 2 is discrete,
is that for a given e, if e ↓= 1 then there is a natural number n, such that
Ψn(⊥)(e) = 1, i.e. if it terminates we can observe this in finite time. This is
because if an increasing sequence in 2 has supremum 1, then the sequence must
be constant 1 from some point onward.

In contrast, if Pr (e ⇓) = 1 it is not necessarily the case that there is a natural
number n with Φn(⊥)(e) = 1 because it might be the case that 1 is only reached
in the limit.

The next lemma uses the abbreviation ; defined in Section 5.

Lemma A.4. For all terms e, e′ ∈ Tm, Pr (e; e′ ⇓) = Pr (e ⇓) ·Pr (e′ ⇓).

Proof. We prove two approximations separately, both of them by Scott induc-
tion.

≤ Consider the set

S =

{
f ∈ F

∣∣∣∣ f ≤ Pr (· ⇓) ∧ ∀e, e′ ∈ Tm,
f(e; e′) ≤ Pr (e ⇓) ·Pr (e′ ⇓)

}
.

It is easy to see that S contains ⊥ and is closed under ω-chains, so we only
need to show that it is preserved by Φ. The first condition is trivial to check
since Pr (· ⇓) is a fixed point of Φ. Let f ∈ F and e, e′ ∈ Tm. If e ∈ Val then
Φ(f)(e; e′) = f(e′) on account of one β-reduction. By assumption f(e′) ≤
Pr (e′ ⇓) and by definition we have Pr (e ⇓) = 1.
If e is not a value we have Φ(f)(e; e′) =

∑
e

p
 e′′

p · f (e′′; e′) ≤
∑
e

p
 e′′

p ·
Pr (e′′ ⇓) ·Pr (e′ ⇓) = Pr (e ⇓) ·Pr (e′ ⇓).
Thus we can conclude by Scott induction that Pr (· ⇓) ∈ S.

≥ For this direction we consider the set

S =

{
f ∈ F

∣∣∣∣ ∀E ∈ Stk, e ∈ Tm, v ∈ Val,
Pr (E[e] ⇓) ≥ f(e) ·Pr (E[v] ⇓)

}
.

It is easy to see that it is admissible and closed under Φ. Hence Pr (· ⇓) ∈ S.
Thus we have, taking E = −; e′ and any value v, that Pr (e ⇓) ·Pr (v; e′ ⇓) ≤
Pr (e; e′ ⇓) and it is easy to see that Pr (v; e′ ⇓) = Pr (e′ ⇓).

Lemma A.5. Let e, e′ ∈ Tm. If e
cuff
=⇒ e′ then for all k, Pr

(
e ⇓k

)
= Pr

(
e′ ⇓k

)
.

19

Proof. When k is 0 the result is immediate. So assume k > 0. We need to
distinguish two cases.

– If there exists v′ ∈ Val such that e′
cuff
=⇒ v′ then we also have e

cuff
=⇒ v′ and

we are done.
– If not, then we need to inspect the definition of Red (e) and Red (e′). It

is easy to see that any path π ∈ Red (e′) corresponds to a unique path
π′ ·π in Red (e). It is similarly easy to see that W (π) =W (π′ · π) and that
` (π) = ` (π′ · π). Thus we have that Pr

(
e ⇓k

)
= Pr

(
e′ ⇓k

)
.

Proposition A.6. For each e ∈ Tm we have Pr (e ⇓) ≤ supk∈ω
(
Pr
(
e ⇓k

))
.

Proof. We use Scott induction. Let S be the set

S =

{
f ∈ F

∣∣∣∣ ∀e, f(e) ≤ sup
k∈ω

(
Pr
(
e ⇓k

))}
It is easy to see that S is closed under limits of ω-chains and that ⊥ ∈ S so we
only need to show that S is closed under Φ. Let f ∈ S and e an expression. We
have

Φ(f)(e) =

1 if e ∈ Val∑
e

p
 e′

p · f (e′) otherwise

and we consider 4 cases.

– e ∈ Val. We always have e
cuff
=⇒ e and so we have that for any k > 0,

Pr
(
e ⇓k

)
= 1 which is the top element.

– e
p
 e′ and the reduction is not unfold-fold or choice. Then we use Lemma 3

to get Pr
(
e ⇓k

)
= Pr

(
e′ ⇓k

)
for all k. Similarly we have that Φ(f)(e) =

f(e′) from the definition of Φ. Thus we can use the assumption that f ∈ S.

– e
1
 e′ and the reduction is unfold-fold. This follows directly from the defi-

nition of Red (·), Ψ and the assumption that f ∈ S.
– The reduction from e is a choice reduction. Suppose e reduces to e1, e2, . . . , en.

Then we know from the operational semantics that the weights are all 1
n .

We get

Φ(f)(e) =

n∑
i=1

1

n
f(ei) and Pr

(
e ⇓k+1

)
=

n∑
i=1

1

n
Pr
(
ei ⇓k

)
. (2)

Using the fact that Pr
(
ei ⇓k

)
is an increasing chain in k for each ei we have

sup
k∈ω

(
Pr
(
e ⇓k

))
=

n∑
i=1

1

n
sup
k∈ω

(
Pr
(
ei ⇓k

))
(3)

By assumption f(ei) ≤ supk∈ω
(
Pr
(
ei ⇓k

))
for all i ∈ {1, 2, . . . , n} which

concludes the proof using (??) and (??).

20

Interpretation of types and the logical relation

Lemma A.7. The interpretation of types in Figure 1 is well defined. In partic-
ular the interpretation of types is non-expansive.

The substitution lemma is crucial for proving compatibility of existential and
universal types. The proof is by induction.

Lemma A.8 (Substitution). For any well-formed types ∆,α ` τ and ∆ ` σ
and any ϕ we have J∆ ` τ [σ/α]K (ϕ) = J∆,α ` τK (ϕ [α 7→ J∆ ` σK (ϕ)]).

We state and prove additional context extension lemmas. The other cases
are similar.

Lemma A.9. Let n ∈ N. If (v, v′) ∈ J∆ ` τ1 → τ2K (ϕ)(n) and (E,E′) ∈ J∆ ` τ2K (ϕ)
>

(n)

then (E ◦ (v []), E′ ◦ (v′ [])) ∈ J∆ ` τ1K (ϕ)
>

(n).

This follows directly from the definition of the interpretation of types.

Corollary A.10. Let n ∈ N. If (e, e′) ∈ J∆ ` τ1K (ϕ)
>>

(n) and (E,E′) ∈ J∆ ` τ2K (ϕ)
>

(n)
then

(E ◦ ([] e), E′ ◦ ([] e′)) ∈ J∆ ` τ1 → τ2K (ϕ)
>

(n).

Proof. Let n ∈ N. Take (v, v′) ∈ J∆ ` τ1 → τ2K (ϕ)(n). By Lemma ?? and mono-

tonicity we have for all k ≤ n, (E ◦ (v []), E′ ◦ (v′ [])) ∈ J∆ ` τ1K (ϕ)
>

(k) and by

the assumption that (e, e′) ∈ J∆ ` τ1K (ϕ)
>>

(n) we have

Pr
(
E[v e] ⇓k

)
≤ Pr (E′[v′ e′] ⇓)

concluding the proof.

Lemma A.11. Let n ∈ N. If (E,E′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>

(n) then

(E ◦ (unfold []), E′ ◦ (unfold [])) ∈ J∆ ` µα.τK (ϕ)
>

(n).

Proof. Let n ∈ N. We consider two cases.

– n = m+ 1
Take (fold v, fold v′) ∈ J∆ ` µα.τK (ϕ)(n). By definition

(v, v′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)(m).

Let k ≤ n. If k = 0 the condition is trivially true (since Pr
(
E[unfold fold v] ⇓k

)
=

0) so assume k = `+1. Note that crucially ` ≤ m. Using Lemma 5, Lemma 4
and Lemma 2 we have

Pr
(
E[unfold (fold v)] ⇓k

)
= Pr

(
E[v] ⇓`

)
≤ Pr (E′[v′] ⇓)

= Pr (E′[unfold (fold v′)] ⇓)

concluding the proof.

21

– n = 0. This case is trivial, since Pr
(
e ⇓0

)
= 0 for any e.

Lemma A.12. Let n ∈ N. If (E,E′) ∈ J∆ ` µα.τK (ϕ)
>

(n) then

(E ◦ (fold []), E′ ◦ (fold [])) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>

(n).

Proof. Easily follows from the fact that if (v, v′) are related at the unfolded type
then (fold v, fold v′) are related at the folded type (using weakening to get to
the same stage).

To relate the logical relation to contextual and CIU approximations we first
have that the composition of logical and CIU approximations is included in the
logical approximation relation.

Corollary A.13. If ∆ | Γ ` e .log e′ : τ and ∆ | Γ ` e′ .CIU e′′ : τ then

∆ | Γ ` e .log e′′ : τ .

This follows directly from the definition. This corollary in turn implies, together
with Proposition 2 and the fact that all compatible relations are in particular
reflexive, that CIU approximation relation is contained in the logical relation.

Corollary A.14. If ∆ | Γ ` e .CIU e′ : τ then ∆ | Γ ` e .log e′ : τ .

Finally we have adequacy of the logical relation.

Corollary A.15. Logical approximation relation .log is adequate.

Proof. Assume ∅ | ∅ ` e .log e′ : τ . We are to show that Pr (e ⇓) ≤ Pr (e′ ⇓).

Straight from the definition we have ∀n ∈ N, (e, e′) ∈ J∅ ` τK>>(n). The empty
evaluation context is always related to itself (at any type). This implies ∀n ∈
N,Pr (e ⇓n) ≤ Pr (e′ ⇓) which further implies (since the right-hand side is inde-
pendent of n) that supn∈ω (Pr (e ⇓n)) ≤ Pr (e′ ⇓). Using Proposition 1 we thus
have Pr (e ⇓) ≤ supn∈ω (Pr (e ⇓n)) ≤ Pr (e′ ⇓) concluding the proof.

Lemma A.16 (Functional extensionality for values). Suppose τ, σ ∈ T(∆)
and let λx.e and λx′.e′ be two values of type τ → σ in context ∆ | Γ . If for all
u ∈ Val (τ) we have ∆ | Γ ` (λx.e) u .ctx (λx′.e′) u : σ then

∆ | Γ ` λx.e .ctx λx′.e′ : τ → σ .

Proof. We use Theorem 1 several times and show λx.e and λx′.e′ are logically
related. Let n ∈ N, ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` Γ K (ϕ)(n). Let v = λx.eγ

and v′ = λx′.e′γ′. We are to show (v, v′) ∈ J∆ ` τ → σK (ϕ)
>>

(n) and to do this
we show directly (v, v′) ∈ J∆ ` τ → σK (ϕ)(n).

Let j ≤ n, (u, u′) ∈ JτK (ϕ)(n), k ≤ j and (E,E′) ∈ JσK (ϕ)
>

(k). We have
to show Pr

(
E[v u] ⇓k

)
≤ Pr (E′[v′ u′] ⇓). From Proposition 2 we have that

(v, v) ∈ Jτ → σK (ϕ)
>>

(n) and so Pr
(
E[v u] ⇓k

)
≤ Pr (E′[v u′] ⇓). From the

assumption of the lemma we have that v u′ .CIU v′ u′ which concludes the
proof.

22

Lemma A.17 (Extensionality for the universal type). Let τ ∈ T(∆,α) be
a type. Let Λ.e, Λ.e′ be two terms of type ∀α.τ in context ∆ | Γ . If for all closed
types σ ∈ T we have

∆ | Γ ` e .ctx e′ : τ [σ/α]

then ∆ | Γ ` Λ.e .ctx Λ.e′ : ∀α.τ .

Proof. We again use Theorem 1 multiple times. Let n ∈ N, ϕ ∈ VRel (∆) and
(γ, γ′) ∈ J∆ ` Γ K (ϕ)(n). Let v = Λ.eγ and v′ = Λ.e′γ′. We show directly that
(v, v′) ∈ J∆ ` ∀α.τK (ϕ)(n).

So take σ, σ′ ∈ T and r ∈ VRel (σ, σ′) and we need to show (eγ, e′γ′) ∈
J∆,αK (ϕ [α 7→ r])

>>
(n). Let k ≤ n and (E,E′) related at k. We have to show

Pr
(
E[eγ] ⇓k

)
≤ Pr (E′[e′γ′] ⇓). From Proposition 2 we have

(eγ, eγ′) ∈ J∆,αK (ϕ [α 7→ r])
>>

(n)

and so Pr
(
E[eγ] ⇓k

)
≤ Pr (E′[eγ′] ⇓). Let ~σ be the types for the right hand

side in ϕ. Then E′ ∈ Stk (τ [~σ, σ′/∆, α]). Using the assumption of the lemma we

get that eγ′ .CIU e′γ′ at the type τ [~σ, σ′/∆, α] which immediately implies that
Pr (E′[eγ′] ⇓) ≤ Pr (E′[e′γ′] ⇓) concluding the proof.

B The probability of termination

We prove the claims from Section 5 about the termination probability.

Proposition B.1. For any expression e, Pr (e ⇓) is a left-computable real num-
ber.

Proof. We first prove by induction that for any n, Φn(⊥) restricts to a map
Tm → [0, 1] ∩ Q. The proof is simple since the function ⊥ clearly maps into
rationals and for the inductive step we use the fact that the sums in the definition
of Φ are always finite, and the rational numbers are closed under finite sums.

To conclude the proof we have by definition that Pr (e ⇓) = supn∈ω Φ
n(⊥)(e)

and we have just shown that all the numbers Φn(⊥)(e) are rational. Moreover
the sequence {Φn(⊥)(e)}n∈N is computable, since for a given n we only need to
check all the reductions from e of length at most n to determine the value of

Φn(⊥)(e) and the reduction relation
p
 is naturally computable.

Example B.2. To see that the probability of termination can also be non-computable
we informally describe a program whose probability of termination would allow
us to solve the halting problem were it computable.

The program we construct is recursively defined as T = fix[][], ϕ where

ϕ = λf.λx.t x⊕ (Ω ⊕ f (succ x))

where t x is a program that runs the x-th Turing machine on the empty input
and does not use any choice reductions. Thus Pr (t x ⇓) ∈ {0, 1}. It is well known

23

that the empty string acceptance problem is undecidable. Note that we put Ω in
the program to ensure that every second digit in binary will be 0. It is an easy
computation to show that

Pr (T 1 ⇓) =

∞∑
n=0

1

22n+1
pn+1

where pn = 1 if the n-th Turing machine terminates on the empty input and 0
otherwise. If Pr (T 1 ⇓) were computable we could decide whether a given Turing
machine accepts the empty string by computing its index n and then computing
the first 2n digits of Pr (T 1 ⇓).

We will now generalize the last example and show that any left-computable
real arises as the probability of termination of a program. Technically, we show
that given a term of the language that computes an increasing bounded sequence
of rationals (represented as pairs of naturals) we can define a program that
terminates with probability the supremum of the sequence. We then use the
fact that our language Fµ,⊕ is Turing complete to claim that any computable
sequence of rationals can be represented as such a term of Fµ,⊕.

Proposition B.3. For every left-computable real in [0, 1] there is a program er
of type 1→ 1 such that Pr (er 〈〉 ⇓) = r.

Proof. So let r : nat → nat × nat compute an increasing sequence of rationals
in the interval [0, 1]. Additionally assume that for all n ∈ N.

r n
cf

=⇒ 〈kn, `n〉

for some kn, `n ∈ N. That is, r does not use choice reductions. This is not an
essential limitation, but simplifies the argument which we are about to give.

First we define a recursive function e of type e : (nat → nat × nat) → 1 as
e = fix[][]ϕ where

ϕ = λf.λr.let (k, `) = r 1 in

let y = rand ` in

if y ≤ k then 〈〉 else f r′

and

r′ = λz.
r (succ z)− (k, `)

1− (k, `)

and subtraction and division is implemented in the obvious way. Note that the
condition in ϕ ensures that (k, `) does not represent the rational number 1 and
therefore division would make sense. But technically, since we implement ratio-
nals with pairs of naturals no exception can occur and we just represent the pair
with the second component being 0.

24

Let f and r be values of the appropriate type. We have

Pr
(
ϕf r ⇓m+1

)
≤ k1

`1
Pr (〈〉 ⇓m) +

`1 − k1

`1
·Pr (f r′ ⇓m)

where r 1
cf

=⇒ (k1, `1). The inequality comes from the fact that applying r might
take some unfold-fold reductions. Iterating this we get

Pr
(
e r ⇓m+1+2n

)
≤ kn
`n

+
`n − kn
`n

·Pr
(
e r(n) ⇓m+1

)
where r n

cf
=⇒ (kn, `n) and

r(n) = λz.
r (succn z)− (kn, `n)

1− (kn, `n)

is the n-th iteration of the ′ used on r in ϕ.
It is easy to see that Pr

(
e r(n) ⇓1

)
= 0 since it takes at least one unfold-fold

and one choice reduction to terminate. Thus pickingm = 1 we have Pr
(
e r ⇓2+2n

)
=

kn
`n

and thus

sup
n∈ω

Pr (e r ⇓n) ≤ sup
n∈ω

kn
`n

Using the same reasoning as above we also have

Pr (e r ⇓) ≥ kn
`n

+
`n − kn
`n

·Pr
(
e r(n) ⇓

)
≥ kn
`n

which shows (using Proposition 1) that

sup
n∈ω

kn
`n
≤ Pr (e r ⇓) ≤ sup

n∈ω
Pr (e r ⇓n) ≤ sup

n∈ω

kn
`n

and so

sup
n∈ω

kn
`n

= Pr (e r ⇓) .

C Distributions

We now define distributions and prove some of their properties and properties
of the probability of termination which are used in the examples.

By a distribution we mean a subprobability measure on the discrete space
Val of values. Let

Dist = {f : Val→ [0, 1]|
∑
v∈Val

f(v) ≤ 1}

25

be the space of subprobability measures on Val. To be precise, f ∈ Dist are
not measures, but given any f we can define a subprobability measure µf (A) =∑
v∈A f(v) and given any subprobability measure µ, we can define fµ ∈ Dist

as the Radon-Nikodym derivative with respect to the counting measure. Or in
more prosaic terms fµ(v) = µ ({v}). It is easy to see that these two operations
are mutually inverse and since f ∈ Dist are easier to work with we choose this
presentation.

Lemma C.1. Dist ordered pointwise is a pointed ω-cpo.

Proof. The bottom element is the everywhere 0 function. Let {fn}n∈ω be an
ω-chain. Define the limit function f as the pointwise supremum

f(v) = sup
n∈ω

fn(v).

Clearly all pointwise suprema exist and f is the least upper bound, provided we
can show that f ∈ Dist. To show this last fact we need to show∑

v∈Val

sup
n∈ω

fn(v) ≤ 1.

but this is a simple consequence of Fatou’s lemma since from the assumption
that {fn}n∈ω we have supn∈ω fn(v) = limn→∞ fn(v) = lim infn→∞ fn(v) and so
by Fatou’s lemma (relative to the counting measure on Val) we have

∑
v∈Val

sup
n∈ω

fn(v) ≤ lim inf
n→∞

(∑
v∈Val

fn(v)

)
≤ lim inf

n→∞
1 = 1.

Now define Ξ : (Tm→ Dist)→ (Tm→ Dist) as follows

Ξ(ϕ)(e) =

δe if e ∈ Val∑
e

p
 e′

p · ϕ (e′) otherwise

where δe is (the density function of) the Dirac measure at point e. Since Dist
is an ω-cpo so is Tm → Dist ordered pointwise. It is easy to see that in this
ordering Ξ is monotone and continuous and so by Kleene’s fixed point theorem
it has a least fixed point reached in ω iterations. Let D = supn∈ω (Ξn(⊥)) be
this fixed point.

Lemma C.2. Let e ∈ Tm and v ∈ Val. If D(e)(v) > 0 then there exists a path
π from e to v, i.e. e steps to v.

Proof. We use Scott induction. Define

S =
{
f : Tm→ Dist

∣∣ ∀e, v, f(e)(v) > 0→ ∃π, π : e ∗ v
}

26

The set S contains ⊥. To see that it is closed under ω-chains observe that if
(supn∈ω fn) (e)(v) > 0 then there must be n ∈ ω, such that fn(e)(v) > 0 so we
may use the path from e to v that we know exists from the assumption that
fn ∈ S.

It is similarly easy to see that given f ∈ S we have Ξ(f) ∈ S. Thus we have
that D ∈ S concluding the proof.

Lemma C.3. For any expression e ∈ Tm we have∑
v∈Val

D(e)(v) = Pr (e ⇓)

Proof. First we show by induction on n that all the finite approximations of
Pr (e ⇓) and D(e) agree.

– The base case is trivial since by definition∑
v∈Val

Ξ0(⊥)(e)(v) = 0 = Φ0(⊥)(e)

– For the inductive case we consider two cases. If e ∈ Val then both sides are
1. In the other case we have

∑
v∈Val

Ξn+1(⊥)(e)(v) =
∑
v∈Val

∑
e

p
 e′

p ·Ξn(e′)

 (v)

=
∑
v∈Val

∑
e

p
 e′

p ·Ξn(e′)(v)

by Tonelli’s theorem we can we can interchange the sums to get

=
∑
e

p
 e′

(
p
∑
v∈Val

Ξn(e′)(v)

)

=
∑
e

p
 e′

p · Φn(⊥)(e′) = Φn+1(⊥)(e)

Thus we have that for all n,∑
v∈Val

Ξn(⊥)(e)(v) = Φn(⊥)(e)

and so

sup
n∈ω

(∑
v∈Val

Ξn(⊥)(e)(v)

)
= sup
n∈ω

(Φn(⊥)(e)) = Pr (e ⇓)

27

By the dominated convergence theorem we can exchange the sup (which is the
limit) and the sum on the left to get

sup
n∈ω

(∑
v∈Val

Ξn(⊥)(e)(v)

)
=
∑
v∈Val

sup
n∈ω

(Ξn(⊥)(e)(v))

=
∑
v∈Val

D(e)(v)

as required.

Proposition C.4 (Monadic bind for distributions). Let e ∈ Tm and E
an evaluation context of appropriate type.

D (E[e]) =
∑
v∈Val

D(e)(v) · D (E[v]) .

Proof. It is easy to show by induction on ` that

∀e ∈ Tm, Ξ` (⊥) (E[e]) =
∑
v∈Val

∑
π:e ∗v
len(π)≤`

W (π) ·Ξ`−len(π) (E[v]) (4)

(using the fact that the length of the empty path is 0 and its weight 1).
Similarly it is easy to show by induction on ` that

∀e ∈ Tm, Ξ`+1 (⊥) (e) (v) =
∑

π:e ∗v
len(π)≤`

W (π) (5)

which immediately implies

∀e ∈ Tm,D(e)(v) =
∑

π:e ∗v

W (π) (6)

Using these we have

D(E[e]) = sup
`∈ω

∑
v∈Val

∑
π:e ∗v
len(π)≤`

W (π) ·Ξ`−len(π) (E[v])

and since for each v the sequence
∑

π:e ∗v
len(π)≤`

W (π) · Ξ`−len(π) (E[v]) is increasing

with ` we have

=
∑
v∈Val

sup
`∈ω

∑
π:e ∗v
len(π)≤`

W (π) ·Ξ`−len(π) (E[v])

=
∑
v∈Val

∑
π:e ∗v

W (π) · D (E[v])

=
∑
v∈Val

D (E[v])
∑

π:e ∗v

W (π)

=
∑
v∈Val

D(e)(v) · D (E[v])

28

Corollary C.5. Let e ∈ Tm be typeable and E an evaluation context of appro-
priate type. Then Pr (E[e] ⇓) =

∑
π:e ∗vW(π) ·Pr (E[v] ⇓).

Corollary C.6. For any term e and evaluation context E the equality

Pr (E[e] ⇓) =
∑
v∈Val

D(e)(v) ·Pr (E[v] ⇓)

holds.

Corollary C.7. Let e ∈ Tm and E an evaluation context. Suppose D(e) = p·δv
for some v ∈ Val and p ∈ [0, 1]. Then Pr (E[e] ⇓) = p ·Pr (E[v] ⇓).

Proof. Use Proposition ?? and Lemma ??.

Proposition C.8. For any evaluation context E and term e and any k ∈ N,

Pr
(
E[e] ⇓k

)
≤

∑
π:e ∗v

W (π) ·Pr
(
E[v] ⇓k

)
The proof proceeds by induction on k.

D Further examples

In this section we show further equivalences which did not fit into the paper
proper due to space restrictions.

Fair coin from an unfair one Given an unfair coin, that is, a coin that comes
up heads with probability p and tails with probability 1−p, where 0 < p < 1 we
can derive an infinite sequence of fair coin tosses using the procedure proposed
by von Neumann. The procedure follows from the observation that if we toss an
unfair coin twice, the likelihood of getting (H, T) is the same as the likelihood
of getting (T, H). So the procedure works as follows

– Toss the coin twice
– If the result is (H, T) or (T, H) return the result of the first toss
– Else repeat the process

We only consider rational p in this section (for a computable p we could
proceed similarly, but the details would be more involved, since the function
which returns 1 with probability p and 0 with probability 1 − p is a bit more
challenging to write).

Let 1 ≤ k < n be two natural numbers and p = k
n . Below we define ep : 1→ 2

to be the term implementing the von Neumann procedure for generating fair
coin tosses from an unfair coin tp which returns true with probability p and
false with proability 1− p. We will show that ep is contextually equivalent to
λx.true⊕ false. We define ep as

ep = fix[][]ϕ

29

where

2 = 1 + 1

true = inl 〈〉
false = inr 〈〉
e ≡ e′ = match (e, .e′, .match (e′, .false, .true))

if e then e1 else e2 = match (e, .e1, .e2)

tp = λ〈〉.let y = randn in (y ≤ k)

and

ϕ = λf.λ〈〉.let x = tp 〈〉 in
let y = tp 〈〉 in
if x ≡ y then f 〈〉 else x.

By a simple calculation using the operational semantics we can see that
given any evaluation context E, we have Pr (E[tp 〈〉] ⇓) = k

nPr (E[true] ⇓) +
n−k
n Pr (E[false] ⇓). Given any value f of type (1 → 2) and any evaluation

context E with the hole of type 2 we compute that Pr (E[ϕf 〈〉] ⇓) is equal to
k2+(n−k)2

n2 Pr (E[f 〈〉] ⇓) + 2 · k·(n−k)
n2 Pr (E[true⊕ false] ⇓). Finally for ep and

any evaluation context E with hole of type 2 we have

Pr (E[ep 〈〉] ⇓) = Pr (ϕep 〈〉 ⇓) =
k2 + (n− k)2

n2
Pr (E[ep 〈〉] ⇓)

+ 2 · k · (n− k)

n2
Pr (E[true⊕ false] ⇓) .

from which we have by simple algebraic manipulation that Pr (E[ep 〈〉] ⇓) =
Pr (E[true⊕ false] ⇓).

It is now straightforward to show ∅ | ∅ ` ep ∼=log λ〈〉.true⊕ false : 1→ 2
since both ep and λ〈〉.true⊕ false are values, so we can show them related in
the value relation. The proof uses reflexivity of ∼=log.

Alternatively, we could have used Theorem 1 and showed directly that ep 〈〉
and true⊕ false are CIU-equivalent and then used extensionality for values to
conclude the proof.

A hesitant identity function We consider the identity function e that does
not return immediately, but instead when applied to a value v flips a coin whether
to return v or call itself recursively with the same argument. We show that this
function is contextually equivalent to the identity function λx.x. The reason for
this is, intuitively, that even though e when applied may diverge, the probability
of it doing so is 0.

Example D.1. Let e = fix[][] (λf.λx.(x⊕ f x)) : α→ α. We have

α | ∅ ` e .log λx.x : α→ α

30

and

α | ∅ ` λx.x .log e : α→ α.

Proof. We prove the two approximations separately. Let ϕ ∈ VRel (α), n ∈ N.
Since e and λx.x are values we show them directly related in the value relation.
In both cases let ϕ = λf.λx.(x⊕ f x) and h = λz.δϕ (fold δϕ) z.

– By definition of the interpretation of function types we have to show, given
k ≤ n and (v, v′) ∈ ϕr(α)(k), that (e v, (λx.x) v′) ∈ ϕr(α)

>>
(k).

It is straightforward to see that e v
cf

=⇒ ϕe v using exactly one unfold-fold
reduction.

Now let (E,E′) be related at k. We proceed by induction and show that
for every ` ≤ k, Pr

(
E[e v] ⇓`

)
≤ Pr (E′[v′] ⇓) which suffices by Lemma 2.

When ` = 0 there is nothing to prove. So let ` = `′ + 1.

Pr
(
E[e v] ⇓`

)
= Pr

(
ϕe v ⇓`

′
)

= Pr
(
E[v ⊕ e v] ⇓`

′
)
.

If `′ = 0 we are trivially done. So suppose `′ = `′′ + 1 to get using Lemma 4

Pr
(
E[v ⊕ e v] ⇓`

′
)

=
1

2
Pr
(
E[v] ⇓`

′′
)

+
1

2
Pr
(
e v ⇓`

′′
)

Using the fact that `′′ ≤ k and monotonicity we have

Pr
(
E[v] ⇓`

′′
)
≤ Pr (E′[v′] ⇓) .

Using the induction hypothesis we have

Pr
(
e v ⇓`

′′
)
≤ Pr (E′[v′] ⇓)

which together conclude the proof.

– Again by definition of the interpretation of function types we have to show,
given k ≤ n and (v, v′) ∈ ϕr(α)(k), that ((λx.x) v′, e v) ∈ ϕr(α)

>>
(k).

Again we have that e v′
cf

=⇒ ϕe v′ using exactly one unfold-fold reduction.
Let ` ≤ k and (E,E′) related at `. Using Lemma 2 and the fact that Pr (· ⇓)
is a fixed point of Φ we have

Pr (E′[e v′] ⇓) = Pr (E′[ϕe v′] ⇓)

=
1

2
Pr (E′[v′] ⇓) +

1

2
Pr (E′[e v′] ⇓)

and from this we get 1
2Pr (E′[e v′] ⇓) = 1

2Pr (E′[v′] ⇓) by simple algebraic
manipulation and thus Pr (E′[e v′] ⇓) = Pr (E′[v′] ⇓). Using this property
it is a triviality to finish the proof.

31

D.1 Further simple examples

The following example is a proof of perfect security for the one-time pad encryp-
tion scheme. Define the following functions

not : 2→ 2

not = λx.if x then false else true

xor : 2→ 2→ 2

xor = λx.λy.if x then not y else y

gen : 2

gen = true⊕ false

xor is supposed to be the encryption function, with the first argument the plain-
text and the second one the encryption key.

We now encode a game with two players. The first player chooses two plain-
texts and gives them to the second player, who encrypts one of them (using
xor) chosen at random with uniform probability and gives the result back to the
first player. The first player should not be able to guess which of the plaintexts
was encrypted. This is expressed as contextual equivalence of the following two
programs

exp = λx.λy.xor (x⊕ y) gen

rnd = λx.λy.gen

To show exp =ctx rnd we first use extensionality for values so we only need
to show that for all v, u ∈ Val (2)

xor (v ⊕ u) gen =ctx gen

and the easiest way to do this is by using CIU equivalence. Given an evaluation
context E we have

Pr (E[xor (v ⊕ u) gen] ⇓) =
1

4

Pr (E[xor v true] ⇓) +
Pr (E[xor v false] ⇓) +
Pr (E[xor u true] ⇓) +
Pr (E[xor u false] ⇓)

and by the canonical forms lemma u and v can be either true or false. It is
easy to see that the sum evaluates to

1

4
(2 ·Pr (E[true] ⇓) + 2 ·Pr (E[false] ⇓))

quickly leading to the desired conclusion.
If we had used the logical relation directly we would not need the canonical

forms lemma, but then we would have to take care of step-indexing.

32

A similar example is when in one instance we choose to encrypt the first
plaintext and in the second instance the second one. Since the key is generated
uniformly at random, the first player should not be able to distinguish those two
instances. Concretely, this is expressed as contextual equivalence of the following
two programs

exp1 = λx.λy.xor x gen

exp2 = λx.λy.xor y gen

The proof is basically the same as the one above. Use extensionality and then
CIU equivalence.

D.2 Restrictions in the free theorem are necessary

We show that the free theorem in Section 5 does not hold without the assump-
tions on the behaviour of functions f and g.

First, if f = (λx.1)⊕ (λx.2), g is the identity function λx.x and xs is the list
[〈〉, 〈〉] then the term map[][](f ◦ g)xs can reduce to the list [1, 2], however the
term ((map[][] f) ◦ (map[][] g))xs cannot. The reason is that in the first case the
reduction of f is performed for each element of the list separately, but in the
latter case, f is first reduced to a value and then the same value is applied to
all the elements of the list. Technically, the condition we need for f is that there
exists a value f ′, such that f =ctx f ′, but this version is easily derived from the
version stated above by congruence.

Second, if g diverges with a non-zero probability for some value v, we take
m to be the constant function returning the empty list and the list xs to be the
singleton list containing only the value v. Then, if f is any value, m[][] (f ◦ g)xs
reduces to the empty list with probability 1, however ((m[][]f ◦ map[][] g))xs
reduces to the empty list with a probability smaller than 1, since g is still applied,
since we are in a call-by-value language.

Third, if g = λx.1⊕ 2, f is the identity function and xs is the singleton list
containing 〈〉 we take m to be the function that first appends the given list to
itself and then applies map to it. We then have that m[][] (f ◦ g)xs can reduce
to the list [1, 2], but ((m[][]f) ◦ (map[][] g))xs cannot, since g is only mapped
over the singleton list producing lists [1] and [2], which are then appended to
themselves, giving lists [1, 1] and [2, 2].

And last, if m is not equivalent to a term of the form Λ.Λ.λx.e then the term
on the left reduces to two different (not equivalent) values (or even diverges),
but the term on the right does not. We can use this to construct a distinguishing
evaluation context.

D.3 A property of map

The result in Section 5 does not allow us to conclude

map[][] (f ◦ g) =ctx map[][] f ◦ map[][] g.

33

for all f ∈ Val (σ → ρ) and g ∈ Val (τ → σ), however we can show, using the
definition of map, that this does in fact hold. By using extensionality (Lemma 8)
we need to show for any list xs we have

map[][] (f ◦ g)xs =ctx (map[][] f ◦ map[][] g) xs.

If f and g are values, E an evaluation context and xs a list of length n, it is
easy to see that

Pr (E[map f xs] ⇓) =
∑
us

(
n∏
i=1

D(f xi)(ui)

)
·Pr (E[us] ⇓)

where the first sum is over all the lists of length n and xi and ui are the i-th
elements of lists xs and us, respectively. This then gives us that

Pr (E[map f (map g xs)] ⇓)

is equal to

∑
vs

(
n∏
i=1

D(g xi)(vi)

)
·Pr (E[map f vs] ⇓)

=
∑
vs

(
n∏
i=1

D(g xi)(vi)

)
·

(∑
us

(
n∏
i=1

D(f vi)(ui)

)
·Pr (E[us] ⇓)

)

=
∑
vs

∑
us

(
n∏
i=1

D(g xi)(vi) · D(f vi)(ui)

)
·Pr (E[us] ⇓) .

On the other hand, we have that Pr (E[map (f ◦ g)xs] ⇓) is equal to

∑
us

(
n∏
i=1

D((f ◦ g)xi)(ui)

)
·Pr (E[us] ⇓)

and

D((f ◦ g)xi)(ui) =
∑
v

D(g xi)(v) · D(f v)(ui)

together giving us

∑
us

(
n∏
i=1

(∑
v

D(g xi)(v) · D(f v)(ui)

))
·Pr (E[us] ⇓)

which by Fubini’s theorem and the fact that lists of length n correspond to
n-tuples, is equal to

∑
us

∑
vs

(
n∏
i=1

(D(g xi)(vi) · D(f vi)(ui))

)
·Pr (E[us] ⇓)

34

which is the same as Pr (E[map f (map g xs)] ⇓).
If f and g are not equivalent to values, then the above result for map does not

hold. Consider, for instance, f = λx.1 ⊕ λx.2 and g the identity or conversely,
when applied to the list xs = [〈〉, 〈〉]. The expression map[][] (f ◦ g)xs can reduce
to the list [1, 2], whereas the expression (map[][] f ◦ map[][] g)xs cannot. We can
generalize this to show that if f is not equivalent to a value or g is not, then the
stated equality does not hold.

35

x:τ ∈ Γ ∆ ` Γ
∆ | Γ ` x : τ

∆ ` Γ
∆ | Γ ` 〈〉 : 1

∆ | Γ ` e1 : τ1 ∆ | Γ ` e2 : τ2

∆ | Γ ` 〈e1, e2〉 : τ1× τ2

∆ | Γ, x:τ1 ` e : τ2

∆ | Γ ` λx.e : τ1→ τ2

∆ | Γ ` e : τ1 ∆ ` τ2
∆ | Γ ` inl e : τ1 + τ2

∆ | Γ ` e : τ2 ∆ ` τ1
∆ | Γ ` inr e : τ1 + τ2

∆ | Γ, x1:τ1 ` e1 : τ ∆ | Γ, x2:τ2 ` e2 : τ ∆ | Γ ` e : τ1 + τ2

∆ | Γ ` match (e, x1.e1, x2.e2) : τ

∆, α | Γ ` e : τ

∆ | Γ ` Λ.e : ∀α.τ
∆ | Γ ` e : τ1 × τ2
∆ | Γ ` proji e : τi

∆ | Γ ` e : τ ′ → τ ∆ | Γ ` e′ : τ ′

∆ | Γ ` e e′ : τ

∆ ` τ1 ∆ | Γ ` e : τ [τ1/α]

∆ | Γ ` pack e : ∃α.τ

∆ | Γ ` e : ∃α.τ1 ∆ ` τ ∆, α | Γ, x : τ1 ` e′ : τ

∆ | Γ ` unpack e as x in e′ : τ

∆ | Γ ` e : µα.τ

∆ | Γ ` unfold e : τ [µα.τ/α]

∆ | Γ ` e : τ [µα.τ/α]

∆ | Γ ` fold e : µα.τ

∆ | Γ ` e : ∀α.τ ∆ ` τ ′

∆ | Γ ` e[] : τ [τ ′/α]

∆ | Γ ` e : nat

∆ | Γ ` rand e : nat

∆ | Γ ` e : nat ∆ | Γ ` e1 : τ ∆ | Γ ` e2 : τ

∆ | Γ ` if1 e then e1 else e2 : τ

∆ | Γ ` e : nat

∆ | Γ ` P e : nat

∆ | Γ ` e : nat

∆ | Γ ` S e : nat

Fig. 4. Typing of terms, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆,α.

36

Basic reductions
·7−→

proji 〈v1, v2〉
17−→ vi unfold (fold v)

17−→ v

(λx.e) v
17−→ e[v/x] unpack (pack v) as x in e

17−→ e[v/x]

(Λ.e)[]
17−→ e match (inl v, x1.e1, x2.e2)

17−→ e1[v/x1]

randn
1
n7−→ k (k ∈ {1, 2, . . . , n}) match (inr v, x1.e1, x2.e2)

17−→ e2[v/x2]

Pn
17−→ max{n− 1, 1} Sn

17−→ n+ 1

if1 1 then e1 else e2
17−→ e1 if1 Sn then e1 else e2

17−→ e2

One step reduction relation
·

E[e]
p
 E[e′] if e

p7−→ e′

Fig. 5. Operational semantics.

37

x:τ ∈ Γ
∆ | Γ ` x R x : τ ∆ | Γ ` 〈〉 R 〈〉 : 1

∆ | Γ ` e1 R e′1 : τ1 ∆ | Γ ` e2 R e′2 : τ2

∆ | Γ ` 〈e1, e2〉 R 〈e′1, e′2〉 : τ1 × τ2
∆ | Γ, x:τ1 ` e R e′ : τ2

∆ | Γ ` λx.e R λx.e′ : τ1 → τ2

∆ | Γ ` e R e′ : τ1

∆ | Γ ` inl e R inl e′ : τ1 + τ2

∆ | Γ ` e R e′ : τ2

∆ | Γ ` inr e R inr e′ : τ1 + τ2

∆ | Γ, x1:τ1 ` e1 R e′1 : τ ∆ | Γ, x2:τ2 ` e2 R e′2 : τ ∆ | Γ ` e e′: τ1 + τ2

∆ | Γ ` match (e, x1.e1, x2.e2) R match
(
e′, x1.e

′
1, x2.e

′
2

)
: τ

∆, α | Γ ` e R e′ : τ

∆ | Γ ` Λ.e R Λ.e′ : ∀α.τ
∆ ` τ1 ∆ | Γ ` e R e′ : τ [τ1/α]

∆ | Γ ` (pack e) R (pack e′) : ∃α.τ

∆ | Γ ` e1 R e′1 : ∃α.τ1 ∆ ` τ ∆, α | Γ, x : τ1 ` e R e′ : τ

∆ | Γ ` (unpack e1 as x in e) R (unpack e′1 as x in e′) : τ

∆ | Γ ` e R e′ : τ1 × τ2
∆ | Γ ` proji e R proji e

′ : τi

∆ | Γ ` e1 R e′1 : τ ′ → τ ∆ | Γ ` e2 R e′2 : τ ′

∆ | Γ ` e1 e2 R e′1 e
′
2 : τ

∆ | Γ ` e R e′ : µα.τ

∆ | Γ ` unfold e R unfold e′ : τ [µα.τ/α]

∆ | Γ ` e R e′ : τ [µα.τ/α]

∆ | Γ ` fold e R fold e′ : µα.τ

∆ | Γ ` e R e′ : ∀α.τ
∆ | Γ ` e[] R e′[] : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆ | Γ ` e R e′ : nat

∆ | Γ ` rand e R rand e′ : nat

∆ | Γ ` e R e′ : nat

∆ | Γ ` P e R P e′ : nat

∆ | Γ ` e R e′ : nat

∆ | Γ ` S e R S e′ : nat

∆ | Γ ` e R e′ : nat ∆ | Γ,` e1 R e′1 : τ ∆ | Γ,` e2 R e′2 : τ

∆ | Γ ` if1 e then e1 else e2 R if1 e
′
then e′1 else e′2 : τ

Fig. 6. Compatibility properties of type-indexed relations

38

J∆ ` natK (ϕ)(n) = {(k, k) | k ∈ N, k > 0}

J∆ ` τ × σK (ϕ)(n) =

{(
〈v, u〉, 〈v′, u′〉

) ∣∣∣∣ (v, v′) ∈ J∆ ` τK (ϕ)(n),
(u, u′) ∈ J∆ ` σK (ϕ)(n)

}
J∆ ` τ +σK (ϕ)(n) =

{(
inl v, inl v′

) ∣∣ (v, v′) ∈ J∆ ` τK (ϕ)(n)
}

∪
{(

inr v, inr v′
) ∣∣ (v, v′) ∈ J∆ ` σK (ϕ)(n)

}
J∆ ` τ → σK (ϕ)(n) =

{(
λx.e, λy.e′

) ∣∣∣∣ ∀j ≤ n,∀(v, v′) ∈ J∆ ` τK (ϕ)(j),

((λx.e) v, (λy.e′) v′) ∈ J∆ ` σK (ϕ)>>(j)

}
J∆ ` ∀α.τK (ϕ)(n) =

{(
Λ.e, Λ.e′

) ∣∣∣∣ ∀σ, σ′ ∈ T, ∀r ∈ VRel (σ, σ′) ,

(e, e′) ∈ J∆,α ` τK (ϕ [α 7→ r])>>(n)

}
J∆ ` ∃α.τK (ϕ)(n) =

{(
pack v, pack v′

) ∣∣∣∣ ∃σ, σ′ ∈ T,∃r ∈ VRel (σ, σ′) ,
(v, v′) ∈ J∆,α ` τK (ϕ [α 7→ r]) (n)

}
J∆ ` µα.τK (ϕ)(0) = Val (ϕ1(µα.τ))×Val (ϕ2(µα.τ))

J∆ ` µα.τK (ϕ)(n+ 1) =
{(

fold v, fold v′
) ∣∣ (v, v′) ∈ J∆,α ` τK (ϕ [α 7→ J∆ ` µα.τK (ϕ)]) (n)

}
Fig. 7. Interpretation of types.

e⊕ e =ctx e e1 ⊕ e2 =ctx e2 ⊕ e1 e⊕Ω .ctx e

if e1
cf

=⇒ e2 then e1 =ctx e2 if e1 ⊕ e2 =ctx e1 then e1 =ctx e2

Fig. 8. Basic properties of .ctx and =ctx. We write Ω for any diverging term (i.e.
Pr (Ω ⇓) = 0) and e ⊕ e′ as syntactic sugar for if1 rand 2 then e else e′. Note that
the choice when evaluating e⊕ e′ is made before e and e′ are evaluated.

