
Step-Indexed Relational Reasoning for Countable
Nondeterminism
Jan Schwinghammer1 and Lars Birkedal2

1 Saarland University
jan@ps.uni-saarland.de

2 IT University of Copenhagen
birkedal@itu.dk

Abstract
Programming languages with countable nondeterministic choice are computationally interesting
since countable nondeterminism arises when modeling fairness for concurrent systems. Because
countable choice introduces non-continuous behaviour, it is well-known that developing semantic
models for programming languages with countable nondeterminism is challenging. We present
a step-indexed logical relations model of a higher-order functional programming language with
countable nondeterminism and demonstrate how it can be used to reason about contextually
defined may- and must-equivalence. In earlier step-indexed models, the indices have been drawn
from ω. Here the step-indexed relations for must-equivalence are indexed over an ordinal greater
than ω.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Countable choice, lambda calculus, program equivalence

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Programming languages with countable nondeterministic choice are computationally inter-
esting since countable nondeterminism arises when modeling fairness for concurrent systems.
In this paper we show how to construct simple semantic models for reasoning about may-
and must-equivalence in a call-by-value higher-order functional programming language with
countable nondeterminism, recursive types and impredicative polymorphism.

Models for languages with nondeterminism have originally been studied using denotational
techniques. In the case of countably branching nondeterminism it is not enough to consider
standard ω-continuous complete partial orders and the denotational models become quite
involved [3, ?]. This has sparked research in operationally-based theories of equivalence for
nondeterministic higher-order languages [?, 8, ?, ?, ?, ?]. In particular, Lassen investigated
operationally-based relational methods for countable nondeterminism and suggested that
it would be interesting to consider also methods based on logical relations, i.e., where the
types of the programming languages are given a relational interpretation [8, page 47]. Such
an interpretation would allow one to relate terms of different types, as needed for reasoning
about parametricity properties of polymorphic types.

For languages with recursive types, however, logical relations cannot be defined by
induction on types. In the case of deterministic languages, this problem has been addressed
by the technique of syntactic minimal invariance [?] (inspired by domain theory [?]). The
idea here is that one proves that a syntactically definable fixed point on a recursive type is
contextually equivalent to the identity function, and then uses a so-called unwinding theorem

© Jan Schwinghammer and Lars Birkedal;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Step-indexed relational reasoning for countable nondeterminism

for syntactically definable fixed points when showing the existence of the logical relations.
However, in the presence of countable nondeterminism it is not clear how to define the
unwindings of the syntactic fixed point in the programming language. Indeed, Lassen proved
an unwinding theorem for his language with countable nondeterminism, but he did so by
extending the language with new terms needed for representing the unwindings and left open
the question of whether this is a conservative extension of the language.

Here we give a logical relations model of our language where we do not rely on syntactic
minimal invariance for constructing the logical relations. Instead, we use the idea of step-
indexed logical relations [1]. In particular, we show how to use step-indexing over ordinals
larger than ω to reason about must-equivalence in the presence of countable nondeterminism.

This approach turns out to be both simple and also useful for reasoning about concrete
may- and must-equivalences. We show that our logical relations are sound and complete
with respect to the contextually defined notions of may- and must-equivalence. Moreover, we
show how to use our logical relations to establish some concrete equivalences. In particular,
we prove the recursion-induction rule from Lassen [8] and establish the syntactic minimal
invariance property (without extending the language with new unwinding terms). We also
include an example to show that the model can be used to prove parametricity properties
(free theorems) of polymorphic types.

Overview of the technical development

One way to understand the failure of ω-continuity in an operational setting is to consider the
must-convergence predicate e ⇓, which by Tarski’s fixed point theorem can be defined as the
least fixed point of the monotone functional Φ(R) = {e | ∀e′. e 7−→ e′ ⇒ e′ ∈ R} on sets of
terms. Here e 7−→ e′ means that e reduces to e′ in one step. However, due to the countable
branching the fixed point is not reached by ω-many iterations

⋃
n∈ω Φn(∅). The reason is

that even when a program has no infinite reduction sequences, we cannot in general bound
the length of reduction sequences by any n < ω.

The idea of step-indexed semantics is a stratified construction of relations which facilitates
the interpretation of recursive types, and in previous applications this stratification has
typically been realized by indexing over ω. However, as we pointed out, the closure ordinal of
the inductively defined must-convergence predicate is strictly larger than ω: the least fixed
point ⇓ is reached after ω1-many iterations, for ω1 the least uncountable ordinal. (In fact, the
least non-recursive ordinal would suffice [3].) Thus, one of the key steps in our development
is the definition of α-indexed uniform relations, for arbitrary ordinals α, in Section 3.

In Section 4 we define a logical ω-indexed uniform relation, and use this relation to prove
a CIU theorem for may-contextual equivalence. The logical relation combines step-indexing
and biorthogonality, and we can prove that it coincides with may-contextual equivalence; the
proofs are similar to those in [?]. Section 5 considers the case of must-contextual equivalence.
The only modifications that this requires, compared to Section 4, are the use of ω1-indexed
uniform relations and of a suitably adapted notion of biorthogonality.

In summary, the contribution of this paper is a simple, operationally-based model of
countable nondeterminism in a higher-order language, and the use of this model for proving
several non-trivial applications in Section 6. In particular, we derive a least-fixed point
property for recursive functions in our language, answering a question raised by Lassen [8].

Laird [?] has developed a fully abstract denotational model based on bidomains for
a calculus similar to the one studied here but without recursive and polymorphic types;
our model appears to be the first model of countable nondeterminism for a language with
impredicative polymorphism.

Jan Schwinghammer and Lars Birkedal 3

τ ::= α | 1 | τ1 × τ2 | τ1 → τ2 | µα.τ1 + . . .+ τn | ∀α.τ
v ::= x | 〈〉 | 〈v1, v2〉 | λx.e | ini v | Λα.e
e ::= v | ? | proji v | v e | case v of in1 x1. e1| . . . |inn xn. en | v τ
E ::= [] | v E

Figure 1 Types, terms and evaluation contexts

proji 〈v1, v2〉 7−→ vi case (inj v) of (. . . |inj xj . ej| . . .) 7−→ ej [v/xj]
(λx.e) v 7−→ e[v/x] ? 7−→ n (n ∈ N)
(Λα.e) τ 7−→ e[τ/α] v e 7−→ v e′ if e 7−→ e′

Figure 2 Operational semantics

2 A lambda calculus with countable choice

Syntax and operational semantics

Figure 1 gives the syntax of a higher-order functional language with recursive and polymorphic
types, and a (countably branching) choice construct. We assume disjoint, countably infinite
sets of type variables, ranged over by α, and term variables, ranged over by x. The free type
variables of types and terms, ftv(τ) and ftv(e), and free term variables fv(e), are defined in the
usual way. The notation (·)[~τ/~α] denotes the simultaneous capture-avoiding substitution of
types ~τ for the free type variables ~α in types and terms; similarly, e[~v/~x] denotes simultaneous
capture-avoiding substitution of values ~v for the free term variables ~x in e.

The syntax is kept minimal, and in examples we may use additional syntactic sugar, for
instance writing let x = e in e′ for (λx.e′) e and e τ for let f = e in f τ for some fresh f .
We define the unary natural numbers datatype as nat = µα.1 +α and write 0 = in1 〈〉 and
n+1 = in2(n). The ‘erratic’ (finitely branching) choice construct e1 or e2 can be defined from
? as let x = ? in case x of in1 y. e1 | in2 y. e2 for fresh x, y.

The operational semantics of the language is given in Figure 2 by a reduction relation
e 7−→ e′. In particular, the choice operator ? evaluates nondeterministically to any numeral
n (n ∈ N). We also consider evaluation contexts E, and write E[e] for the term obtained by
plugging e into E. It is easy to see that e 7−→ e′ holds if and only if E[e] 7−→ E[e′].

Typing judgements take the form ∆; Γ ` e : τ where Γ is a typing context x1:τ1, . . . , xn:τn
and where ∆ is a finite set of type variables that contains the free type variables of τ1, . . . , τn
and τ . The rules defining this judgement are summarized in Figure 3. The typing judgement
for evaluation contexts, ` E : τ(τ ′, means that ∅;∅ ` E[e] : τ ′ holds whenever ∅;∅ ` e : τ .

We write Type for the set of closed types τ , i.e., where ftv(τ) = ∅. We write Val(τ)
and Tm(τ) for the sets of closed values and terms of type τ , resp., and Stk(τ) for the
set of τ -accepting evaluation contexts. For a typing context Γ = x1:τ1, . . . , xn:τn with
τ1, . . . , τn ∈ Type, let Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val(τi)} denote the set of
type-respecting value substitutions. In particular, if ∆; Γ ` e : τ then ∅;∅ ` eδγ : τδ for
any δ ∈ Type∆ and γ ∈ Subst(Γδ), and the type system satisfies the standard progress and
preservation theorems.

4 Step-indexed relational reasoning for countable nondeterminism

x:τ ∈ Γ ∆ ` Γ
∆; Γ ` x : τ

∆ ` Γ
∆; Γ ` 〈〉 : 1

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2
∆; Γ ` 〈v1, v2〉 : τ1× τ2

∆; Γ, x:τ1 ` e : τ2
∆; Γ ` λx.e : τ1→ τ2

∆; Γ ` v : τj [µα.τ1 + . . .+ τn/α]
∆; Γ ` inj v : µα.τ1 + . . .+ τn

1 ≤ j ≤ n

∆, α; Γ ` e : τ
∆; Γ ` Λα.e : ∀α.τ

∆; Γ ` v : τ1 × τ2
∆; Γ ` proji v : τi

∆; Γ ` v : τ ′ → τ ∆; Γ ` e : τ ′

∆; Γ ` v e : τ

∆; Γ ` v : µα.τ1 + . . .+ τn . . . ∆; Γ, xj :τj [µα.τ1 + . . .+ τn/α] ` ej : τ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) : τ

∆; Γ ` v : ∀α.τ ∆ ` τ ′

∆; Γ ` v τ ′ : τ [τ ′/α]
∆ ` Γ

∆; Γ ` ? : nat

∅ ` τ
` [] : τ(τ

∅;∅ ` v : τ → τ2 ` E : τ1 (τ

` v E : τ1 (τ2

Figure 3 Typing of terms and evaluation contexts, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆, α.
The notation ∆ ` τ means that ftv(τ) ⊆ ∆, and ∆ ` Γ means that ∆ ` τ holds for all x:τ ∈ Γ.

We let fix : ∀α, β.((α→β)→ (α→β))→ (α→β) denote a variant of the (call-by-value)
fixed point combinator from untyped lambda calculus, fix = Λα, β.λf.δf (in δf) where δf
is the term λy.case y of in y′. f(λx.let r= y′ y in r x), and we write Ω : ∀α.α for the term
Λα.fix 1α (λf.f) 〈〉. Note that reduction from Ω is deterministic and non-terminating.

Contextual approximation

We follow Lassen’s approach [8] and define contextual approximation as the largest relation
that satisfies certain compatibility and adequacy properties (also see, e.g. [10, ?]). The
technical advantage of this approach, compared to the more traditional one of universally
quantifying over program contexts, is that in proofs there will be no need to explicitly take
care of contexts and of term occurrences within contexts. In our terminology, we keep close to
Pitts [10], except for suitably adapting the definitions to take the nondeterministic outcomes
of evaluation into account.

The observables on which contextual approximation is based are given by may- and
must-convergence. A closed term e may-converges, written e ↓, if e 7−→∗ v for some v ∈ Val,
and e may-diverges, written e ↑, if there is an infinite reduction sequence starting from e.
The must-convergence predicate e ⇓ is the complement of may-divergence, and it can be
defined inductively by e ⇓ if and only if for all e′, if e 7−→ e′ then e′ ⇓.

I Definition 1 (Type-indexed relation). A type-indexed relation is a set of tuples (∆,Γ, e, e′, τ)
such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ holds. We write ∆; Γ ` e R e′ : τ if (∆,Γ, e, e′, τ) ∈ R.

I Definition 2 (Precongruence). A type-indexed relation R is reflexive if ∆; Γ ` e : τ implies
∆; Γ ` e R e : τ . It is transitive if ∆; Γ ` e R e′ : τ and ∆; Γ ` e′ R e′′ : τ implies
∆; Γ ` e R e′′ : τ . A precongruence is a reflexive and transitive type-indexed relation R that
is closed under the inference rules in Figure 4.

Jan Schwinghammer and Lars Birkedal 5

∆; Γ ` x R x : τ
x:τ ∈ Γ

∆; Γ ` 〈〉 R 〈〉 : 1

∆; Γ ` v1 R v′1 : τ1 ∆; Γ ` v2 R v′2 : τ2
∆; Γ ` 〈v1, v2〉 R 〈v′1, v′2〉 : τ1 × τ2

∆; Γ, x:τ1 ` e R e′ : τ2
∆; Γ ` λx.e R λx.e′ : τ1 → τ2

∆; Γ ` v R v′ : τj [µα.τ1 + . . .+ τn/α]
∆; Γ ` inj v R inj v′ : µα.τ1 + . . .+ τn

1 ≤ j ≤ n
∆, α; Γ ` e R e′ : τ

∆; Γ ` Λα.e R Λα.e′ : ∀α.τ

∆; Γ ` v R v′ : τ1 × τ2
∆; Γ ` proji v R proji v′ : τi

∆; Γ ` v R v′ : τ ′ → τ ∆; Γ ` e R e′ : τ ′

∆; Γ ` v e R v′ e′ : τ

∆; Γ ` v R v′ : τ . . . ∆; Γ, xj :τj [τ/α] ` ej R e′j : τ ′ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) R case v′ of (. . . | inj xj . ej | . . .) : τ ′
τ = µα.τ1 + . . .+ τn

∆; Γ ` v R v′ : ∀α.τ
∆; Γ ` v τ ′ R v′ τ ′ : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆; Γ ` ? R ? : nat

Figure 4 Compatibility properties of type-indexed relations

I Definition 3 (May- and must-adequate relations). A type-indexed relationR is may-adequate
if, whenever ∅;∅ ` e R e′ : τ holds, then e ↓ implies e′ ↓. It is must-adequate if, whenever
∅;∅ ` e R e′ : τ holds, then e ⇓ implies e′ ⇓.

I Definition 4 (Contextual approximations and equivalences). May-contextual approximation,
written .ctx

↓ , is the largest may-adequate precongruence. May-contextual equivalence, ∼=ctx
↓ ,

is the symmetrization of .ctx
↓ . Analogously, must-contextual approximation, written .ctx

⇓ ,
is the largest must-adequate precongruence, and must-contextual equivalence, ∼=ctx

⇓ , is its
symmetrization. Contextual approximation, .ctx, and contextual equivalence, ∼=ctx, are
given as intersections of the respective may- and must-relations, and thus ∼=ctx is also the
symmetrization of .ctx.

That this largest (may-, must-) adequate precongruence exists can be shown as in [10],
by proving that the relation S =

⋃
{R | R compatible and (may-, must-) adequate} is an

adequate precongruence.
In principle, to establish an equivalence ∆; Γ ` e ∼=ctx e′ : τ it suffices to find some may-

and must-adequate congruence R that contains the tuple (∆,Γ, e, e′, τ) since ∼=ctx is the
largest such relation. However, in practice it is difficult to verify that a relation R has
the necessary compatibility properties in Figure 4. An alternative characterization of the
contextual approximation and equivalence relations can be given in terms of CIU preorders
[9], which we define next.

I Definition 5 (CIU preorders). May- and must-CIU preorder, written .ciu
↓ and .ciu

⇓ resp., are
the type-indexed relations defined as follows: for all e, e′ with ∆; Γ ` e : τ and ∆; Γ ` e′ : τ ,

∆; Γ ` e .ciu
↓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ↓ ⇒ E[e′δγ] ↓

∆; Γ ` e .ciu
⇓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ⇓ ⇒ E[e′δγ] ⇓

The CIU preorder is defined as the intersection of .ciu
↓ and .ciu

⇓ .

6 Step-indexed relational reasoning for countable nondeterminism

let x= ? in e ∼=ctx e (x /∈ fv(e)) let x= v in e ∼=ctx e[v/x] let x= e in x ∼=ctx e

e or e ∼=ctx e Ω .ctx
↓ e Ω .ctx

⇓ e

e1 or e2 ∼=ctx e2 or e1 e1 .ctx
↓ e1 or e2 e1 or e2 .ctx

⇓ e1

(e1 or e2) or e3 ∼=ctx e1 or (e2 or e3) e or Ω ∼=ctx
↓ e e or Ω ∼=ctx

⇓ Ω

Figure 5 Basic may- and must-theory, for e1 or e2 ≡ let x = ? in case x of in1 y. e1 | in2 y. e2

I Theorem 6 (CIU theorem). The (may-, must-) CIU preorder coincides with (may-, must-)
contextual approximation.

Using the CIU theorem, it is easy to verify that all the deterministic reductions are
also valid equivalences, and that the various call-by-value eta laws hold. Moreover, we can
establish the laws of Moggi’s computational lambda calculus and the basic (inequational)
theory of erratic choice (Figure 5). We will prove the CIU theorem in Section 4 (for the
may-CIU preorder) and Section 5 (for the must-CIU preorder).

3 Uniform relations

For an ordinal number α and a set X we define an α-indexed uniform relation on X to be a
family (Rβ)β<α of relations Rβ ⊆ X such that

R0 = X,
Rβ+1 ⊆ Rβ for all β < α, and
Rλ =

⋂
β<λRβ for every limit ordinal λ < α.

Let Relα(X) denote the α-indexed uniform relations on X.

Recursive definitions

The notions of n-equivalence, non-expansiveness and contractiveness (e.g., [5]) all generalize
from the case of ω-indexed uniform relations: Given α-indexed uniform relations R,S ∈
Relα(X) and ν < α we say that R and S are ν-equivalent, written R ν= S, if Rβ = Sβ for all
β ≤ ν. In particular, R = S if and only if R ν= S for all ν < α.

A function F : Relα(X1)× · · ·×Relα(Xn)→ Relα(X) is non-expansive if ~R ν= ~S implies
F (~R) ν= F (~S), and F is contractive if ~R ν= ~S implies F (~R) ν+ 1= F (~S). If R ∈ Relα(X) then
.R ∈ Relα(X) is the uniform relation determined by .Rβ+ 1 = Rβ ; this operation gives rise
to a contractive function on Relα(X).

I Proposition 7 (Unique fixed points). If F : Relα(X)→ Relα(X) is contractive, then F has
a unique fixed point fix r.F (r).

Proof. First note that F has at most one fixed point: if R,S are fixed points of F then, by
the contractiveness of F , we can establish that R = F (R) ν= F (S) = S holds for all ν < α by
induction and thus R = S.

Because of the uniformity conditions it is sufficient to give the components of the fixed
point fix r.F (r) that are indexed by successor ordinals. We set fix r.F (r)ν+ 1 = F (R)ν+ 1
where R ∈ Relα(X) is defined by Rβ = fix r.F (r)β for β ≤ ν and Rβ = ∅ for β > ν. By
induction, it is easy to see that fix r.F (r) ∈ Relα(X) and that F (fix r.F (r))ν = fix r.F (r)ν
holds for all ν < α, and thus F (fix r.F (r)) = fix r.F (r). J

Jan Schwinghammer and Lars Birkedal 7

Proposition 7 is an instance of Di Gianantonio and Miculan’s sheaf-theoretic fixed point
theorem [6]. Indeed, an α-indexed uniform relation on X corresponds to a subobject of the
constant sheaf on X in the sheaf topos on α.

Uniform relations on syntax

For τ, τ ′ ∈ Type we consider the collections of α-indexed uniform relations between values,
terms and evaluation contexts: we write VRelα(τ, τ ′) for Relα(Val(τ)×Val(τ ′)), SRelα(τ, τ ′)
for Relα(Stk(τ)×Stk(τ ′)), and TRelα(τ, τ ′) for Relα(Tm(τ)×Tm(τ ′)).

The description of the logical relations in the sections below makes use of the following
(non-expansive) constructions on uniform relations:

R1×R2 ∈ VRelα(τ1× τ2, τ ′1× τ ′2), for R1 ∈ VRelα(τ1, τ ′1) and R2 ∈ VRelα(τ2, τ ′2), is
defined by (R1×R2)β = {(〈v1, v2〉, 〈v′1, v′2〉) | (v1, v

′
1) ∈ (R1)β ∧ (v2, v

′
2) ∈ (R2)β}.

R1→R2 ∈ VRelα(τ1→ τ2, τ
′
1→ τ ′2), for R1 ∈ VRelα(τ1, τ ′1) and R2 ∈ TRelα(τ2, τ ′2), is

given by (R1→R2)β = {(λx.e, λx.e′) | ∀ν≤β.∀(v, v′)∈ (R1)ν . (e[v/x], e′[v′/x])∈ (R2)ν}.

∀r.F (r)∈VRelα(∀α.τ1,∀α.τ ′1), for Fτ,τ ′ : VRelα(τ, τ ′)→ TRelα(τ1[τ/α], τ ′1[τ ′/α]) a fam-
ily of non-expansive maps, is the uniform relation that is defined by ∀r.F (r)β =
{(Λα.e,Λα.e′) | ∀τ, τ ′ ∈Type, R∈VRelα(τ, τ ′). (e[τ/α], e′[τ ′/α] ∈ Fτ,τ ′(R)β}.

injR ∈ VRelα(τ, τ ′), for τ = µα.τ1 + . . .+ τm and τ ′ = µα.τ ′1 + . . .+ τ ′n and R ∈
VRelα(τj [τ/α], τ ′j [τ ′/α]), is given by (injR)β = {(inj v, inj v′) | (v, v′) ∈ Rβ}.

4 May equational theory

In this section, we will define a logical uniform relation that is used to prove that may-
CIU preorder and may-contextual approximation coincide. The key idea of the definition
is the usual one of step-indexing [1], i.e., that the observables can be stratified based on
step-counting in the operational semantics. We write e ↓n if e 7−→ . . . 7−→ v for some v ∈ Val
in at most n reduction steps, thus e ↓ holds if and only if e ↓n for some n.

Logical ω-indexed uniform relation for may-approximation

In the case of may-approximation, it suffices to consider ω-indexed uniform relations. Using
the constructions on relations given above, we define a relational interpretation JτK (~r) ∈
VRelω(τ [~τ/~α], τ [~τ ′/~α]) by induction on the type ~α ` τ , given closed types τ1, τ ′1, . . . , τk, τ ′k ∈
Type and relations r1 ∈ VRelω(τ1, τ ′1), . . . , rk ∈ VRelω(τk, τ ′k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)n<ω Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
j inj(. JτjK (~r, s))

Here, value relations r ∈ VRelω(τ, τ ′) are lifted to relations r⊥ ∈ SRelω(τ, τ ′) on evaluation
contexts and to relations r⊥⊥ ∈ TRelω(τ, τ ′) on terms by biorthogonality, much as in [7]:

r⊥n = {(E,E′) | ∀j ≤ n. ∀(v, v′) ∈ rj . E[v] ↓j ⇒ E′[v′] ↓ }
r⊥⊥n = {(e, e′) | ∀j ≤ n. ∀(E,E′) ∈ r⊥j . E[e] ↓j ⇒ E′[e′] ↓ }

The fixed point in the interpretation of recursive types is well-defined by Proposition 7 since
each JτK denotes a family of non-expansive functions, and thus composition with . yields a
contractive function.

8 Step-indexed relational reasoning for countable nondeterminism

The following observation is useful for calculations:

I Lemma 8 (Context composition). If (v, v′) ∈ Jτ1→ τ2K~rn and (E,E′) ∈ Jτ2K~r
⊥
n then

(E[v []], E′[v′ []]) ∈ Jτ1K~r
⊥
n+1.

Proof. Let j ≤ n+ 1, (v1, v
′
1) ∈ Jτ1K~rj . Assume E[v v1] ↓j . We have v = λx.e and v′ = λx.e′

and (λx.e, λx.e′) ∈ Jτ1→ τ2K~rn for some x, e, e′ and necessarily E[v v1] 7−→ E[e[v1/x]] ↓j−1.
By definition, (e[v1/x], e′[v′1/x]) ∈ Jτ2K~r

⊥⊥
j−1. From (E,E′) ∈ Jτ2K~r

⊥
n we obtain E′[e′[v′1/x]] ↓.

Thus, E′[v′ v′1] ↓. J

The relational interpretation extends pointwise to value substitutions: (γ, γ′) ∈ JΓK~rn if
(γ(x), γ(x′)) ∈ JτK~rn for all x:τ ∈ Γ. Based on this interpretation we consider the following
type-indexed relation:

∆; Γ ` e .log
↓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω(~τ , ~τ ′).∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥n

The definition of .log
↓ builds in enough closure properties to prove its compatibility.

I Proposition 9 (Fundamental property). The relation .log
↓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
↓ e : τ .

Proof. We consider the inference rules from Figure 4 in turn.
For the introduction of recursive types, we assume ∆; Γ ` v .log

↓ v′ : τj [µα.τ1 + . . .+ τm/α]
and 1 ≤ j ≤ m, and then prove that ∆; Γ ` inj v .log

↓ inj v′ : µα.τ1 + . . .+ τm.
For notational convenience we only consider the case of closed terms. Let τ abbreviate the
type µα.τ1 + . . .+ τm. Note that JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj

(
. Jτj [τ/α]K (~r)

)
by definition and a substitution lemma, and that Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r). Thus, as-
suming (E,E′) ∈ JτK~r⊥n it follows from Lemma 8 that (E[(λx.inj x) []], E′[(λx.inj x) []]) ∈
Jτj [τ/α]K~r⊥n+1. Thus, if E[inj v] ↓i for some i ≤ n then E′[(λx.inj x) v′]) ↓ follows from
(v, v′) ∈ Jτj [τ/α]K~r⊥⊥n+1. Therefore we can conclude E′[inj v′] ↓, and we have shown
(inj v, inj v′) ∈ JτK~r⊥⊥n . Since n was chosen arbitrarily, we have ∆; Γ ` inj v .log

↓ inj v′ : τ .
For the elimination of recursive types, we assume that τ is of the form µα.τ1 + . . .+ τm,
∆; Γ, xj :τj [τ/α] ` ej .log

↓ e′j : τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log
↓ v′ : τ . We prove

∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log
↓ case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

For simplicity we only consider the case of closed terms. By definition and by a substi-
tution lemma we have JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj(. Jτj [τ/α]K~r). Moreover,

(λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e′j| . . .)) ∈ Jτ → τ ′K~rn for any
n. To see this, assume k ≤ n, let (a, a′) ∈ JτK~rn and (E,E′) ∈ Jτ ′K~r⊥n such that
E[case a of(. . . |inj xj . ej| . . .)] ↓k. By the above observation we have a = injaj and
a′ = inja′j for some (aj , a′j) ∈ Jτj [τ/α]K~rk−1. From E[case a of(. . . |inj xj . ej| . . .)] ↓k we
obtain E[ej [aj/xj]] ↓k−1, and thus the assumption on ej , e′j gives E′[e′j [a′j/xj]] ↓ from
which we can conclude E′[case a′ of(. . . |inj xj . e′j| . . .)] ↓.
To prove the case, assume next that (E,E′) ∈ Jτ ′K~r⊥n . From Lemma 8 we obtain
(E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e′j| . . .)) []]) ∈ JτK~r⊥n+1.
Since (v, v′) ∈ JτK~r⊥⊥n+1 by assumption, we obtain that E[case v of(. . . |inj xj . ej | . . .)] ↓n
implies E[case v′ of(. . . |inj xj . e′j | . . .)] ↓ as required.
For choice, we assume ∆ ` Γ and show ∆; Γ ` ? .log

↓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥n
and E[?] ↓j for some j ≤ n. Then E[?] 7−→ E[k] and E[k] ↓j−1 for some k ∈ N. By

Jan Schwinghammer and Lars Birkedal 9

∆; Γ ` v R v′ : τ ∆; Γ, x:τ ` e R e′ : τ ′

∆; Γ ` e[v/x] R e′[v′/x] : τ ′
∆, α; Γ ` e R e′ : τ ′

∆; Γ[τ/α] ` e R e′ : τ ′[τ/α]
∆ ` τ

Figure 6 Substitutivity properties of type-indexed relations

induction on k, and using the compatibility for the introduction of recursive types, we
obtain that (k, k) ∈ JnatK~r⊥⊥n , and thus E′[k] ↓. Hence E′[?] ↓.

The proofs for the remaining rules are similar. J

I Theorem 10 (Coincidence). ∆; Γ ` e .log
↓ e′ : τ if and only if ∆; Γ ` e .ciu

↓ e′ : τ .

Proof. For the direction from left to right, let δ ∈ Type∆, γ ∈ Subst(Γδ) and E ∈ Stk(τδ),
and assume E[eδγ] ↓, i.e., E[eδγ] ↓n for some n. We must show E[e′δγ] ↓. As a consequence
of Proposition 9, (γ, γ) ∈ JΓδKn and (E,E) ∈ JτδK⊥n . By definition of ∆; Γ ` e .log

↓ e′ : τ and
a substitution lemma we have (eδγ, e′δγ) ∈ JτδK⊥⊥n , and thus E[eδγ] ↓n gives E[e′δγ] ↓.

For the direction from right to left, first note that the logical relation is closed under
may-CIU approximation; more precisely, if ∆; Γ ` e .log

↓ e′ : τ and ∆; Γ ` e′ .ciu
↓ e′′ : τ then

∆; Γ ` e .log
↓ e′′ : τ . This observation follows from the definition of (·)⊥⊥ used in ∆; Γ `

e .log
↓ e′ : τ and the definition of CIU approximation. Now assume that ∆; Γ ` e .ciu

↓ e′ : τ .
By Proposition 9, ∆; Γ ` e .log

↓ e : τ , and thus ∆; Γ ` e .log
↓ e′ : τ . J

Proof of CIU Theorem 6(1). We first show that .ciu
↓ is contained in .ctx

↓ . By definition,
.ctx
↓ is the largest may-adequate precongruence, thus it is sufficient to establish that .ciu

↓ is a
may-adequate precongruence. From the definition it is immediate that .ciu

↓ is may-adequate,
reflexive and transitive. By Theorem 10, .ciu

↓ coincides with .log
↓ which is compatible by

Proposition 9.
For the other direction, following Pitts [?], we first consider the special case where

∅;∅ ` e .ctx
↓ e′ : τ . To prove ∅;∅ ` e .ciu

↓ e′ : τ , note that ∅;∅ ` E[e] .ctx
↓ E[e′] : τ ′ holds

for all evaluation contexts E such that ` E : τ(τ ′ since .ctx
↓ is reflexive and compatible.

Hence, that E[e] ↓ implies E[e′] ↓ follows since .ctx
↓ is may-adequate.

The general case reduces to this special case since may-contextual approximation has the
substitutivity properties given in Figure 6. For the first of these, assume ∆; Γ ` v .ctx

↓ v′ : τ
and ∆; Γ, x:τ ` e .ctx

↓ e′ : τ ′. From the definition of may-CIU approximation it is easy to see

∆; Γ ` e[v/x] .ciu
↓ (λx.e) v : τ ′ and ∆; Γ ` (λx.e′) v′ .ciu

↓ e′[v′/x] : τ ′ .

Since we have already shown that .ciu
↓ is contained in .ctx

↓ , and since ∆; Γ ` (λx.e) v .ctx
↓

(λx.e′) v′ : τ ′ by compatibility, we can conclude ∆; Γ ` e[v/x] .ctx
↓ e′[v′/x] : τ ′ by transitivity.

The second substitutivity property is proved similarly, using a weakening property of may-
contextual approximation. J

5 Must equational theory

To define the logical relation for must-approximation, we need to stratify the observables
again. For terms e and ordinals β we define e ⇓β inductively, as the least relation such that
e ⇓β if for all e′ such that e 7−→ e′ there exists ν < β and e′ ⇓ν . The essential observation is
that ⇓β indeed captures must-convergent behaviour.

10 Step-indexed relational reasoning for countable nondeterminism

I Proposition 11 (Stratified must-convergence). e ⇓ if and only if e ⇓β for some β < ω1 (for
ω1 the least uncountable ordinal).

Proof. The proof from left to right is by induction on e ⇓. By induction hypothesis there
exists ordinals ν(e′) < ω1 for each term e′ such that e 7−→ e′. Let β =

⋃
ν(e′), then

β+ 1 < ω1 (since there are only countably many such e′ and each ν(e′) is countable) and
e ⇓β+ 1. The direction from right to left is by induction on β. J

Logical ω1-indexed uniform relation for must-approximation

Proposition 11 indicates that logical relations for must-approximation need to be indexed
over ω1. The lifting of value relations r ∈ VRelω1(τ, τ ′) to relations r⊥ ∈ SRelω1(τ, τ ′) on
evaluation contexts and to relations r⊥⊥ ∈ TRelω1(τ, τ ′) on terms is defined with respect to
must termination.

r⊥β = {(E,E′) | ∀ν ≤ β. ∀(v, v′) ∈ rν . E[v] ⇓ν ⇒ E′[v′] ⇓ }
r⊥⊥β = {(e, e′) | ∀ν ≤ β. ∀(E,E′) ∈ r⊥ν . E[e] ⇓ν ⇒ E′[e′] ⇓ }

Except for this difference, the relational interpretation JτK (~r) ∈ VRelω1(τ [~τ/~α], τ [~τ ′/~α]) is
literally the same as in Section 4 and defined by induction on the type ~α ` τ , given closed
types τ1, τ ′1, . . . , τk, τ ′k ∈ Type and relations r1 ∈ VRelω1(τ1, τ ′1), . . . , rk ∈ VRelω1(τk, τ ′k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)β<ω1 Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
j inj(. JτjK (~r, s))

Logical must-approximation is defined as follows:

∆; Γ ` e .log
⇓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω1(~τ , ~τ ′).∀β <ω1.∀(γ, γ′) ∈ JΓK~rβ . (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥β

I Proposition 12 (Fundamental property). The relation .log
⇓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
⇓ e : τ .

Proof. The proof is similar to the one for Proposition 9. We give only the case for choice,
where we assume ∆ ` Γ and prove ∆; Γ ` ? .log

⇓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥β and
E[?] ⇓β . Then E[?] 7−→ e implies that e is of the form E[k] and E[k] ⇓νk

for some k ∈ N and
νk < β. Using the compatibility for the introduction form of recursive types, an induction
on k shows that (k, k) ∈ JnatK~r⊥⊥νk

, and thus E′[k] ⇓ for all k ∈ N. Hence E′[?] ⇓. J

I Theorem 13 (Coincidence). ∆; Γ ` e .log
⇓ e′ : τ if and only if ∆; Γ ` e .ciu

⇓ e′ : τ .

Proof. The proof is completely analogous to that of Theorem 10. For the direction from left
to right one uses the characterization of ⇓ in terms of ⇓β (Proposition 11) and then appeals
to Proposition 12. The direction from right to left uses the fact that .log

⇓ is closed under
must-CIU approximation. J

Proof of CIU Theorem 6(2). The proof is analogous to that of Theorem 6(1). From the
definition, .ciu

⇓ is a must-adequate reflexive and transitive relation, by Proposition 12 and
Theorem 13 it is also compatible, and thus contained in .ctx

⇓ . From this containment and the
closure of .ciu

⇓ under beta conversion it follows that .ctx
⇓ has the substitutivity properties in

Figure 6. Thus it suffices to prove the containment of .ctx
⇓ in .ciu

⇓ for closed terms, which is
clear by the compatibility and must-adequacy of .ctx

⇓ . J

Jan Schwinghammer and Lars Birkedal 11

∆; Γ ` v v′ .ctx
↓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
↓ v′ : τ1→ τ2

∆; Γ ` v v′ .ctx
⇓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
⇓ v′ : τ1→ τ2

Figure 7 Recursion induction: least fixed point property of fix

6 Applications

This section illustrates how the logical relation characterization of contextual approximation
can be used to derive interesting examples and further proof principles. We consider three
such applications: a recursion-induction principle for recursively defined functions, syntactic
minimal invariance of a recursive type, and a “free theorem” about a polymorphic type.

Proving recursion-induction for a similar language (without polymorphic types) has been
an open problem [8]. Here, the proof is essentially a straightforward induction, using the
indexing of the logical relations.

Recursion-induction

Recall from the introduction that fix : ∀α, β.((α→β)→ (α→β))→ (α→β) is given by the
term Λα, β.λf.δf (in δf) where δf is the term λy.case y of in y′. f(λx.(λr.r x)(y′ y)). We now
prove that fix is a least fixed point combinator, i.e., we prove the soundness of the recursion-
induction rules in Figure 7. We only include the proof for .ctx

⇓ and for notational simplicity
we assume that the contexts ∆ and Γ are empty. We assume the premise of the rule, and to
show the conclusion we first prove that (h, v′) ∈ Jτ1 → τ2Kβ where h is λx.(λr.r x) (δv (in δv)),
for all β < ω1. The result then follows from the agreement of the logical relation with
contextual approximation and transitivity, since fix τ1τ2 v ∼=ctx v h .ctx

⇓ v v′ .ctx
⇓ v′.

To prove (h, v′) ∈ Jτ1 → τ2Kβ we proceed by induction on β and assume that (h, v′) ∈
Jτ1 → τ2Kν1

, for all ν < β; we are then to show that (h, v′) ∈ Jτ1 → τ2Kβ . From the typing
rules, v′ must be of the form λx.e′ for some e′. So let β1 ≤ β and (u, u′) ∈ Jτ1Kβ1

, then it
remains to show ((λr.r u)(δv (in δv)), e′[u′/x]) ∈ Jτ2K

⊥⊥
β1

.
Suppose β2 ≤ β1, (E,E′) ∈ Jτ2K

⊥
β2

and E[(λr.r u)(δv (in δv))] ⇓β2 ; we are to show
E′[e′[u′/x]] ⇓. By (the must-analogue of) Lemma 8 and the fundamental property of
the logical relation applied to v we obtain (E[(λr.r u) ((λx.v x) [])], E′[(λr.r u′) ((λx.v x) [])]) ∈
Jτ1 → τ2K

⊥
β2
. Then, since δv (in δv) 7−→2 v h and (λx.v x)h 7−→ v h, we have E[(λr.r u)(v h)] ⇓β3

for β3 < β2 ≤ β, and hence also E′[(λr.r u′) (v v′)] ⇓ by induction hypothesis.
By the premise and Theorem 13 we have that v v′ CIU-approximates v′, and thus we get

E′[(λr.r u′) v′] ⇓. Finally, since (λr.r u′) v′ 7−→∗ e′[u′/x] we obtain the required E′[e′[u′/x]] ⇓.

Syntactic minimal invariance

Consider the type τ = µα.nat + α→ α. Let id = λx.x and consider the term

f ≡ λh, x.case x of in1 y. in1 y | in2 g. in2 λy.h(g(h y)) .

We shall show that fix ττ f ∼=ctx id : τ → τ . This equivalence corresponds to the characteriz-
ation of solutions to recursive domain equations as minimal invariants in domain-theoretic
work [?], from which Pitts derives several (co-) induction principles.

12 Step-indexed relational reasoning for countable nondeterminism

By the soundness of the call-by-value beta- and eta-laws for contextual equivalence
(Figure 5) and the transitivity of .ctx, it is easy to see that f id ∼=ctx id : τ → τ . The
recursion-induction principle therefore yields fix ττ f .ctx id : τ → τ .

For the reverse approximation we first show id .log
⇓ h : τ → τ where h is again the term

λx.(λr.r x)(δf (in δf)). We show this by proving (id, h) ∈ Jτ → τKβ for all β < ω1 by induction
on β. (The case for may-approximation is similar.) By definition, we need to show that for
all ν ≤ β and all (v, v′) ∈ JτKν , (id v, h v′) ∈ JτK⊥⊥ν . Since JτK = in1(. JnatK) ∪ in2(. Jτ → τK)
there are two cases to consider:

Case (v, v′) ∈ in1(. JnatK)ν . Then there exist u, u′ ∈ Val(nat) such that v = in1 u, v′ =
in1 u

′ and (u, u′) ∈ JnatKν′ for all ν′ < ν ≤ β. Note that (λx.(λr.r x)(δf (in δf))) v′ ∼=ctx

v′ : τ in this case. Thus, given (E,E′) ∈ JτK⊥ν such that E[id v] ⇓ν , it suffices to show
E′[v′] ⇓ which easily follows from (v, v′) ∈ JτKν .
Case (v, v′) ∈ in2(. Jτ → τK)ν . Then there exist g, g′ ∈ Val(τ→ τ) such that v = in2 g,
v′ = in2 g

′ and (g, g′) ∈ Jτ→ τKν′ for all ν′ < ν ≤ β. In this case, we have the equi-
valence (λx.(λr.r x)(δf (in δf))) v′ ∼=ctx in2(λy.h(g′(h y))) : τ . Thus, it suffices to show
(g, λy.h(g′(h y))) ∈ Jτ → τKν′ for all ν′ < ν, or equivalently, (g u, h(g′(hu′))) ∈ JτK⊥⊥ν′ for
all ν′ < ν and all (u, u′) ∈ JτKν′ . Let (E,E′) ∈ JτK⊥ν′ and suppose E[g u] ⇓ν′ ; we have to
show E′[h(g′(hu′))] ⇓. From the induction hypothesis we obtain (E[id []], E′[h []]) ∈
JτK⊥ν′+1, and thus (E,E′[h []]) ∈ JτK⊥ν′ . Since (g, g′) ∈ Jτ→ τKν′ the latter entails
(E[g []], E′[h(g′ []])) ∈ JτK⊥ν′ . Now, applying the induction hypothesis again this shows
(E[g(id [])], E′[h(g′(h []]))) ∈ JτK⊥ν′+1, and thus the assumptions E[g u] ⇓ν′ and (u, u′) ∈
JτKν′ imply E′[h(g′(hu))] ⇓.

By Theorem 13 and the CIU theorem, id .log
⇓ h : τ → τ implies id .ctx

⇓ h : τ → τ . Since
id ∼=ctx f id : τ → τ and f h ∼=ctx fix ττ f : τ → τ we obtain id .ctx

⇓ fix ττ f : τ → τ by
compatibility and transitivity of must-contextual equivalence.

Parametricity

Let τ1, τ2 ∈ Type be closed types. Then the contextual approximation

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ1, y:τ1 ` h τ2 〈f x, f y〉 .ctx f(h τ1 〈x, y〉) : τ2 . (1)

holds. For the proof of (1), we will consider the case of must-approximation only (may-
approximation is completely analogous) and show

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ, y:τ ` h τ2 〈f x, f y〉 .log
⇓ f(h τ1 〈x, y〉) : τ2 .

Fix β < ω1, h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1). We need to show

(h τ2 〈f x, f y〉, f(h τ1 〈x, y〉) ∈ Jτ2K
⊥⊥
β . (2)

We have (h, h) ∈ J∀α.α×α→αK⊥⊥β by Proposition 12, and we will instantiate α by (the
opposite of) the graph of f . More precisely, consider the relation r ∈ VRel(τ2, τ1) given by
rν = {(v, v′) | (v, f v′) ∈ Jτ2K

⊥⊥
ν+1}. Note that we have (id, f) ∈ Jα→ τ2K rβ . Hence, to prove

(2) it suffices to show (h τ2 〈f x, f y〉, h τ1 〈x, y〉) ∈ r⊥⊥β .
By definition of the logical relation we have (h τ2, h τ1) ∈ Jα×α→αK r⊥⊥β , and by the

compatibility properties it remains to show (f x, x) ∈ r⊥⊥β and (f y, y) ∈ r⊥⊥β . We consider
the former: Let (E,E′) ∈ r⊥ν for ν ≤ β such that E[f x] ⇓ν ; we must prove E′[x] ⇓. We have
(f, id) ∈ Jτ1→αK rν from which (E[f []], E′[]) ∈ Jτ1K

⊥
ν follows. By Proposition 12 we have

(x, x) ∈ Jτ1K
⊥⊥
ν , and thus E[f x] ⇓ν implies E′[x] ⇓.

Jan Schwinghammer and Lars Birkedal 13

Let us now consider the reverse approximation of (1), which holds under the condition
that f is total and deterministic, i.e., that for all v ∈ Val(τ1) there exists u ∈ Val(τ2) such
that f v ∼=ctx u : τ2.

We proceed as above and show only for the case of must-approximation. For β < ω1,
h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1) we will prove

(f(h τ1 〈x, y〉), h τ2 〈f x, f y〉) ∈ Jτ2K
⊥⊥
β . (3)

We use (h, h) ∈ J∀α.α×α→αK⊥⊥β where we instantiate α by the relation s ∈ VRel(τ1, τ2),
given by sν = {(v, v′) | (f v, v′) ∈ Jτ2K

⊥⊥
ν+1}. First note that (f, id) ∈ Jα→ τ2K sβ , and thus

the proof of (3) reduces to showing (h τ1 〈x, y〉, h τ2 〈f x, f y〉) ∈ s⊥⊥β .
Since we have (h τ1, h τ2) ∈ Jα×α→ αK s⊥⊥β it suffices to show (x, f x) ∈ s⊥⊥β and (y, f y) ∈

s⊥⊥β , and we consider the former. Let (E,E′) ∈ s⊥ν for ν ≤ β such that E[x] ⇓ν ; we must
prove E′[f x] ⇓. By the assumption that f is total there exists u ∈ Val(τ2) such that
f x ∼=ctx u : τ2, and so it suffices to prove E′[u] ⇓. But this follows from (x, u) ∈ sν , and the
latter is immediate from the definition of s.

References
1 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for actor

computation. J. Funct. Program., 7(1):1–72, 1997.
2 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for

foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.
3 Krzysztof R. Apt and Gordon D. Plotkin. Countable nondeterminism and random assign-

ment. J. ACM, 33(4):724–767, 1986.
4 Lars Birkedal and Robert Harper. Relational interpretations of recursive types in an oper-

ational setting. Inf. Comput., 155(1-2):3–63, 1999.
5 Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg,

and Hongseok Yang. Step-indexed Kripke models over recursive worlds. In POPL, pages
119–132, 2011.

6 Pietro Di Gianantonio, Furio Honsell, and Gordon D. Plotkin. Uncountable limits and the
lambda calculus. Nord. J. Comput., 2(2):126–145, 1995.

7 Pietro Di Gianantonio and Marino Miculan. Unifying recursive and co-recursive definitions
in sheaf categories. In FOSSACS, pages 136–150, 2004.

8 Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. In ICFP, pages 143–156, 2010.

9 James Laird. Bidomains and full abstraction for countable nondeterminism. In FOSSACS,
pages 352–366, 2006.

10 Søren B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
University of Aarhus, 1998.

11 Søren B. Lassen and Andrew Moran. Unique fixed point induction for McCarthy’s amb. In
MFCS, pages 198–208, 1999.

12 Søren B. Lassen and Corin Pitcher. Similarity and bisimilarity for countable non-
determinism and higher-order functions. Electr. Notes Theor. Comput. Sci., 10, 1997.

13 Paul Blain Levy. Infinitary Howe’s method. In CMCS, pages 85–104, 2006.
14 Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with effects. J.

Funct. Program., 1(3):287–327, 1991.
15 Andrew M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90, 1996.
16 Andrew M. Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, Advanced

Topics in Types and Programming Languages, chapter 7, pages 245–289. MIT Press, 2005.

14 Step-indexed relational reasoning for countable nondeterminism

17 Andrew M. Pitts. Step-indexed biorthogonality: a tutorial example. In Modelling, Con-
trolling and Reasoning About State, Dagstuhl Seminar Proceedings, 2010.

18 David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda calculus with locally
bottom-avoiding choice: context lemma and correctness of transformations. Math. Struct.
Comp. Sci., 18(3):501–553, 2008.

	Introduction
	A lambda calculus with countable choice
	Uniform relations
	May equational theory
	Must equational theory
	Applications

