
STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE

NONDETERMINISM

LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

Aarhus University
e-mail address: birkedal@cs.au.dk

Aarhus University
e-mail address: abizjak@cs.au.dk

Saarland University
e-mail address: jan@ps.uni-saarland.de

Abstract. Programming languages with countable nondeterministic choice are compu-
tationally interesting since countable nondeterminism arises when modeling fairness for
concurrent systems. Because countable choice introduces non-continuous behaviour, it is
well-known that developing semantic models for programming languages with countable
nondeterminism is challenging. We present a step-indexed logical relations model of a
higher-order functional programming language with countable nondeterminism and demon-
strate how it can be used to reason about contextually defined may- and must-equivalence.
In earlier step-indexed models, the indices have been drawn from ω. Here the step-indexed
relations for must-equivalence are indexed over an ordinal greater than ω.

1. Introduction

Programming languages with countable nondeterministic choice are computationally inter-
esting since countable nondeterminism arises when modeling fairness for concurrent systems.
In this paper we show how to construct simple semantic models for reasoning about may-
and must-equivalence in a call-by-value higher-order functional programming language with
countable nondeterminism, recursive types and impredicative polymorphism.

Models for languages with nondeterminism have originally been studied using deno-
tational techniques. In the case of countably branching nondeterminism it is not enough
to consider standard ω-continuous complete partial orders and the denotational models
become quite involved [3, 6]. This has sparked research in operationally-based theories of
equivalence for nondeterministic higher-order languages [1, 12, 13, 14, 15, 20]. In particular,
Lassen investigated operationally-based relational methods for countable nondeterminism

1998 ACM Subject Classification: F.3.2 Semantics of Programming Languages.
Key words and phrases: Countable choice, lambda calculus, program equivalence.
A preliminary version of this work has been presented at the 20th EACSL Annual Conference on Computer

Science Logic (CSL’11), 12-15 September 2011, Bergen, Norway, see Section 7 for how the present paper
relates to the conference paper.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Lars Birkedal, Aleš Bizjak, and Jan Schwinghammer
Creative Commons

1

2 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

and suggested that it would be interesting to consider also methods based on logical relations,
i.e., where the types of the programming languages are given a relational interpretation [12,
page 47]. Such an interpretation would allow one to relate terms of different types, as needed
for reasoning about parametricity properties of polymorphic types.

For languages with recursive types, however, logical relations cannot be defined by
induction on types. In the case of deterministic languages, this problem has been addressed
by the technique of syntactic minimal invariance [4] (inspired by domain theory [17]). The
idea here is that one proves that a syntactically definable fixed point on a recursive type
is contextually equivalent to the identity function, and then uses a so-called unwinding
theorem for syntactically definable fixed points when showing the existence of the logical
relations. However, in the presence of countable nondeterminism it is not clear how to define
the unwindings of the syntactic fixed point in the programming language. Indeed, Lassen
proved an unwinding theorem for his language with countable nondeterminism, but he did
so by extending the language with new terms needed for representing the unwindings and
left open the question of whether this is a conservative extension of the language.

Here we give a logical relations model of our language where we do not rely on syntactic
minimal invariance for constructing the logical relations. Instead, we use the idea of step-
indexed logical relations [2]. In particular, we show how to use step-indexing over ordinals
larger than ω to reason about must-equivalence in the presence of countable nondeterminism.

This approach turns out to be both simple and also useful for reasoning about concrete
may- and must-equivalences. We show that our logical relations are sound and complete
with respect to the contextually defined notions of may- and must-equivalence. Moreover, we
show how to use our logical relations to establish some concrete equivalences. In particular,
we prove the recursion-induction rule from Lassen [12] and establish the syntactic minimal
invariance property (without extending the language with new unwinding terms). We also
include an example to show that the model can be used to prove parametricity properties
(free theorems) of polymorphic types.

Overview of the technical development. One way to understand the failure of ω-
continuity in an operational setting is to consider the must-convergence predicate e ⇓, which
by Tarski’s fixed point theorem can be defined as the least fixed point of the monotone
functional Φ(R) = {e | ∀e′. e 7−→ e′ ⇒ e′ ∈ R} on sets of terms. Here e 7−→ e′ means that
e reduces to e′ in one step. However, due to the countable branching the fixed point is not
reached by ω-many iterations

⋃
n∈ω Φn(∅). The reason is that even when a program has no

infinite reduction sequences, we cannot in general bound the length of reduction sequences
by any n < ω.

The idea of step-indexed semantics is a stratified construction of relations which facilitates
the interpretation of recursive types, and in previous applications this stratification has
typically been realized by indexing over ω. However, as we pointed out, the closure ordinal
of the inductively defined must-convergence predicate is strictly larger than ω: the least
fixed point ⇓ is reached after ω1-many iterations, for ω1 the least uncountable ordinal. (In
fact, the least non-recursive ordinal would suffice [3].) Thus, one of the key steps in our
development is the definition of α-indexed uniform relations, for arbitrary ordinals α, in
Section 3.

In Section 4 we define a logical ω-indexed uniform relation, and use this relation to prove
a CIU theorem for may-contextual equivalence. The logical relation combines step-indexing
and biorthogonality, and we can prove that it coincides with may-contextual equivalence;

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 3

τ ::= α | 1 | τ1 × τ2 | τ1 → τ2 | µα.τ1 + . . .+ τn | ∀α.τ
v ::= x | 〈〉 | 〈v1, v2〉 | λx.e | ini v | Λα.e
e ::= v | ? | proji v | v e | case v of in1 x1. e1| . . . |inn xn. en | v τ
E ::= [] | v E

Figure 1: Types, terms and evaluation contexts

proji 〈v1, v2〉 7−→ vi case (inj v) of (. . . |inj xj . ej| . . .) 7−→ ej [v/xj]

(λx.e) v 7−→ e[v/x] ? 7−→ n (n ∈ N)

(Λα.e) τ 7−→ e[τ/α] v e 7−→ v e′ if e 7−→ e′

Figure 2: Operational semantics

the proofs are similar to those in [19]. Section 5 considers the case of must-contextual
equivalence. The only modifications that this requires, compared to Section 4, are the use of
ω1-indexed uniform relations and of a suitably adapted notion of biorthogonality.

Summary of contributions. In summary, the contribution of this paper is a simple,
operationally-based logical relations model of countable nondeterminism in a higher-order
language, and the use of this model for proving several non-trivial applications in Section 6.
In particular, we derive a least prefixed point property for recursive functions in our language
and characterize the elements of the type ∀α.α× α→ α, using relational parametricity.

Laird [11] has developed a fully abstract denotational model based on bidomains for
a calculus similar to the one studied here but without recursive and polymorphic types;
our model appears to be the first model of countable nondeterminism for a language with
impredicative polymorphism. Finite nondeterminism and polymorphism has been studied
for a call-by-name language by Johann et. al. [10], who developed an operational theory for
algebraic effects.

2. A lambda calculus with countable choice

Syntax and operational semantics. Figure 1 gives the syntax of a higher-order functional
language with recursive and polymorphic types, and a (countably branching) choice construct.
We assume disjoint, countably infinite sets of type variables, ranged over by α, and term
variables, ranged over by x. The free type variables of types and terms, ftv(τ) and ftv(e),
and free term variables fv(e), are defined in the usual way. The notation (·)[~τ/~α] denotes
the simultaneous capture-avoiding substitution of types ~τ for the free type variables ~α in
types and terms; similarly, e[~v/~x] denotes simultaneous capture-avoiding substitution of
values ~v for the free term variables ~x in e.

To reduce the number of proof cases in the formal development, we keep the syntax
minimal. For instance, we only include proj1v, for v a value and not an expression. In
examples we may use additional syntactic sugar. We write let x = e in e′ for (λx.e′) e and
e τ for let f = e in f τ for some fresh f .

4 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

x:τ ∈ Γ ∆ ` Γ

∆; Γ ` x : τ

∆ ` Γ

∆; Γ ` 〈〉 : 1

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆; Γ ` 〈v1, v2〉 : τ1× τ2

∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : τ1→ τ2

∆; Γ ` v : τj [µα.τ1 + . . .+ τn/α]

∆; Γ ` inj v : µα.τ1 + . . .+ τn
1 ≤ j ≤ n

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
∆; Γ ` v : τ1 × τ2

∆; Γ ` proji v : τi

∆; Γ ` v : τ ′ → τ ∆; Γ ` e : τ ′

∆; Γ ` v e : τ

∆; Γ ` v : µα.τ1 + . . .+ τn . . . ∆; Γ, xj :τj [µα.τ1 + . . .+ τn/α] ` ej : τ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) : τ

∆; Γ ` v : ∀α.τ ∆ ` τ ′

∆; Γ ` v τ ′ : τ [τ ′/α]

∆ ` Γ

∆; Γ ` ? : nat

∅ ` τ
` [] : τ(τ

∅;∅ ` v : τ → τ2 ` E : τ1(τ

` v E : τ1(τ2

Figure 3: Typing of terms and evaluation contexts, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆, α.
The notation ∆ ` τ means that ftv(τ) ⊆ ∆, and ∆ ` Γ means that ∆ ` τ holds
for all x:τ ∈ Γ.

We define the unary natural numbers datatype as nat = µα.1 +α and write 0 = in1 〈〉
and n+1 = in2(n). The ‘erratic’ (finitely branching) choice construct e1 or e2 can be defined
from ? as let x = ? in case x of in1 y. e1 | in2 y. e2 for fresh x, y.

The operational semantics of the language is given in Figure 2 by a reduction relation
e 7−→ e′. In particular, the choice operator ? evaluates nondeterministically to any numeral
n (n ∈ N). We also consider evaluation contexts E, and write E[e] for the term obtained by
plugging e into E. It is easy to see that e 7−→ e′ holds if and only if E[e] 7−→ E[e′].

Typing judgements take the form ∆; Γ ` e : τ where Γ is a typing context x1:τ1, . . . , xn:τn
and where ∆ is a finite set of type variables that contains the free type variables of τ1, . . . , τn
and τ . The rules defining this judgement are summarized in Figure 3. The typing judgement
for evaluation contexts, ` E : τ(τ ′, means that ∅;∅ ` E[e] : τ ′ holds whenever ∅;∅ ` e : τ .

We write Type for the set of closed types τ , i.e., where ftv(τ) = ∅. We write Val(τ)
and Tm(τ) for the sets of closed values and terms of type τ , resp., and Stk(τ) for the
set of τ -accepting evaluation contexts. For a typing context Γ = x1:τ1, . . . , xn:τn with
τ1, . . . , τn ∈ Type, let Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val(τi)} denote the set of
type-respecting value substitutions. In particular, if ∆; Γ ` e : τ then ∅;∅ ` eδγ : τδ for
any δ ∈ Type∆ and γ ∈ Subst(Γδ), and the type system satisfies standard properties:

Lemma 1 (Canonical forms).

• If v ∈ Val(1) then v is 〈〉.
• If v ∈ Val(τ1× τ2) then v is of the form 〈v1, v2〉 for vi ∈ Val(τi).
• If v ∈ Val(τ1→ τ2) then v is of the form λx.t for some x and e.
• If v ∈ Val(µα.τ1 + . . .+ τm) then v is of the form inj v

′ for some 1 ≤ j ≤ m and
v′ ∈ Val(τj [µα.τ1 + . . .+ τm/α]).

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 5

• If v ∈ Val(∀α.τ) then v is of the form Λα.e for some α and e.

Proposition 2 (Preservation and progress).

• If e ∈ Tm(τ) and e 7−→ e′ then e′ ∈ Tm(τ).
• If e ∈ Tm(τ) \Val(τ) then e 7−→ e′ for some e′.

Following Lassen [12], we let fix : ∀α, β.((α→β) → (α→β)) → (α→β) denote
a variant of the (call-by-value) fixed point combinator from untyped lambda calculus,
fix = Λα, β.λf.δf (in δf) where δf is the term λy.case y of in y′. f(λx.let r= y′ y in r x).
In Section 6 we show in what sense fix is a fixed point combinator. We write Ω : ∀α.α
for the term Λα.fix1α (λf.f) 〈〉. Note that, for all closed types τ , reduction from Ω τ is
deterministic and non-terminating.

Contextual approximation. We follow Lassen’s approach [12] and define contextual
approximation as the largest relation that satisfies certain compatibility and adequacy
properties (also see, e.g. [18, 19]). The technical advantage of this approach, compared to
the more traditional one of universally quantifying over program contexts, is that in proofs
there will be no need to explicitly take care of contexts and of term occurrences within
contexts. In our terminology, we keep close to Pitts [18], except for suitably adapting the
definitions to take the nondeterministic outcomes of evaluation into account.

The observables on which contextual approximation is based are given by may- and
must-convergence. A closed term e may-converges, written e ↓, if e 7−→∗ v for some v ∈ Val ,
and e may-diverges, written e ↑, if there is an infinite reduction sequence starting from e.
The must-convergence predicate e ⇓ is the complement of may-divergence, and it can be
defined as the least predicate satisfying e ⇓ if for all e′, if e 7−→ e′ then e′ ⇓. In addition, we
say that e must-diverges if it does not may-converge.

Definition 3 (Type-indexed relation). A type-indexed relation is a set of tuples (∆,Γ, e, e′, τ)
such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ holds, where we write ∆; Γ ` e R e′ : τ for
(∆,Γ, e, e′, τ) ∈ R.

Definition 4 (Precongruence). A type-indexed relation R is reflexive if ∆; Γ ` e : τ implies
∆; Γ ` e R e : τ . It is transitive if ∆; Γ ` e R e′ : τ and ∆; Γ ` e′ R e′′ : τ implies
∆; Γ ` e R e′′ : τ . A precongruence is a reflexive and transitive type-indexed relation R that
is closed under the inference rules in Figure 4.

Definition 5 (May- and must-adequate relations). A type-indexed relation R is may-
adequate if, whenever ∅;∅ ` e R e′ : τ holds, then e ↓ implies e′ ↓. It is must-adequate if,
whenever ∅;∅ ` e R e′ : τ holds, then e ⇓ implies e′ ⇓.

Definition 6 (Contextual approximations and equivalences). May-contextual approximation,
written .ctx

↓ , is the largest may-adequate precongruence. May-contextual equivalence, ∼=ctx
↓ ,

is the symmetrization of .ctx
↓ . Analogously, must-contextual approximation, written .ctx

⇓ ,

is the largest must-adequate precongruence, and must-contextual equivalence, ∼=ctx
⇓ , is its

symmetrization. Contextual approximation, .ctx, and contextual equivalence, ∼=ctx, are
given as intersections of the respective may- and must-relations, and thus ∼=ctx is also the
symmetrization of .ctx.

6 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

∆; Γ ` x R x : τ
x:τ ∈ Γ

∆; Γ ` 〈〉 R 〈〉 : 1

∆; Γ ` v1 R v′1 : τ1 ∆; Γ ` v2 R v′2 : τ2

∆; Γ ` 〈v1, v2〉 R 〈v′1, v′2〉 : τ1 × τ2

∆; Γ, x:τ1 ` e R e′ : τ2

∆; Γ ` λx.e R λx.e′ : τ1 → τ2

∆; Γ ` v R v′ : τj [µα.τ1 + . . .+ τn/α]

∆; Γ ` inj v R inj v
′ : µα.τ1 + . . .+ τn

1 ≤ j ≤ n
∆, α; Γ ` e R e′ : τ

∆; Γ ` Λα.e R Λα.e′ : ∀α.τ

∆; Γ ` v R v′ : τ1 × τ2

∆; Γ ` proji v R proji v
′ : τi

∆; Γ ` v R v′ : τ ′ → τ ∆; Γ ` e R e′ : τ ′

∆; Γ ` v e R v′ e′ : τ

∆; Γ ` v R v′ : τ . . . ∆; Γ, xj :τj [τ/α] ` ej R e′j : τ ′ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) R case v′ of (. . . | inj xj . ej | . . .) : τ ′
τ = µα.τ1 + . . .+ τn

∆; Γ ` v R v′ : ∀α.τ
∆; Γ ` v τ ′ R v′ τ ′ : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆; Γ ` ? R ? : nat

Figure 4: Compatibility properties of type-indexed relations

That this largest (may-, must-) adequate precongruence exists can be shown as in [18],
by proving that the relation S =

⋃
{R | R compatible and (may-, must-) adequate} is an

adequate precongruence.
In principle, to establish an equivalence ∆; Γ ` e ∼=ctx e′ : τ it suffices to find some

may- and must-adequate congruence R that contains the tuple (∆,Γ, e, e′, τ) since ∼=ctx is
the largest such relation. However, in practice it is difficult to verify that a relation R has
the necessary compatibility properties in Figure 4. An alternative characterization of the
contextual approximation and equivalence relations can be given in terms of CIU preorders
[16], which we define next.

Definition 7 (CIU preorders). May- and must-CIU preorder, written .ciu
↓ and .ciu

⇓ resp., are

the type-indexed relations defined as follows: for all e, e′ with ∆; Γ ` e : τ and ∆; Γ ` e′ : τ ,

• ∆; Γ ` e .ciu
↓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ↓ ⇒

E[e′δγ] ↓
• ∆; Γ ` e .ciu

⇓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ⇓ ⇒
E[e′δγ] ⇓

The CIU preorder is defined as the intersection of .ciu
↓ and .ciu

⇓ .

Theorem 8 (CIU theorem). The (may-, must-) CIU preorder coincides with (may-, must-)
contextual approximation.

Using the CIU theorem, it is easy to verify that all the deterministic reductions are
also valid equivalences, and that the various call-by-value eta laws hold. Moreover, we can
establish the laws of Moggi’s computational lambda calculus and the basic (inequational)
theory of erratic choice (Figure 5). We will prove the CIU theorem in Section 4 (for the
may-CIU preorder) and Section 5 (for the must-CIU preorder). The CIU theorem was also
proved, using different operational techniques, for a langauge with countable nondeterminism
(but no polymorphism) in [12].

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 7

let x= ? in e ∼=ctx e (x /∈ fv(e)) let x= v in e ∼=ctx e[v/x] let x= e in x ∼=ctx e

e or e ∼=ctx e Ω τ .ctx
↓ e Ω τ .ctx

⇓ e

e1 or e2
∼=ctx e2 or e1 e1 .

ctx
↓ e1 or e2 e1 or e2 .

ctx
⇓ e1

(e1 or e2) or e3
∼=ctx e1 or (e2 or e3) e or (Ω τ) ∼=ctx

↓ e e or (Ω τ) ∼=ctx
⇓ Ω τ

Figure 5: Basic may- and must-theory, where e1 or e2 is an abbreviation for the term
let x = ? in case x of in1 y. e1 | in2 y. e2, and e is of type τ .

3. Uniform relations

For a limit ordinal number α and a set X we define an α-indexed uniform subset on X to
be a family (Rβ)β<α of subsets Rβ ⊆ X such that

• R0 = X,
• Rβ+1 ⊆ Rβ for all β < α, and
• Rλ =

⋂
β<λRβ for every limit ordinal λ < α.

Let Relα(X) denote the α-indexed uniform subsets on X.

Recursive definitions. The notions of n-equivalence, non-expansiveness and contractive-
ness (e.g., [5]) all generalize from the case of ω-indexed uniform subsets: Given α-indexed
uniform subsets R,S ∈ Relα(X) and ν < α we say that R and S are ν-equivalent, written

R
ν
= S, if Rβ = Sβ for all β ≤ ν. In particular, R = S if and only if R

ν
= S for all ν < α.

A function F : Relα(X1)× · · ·×Relα(Xn)→ Relα(X) is non-expansive if ~R
ν
= ~S implies

F (~R)
ν
= F (~S), and F is contractive if ~R

ν
= ~S implies F (~R)

ν+ 1
= F (~S). If R ∈ Relα(X) then

.R ∈ Relα(X) is the uniform subset determined by (.R)β+ 1 = Rβ ; this operation gives rise
to a contractive function on Relα(X). Henceforth, we often omit parentheses and write .Rβ
for (.R)β.

Proposition 9 (Unique fixed points). If F : Relα(X)→ Relα(X) is contractive, then F has
a unique fixed point fix r.F (r).

Proof. First note that F has at most one fixed point: if R,S are fixed points of F then, by

the contractiveness of F , we can establish that R = F (R)
ν
= F (S) = S holds for all ν < α

by induction and thus R = S.
Because of the uniformity conditions it is sufficient to give the components of the fixed

point fix r.F (r) that are indexed by successor ordinals. We set fix r.F (r)ν+ 1 = F (R)ν+ 1

where R ∈ Relα(X) is defined by Rβ = fix r.F (r)β for β ≤ ν and Rβ = ∅ for β > ν. By
induction, it is easy to see that fix r.F (r) ∈ Relα(X) and that F (fix r.F (r))ν = fix r.F (r)ν
holds for all ν < α, and thus F (fix r.F (r)) = fix r.F (r).

Proposition 9 is an instance of Di Gianantonio and Miculan’s sheaf-theoretic fixed point
theorem [7]. Indeed, an α-indexed uniform subset on X corresponds to a subobject of the
constant sheaf on X in the sheaf topos on α.

8 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

Uniform relations on syntax. For τ, τ ′ ∈ Type we consider the collections of β-indexed
uniform relations between values, terms and evaluation contexts: we write VRelβ(τ, τ ′)
for Relβ(Val(τ)×Val(τ ′)), we write SRelβ(τ, τ ′) for Relβ(Stk(τ)×Stk(τ ′)), and we use
TRelβ(τ, τ ′) for Relβ(Tm(τ)×Tm(τ ′)). Note that a value relation may relate values of
distinct types; that is essential for reasoning about relational parametricity, see, e.g., the
proof of Lemma 32.

The description of the logical relations in the sections below makes use of the following
(non-expansive) constructions on uniform relations:

• R1×R2 ∈ VRelβ(τ1× τ2, τ
′
1× τ ′2), for R1 ∈ VRelβ(τ1, τ

′
1) and R2 ∈ VRelβ(τ2, τ

′
2), is

defined by (R1×R2)ν = {(〈v1, v2〉, 〈v′1, v′2〉) | (v1, v
′
1) ∈ (R1)ν ∧ (v2, v

′
2) ∈ (R2)ν}.

• R1→R2 ∈ VRelβ(τ1→ τ2, τ
′
1→ τ ′2), for R1 ∈ VRelβ(τ1, τ

′
1) and R2 ∈ TRelβ(τ2, τ

′
2), is

given by (R1→R2)ν = {(λx.e, λx.e′) | ∀ν ′≤ ν. ∀(v, v′)∈ (R1)ν′ . (e[v/x], e′[v′/x])∈ (R2)ν′}.
• ∀r.F (r)∈VRelβ(∀α.τ1,∀α.τ ′1), for Fτ,τ ′ : VRelβ(τ, τ ′) → TRelβ(τ1[τ/α], τ ′1[τ ′/α]) a

family of non-expansive maps, is the uniform relation that is defined by ∀r.F (r)ν =
{(Λα.e,Λα.e′) | ∀τ, τ ′ ∈Type, R∈VRelν(τ, τ ′). (e[τ/α], e′[τ ′/α] ∈ Fτ,τ ′(R)ν}.

• injR ∈ VRelβ(τ, τ ′), for τ = µα.τ1 + . . .+ τm and τ ′ = µα.τ ′1 + . . .+ τ ′n and R ∈
VRelβ(τj [τ/α], τ ′j [τ

′/α]), is given by (injR)ν = {(inj v, inj v′) | (v, v′) ∈ Rν}.

4. May equational theory

In this section, we will define a logical uniform relation that is used to prove that may-CIU
preorder and may-contextual approximation coincide. The key idea of the definition is
the usual one of step-indexing [2], i.e., that the observables can be stratified based on
step-counting in the operational semantics. Let us refer to reduction steps of the form

case (inj v) of (. . . |inj xj . ej| . . .) 7−→ ej [v/xj]

as unfold-fold reductions. Following [8] we will only count such unfold-fold reductions. The
advantage of this is that the interpretation of types is slightly more extensional than if we
counted all reduction steps; see the precise formulation in Lemma 14 below. Hence we define

e 0 e′

to mean that e 7−→∗ e′ and none of the reductions in the reduction sequence is an unfold-fold
reduction, and we define

e 1 e′

to mean that e 7−→∗ e′ and exactly one of the reductions in the reduction sequence is an
unfold-fold reduction.

We shall also make use of pure reductions. To that end, we refer to reductions of the
form

? 7−→ n

as choice reductions. We then define
e

p
 e′

to mean that e 7−→∗ e′ and none of the reductions in the reduction sequence is a choice
reduction. Further, we define

e
p

0
e′

to mean that e 0 e′ and e
p
 e′.

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 9

We write e ↓n if e 7−→∗ v for some v ∈ Val and at most n reduction steps are unfold-fold
reductions.

Logical ω-indexed uniform relation for may-approximation. In the case of may-
approximation, it suffices to consider ω-indexed uniform relations. Using the constructions
on relations given above, we define a relational interpretation JτK (~r) ∈ VRelω(τ [~τ/~α], τ [~τ ′/~α])
by induction on the type ~α ` τ , given closed types τ1, τ

′
1, . . . , τk, τ

′
k ∈ Type and relations

r1 ∈ VRelω(τ1, τ
′
1), . . . , rk ∈ VRelω(τk, τ

′
k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)n<ω Jτ1 → τ2K (~r) = Jτ1K (~r)→ (Jτ2K (~r))⊥⊥

J∀α.τK (~r) = ∀r.(JτK (~r, r))⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

Here, value relations r ∈ VRelω(τ, τ ′) are lifted to relations r⊥ ∈ SRelω(τ, τ ′) on evaluation
contexts and to relations r⊥⊥ ∈ TRelω(τ, τ ′) on terms by biorthogonality, much as in [9]:

r⊥n = {(E,E′) | ∀j ≤ n. ∀(v, v′) ∈ rj . E[v] ↓j ⇒ E′[v′] ↓ }

r⊥⊥n = {(e, e′) | ∀j ≤ n. ∀(E,E′) ∈ r⊥j . E[e] ↓j ⇒ E′[e′] ↓ }
The fixed point in the interpretation of recursive types is well-defined by Proposition 9 since
each JτK denotes a family of non-expansive functions, and thus composition with . yields a
contractive function. Intuitively, we want to relate two values in1v and in1v

′ of a recursive
type if v and v′ are related at the unfolded type. We cannot define the relation that way.
Instead we only require that v and v′ are related at one step later. This suffices because we
count unfold-fold reductions, see the proof of Proposition 15 for details.

We often omit parentheses and write JτK~rn for (JτK~r)n and JτK~r⊥n for (JτK~r)⊥n and

JτK~r⊥⊥n for (JτK~r)⊥⊥n .
The following lemmas express basic properties of the defined relations which are often

used in subsequent proofs and calculations.

Lemma 10 (Substitution). If ∆, α ` τ and ∆ ` τ ′ then Jτ [τ ′/α]K (~r) = JτK (~r, Jτ ′K (~r)).

Lemma 11 (Extensiveness). For all r ∈ VRel(τ, τ ′), r ⊆ r⊥⊥.

Lemma 12 (Monotonicity). For all r, s ∈ VRel(τ, τ ′), if r ⊆ s then r⊥⊥ ⊆ s⊥⊥.

Lemma 13 (Context composition). If (v, v′) ∈ Jτ1→ τ2K~rn and (E,E′) ∈ Jτ2K~r⊥n then

(E[v []], E′[v′ []]) ∈ Jτ1K~r⊥n .

Proof. Let j ≤ n, (v1, v
′
1) ∈ Jτ1K~rj . Assume E[v v1] ↓j . We have v = λx.e and v′ = λx.e′ and

(λx.e, λx.e′) ∈ Jτ1→ τ2K~rn for some x, e, e′ and since E[v v1] 7−→ E[e[v1/x]] also E[e[v1/x]] ↓j .
By definition, (e[v1/x], e′[v′1/x]) ∈ Jτ2K~r⊥⊥j . From (E,E′) ∈ Jτ2K~r⊥n we obtain E′[e′[v′1/x]] ↓.
Thus, E′[v′ v′1] ↓.

10 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

The following lemma expresses that the term-relations are closed on the right under
arbitrary pure reduction sequences and on the left under zero-step pure reduction sequences.
(The lemma could be strengthened slightly by allowing some of the reductions to be non-pure,
but the way it is stated now, it holds both for the may interpretations of types, and also for
the must interpretations of types given in the following section.)

Lemma 14. For all (e, e′) ∈ JτK⊥⊥n ,

• if e′1
p
 e′

p
 e′2, then (e, e′1) ∈ JτK⊥⊥n and (e, e′2) ∈ JτK⊥⊥n ;

• if e1
p

0
e

p

0
e2, then (e1, e

′) ∈ JτK⊥⊥n and (e2, e
′) ∈ JτK⊥⊥n .

The proof is straightforward; the use of
p

0
in the second item ensures that the index of

the relation does not change.
The relational interpretation extends pointwise to value substitutions: (γ, γ′) ∈ JΓK~rn if

(γ(x), γ(x′)) ∈ JτK~rn for all x:τ ∈ Γ. Based on this interpretation we consider the following
type-indexed relation:

∆; Γ ` e .log
↓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω(~τ , ~τ ′).∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥n
The definition of .log

↓ builds in enough closure properties to prove its compatibility.

Proposition 15 (Fundamental property). The relation .log
↓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
↓ e : τ .

Proof. We consider the inference rules from Figure 4 in turn.

• For the introduction of recursive types, we assume that

∆; Γ ` v .log
↓ v′ : τj [µα.τ1 + . . .+ τm/α],

and then prove that

∆; Γ ` inj v .log
↓ inj v

′ : µα.τ1 + . . .+ τm.

For notational convenience we only consider the case of closed terms. Let τ
abbreviate the type µα.τ1 + . . .+ τm. Note that

JτK~r =
⋃
j

inj
(
. JτjK (~r, JτK~r)

)
=
⋃
j

inj
(
. Jτj [τ/α]K (~r)

)
by definition and Lemma 10, and that the inclusion Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r)
holds. It is easy to see, straight from the definition, that (λx.inj x, λx.inj x) ∈
Jτj [τ/α]→ τK~rn, so assuming (E,E′) ∈ JτK~r⊥n it follows from Lemma 13 that

(E[(λx.inj x) []], E′[(λx.inj x) []]) ∈ Jτj [τ/α]K~r⊥n .

Thus, if E[inj v] ↓i for some i ≤ n then E′[(λx.inj x) v′]) ↓ follows from (v, v′) ∈
Jτj [τ/α]K~r⊥⊥n . Therefore we can conclude E′[inj v

′] ↓, and have shown (inj v, inj v
′) ∈

JτK~r⊥⊥n . Since n was chosen arbitrarily, we have ∆; Γ ` inj v .log
↓ inj v

′ : τ .

• For the elimination of recursive types, we assume that τ is of the form µα.τ1 + . . .+ τm,

∆; Γ, xj :τj [τ/α] ` ej .log
↓ e′j : τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log

↓ v′ : τ . We prove

∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log
↓ case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 11

For simplicity we only consider the case of closed terms. By definition and
by Lemma 10 we have JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj(. Jτj [τ/α]K~r).

Moreover, (λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e
′
j| . . .)) ∈

Jτ → τ ′K~rn for any n. To see this, assume k ≤ n, let (a, a′) ∈ JτK~rn and (E,E′) ∈
Jτ ′K~r⊥n such that E[case a of(. . . |inj xj . ej| . . .)] ↓k. This implies that k > 0 and
by the above observation we have a = injaj and a′ = inja

′
j for some (aj , a

′
j) ∈

Jτj [τ/α]K~rk−1. From E[case a of(. . . |inj xj . ej| . . .)] ↓k we obtain E[ej [aj/xj]] ↓k−1,
and thus the assumption on ej and e′j gives E′[e′j [a

′
j/xj]] ↓. From this we can conclude

that E′[case a′ of(. . . |inj xj . e
′
j| . . .)] ↓ holds.

To prove the case, assume next that (E,E′) ∈ Jτ ′K~r⊥n . From Lemma 13 we obtain
(E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e

′
j| . . .)) []]) ∈

JτK~r⊥n . Now, since we know (v, v′) ∈ JτK~r⊥⊥n by assumption, we obtain that
E[case v of(. . . |inj xj . ej | . . .)] ↓n implies E[case v′ of(. . . |inj xj . e′j | . . .)] ↓ as
required.

• For choice, we assume ∆ ` Γ and show ∆; Γ ` ? .log
↓ ? : nat. Suppose (E,E′) ∈

JnatK~r⊥n and E[?] ↓j for some j ≤ n. Then E[?] 7−→ E[k] and E[k] ↓j for some
k ∈ N. By induction on k we obtain that (k, k) ∈ JnatK~rn, and thus E′[k] ↓. Hence
E′[?] ↓.

The proofs for the remaining rules are similar.

Corollary 16. If v ∈ V al(τ) then for all n < ω, (v, v) ∈ JτKn.

Proof. We prove this by induction on the value v.

• Suppose τ = τ1 → τ2 and v = λx.e. Fix n and let i ≤ n. For arbitrary (u, u′) ∈
Jτ1Ki we have to prove (e[u/x], e[u′/x]) ∈ Jτ2Ki

⊥⊥. Since ∅;x : τ1 ` e : τ2 using

Proposition 15 we have ∅;x : τ1 ` e .log
↓ e : τ2. If we instantiate this with i and the

substitution x 7→ (u, u′) we get what is required.
• Suppose τ = ∀α.τ and v = Λα.e. Fix n, pick τ, τ ′ ∈ Type and R ∈ V Reln(τ, τ ′). We

have to show (e[τ/α], e[τ ′/α]) ∈ JτKRn⊥⊥, but this again follows straightforwardly
from Proposition 15.

The other cases follows straightforwardly from the induction hypothesis. The case for
inj also requires Lemma 10.

Theorem 17 (Coincidence). ∆; Γ ` e .log
↓ e′ : τ if and only if ∆; Γ ` e .ciu

↓ e′ : τ .

Proof. For the direction from left to right, let δ ∈ Type∆, γ ∈ Subst(Γδ) and E ∈ Stk(τδ),
and assume E[eδγ] ↓. Then E[eδγ] ↓n for some n. We must show E[e′δγ] ↓. As a consequence

of Proposition 15 and Corollary 16, (γ, γ) ∈ JΓδKn and (E,E) ∈ JτδK⊥n . By definition of

∆; Γ ` e .log
↓ e′ : τ and Lemma 10 we have (eδγ, e′δγ) ∈ JτδK⊥⊥n , and thus E[eδγ] ↓n gives

E[e′δγ] ↓.
For the direction from right to left, first note that the logical relation is closed under

may-CIU approximation; more precisely, if ∆; Γ ` e .log
↓ e′ : τ and ∆; Γ ` e′ .ciu

↓ e′′ : τ

then ∆; Γ ` e .log
↓ e′′ : τ . This observation follows from the definition of (·)⊥⊥ used

in ∆; Γ ` e .log
↓ e′ : τ and the definition of CIU approximation. Now assume that

∆; Γ ` e .ciu
↓ e′ : τ . By Proposition 15, ∆; Γ ` e .log

↓ e : τ , and thus ∆; Γ ` e .log
↓ e′ : τ .

12 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

∆; Γ ` v R v′ : τ ∆; Γ, x:τ ` e R e′ : τ ′

∆; Γ ` e[v/x] R e′[v′/x] : τ ′
∆, α; Γ ` e R e′ : τ ′

∆; Γ[τ/α] ` e R e′ : τ ′[τ/α]
∆ ` τ

Figure 6: Substitutivity properties of type-indexed relations

Proof of CIU Theorem 8(1). We first show that .ciu
↓ is contained in .ctx

↓ . By definition,

.ctx
↓ is the largest may-adequate precongruence, thus it is sufficient to establish that .ciu

↓ is a

may-adequate precongruence. From the definition it is immediate that .ciu
↓ is may-adequate,

reflexive and transitive. By Theorem 17, .ciu
↓ coincides with .log

↓ which is compatible by
Proposition 15.

For the other direction, following Pitts [19], we first consider the special case where

∅;∅ ` e .ctx
↓ e′ : τ . To prove ∅;∅ ` e .ciu

↓ e′ : τ , note that ∅;∅ ` E[e] .ctx
↓ E[e′] : τ ′ holds

for all evaluation contexts E such that ` E : τ(τ ′ since .ctx
↓ is reflexive and compatible.

Hence, that E[e] ↓ implies E[e′] ↓ follows since .ctx
↓ is may-adequate.

The general case reduces to this special case since may-contextual approximation has the
substitutivity properties given in Figure 6. For the first of these, assume ∆; Γ ` v .ctx

↓ v′ : τ

and ∆; Γ, x:τ ` e .ctx
↓ e′ : τ ′. From the definition of may-CIU approximation it is easy to see

∆; Γ ` e[v/x] .ciu
↓ (λx.e) v : τ ′ and ∆; Γ ` (λx.e′) v′ .ciu

↓ e′[v′/x] : τ ′ .

Since we have already shown that .ciu
↓ is contained in .ctx

↓ , and since ∆; Γ ` (λx.e) v .ctx
↓

(λx.e′) v′ : τ ′ by compatibility, we can conclude ∆; Γ ` e[v/x] .ctx
↓ e′[v′/x] : τ ′ by transitivity.

The second substitutivity property is proved similarly, using a weakening property of may-
contextual approximation.

Using the logical relation, we now prove some simple extensionality properties for may
contextual approximation and equivalence. We will use these properties in the parametricity
example in Section 6.

Lemma 18. If v ∈ Val (∀α.σ) then ∀τ, τ ′ ∈ Type,∀R ∈ VRel (τ, τ ′) ,∀n < ω, (v τ, v τ ′) ∈
JσKRn⊥⊥.

Proof. Take n < ω, j ≤ n, (E,E′) ∈ JσKR⊥j and assume E [v τ] ↓j which is equivalent to

E[(λx.x τ)v] ↓j . It is easy to see that (E [(λx.x τ)[]] , E′ [(λx.x τ ′)[]]) ∈ J∀α.σKR⊥j and using

Proposition 15 we have ∀n < ω, (v, v) ∈ J∀α.α× α→ αK⊥⊥n which concludes the proof.

Lemma 19 (Application). If (e, e′) ∈ Jτ1K~r⊥⊥n and (v, v′) ∈ Jτ1→ τ2K~rn then (v e, v′ e′) ∈
Jτ2K~r⊥⊥n .

Proof. For any (E,E′) ∈ Jτ2K~r⊥n , (E[v []], E′[v′ []]) ∈ Jτ1K~r⊥n by Lemma 13. Thus, if E[v e] ↓j
for j ≤ n then E′[v′ e′] ↓.
Lemma 20. If v, u ∈ Val (∀α.σ), n < ω and ∀τ, τ ′ ∈ Type, ∀R ∈ VRel(τ, τ ′), (v τ, u τ ′) ∈
JσK⊥⊥Rn then (v, u) ∈ J∀α.σKn
Lemma 21. If τ, σ ∈ Type, n < ω, (f, f ′) ∈ Jτ → σKRn⊥⊥ and (e, e′) ∈ JτKRn⊥⊥ then(

(λx.x e) f, (λx.x e′) f ′
)
∈ JσKRn⊥⊥.

Proof. This follows from Lemma 13 and Lemma 19.

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 13

Lemma 22 (Functional extensionality). Let τ, σ ∈ Type, f, g ∈ Val(τ → σ) and assume
∀u ∈ Val(τ), f u ∼=ctx

↓ g u. Then f ∼=ctx
↓ g.

Proof. We will show directly that ∀n < ω, (f, g) ∈ Jτ → σKn. To this end take n < ω, j ≤ n
and (v, u) ∈ JτKj . By the canonical forms lemma f = λx.e and g = λx.e′ for some

e and e′. We must show (e[v/x], e′[u/x]) ∈ JσK⊥⊥j . So take a k ≤ j, (E,E′) ∈ JσK⊥k
and assume E[e[v/x]] ↓k which is equivalent to E[f v] ↓k. Proposition 15 shows that

∀m < ω, (f, f) ∈ Jσ → τK⊥⊥m and then using Lemma 21 we can conclude that E′[f u] ↓. Using
the assumption and Theorem 17 we get E′[g u] ↓, which concludes the proof.

Note that extensionality property above is stated for values of function type; a more
general extensionality property for expressions of function type fails. To show that, we first
define some abbreviations.

Let 2 be the type µα.1 + 1 and let true = in1〈〉 and false = in2〈〉 be values of type
2. By the canonical forms lemma these two are the only closed values of this type. Let
Ω2 = Ω 2. Note that reduction from Ω2 is deterministic and non-terminating. We first
define if and ifz constructs as

if p then e else e′ = let y = p in case p of in1 x. e|in2 x. e
′

ifz p then e else e′ = let y = p in case n of in1 x. e|in2 x. e
′

where x and y are variables not free in e or e′.
Now, to exhibit the failure of a more general extensionality property, let e = λx.proj1 x or

proj2 x and e′ = ifz ? then λx.proj1 x else λx.proj2 x be two terms of type 2× 2→ 2.
Then it is easy to see that ∀u ∈ Val(2× 2), (λx.x u) e ∼=ctx

↓ (λx.x u) e′. But on the other

hand there is an evaluation context distinguishing the two terms e and e′. The idea is to
call the resulting value twice with the same pair and diverge if it produces the same value
twice, but return a value if the results of the two calls differ. To this end we first define the
function xor = λx.λy.ifx then (if y then false else true) else y and then we define

E = let x = [] in

let y = x 〈true, false〉 in
let z = x 〈true, false〉 in
let w = x xor y in

ifw thenw elseΩ2

We then have E[e] ↓ but on the other hand, E[e′] always diverges, therefore e and e′ are not
contextually equal.

A similar counter-example can also be exhibited for must-contextual equivalence. Indeed,
if we define the function xnor = λx.λy.ifx then y else (if y then false else true) and the
evaluation context

E′ = let x = [] in

let y = x 〈true, false〉 in
let z = x 〈true, false〉 in
let w = x xnor y in

ifw thenw elseΩ2.

14 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

we have that ∀u ∈ Val(2× 2), (λx.x u) e ∼=ctx
⇓ (λx.x u) e′, but on the other hand E′[e′] ⇓ but

not E′[e] ⇓.
Finally, we state the expected extensionality property for values of polymorphic type.

Lemma 23 (Extensionality for ∀). Let u, v ∈ Val (∀α.σ) and assume ∀τ ∈ Type, u τ ∼=ctx
↓ v τ .

Then u ∼=ctx
↓ v.

The proof of this lemma is essentially the same as the proof of Lemma 22.

5. Must equational theory

To define the logical relation for must-approximation, we need to stratify the observables
again. We define stratified relations counting all steps () and one counting only unfold-fold
reductions (⇓). The latter is used for indexing the logical relations, the former for relating
the latter to must-approximation.

For terms e and ordinals β we define e β by induction on β: e β if for all e′ such that
e 7−→ e′ there exists ν < β and e′ ν . The essential observation is that β indeed captures
must-convergent behaviour.

Lemma 24 (Stratified must-convergence). e ⇓ if and only if e β for some β < ω1 (for ω1

the least uncountable ordinal).

Proof. The proof from left to right is by induction on e ⇓. By induction hypothesis there
exists ordinals ν(e′) < ω1 for each term e′ such that e 7−→ e′. Let β =

⋃
ν(e′), then

β+ 1 < ω1 (since there are only countably many such e′ and each ν(e′) is countable) and
e β+ 1. The direction from right to left is by induction on β.

For terms e and ordinals β we define e ⇓β by induction on β: e ⇓β if for all e′ such that
e 1 e′ there exists ν < β and e′ ⇓ν .

Using Lemma 24, we can show:

Lemma 25. e ⇓ implies e ⇓β for some β < ω1.

Logical ω1-indexed uniform relation for must-approximation. Proposition 24 indi-
cates that logical relations for must-approximation need to be indexed over ω1. The lifting
of value relations r ∈ VRelω1(τ, τ ′) to relations r⊥ ∈ SRelω1(τ, τ ′) on evaluation contexts
and to relations r⊥⊥ ∈ TRelω1(τ, τ ′) on terms is defined with respect to must termination.

r⊥β = {(E,E′) | ∀ν ≤ β. ∀(v, v′) ∈ rν . E[v] ⇓ν ⇒ E′[v′] ⇓ }

r⊥⊥β = {(e, e′) | ∀ν ≤ β. ∀(E,E′) ∈ r⊥ν . E[e] ⇓ν ⇒ E′[e′] ⇓ }
Except for this difference, the relational interpretation JτK (~r) ∈ VRelω1(τ [~τ/~α], τ [~τ ′/~α]) is
literally the same as in Section 4 and defined by induction on the type ~α ` τ , given closed
types τ1, τ

′
1, . . . , τk, τ

′
k ∈ Type and relations r1 ∈ VRelω1(τ1, τ

′
1), . . . , rk ∈ VRelω1(τk, τ

′
k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)β<ω1 Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 15

∆; Γ ` v v′ .ctx
↓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .
ctx
↓ v′ : τ1→ τ2

∆; Γ ` v v′ .ctx
⇓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .
ctx
⇓ v′ : τ1→ τ2

Figure 7: Recursion induction: least prefixed point property of fix

Logical must-approximation is defined as follows:

∆; Γ ` e .log
⇓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω1(~τ , ~τ ′).∀β <ω1.∀(γ, γ′) ∈ JΓK~rβ. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥β

Proposition 26 (Fundamental property). The relation .log
⇓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
⇓ e : τ .

Proof. The proof is similar to the one for Proposition 15. We give only the case for choice,

where we assume ∆ ` Γ and prove ∆; Γ ` ? .log
⇓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥β and

E[?] ⇓β. We are to show that E′[?] ⇓, for which it suffices to show that E′[k] ⇓, for all
k ∈ N. Let k ∈ N be arbitrary. Then E[?] 7−→ E[k] and so E[k] ⇓β. Induction on k shows
that (k, k) ∈ JnatK~rβ and hence the required follows by the assumption on (E,E′).

Corollary 27. If v ∈ V al(τ) then for all ν < ω1, (v, v) ∈ JτKν .

We omit the proof, as it is analogous to the proof of Corollary 16.

Theorem 28 (Coincidence). ∆; Γ ` e .log
⇓ e′ : τ if and only if ∆; Γ ` e .ciu

⇓ e′ : τ .

Proof. The proof is completely analogous to that of Theorem 17. For the direction from left
to right one uses the relationship between ⇓ and ⇓β given by Lemma 25 and then appeals

to Proposition 26 and Corollary 27. The direction from right to left uses the fact that .log
⇓

is closed under must-CIU approximation.

Proof of CIU Theorem 8(2). The proof is analogous to that of Theorem 8(1). From the

definition, .ciu
⇓ is a must-adequate reflexive and transitive relation, by Proposition 26 and

Theorem 28 it is also compatible, and thus contained in .ctx
⇓ . From this containment and the

closure of .ciu
⇓ under beta conversion it follows that .ctx

⇓ has the substitutivity properties in

Figure 6. Thus it suffices to prove the containment of .ctx
⇓ in .ciu

⇓ for closed terms, which is

clear by the compatibility and must-adequacy of .ctx
⇓ .

6. Applications

This section illustrates how the logical relation characterization of contextual approximation
can be used to derive interesting examples and further proof principles. We consider three
such applications: a recursion-induction principle for recursively defined functions, syntactic
minimal invariance of a recursive type, and an application of relational parametricity to
characterize the elements of the type ∀α.α× α→ α.

16 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

Recursion-induction. Recall from the introduction that fix : ∀α, β.((α→β)→(α→β))→
(α→β) is given by the term Λα, β.λf.δf (in δf) where δf is an abbreviation for the term
λy.case y of in y′. f(λx.(λr.r x)(y′ y)). We now prove that fix is a least prefixed point
combinator. More precisely, we prove (1) the soundness of the recursion-induction rules in
Figure 7; and (2) Proposition 29, which says that fix behaves as a fixed point combinator for
a large class of functionals, including all those of the form λf.u, for u a value. (Observe that
this class of functionals includes those needed for defining a standard fixed point expression
fix f(x). e via an application of the fixed point combinator.)

Our recursion-induction rules are mild generalizations of the rules given by Lassen [12]
who proved similar results (for a language without polymorphism), when v was restricted to
be of the form λf.u, for some value u.

We only include the proof for .ctx
⇓ and for notational simplicity we assume that the

contexts ∆ and Γ are empty. We assume the premise of the rule, and to show the conclusion
we first prove that (h, v′) ∈ Jτ1 → τ2Kβ where h is λx.(λr.r x) (δv (in δv)), for all β < ω1. The
result then follows from the agreement of the logical relation with contextual approximation
and transitivity, since fix τ1τ2 v ∼=ctx v h .ctx

⇓ v v′ .ctx
⇓ v′.

To prove (h, v′) ∈ Jτ1 → τ2Kβ we proceed by induction on β and assume that (h, v′) ∈
Jτ1 → τ2Kν , for all ν < β; we are then to show that (h, v′) ∈ Jτ1 → τ2Kβ . From the canonical

forms lemma it follows that v′ must be of the form λx.e′ for some e′. So let β1 ≤ β and

(u, u′) ∈ Jτ1Kβ1 , then it remains to show ((λr.r u)(δv (in δv)), e
′[u′/x]) ∈ Jτ2K⊥⊥β1 .

Suppose β2 ≤ β1, (E,E′) ∈ Jτ2K⊥β2 and E[(λr.r u)(δv (in δv))] ⇓β2 ; we are to show

E′[e′[u′/x]] ⇓. By (the must-analogue of) Lemma 13 and the fundamental property of the
logical relation applied to v we obtain (E[(λr.r u) ((λx.v x) [])], E′[(λr.r u′) ((λx.v x) [])]) ∈
Jτ1 → τ2K⊥β2 . Then, since δv (in δv) 1 v h and (λx.v x)h 7−→ v h, we have E[(λr.r u)(v h)] ⇓β3
for β3 < β2 ≤ β, and hence also E′[(λr.r u′) (v v′)] ⇓ by induction hypothesis.

By the premise and Theorem 28 we have that v v′ CIU-approximates v′, and thus we get
E′[(λr.r u′) v′] ⇓. Finally, since (λr.r u′) v′ 7−→∗ e′[u′/x] we obtain the required E′[e′[u′/x]] ⇓.

Proposition 29. Let τ, τ ′ ∈ Type, f ∈ Val((τ → τ ′)→ τ → τ ′). If for all g ∈ Val(τ → τ ′)

there exists a value fg such that f g
p
 fg, then fix τ τ ′ f is a fixed point of f , i.e.,

f(fix τ τ ′ f) ∼=ctx
⇓ fix τ τ ′ f and f(fix τ τ ′ f) ∼=ctx

↓ fix τ τ ′ f .1

Proof. Fix τ, τ ′ ∈ Type and f ∈ Val((τ → τ ′) → τ → τ ′). Let fixτ,τ ′ = λf.δf inδf .

It is then easy to see that fixτ,τ ′f
p
 f h where h = λx.(λr.r x)(fixτ,τ ′ f). Similarly,

f (fixτ,τ ′ f)
p
 f (f h).

Let E ∈ Stk(τ ′) and v ∈ Val(τ). We have the following sequence of equivalences

E[h v] ⇓ ⇐⇒ E[(λr.r v) (fixτ,τ ′ f)] ⇓
⇐⇒ E[(λr.r v) (f h)] ⇓
⇐⇒

(
∀f ′, f h 7−→∗ f ′ ⇒ E[f ′ v] ⇓

)
1We have abused notation slightly by writing fix τ τ ′ f instead of let x = fix τ in let y = x τ ′ in y f ,

but the former is more readable.

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 17

and similarly, for may equivalence,

E[h v] ↓ ⇐⇒ E[(λr.r v) (fixτ,τ ′ f)] ↓
⇐⇒ E[(λr.r v) (f h)] ↓
⇐⇒

(
∃f ′v, f h 7−→∗ f ′v ∧ E[f ′ v] ↓

)
Suppose further that f h

p
 fh, for some value fh. This implies that f h reduces

to a unique value. Then the above equivalences reduce to E[h v] ⇓ ⇐⇒ E[fh v] ⇓ and
E[h v] ↓ ⇐⇒ E[fh v] ↓. Since v and E were arbitrary, we can use Lemma 22 and its
must-analogue to conclude that h is may and must equivalent to fh and thus to f h, which
concludes the proof.

Syntactic minimal invariance. Consider the type τ = µα.nat + α→ α. Let id = λx.x
and consider the term

f ≡ λh, x.case x of in1 y. in1 y | in2 g. in2 λy.h(g(h y)) .

We shall show that fix ττ f ∼=ctx id : τ → τ . This equivalence corresponds to the characteri-
zation of solutions to recursive domain equations as minimal invariants in domain-theoretic
work [17], from which Pitts derives several (co-)induction principles. Our proof is similar to
the one by Dreyer, Ahmed, and Birkedal [8] for a language without nondeterminism.

By the soundness of the call-by-value beta- and eta-laws for contextual equivalence
(Figure 5) and the transitivity of .ctx, it is easy to see that f id ∼=ctx id : τ → τ . The
recursion-induction principle therefore yields fix ττ f .ctx id : τ → τ .

For the reverse approximation we first show id .log
⇓ h : τ → τ where h is again the

term λx.(λr.r x)(δf (in δf)). We show this by proving (id , h) ∈ Jτ → τKβ for all β < ω1 by

induction on β. (The case for may-approximation is similar.)

Thus it suffices to show, for all ν ≤ β, for all (v, v′) ∈ JτKν , (id v, h v′) ∈ JτK⊥⊥ν .
Since JτK = in1(. JnatK) ∪ in2(. Jτ → τK) there are two cases to consider:

• Case (v, v′) ∈ in1(. JnatK)ν . Then there exist u, u′ ∈ Val(nat) such that v = in1 u,

v′ = in1 u
′ and (u, u′) ∈ JnatKν′ , for all ν ′ < ν ≤ β. Given (E,E′) ∈ JτK⊥ν such that

E[id v] ⇓ν , it suffices to show that E[h v′] ⇓, which follows using the must-analogues

of Lemmas 14 and 11 since h v′
p
 v′ and (v, v′) ∈ JτKν by assumption.

• Case (v, v′) ∈ in2(. Jτ → τK)ν . Then there exist g, g′ ∈ Val(τ→ τ) such that
v = in2 g, v

′ = in2 g
′ and (g, g′) ∈ Jτ→ τKν′ for all ν ′ < ν ≤ β. We are to

show that (id v, h v′) ∈ JτK⊥⊥ν . Since h v′
p
 in2(λy.h(g′(h y))) and id v

p

0
v, by

must-analogue of Lemma 14, it suffices to show (in2(g), in2(λy.h(g′(h y)))) ∈ JτK⊥⊥ν .

Hence it suffices to show (g, λy.h(g′(h y))) ∈ Jτ → τK⊥⊥ν1 , for all ν1 < ν. Pick ν1 < ν.
By the must-analogue of Lemma 14 it suffices to show, for all ν2 ≤ ν1,

∀(u, u′) ∈ JτKν2 . (g(u), h(g′(h(u′)))) ∈ JτK⊥⊥ν2 .

To this end, let (u, u′) ∈ JτKν2 and pick ν3 ≤ ν2 and suppose that (E,E′) ∈ JτK⊥ν3 .

By the induction hypothesis and the must-analogue of Lemma 14, we get (u, h(u′)) ∈
JτK⊥⊥ν3 . Hence by the must-analogue of Lemma 21, we get (g(u), g′(h(u′))) ∈ JτK⊥⊥ν3 ,

and thus it suffices to show that (E,E′[h []]) ∈ JτK⊥ν3 . So let ν4 ≤ ν3 and take

18 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

(w,w′) ∈ JτKν4 . We are to show that if E[w] ⇓ν4 , then E′[hw′] ⇓. By the induction

hypothesis and the must-analogue of Lemma 14, (w, hw′) ∈ JτK⊥⊥ν4 , from which the

required follows by the assumption on (E,E′).

By Theorem 28 and the CIU theorem, id .log
⇓ h : τ → τ implies id .ctx

⇓ h : τ → τ . Since

id ∼=ctx f id : τ → τ and f h ∼=ctx fix ττ f : τ → τ we obtain id .ctx
⇓ fix ττ f : τ → τ by

compatibility and transitivity of must-contextual equivalence.

Parametricity. We will now characterize the elements of the type ∀α.α × α → α, using
relational parametricity. The main result is expressed as Theorem 33; we first start with
some lemmas. We only state and prove the results for must-contextual equivalence; for
may-contextual equivalence the properties and proofs are analogous.

Lemma 30. Let v ∈ Val (∀α.α× α→ α). If there exists a τ ∈ Type such that v τ may-
diverges then v ∼=ctx

⇓ (Λα.Ω (α× α→ α)).

Proof. Let τ be such that v τ may-diverges. By the must-analogue of Lemma 18 we have

∀τ ′ ∈ Type, ∀R,∀ν < ω1, (v τ ′, v τ) ∈ Jα× α→ αKRν⊥⊥. This implies that for all τ ′ ∈ Type,
v τ ′ may-diverges (because the empty context is always related to itself, for instance).

Using the must-analogue of Lemma 20 we can thus conclude that v .log
⇓ Λα.Ω (α×α→ α)

and Λα.Ω (α× α→ α) .log
⇓ v. Theorems 28 and 8 then finish the proof.

Lemma 31. Let v ∈ Val (∀α.α× α→ α). If for all τ ∈ Type, the expression v τ must-
converges, and there exist a τ and u ∈ Val(τ × τ) such that (λx.x u) (v τ) may-diverges,
then for all τ ′ ∈ Type and for all u′ ∈ V al(τ ′ × τ ′), (λx.x u′) (v τ ′) ∼=ctx

⇓ Ω τ ′.

Proof. Let τ ′ ∈ Type, u′ ∈ Val (τ ′ × τ ′). By the canonical forms lemma u = 〈u1, u2〉 for some
u1, u2 ∈ Val(τ) and u′ = 〈u′1, u′2〉 for some u′1, u

′
2 ∈ Val(τ ′). Let Rν = {(u′1, u1), (u′2, u2)}

for ν < ω1. It is easy to see that (u′, u) ∈ Jα× αKRν . The must-analogues of Lemmas 21

and 18 then imply that ((λx.x u′) (v τ ′), (λx.x u) (v τ)) ∈ JαKRν⊥⊥. This in particular means
that (λx.x u′) (v τ ′) may-diverges. Since τ ′ ∈ Type and u′ ∈ Val(τ ′ × τ ′) were arbitrary, we
have that for all τ ′ ∈ Type and u′ ∈ Val(τ ′ × τ ′), (λx.x u′) (v τ ′) ∼=ctx

⇓ Ω τ ′.

Lemma 32. Let v ∈ Val (∀α.α× α→ α). If for all τ ∈ Type and for all u ∈ Val(τ × τ),
the expression (λx.x u) (v τ) must-converges, one of the following three cases holds

(1) ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ t

(2) ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ s

(3) ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ t or s

Proof. Let τ ∈ Type. Must-analogues of Lemmas 18, 21 and the definitions of relational
actions show that

∀ν < ω1, ∀R ∈ VRel(2, τ),∀(b, w) ∈ (R×R)ν , ((λx.x b) (v 2), (λx.xw) (v τ)) ∈ Rν⊥⊥ (6.1)

and

∀ν < ω1,∀S ∈ VRel(τ,2),∀(w, b) ∈ (S × S)ν , ((λx.xw) (v τ), (λx.x b) (v 2)) ∈ Sν⊥⊥. (6.2)

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 19

By assumption there exists a s ∈ Val(2), such that (λx.x 〈true, false〉) (v τ) 7−→∗ s. By
the canonical forms lemma, s can only be true or false and based on this, we consider three
different options.

In all the cases let t, s ∈ Val(τ) and define R = {(true, t), (false, s)} and S =
{(t, true), (s, false)}. Note that the cases don’t depend on t, s, R or S.

• (λx.x 〈true, false〉) (v 2) 7−→∗ true but ¬ ((λx.x 〈true, false〉) (v 2) 7−→∗ false). In
this case, we wish to show that (λx.x 〈t, s〉) (v τ) ∼=ctx

⇓ t and we again show this by
showing that the two terms are must-CIU equivalent.

Let E ∈ Stk(τ) and assume E [(λx.x 〈t, s〉) (v τ)] ⇓. This implies there exists a
ν < ω1, such that E [(λx.x 〈t, s〉) (v τ)] ⇓ν . We must show E[t] ⇓. Suppose instead
that ¬(E[t] ⇓). Then ∀β < ω1, (E, (λx.ifx thenΩ2 elsex) []) ∈ Sβ⊥. Instantiating
(6.2) with the above defined S and any β ≥ ν shows that

(λx.ifx thenΩ2 elsex) ((λx.x 〈true, false〉) (v 2)) ⇓,
but we have assumed that (λx.x 〈true, false〉) (v 2)] 7−→∗ true. This therefore leads
to a contradiction, stemming from the assumption that E[t] may-diverges. This
shows one direction of may-CIU approximation.

For the other, again let E ∈ Stk(τ) and now assume E[t] ⇓. It follows that for
all β < ω1, ((λx.ifx thenx elseΩ2) [], E) ∈ Rn⊥. We now instantiate (6.1) with our
particularR and ν < ω1, such that (λx.ifx thenx elseΩ2) ((λx.x 〈true, false〉) (v 2)) ⇓ν .
Such a ν exists since we have assumed that (λx.x 〈true, false〉) (v 2) must-converges
and (λx.x 〈true, false〉) (v 2) 7−→∗ true but it does not reduce to false and so this
implies E [(λx.x 〈t, s〉) (v τ)] ⇓, which concludes this part of the proof.
• (λx.x 〈true, false〉) (v 2) 7−→∗ false but ¬ ((λx.x 〈true, false〉) (v 2) 7−→∗ true). In

this case we show that (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ s. The proof of this is completely

analogous to the one for the previous case, so we omit the details here.
• (λx.x 〈true, false〉) (v 2) 7−→∗ false and (λx.x 〈true, false〉) (v 2) 7−→∗ true. In

this case, we wish to show that (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ t or s. We again do this by

showing must-CIU equivalence in two steps.
Let E ∈ Stk(τ) and assume E [(λx.x 〈t, s〉) (v τ)] ⇓. This implies there exists a ν <

ω1, such that E [(λx.x 〈t, s〉) (v τ)] ⇓ν . We must show E[t or s] ⇓. Suppose instead
that ¬(E[t or s] ⇓). This implies ¬(E[t] ⇓) or ¬(E[s] ⇓) (or both). Without loss of
generality suppose ¬(E[t] ⇓). This implies ∀β < ω1, (E, (λx.ifx thenΩ2 elsex) []) ∈
Sβ
⊥. Instantiating (6.2) with the above defined S and any β ≥ ν leads to a contra-

diction, since it implies that

(λx.ifx thenΩ2 elsex) (λx.x 〈true, false〉) (v 2) ⇓
but since (λx.x 〈true, false〉) (v 2) 7−→∗ true, this cannot be.

For the other direction, let E ∈ Stk(τ) and now assume E[t or s] ⇓. This implies
that E[t] ⇓ and E[s] ⇓, which further implies that ∀β < ω1, ([], E) ∈ Rn⊥. If we
instantiate (6.1) with our particular R and ν < ω1, such that

(λx.x 〈true, false〉) (v 2) ⇓ν ,
(such a ν again exists by assumption) we have E [(λx.x 〈t, s〉) (v τ)] ⇓ which concludes
the proof.

20 LARS BIRKEDAL, ALEŠ BIZJAK, AND JAN SCHWINGHAMMER

Theorem 33. If v ∈ Val (∀α.α× α→ α) then exactly one of the following holds

• v ∼=ctx
⇓ Λα.Ω (α× α→ α)

• ∀τ ∈ Type,∀t ∈ V al(τ × τ), (λx.x t) (v τ) ∼=ctx
⇓ Ω τ

• ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ t

• ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ s

• ∀τ ∈ Type,∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx
⇓ t or s

If, further, ∀τ ∈ Type, ∃vτ ∈ Val(τ × τ → τ), such that v τ
p
 vτ then one of the

following holds

• v ∼=ctx
⇓ Λα.λx.Ωα

• v ∼=ctx
⇓ Λα.λx.proj1 x

• v ∼=ctx
⇓ Λα.λx.proj2 x

• v ∼=ctx
⇓ Λα.λx.proj1 x or proj2 x.

Proof. The first part of the theorem only summarizes Lemmas 30, 31, 32.
For the second part, we consider cases as in the first part and as all of them are analogous,

we only show the last one. Using the must-analogue of Lemma 23 we only need to show

∀τ ∈ Type, v τ ∼=ctx
⇓ λx.proj1 x or proj2 x

It is easy to show that v τ ∼=ctx
⇓ vτ , but note that the fact that v τ reduces to vτ using

only pure reductions is crucial, as it implies that this vτ is the unique value of v τ . Using
transitivity of ∼=ctx

⇓ it thus suffices to show vτ ∼=ctx
⇓ λx.proj1 x or proj2 x. From the first

part we have that
∀t, s ∈ Val(τ), (λx.x 〈t, s〉) (v τ) ∼=ctx

⇓ t or s

and it is also immediate that (λx.proj1 x or proj2 x) 〈t, s〉 ∼=ctx
⇓ t or s which together imply

∀t, s ∈ Val(τ), vτ 〈t, s〉 ∼=ctx
⇓ (λx.proj1 x or proj2 x) 〈t, s〉.

The canonical forms lemma shows that such pairs are the only possible values of type
τ × τ and so the must-analogue of Lemma 22 implies that vτ ∼=ctx

⇓ λx.proj1 x or proj2 x, as

required.

Note that the example in Section 4, used to demonstrate the lack of extensionality for
expression of function type, also demonstrates that it is not the case that v is contextually
equivalent to one of the functions listed in the above theorem without some further restrictions,
such as the one used for the second part of the theorem.

7. Comparison to conference paper

A preliminary version of this paper was presented at the 20th Annual Conference on
Computer Science Logic (CSL’11), 12-15 September 2011. The present version corrects
some mistakes in the proof of syntactic minimal invariance in the earlier conference paper.
This was done by changing the counting of steps so that the only steps that count in the
indexing of the logical relations are unfold-fold reductions. That suffices for well-definedness
of the logical relation, and means that the approximation relations are closed under pure
zero-step reductions on the left and under pure arbitrary reductions on the right, which
was implicitly used in the wrong proof in the conference paper. This change means that

STEP-INDEXED RELATIONAL REASONING FOR COUNTABLE NONDETERMINISM 21

the precise formulation of several lemmas have changed. Moreover, we have changed the
parametricity example to a more interesting one involving nondeterminism.

Acknowledgements

We gratefully acknowledge the comments and suggestions from the referees. In particular we
thank them for discovering the problem with the earlier proof of syntactic minimal invariance
and for suggesting a better example of relational parametricity.

References

[1] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. J. Funct.
Program., 7(1):1–72, 1997.

[2] A. W. Appel and D. A. McAllester. An indexed model of recursive types for foundational proof-carrying
code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.

[3] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment. J. ACM, 33(4):724–767,
1986.

[4] L. Birkedal and R. Harper. Relational interpretations of recursive types in an operational setting. Inf.
Comput., 155(1-2):3–63, 1999.

[5] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang. Step-indexed Kripke
models over recursive worlds. In POPL, pages 119–132, 2011.

[6] P. Di Gianantonio, F. Honsell, and G. D. Plotkin. Uncountable limits and the lambda calculus. Nord. J.
Comput., 2(2):126–145, 1995.

[7] P. Di Gianantonio and M. Miculan. Unifying recursive and co-recursive definitions in sheaf categories. In
FOSSACS, pages 136–150, 2004.

[8] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. Logical Methods in
Computer Science, 7(2), 2011.

[9] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects on local
relational reasoning. In ICFP, pages 143–156, 2010.

[10] P. Johann, A. Simpson, and J. Voigtländer. A generic operational metatheory for algebraic effects. In
LICS, pages 209–218, 2010.

[11] J. Laird. Bidomains and full abstraction for countable nondeterminism. In FOSSACS, pages 352–366,
2006.

[12] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis, University of
Aarhus, 1998.

[13] S. B. Lassen and A. Moran. Unique fixed point induction for McCarthy’s amb. In MFCS, pages 198–208,
1999.

[14] S. B. Lassen and C. Pitcher. Similarity and bisimilarity for countable non-determinism and higher-order
functions. Electr. Notes Theor. Comput. Sci., 10, 1997.

[15] P. B. Levy. Infinitary Howe’s method. In CMCS, pages 85–104, 2006.
[16] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects. J. Funct. Program.,

1(3):287–327, 1991.
[17] A. M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90, 1996.
[18] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced Topics in Types and

Programming Languages, chapter 7, pages 245–289. MIT Press, 2005.
[19] A. M. Pitts. Step-indexed biorthogonality: a tutorial example. In Modelling, Controlling and Reasoning

About State, Dagstuhl Seminar Proceedings, 2010.
[20] D. Sabel and M. Schmidt-Schauß. A call-by-need lambda calculus with locally bottom-avoiding choice:

context lemma and correctness of transformations. Math. Struct. Comp. Sci., 18(3):501–553, 2008.

	1. Introduction
	Overview of the technical development
	Summary of contributions

	2. A lambda calculus with countable choice
	Syntax and operational semantics
	Contextual approximation

	3. Uniform relations
	Recursive definitions
	Uniform relations on syntax

	4. May equational theory
	Logical -indexed uniform relation for may-approximation

	5. Must equational theory
	Logical 1-indexed uniform relation for must-approximation

	6. Applications
	Recursion-induction
	Syntactic minimal invariance
	Parametricity

	7. Comparison to conference paper
	Acknowledgements
	References

