
Sortings for Reactive Systems?

Lars Birkedal, Søren Debois, and Thomas Hildebrandt

IT University of Copenhagen
{birkedal,debois,hilde}@itu.dk

Abstract. We investigate sorting or typing for Leifer and Milner’s reac-
tive systems. We focus on transferring congruence properties for bisim-
ulations from unsorted to sorted systems. Technically, we give a general
definition of sorting; we adapt Jensen’s work on the transfer of con-
gruence properties to this general definition; we construct a predicate

sorting, which for any decomposible predicate P filters out agents not
satisfying P ; we prove that the predicate sorting preserves congruence
properties and that it suitably retains dynamics; and finally, we show how
the predicate sortings can be used to achieve context-aware reaction.

1 Introduction

The last decade has seen a series of definitions of reactive systems for which it
is possible to derive labeled transition systems with an associated bisimulation
relation that is guaranteed to be a congruence relation [1–8]. Sewell proposed to
use suitable contexts of the reactive system as labels in the derived labeled tran-
sition system [1]. Leifer and Milner refined this approach by suggesting that it
suffices to consider minimal contexts, with minimality captured by the notion of
relative pushout (RPO) in the category corresponding to the reactive system [2].
Milner and Jensen suggested further refinements in their work on bigraphical
reactive systems, technically by representing the reactive systems as quotients
of precategories, which in turn possess the requisite relative pushouts [3–5]. An
alternative approach using 2-categories was suggested by Sassone and Sobocin-
ski [6, 7], and subsequently transferred to double categories by Bruni, Gadducci,
Montanari and Sobocinski in [8].

One aim of these abstract definitions of reactive systems is to unify and
generalize existing calculi for concurrency and mobility, by providing a uniform
behavioral theory: the congruential bisimulation relation associated with the
derived labeled transition system. For bigraphical reactive systems, this aim has
been evaluated with encouraging results: existing behavioral theories have been
recovered for CCS [5], π-calculus [9], and mobile ambients [9]; and bigraphical
semantics has contributed to that of Petri-nets [10] and Homer [11].

Bigraphical reactive systems aim also to model aspects of ubiquitous systems
directly. An evaluation of this aim was initiated in [12].

? This work was funded in part by the Danish Research Agency (grant no.: 2059-03-
0031) and the IT University of Copenhagen (the LaCoMoCo project).

2 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

A sorting for a reactive system is analogous to a typing discipline for terms:
Each sort gives an abstract view of its morphisms, in the same way that each
type gives an abstract view of its terms. Various notions of sorting have turned
out to be useful for both the meta-modeling aim and for the ubiquitous system
aim.

1. In representations of existing calculi in bigraphical reactive systems, sortings
remove “junk” morphisms — morphisms not representing anything. These
are removed to get a tight correspondence between the bisimulation derived
in bigraphs and the intended bisimulation [10, 5, 9, 11].

2. For the modeling of context-aware systems, sortings help restricting reac-
tion rules to apply only in certain contexts, to get “context-aware reaction
rules” [13, 12].

The sortings used in loc.cit. are all defined by first adding sorts to each object
in the category of bigraphs, second stipulating a well-sortedness condition using
this extra information, and finally declaring that we will only consider well-sorted
morphisms. (Notice again the analogy to typing disciplines.) For representation
applications (Item 1 above), sorts and conditions are chosen to make well-sorted
all but the junk morphisms. For modeling applications (Item 2 above), sorts are
used simply to distinguish sets of contexts; by choosing an appropriate sort for
a reaction, we restrict it to specific contexts.

However, we cannot tinker arbitrarily with our underlying category; we must
preserve relative pushouts in order to keep bisimulation a congruence. In each
example cited above, this preservation property is shown by hand. Moreover,
sorting is itself defined explicitly in each case: both Jensen [9] and Milner [5] de-
fine sorting for bigraphical place graphs; and Leifer and Milner define bigraphical
link graph sorting in [10].

In this paper we investigate sortings for reactive systems and make the fol-
lowing contributions.

1. We give a general definition of sorting, encompassing all the different notions
seen in the above examples (Definition 4).

2. We lift Jensen’s safety theorem to this general setting (Theorem 12). Jensen’s
safety theorem gives a sufficient condition under which RPOs may be trans-
ferred between sorted and unsorted worlds, but only in the setting of bi-
graphical place-graph sorting [9].

3. We present a general construction of sorting, the predicate sorting (Defini-
tion 15). For any predicate P which is preserved under under de-composition,
this sorting filters out morphisms not satisfying P .

4. We prove that predicate sortings transfer RPOs (Theorem 20). Thus, if the
bisimulation of an unsorted system is a congruence, then so is the bisimula-
tion of the corresponding predicate-sorted system.

5. We prove a correspondence theorem (Theorem 25) for predicate sortings:
A predicate sorted system suitably preserves the dynamics of its unsorted
counterpart.

Sortings for Reactive Systems 3

6. We show that predicate sortings can be used to model some context-aware
reaction systems, notably those where some reaction rules should apply only
in contexts which do not contain a given sub-context (Theorem 30).

Our setting is reactive systems over categories rather than precategories (the
home of bigraphs) or 2-categories. We believe the extension of our work to either
setting to be straightforward, but have yet to justify that belief.

This paper is an abridged version of the technical report [14]; refer to that
report for omitted proofs.

Overview. In Section 2, we recall Leifer and Milner’s reactive systems; in Sec-
tion 3, we give our general definition of sorting and lift Jensen’s transfer theorem;
in Section 4, we define predicate sortings; in Section 5, we prove that predicate
sortings transfers RPOs; in Section 6, we prove the correspondence theorem; in
Section 7, we demonstrate that predicate sortings can be used to define context-
aware reaction rules; and in Section 8, we conclude.

Notation and terminology. We will need a tiny bit of standard terminology from
the study of (op-)fibrations (see, e.g., [15]). Let p : E → B be a functor. A
morphism of B has a lift at E iff it is the p-image of a morphism f : E → X.
A morphism f is above p(f). A morphism φ is vertical if it is above an identity.
The verticals above a particular identity idB forms a category, the fibre over B.
A morphism f is opcartesian iff whenever h, f is a span and h is above g ◦ p(f),
then there exists a unique ḡ s.t. p(ḡ) = g and h = ḡ ◦ f . (Two morphisms f, g
form a span if they share domain, a cospan if they share codomain.)

2 Reactive Systems

We give a brief introduction to Leifer and Milner’s reactive systems [2]. First,
terminology and a little intuition. Let B be a category, and let ε be a distinguished
object of B. We shall think of morphisms with domain ε as agents and all other
morphisms as contexts. Notice that the composition C◦a of a context C : X → Y

with an agent a : ε → X yields an agent C ◦ a : ε → Y . A reaction rule (l, r) is
a span of agents, i.e., both l : ε → X and r : ε → X for some X. Intuitively, l
and r are the left- and right-hand sides of rewrite rule. A set R of reaction rules
gives rise to a reaction relation, 7−→, by closing reaction rules under contexts:

a 7−→ b iff ∃C ∈ B,∃(l, r) ∈ R. a = C ◦ l, b = C ◦ r. (1)

Altogether, these components constitute a reactive system.

Definition 1 (Reactive systems). A reactive system over a category B com-
prises a distinguished object ε and a set R of reaction rules; the reaction rules
gives rise to a reaction relation by (1) above.

Thus far, we have merely restated well-known concepts in the language of
category theory. The contribution of Leifer and Milner is their method for de-
riving labeled transitions from any reactive system: Provided the underlying

4 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

category has sufficient structure, the bisimulation on these labeled transitions is
guaranteed to be a congruence. To give the labeled transitions, we will need the
concept of relative pushouts (RPOs).

Definition 2 (Relative pushout). Consider the following diagram.

f0

f1

g0

g1

h0

h1

h

Suppose the outer square commutes. The triple (h0, h1, h) is an RPO for g0, g1
to f0, f1 iff the entire diagram commutes and (h0, h1, h) is universal, that is,
if (h′0, h

′
1, h

′) has h′0 ◦ g0 = h′1 ◦ g1 and fi = h′ ◦ h′i, then there exists a unique k
s.t. h = h′ ◦ k and hi = k ◦ h′i. If (f0, f1, id) is an RPO for g0, g1 to f0, f1, we
say that (f0, f1) is an idem pushout (IPO) for g0, g1.

(For category-theory buffs: The RPO for gi to fi is a pushout of appropriate gi

in the slice-category over the codomain of the fi.)

Intuitively, if (hi, h) is an RPO for gi to fi, then h is the common part of
the contexts fi. The universality condition says that h is as big as possible:
If h′ is an alternative common part, then it must factor h, and there are thus
commonalities in the fi captured by h but not by h′. With this intuition, if fi is
an IPO for gi, the fi are minimal contexts making up for the differences between
the gi.

Leifer and Milner proceed to construct their labeled transition systems by
taking as labels such minimal contexts enabling reaction.

Definition 3. For a reactive system (R, ε) over B, we define the standard tran-

sition relation −→ by taking a
L

−→ b iff there exists a context C and a reaction
rule (l, r) ∈ R s.t. the following diagram commutes, and the square is an IPO.

L

a

l r

bC

As mentioned, if B has all RPOs, then the bisimulation induced by the stan-
dard transitions is a congruence [2].

Sortings for Reactive Systems 5

3 Sortings

The process of adding sort information, then removing morphisms based on that
information is really the construction of a category E, based on some existing
category B. There is obviously a forgetful functor p : E → B which is surjective
on objects; both Jensen [9] and Milner/Leifer [10] note so. Clearly, this functor
characterizes the sorting — Milner and Leifer states: “We shall often confuse [a
sorting] with its functor” [10, p.44]. Hence, we suggest taking the existence of
such a functor as the definition of a sorting.

Definition 4 (Sorting). A sorting of a category B is a functor into B that is
faithful and surjective on objects.

It is perhaps helpful to think of a sorting functor p as a refinement of homsets:
A homset B(B,B′) is refined into the homsets E(E,E′), where each E and E′

are p-preimages of B and B′. Because p is surjective on objects, every homset
of B is so refined; because p is faithful, each such refined homset simply consists
of a subset of the morphisms of the original homset.

We are interested in sortings that allow us to infer the existence of RPOs
in E from the existence of RPOs in B. Jensen gives a sufficient condition, safety,
for making such inferences. However, Jensen formulates safety in the setting of
bigraphical place-graph sortings, so we would like to lift Jensen’s definition of
safety and his RPO-transfer theorem [9, Theorem 4.32] to our general definition
of sorting. Remarkably, virtually nothing needs to be done: Jensen’s definition,
theorems and proofs are all formulated exclusively in terms of the (induced)
forgetful functor p, so we may transfer his work verbatim to our more general
setting. Thus, Definition 5 and Theorems 6, 8, and 12 are essentially due to
Jensen, although our formulations are much more general than his1. Jensen’s
proofs of Theorems 6, 8, and 12 can be found either in Jensen’s forthcoming
thesis [9] or (restated more verbosely) in [14].

Definition 5 (Transfer of RPOs). A functor p : E → B transfers RPOs iff
whenever the p-image of an E-square s has an RPO, then that RPO has a p-
preimage that is an RPO for s.

This definition is sufficient to infer the existence of RPOs in E from the
existence of RPO in B:

Theorem 6. If B has RPOs and p : E → B transfers RPOs, then E has RPOs
and p preserves RPOs.

In order to characterize RPOs in E, we have concocted the following general-
ization of “opcartesian”. The notion is inspired by Jensen’s notion of minimally
sorted sets of morphisms; it is a vehicle for transferring factorization of contexts
from B to E.
1 In the words of Poincaré [16, p. 34]: “When language has been well-chosen, one is

astonished to find that all demonstrations made for a known object apply immedi-
ately to many new objects: nothing requires to be changed, not even the terms, since
the names have become the same.”

6 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

Definition 7 (Jointly opcartesian). Let p : E → B be a functor. A cospan f, g
in E is said to be jointly opcartesian iff whenever f ′, g′ is a cospan, f, f ′ is a
span, and g, g′ is a span (see the diagram below, left side) with p(f ′) = k ◦ p(f)
and p(g′) = k◦p(g) (see the diagram below, right side), then there exists a unique
lift k̄ of k s.t. f ′ = k̄ ◦ f and g′ = k̄ ◦ f ′.

f

g

f ′

g′

k̄ p(f)
p(g)

p(f ′)

p(g′)

k

Theorem 8. If B has RPOs and p : E → B transfers RPOs, then the diagram
below is an RPO in E iff its p-image is an RPO and h0, h1 are jointly opcartesian.

f0

f1

g0

g1

h0

h1

h

Intuitively, an RPO is the best way to factor a square; h0, h1 jointly opcartesian
ensures that this best factorization can be lifted from B to E.

Now that we have a characterization of IPOs for sortings that transfer RPOs
sortings, we look for a way to establish that a sorting actually does transfer
RPOs. The following generalization of the notion of opfibration will do.

Definition 9 (Weak opfibration). A functor p : E → B is a weak opfibration
iff whenever a morphism f of B has a lift at E, it has an opcartesian lift at E.

This definition relaxes the requirement of an opfibration (see, e.g., [15]),
where each morphism of B must have an opcartesian lift at each preimage of its
domain. However, it does retain the key property that every morphism can be
written as the composition of a vertical and an opcartesian.

Proposition 10. Suppose p : E → B is a sorting. Then p is a weak opfibration
iff every morphism f of E can be written f = φ ◦ f ′ where φ is a vertical and f ′

is opcartesian.

Proof. “=⇒”. For any f : E → E′ ∈ E, p(f) must have an opcartesian lift at E,
say f̄ . But p(f̄) = p(f) factors p(f) ◦ id, so for some vertical φ, f = φ ◦ f̄ .
“⇐=”. Any lift f : E → E′ of p(f) can be written f = φ ◦ f̄ , φ vertical and f̄

opcartesian, whence f̄ is the requisite opcartesian lift. ut

Sortings for Reactive Systems 7

Definition 11 (Reflects prefixes, Vertical pushouts). A functor p : E → B

reflects prefixes iff whenever f is above g ◦h then h has a lift at the domain of f ;
p has vertical pushouts iff the fibres have pushouts and such pushouts are also
pushouts in E.

Theorem 12. Let p : E → B be a sorting. If p is a weak opfibration, reflects
prefixes, and has vertical pushouts, then p transfers RPOs. If B also has RPOs,
then E has RPOs and p preserves RPOs.

We note that sortings can be composed by composing their functors, and
we can form conjunctions of sortings by taking their pullbacks. Composition
preserves RPO-transfer, and pullbacks preserve both RPO-transfer and the pre-
conditions for Theorem 12; refer to [14] for proofs and details.

4 Predicate Sortings

The example sortings referenced in the introduction are all intended to ban
morphisms from the underlying category B. The adding of sort information is
but a means to this end; in each case, the authors construct a category E which
resembles B, except that morphisms not satisfying some predicate P are no
longer present. We have identified a common feature of these sortings: When
read as predicates on morphisms of B, they all define de-composible predicates.

Definition 13. A predicate P on the morphisms of a category B is decomposi-
ble iff P (f ◦ g) implies P (f) and P (g).

This commonality may appear remarkable, but it is not, really, once we realize
that the decomposible predicates are precisely those that disallow morphisms
that are factored by morphisms in some given set.

Proposition 14. A predicate P on the morphisms of a category B is decomposi-
ble iff there exists a set Φ of B-morphisms s.t. P (f) iff for any g, ψ, h, f = g◦ψ◦h
implies ψ 6∈ Φ.

Proof. Suppose P decomposible; take Φ = {φ | ¬P (φ)}. If P (f) and f = g◦ψ◦h,
then P (ψ), so ψ 6∈ Φ. If f = g ◦ψ ◦h implies ψ 6∈ Φ, then f = id ◦f ◦ id, so f 6∈ Φ,
thus P (f). Define instead for some Φ, P (f) iff f = g ◦ ψ ◦ h implies ψ 6∈ Φ.
If P (f ◦ g) and, say, f = h ◦ φ ◦ i, then f ◦ g = h ◦ φ ◦ (i ◦ g), so φ 6∈ Φ. ut

In an encoding J−K of a calculus as a reactive system, it is natural to take Φ
to be the complement of the image of the encoding J−K. However, the resulting
predicate is different from just defining “P (f) iff f is in the image of J−K”;
the former definition always allows decompositions of morphisms in the image
of J−K where as the latter does so only if J−K is closed under decomposition in the
first place. Because the encodings listed in the introduction all use sortings that
are manifestations of decomposible predicates, it appears that so far, images of
encodings either turn out to closed under decomposition, or can be closed under
decomposition without adversely affecting the resulting bisimulation.

8 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

Proposition 14 gives a connection to BiLog [17, 18], a spatial logic for bi-
graphs. Given a BiLog formula ψ which characterizes a set Ψ of unwanted mor-
phisms, the BiLog formula (¬ψ)∀◦ characterizes the morphisms f s.t. f = x◦φ◦y
implies φ 6∈ Ψ . By Proposition 14, the set of morphisms satisfying (¬ψ)∀◦ is de-
composible, and thus gives rise to a predicate sorting as defined below.

We proceed to construct, for any decomposible predicate P on a category B,
a corresponding sorting p : E → B. The problem we face when constructing any
sorting is that we would like to retain as many morphisms of B as possible, while
guaranteeing that we never inadvertently violate P by composition. Suppose for
instance that we have morphisms f : A → B and g : B → C, and that we have
both P (f) and P (g), but not P (g ◦ f). We must either disallow f and allow g,
or allow f and disallow g. In the predicate sorting, we retain both options: As
preimage of an object B, we take all pairs (X,Y) of sets of morphisms into and
out of B such that every morphism in X can safely be composed with every
morphism in Y .

Definition 15 (Predicate sorting). Let B be a category, and let P be a
decomposible predicate on the morphisms of B; we define the predicate sort-
ing p : E → B for P . The category E has pairs (X,Y) as objects, where, for
some object B of B, X is a set of B morphisms with codomain B and Y is a set
of B-morphisms with domain B, subject to the following conditions.

idB ∈ X,Y (id)

f ∈ X ∪ Y =⇒ P (f) (sound)

f ∈ X, g ∈ Y =⇒ P (g ◦ f) (comp)

g ◦ f ∈ X =⇒ g ∈ X (suffix)

g ◦ f ∈ Y =⇒ f ∈ Y (prefix)

There is a morphism f : (X,Y) → (U, V) whenever the following holds.

f ∈ Y, f ∈ U (valid)

x ∈ X =⇒ f ◦ x ∈ U (preserve)

v ∈ V =⇒ v ◦ f ∈ Y (reflect)

We put this definition in words. For an object (X,Y), we require that X,Y
contain the identity (id); that morphisms in X,Y satisfy P (sound); that mor-
phisms inX,Y are composible (comp); thatX is suffix-closed (suffix); and that
Y is prefix-closed (prefix). The first three requirements picks out all possible
combinations of morphisms satisfying P . The latter two requirements ensures
the existence of opcartesians and that the sorting reflects prefixes, respectively;
we will need these properties to transfer RPOs. Notice that decomposibility of P
is integral only to these latter two requirements.

For a morphism f , we require that it is contained in the sets at its domain and
codomain (valid); that it preserves validity of its domain (preserve); and that
it reflects validity at its codomain (reflect). The latter two requirements ensure

Sortings for Reactive Systems 9

that we do not accidentally violate P by successive compositions. (Technically, we
could do without (valid), which follows from (preserve), (reflect) and (id);
we feel that the definition is clearer as it stands.)

5 Transfer Theorem for Predicate Sortings

In this section, we prove that a predicate sorting p : E → B transfers RPOs. First,
we establish that each fibre is a lattice (Proposition 16); second, we characterize
the opcartesians (Definition 17 and Proposition 18); third, we use this charac-
terization to show that p is a weak opfibration (Proposition 19); and fourth, we
show that p transfers RPOs (Theorem 20). First, each fibre is a lattice.

Proposition 16. If φ : (X,Y) → (U, V) is vertical, then X ⊆ U and Y ⊇ V .
Ordered pointwise under ⊆ and ⊇, each fibre is a lattice with joins (X,Y) t
(U, V) = (X ∪ U, Y ∩ V) and meets (X,Y) u (U, V) = (X ∩ U, Y ∪ V).

We characterize the opcartesians. For a morphism f : A → B and a preim-
age (X,Y) of A, we use (preserve) and (reflect) to define a preimage of B.

Definition 17. Let f : A → B be a morphism of B, and let X ⊆ {g | cod(g) =
A} and Y ⊆ {h | dom(h) = A}. We define operators • and ◦ by f ◦X = {f ◦ x |
x ∈ X} and Y • f = {g | g ◦ f ∈ Y }. For any set Z of morphisms, we define the
suffix and prefix closures Zs = {h | ∃g. h ◦ g ∈ Z} and Zp = {g | ∃h. h ◦ g ∈ Z}.

Proposition 18. A morphism f : (X,Y) → (U, V) is opcartesian if and only if
U = (f ◦X)

s
and V = (Y • f)

p
.

Proposition 19. A predicate sorting p : E → B is a weak opfibration.

It is straightforward to establish that p reflects prefixes and has vertical
pushouts; see [14]. Thus, by Theorem 12, we have the desired transfer theorem.

Theorem 20. If B has RPOs, then a predicate sorting p : E → B transfers
RPOs.

6 Correspondence Theorem for Predicate Sortings

Taking the view that sortings exist to get rid of junk morphisms, when is a sort-
ing good enough? Not just any sorting will do. For instance, for any category B

and predicate P , we can construct a category E that has, for each f with P (f),
unique objects fX , fY and a morphism f : fX → fY . This category gives a sort-
ing p : E → B that transfers RPOs and has as image precisely the morphisms f
with P (f), but surely, this sorting is untenable: It supports no non-trivial com-
positions, reactions, or transitions. We believe that a sorting will prove usable
if our chosen reactive system in B and restricted to morphisms satisfying P can
be recovered in E, and similarly for transitions. We establish that our predicate

10 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

sortings maintain this correspondence between reactions and transitions in The-
orem 25 below. First, we must make our notion of correspondence precise. For a
predicate sorting p : E → B, we let E inherit reactions from B. Inheritance will
in turn require a lift of the distinguished object ε, the domain of agents.

Lemma 21. Write ε̄ for the pair ((idε)
s
, {f : ε → X | P (f)}). Then ε̄ is an

object above ε, and any morphism f : ε→ X with P (f) has a lift at ε̄.

Definition 22 (p-inherited reactive system). Let p : E → B be a sorting,
and let R be a ground reactive system on B. The p-inherited reactive system has
distinguished object ε̄ and reaction rules R̄ defined by

R̄ = {(f, g) | f, g : ε̄→ X for some X, and (p(f), p(g)) ∈ R}.

Conversely, reactions and transitions in E can be translated to B.

Definition 23 (p-induced reactions and transitions). Let p : E → B be a
sorting, and let 7−→ be a reaction relation on E. We define the p-induced reaction
relation J7−→K in B by taking for any f, g,

p(f) J7−→K p(g) iff f 7−→ g.

Let −→ be the corresponding transition relation. We define the p-induced tran-
sition relation J−→K in B by taking for any f, g, h,

p(f) J
p(h)
−→K p(g) iff f

h
−→ g.

Having moved reactions up, and reactions and transitions back down, we com-
pare the result to restricting the original B reactions to P .

Definition 24 (P -restricted reactions and transitions). Let 7−→ be a reac-
tion relation. We define the P -restricted reaction relation b7−→c (in the obvious
way) by

f b7−→c g iff f 7−→ g and P (f), P (g).

Let −→ be the corresponding transition relation. We define the P -restricted tran-
sition relation b−→c by

f b
h

−→c g iff f
h

−→ g and P (f), P (g), P (h), P (h ◦ f).

Theorem 25 (Correspondence). Let B be a category with RPOs, let P be a
decomposible predicate, let p : E → B be the predicate sorting for P , let R be a
reactive system on B, and let R̄ be the p-inherited reactive system on E. Then

1. the p-induced and P -restricted reaction relations coincide, and
2. the p-induced and P -restricted transition relations coincide.

To prove the correspondence theorem, we will need better understanding of
the jointly opcartesians: Using Theorem 8, the jointly opcartesian pairs help us
find IPOs.

Sortings for Reactive Systems 11

Definition 26 (Nearly jointly opcartesian). For p : E → B, a cospan f, g

is nearly jointly opcartesian iff there exists a jointly opcartesian pair f ′, g′ and
a vertical φ s.t. f = φ ◦ f ′ and g = φ ◦ g′.

Using that each fibre is a lattice, we find that all cospans are nearly jointly
opcartesian.

Proposition 27. In a predicate sorting p : E → B, f, g are jointly opcartesian
iff f = φ ◦ f̄ and g = ψ ◦ ḡ where f̄ , ḡ are opcartesians and φ, ψ are the unique
verticals given by cod(f̄) t cod(ḡ).

Proposition 28. In a predicate sorting p : E → B, every cospan f, g is nearly
jointly opcartesian.

Proof. By Proposition 10, we may write f = ρ ◦ f̄ and g = τ ◦ ḡ where f̄ , ḡ
are opcartesian and ρ, τ are verticals. Take φ, ψ to be the unique verticals given
by f̄ t ḡ. By Proposition 27, φ ◦ f̄ and ψ ◦ ḡ are jointly opcartesians, hence there
exists a vertical α with f = α ◦ φ ◦ f̄ and g = α ◦ ψ ◦ ḡ. ut

Proposition 29. Let p : E → B be a predicate sorting, and consider a cospan

p(X,Y) B p(U, V)
f g

If f and g have lifts at p(X,Y) and p(U, V), respectively, then they have jointly
opcartesian lifts there.

Proof. We have opcartesian lifts f̄ of f and ḡ of g, and because f, g is a cospan,
we may form f̄ t ḡ; Proposition 27 now gives a jointly opcartesian lift. ut

In light of Theorem 8, the above proposition gives us a very tight grip on
the relation between IPOs in B and E. We now use that grip to prove the
correspondence theorem.

Proof (of Theorem 25). Part 1. Suppose first that a J7−→K b. Then for some f, g
with a = p(f) and b = p(g), f 7−→ g. Thus f = D ◦ e and g = D ◦ e′

with (e, e′) ∈ R̄, so a = p(D) ◦ p(e) and b = p(D) ◦ p(e′), with (p(e), p(e′)) ∈ R,
so a 7−→ b; clearly P (a) and P (b), hence a b7−→c b.

Suppose instead that f b7−→c g. There exists C, r and s with (r, s) ∈ R
s.t. f = C ◦ r and g = C ◦ s. By Lemma 21 we can find lifts of r, s at ε̄, so
by Proposition 29, we have a jointly opcartesian lift r̄, s̄ of r, s at ε. Again by
Lemma 21, we can lift C ◦ r and C ◦ s at ε; so by r̄, s̄ jointly opcartesian, there
is a lift C̄ of C at cod(r̄) = cod(s̄). Clearly (r̄, s̄) ∈ R̄, so we have C̄ ◦ r̄ 7−→ C̄ ◦ s̄,
and in turn f = C ◦ r J7−→K C ◦ s = g.

Part 2. Suppose a b
L

−→c b. Thus there exists (r, s) ∈ R and a context C s.t.
the following diagram commutes and the square is an IPO.

L

a

r s

bC

12 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

We find P (C ◦ r) because P (L ◦ a), and P (C ◦ s) because P (b). By Lemma 21
and Proposition 19, we have opcartesian lifts ā, L ◦ a, r̄, s̄, C ◦ r and C ◦ s at ε̄.
Because ā is opcartesian, we find may a lift of L̄ at the codomain of ā; we may
assume this lift opcartesian. By Proposition 29, we may assume r̄, s̄ jointly op-
cartesian and C ◦ r, C ◦ s cospan, so there exists a lift C̄ of C at cod(r̄) = cod(s̄).
Again by Proposition 29, we may assume L̄, C̄ jointly opcartesian. Altogether,
we have erected the following diagram.

L̄

ā

r̄ s̄

C̄

By Theorem 8, we have constructed an IPO, and clearly (p(r̄), p(s̄)) ∈ R, so we

have a transition ā
L̄

−→ C̄ ◦ s̄. Because C ◦ s = b, we have obtained the desired

transition a J
L

−→K b.

Suppose instead a J
L

−→K b. For some f, g, h, we have a = p(f), b = p(g), L =

p(h) and f
h

−→ g, so there exists (r, s) ∈ R̄ and a C s.t. the following diagram
commutes, and the square is an IPO.

h

f

r s

gC

Clearly, (p(r), p(s)) ∈ R), and by Theorem 20, the image of the square is an

IPO, so there is a transition p(f)
p(h)
−→ p(g), that is, a

L
−→ b. Clearly, P (a), P (L),

P (b) and P (L ◦ a), so we have the desired a b
L

−→c b. ut

7 Context-aware Reactions

Ubiquitous computing is inextricably linked to context-aware computing: com-
putations that are aware of and depend on the present context of the computing
agent. Here are two examples. (1) An electronic tour guide device, carried around
by visitors at a museum, should provide information about the physically clos-
est exhibit. (2) Doors in a shop which open automatically unless an RFID-tag
of an item not registered as sold is too close. Notice the dual requirements in
these examples: The first stipulates a positive requirement (the presence of an
exhibit), whereas the second stipulates a negative requirement (the absence of
an unsold item). Thus, for modeling such applications, it is very convenient if we
can specify reaction rules that apply in some but not all contexts. However, as
observed in [19], work on process calculi tends to supply at most a rudimentary

Sortings for Reactive Systems 13

distinction between active and passive contexts, a distinction insufficient for the
above examples.

We can use sorting to better control reaction: We simply specify our reactive
system directly in the sorted category E. By choosing the right codomain for a
reaction rule (l, r) we specify in what contexts it applies. In particular, we may
use sorting to capture absence of something in the context. In some categories
— in particular bigraphs — we model contexts as morphisms and the presence
of something as factorization. Thus, we say that a : A′ → B′ is present in the
context c : A→ B iff c = x◦a◦y for some x, y. Under this notion of presence, the
predicate sorting can be used to capture absence to the extent of the following
theorem.

Theorem 30. Let p : E → B be the predicate sorting, let f : ε → B be a
morphism of B, and let T be any set of morphisms with domain B. Then f has
a lift f̄ at ε̄ s.t. each g : B → X has a lift at cod(f̄) precisely when g ∈ T iff T

is prefix closed and respects P .

Put another way: If we want the left-hand side of a reaction rule (l, r) to
apply precisely in a set T of contexts, we can do so within any predicate sorting,
provided T is prefix-closed and respects the predicate P . Notice that we may
take P to be everywhere true, should we so desire.

What does the restriction to prefix-closed sets T mean? Reconsidering the
examples with presence and absence, we see that absence is prefix-closed whereas
presence is not. Clearly, if a does not occur in a context c, then it also does not
occur in any sub-context of c; in particular, it does not occur in any prefix of c.
On the other hand, we may very well have a context c that contains some a, but
a prefix of c which does not.

In the case of bigraphs or, more generally, wide reactive systems [4, 5], the
monoidal structure enables us to express presence without the use of sortings: If
we insist that (l, r) applies only when a is present in the context, we simply give
the rule as (a ⊗ l, a ⊗ r). Thus, in sorted wide reactive systems, we can model
both presence and absence.

8 Conclusion

Building on earlier work on more specific sortings, ours is the first investiga-
tion of general sortings, or type systems, for reactive systems. However, type
systems have been investigated for related frameworks, notably for hypergraph
rewriting systems in [20], and for process algebras in [21]. Our work is alone in
addressing the impact of sorting on labeled transition systems, bisimulations,
and congruence properties.

König’s typings for hypergraph rewriting systems [20] resembles our sort-
ings in that the aim of typing is explicitly stated to be identifying hypergraphs
satisfying a given predicate; that decomposition preserves well-typedness; that
composition does not necessarily preserve well-typedness; and that there is a
notion of minimal type, roughly comparable to our use of opcartesian lifts. The

14 Lars Birkedal, Søren Debois, and Thomas Hildebrandt

method differs from ours — the setting of hypergraphs not withstanding —
in that the typing relation is required to satisfy subject reduction, whereas we
simply disregard type-altering reductions (cf. the P -restriction of reaction, Def-
inition 24).

Honda’s work on typed process algebras [21] is reminiscent of ours in that
it focuses explicitly on controlling which morphisms are composible and which
are not. However, Honda’s notion of process is quite specific to process calculi
compared to our more general setting of reactive systems over categories.

For future work, we see as the most urgent the reconciliation of present work
with precategories, bridging the gap to bigraphs. Observing that our notion of
sorting applies immediately to abstract bigraph, we are hopeful that we can
transfer our results across the quotient functors to precategories.

Other directions include further investigating compositionality of sortings.
In Section 3, we demonstrated how to compose sortings sequentially and how to
form their conjunction; it is natural to wonder about other connectives, particu-
larly negation. Another direction is investigating the use of sortings for encoding
typed calculi in reactive systems. Yet another is that for bigraphs, it would be
interesting if there were stronger connections between BiLog [17, 18] and sorted
bigraphs than those noted in Section 4. For instance, BiLog formulas might form
the basis of a syntactic formulation of sorting, which could in turn be useful for
implementations of reactive systems. Finally, it would be interesting to know if
the predicate sorting is in some sense universal.

Acknowledgments. We gratefully acknowledge good suggestions from the anony-
mous referees and vibrant discussions with Rasmus Lerchedahl Petersen and
Mikkel Bundgaard.

References

1. Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer
Science 274(1–2) (2002) 183–230

2. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
CONCUR ‘00: Proceedings of the 11th International Conference on Concurrency
Theory, Springer-Verlag (2000) 243–258

3. Jensen, O.H., Milner, R.: Bigraphs and transitions. In: POPL ‘03: Proceedings
of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM Press (2003) 38–49

4. Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge Computer Laboratory (2004)

5. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation
204(1) (2006) 60–122

6. Sassone, V., Sobocinski, P.: Deriving bisimulation congruences: 2-categories vs.
precategories. In: FOSSACS ‘03: Proceedings of Foundations of Software Science
and Computation Structures. Volume 2620 of Lecture Notes in Computer Science.,
Springer-Verlag (2003) 409–424

7. Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS ‘05: Proceed-
ings of the twentieth annual IEEE symposium on Logic in computer science, IEEE
Computer Society Press (2005) 311–320

Sortings for Reactive Systems 15

8. Bruni, R., Gadducci, F., Montanari, U., Sobociński, P.: Deriving weak bisimulation
congruences from reduction systems. In: CONCUR ‘05: Proceedings of the 16th
international conference on Concurrency theory. Volume 3653 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 293–307

9. Jensen, O.H.: Mobile Processes in Bigraphs. PhD thesis, University of Aalborg
(2006) Forthcoming.

10. Milner, R., Leifer, J.J.: Transition systems, link graphs and Petri nets. Technical
report, University of Cambridge, Computer Laboratory (2004)

11. Bundgaard, M., Hildebrandt, T.: Bigraphical semantics of higher-order mobile
embedded resources with local names. In: GT-VC ’05: Proceedings of the Graph
Transformation for Verification and Concurrency workshop. Volume 154 of Elec-
tronic Notes in Theoretical Computer Science., Elsevier (2006) 7–29

12. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models
of Context-aware Systems. Technical Report 74, IT University of Copenhagen
(2005) ISBN: 87-7949-110-3.

13. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Mod-
els of Context-aware Systems. In: FOSSACS ‘06: Proceedings of 9th International
Conference on Foundations of Software Science and Computation Structures. Vol-
ume 3921 of Lecture Notes in Computer Science., Springer-Verlag (2006)

14. Birkedal, L., Debois, S., Hildebrandt, T.: Sortings for reactive systems. Technical
Report 84, IT University of Copenhagen (2006) ISBN 87-7949-124-3.

15. Jacobs, B.: Categorical logic and type theory. Volume 141 of Studies in logic and
the foundation of mathematics. Elsevier (1999)

16. Poincaré, H.: Science and Method. Dover Publications (1914) Translation by
Francis Maitland.

17. Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. In: ICALP
‘05: Proceedings of the 32nd international colloquium on Automata, languages and
programming. Volume 3580 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 766–778

18. Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. Computer
Science Report 02, University of Sussex (2005)

19. Braione, P., Picco, G.P.: On calculi for context-aware coordination. In: COOR-
DINATION ‘04: Proceedings of the 7th International Conference on Coordina-
tion Models and Languages. Volume 2949 of Lecture Notes in Computer Science.,
Springer (2004) 38–54

20. König, B.: A general framework for types in graph rewriting. In: FST TCS ‘00:
Proceedings of the 20th Conference on Foundations of software technology and
Theoretical computer science. Volume 1974 of Lecture Notes in Computer Science.,
Springer-Verlag (2000) 373–384

21. Honda, K.: Composing processes. In: POPL ‘96: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. (1996)
344–357

