
Intensional Type Theory with Guarded Recursive Types
qua Fixed Points on Universes

Lars Birkedal
Dept. of Comp. Science, Aarhus University

Rasmus Ejlers Møgelberg
IT University of Copenhagen

Abstract—Guarded recursive functions and types are useful
for giving semantics to advanced programming languages and
for higher-order programming with infinite data types, such
as streams, e.g., for modeling reactive systems.

We propose an extension of intensional type theory with
rules for forming fixed points of guarded recursive functions.
Guarded recursive types can be formed simply by taking fixed
points of guarded recursive functions on the universe of types.

Moreover, we present a general model construction for
constructing models of the intensional type theory with guarded
recursive functions and types. When applied to the groupoid
model of intensional type theory with the universe of small
discrete groupoids, the construction gives a model of guarded
recursion for which there is a one-to-one correspondence
between fixed points of functions on the universe of types and
fixed points of (suitable) operators on types.

In particular, we find that the functor category Grpdωop

from the preordered set of natural numbers to the category of
groupoids is a model of intensional type theory with guarded
recursive types.

I. INTRODUCTION

Recursive functions and recursive types are used perva-
sively in computer science. In particular, guarded recursive
types and guarded recursive functions have been used in
recent years to give semantics to realistic programming
languages with dynamically-allocated higher-order store,
such as ML-like references. Guarded recursive types and
functions have also proved useful for programming with
streams and other “infinite” data types, e.g., in higher-order
reactive programming [4, 10, 13, 14].

In earlier work [3, 4], we showed how the topos of trees,
i.e., the category Setω

op

of presheaves over the natural
numbers ω, models an extension of dependent type theory
with guarded mixed-variance recursive types and functions.
Roughly, the extension consists of a new type constructor
I and the possibility of defining recursive functions and
types guarded by I. Recursive functions can be defined
by means of a fixed-point operator fix: (IA → A) → A.
Note that guardedness here is expressed using types. This
is in contrast to the syntactic checks of function definitions
used in Coq and Agda to check for productivity of recursive
functions on coinductive data types. It is because of the use
of types to express guardedness that guarded recursion is
useful for higher-order programming [4, 13, 14]. For higher-
order functions, syntactic checks of function definitions are
too restrictive, since one cannot analyze function parameters

— this has led to research on how to “code around” these
limitations, e.g., [5]. Thus guarded recursive types and func-
tions may usefully complement the use of coinductive types,
as also suggested in [16]. To investigate this hypothesis
further, we are interested in extending implementations of
(intensional) type theory with guarded recursive types and
functions. This paper lays the model-theoretic foundations
for such extensions.

In contrast to the situation for recursive functions, in [3, 4]
the well-definedness of guarded recursive types follows stan-
dard practise and relies on syntactic checks [4, Proposition
4.10]. But, if we consider a type theory with a universe
of types, then it really ought to be possible to express the
existence of guarded recursive types simply as fixed points
of guarded recursive functions on the universe of types! In
this paper, we show that is indeed the case.

In our previous work, we only considered models of
guarded recursion for extensional type theory. Indeed, the
class of models we considered were sheaf toposes over well-
founded complete Heyting algebras (the concrete example
model Setω

op

mentioned above is equivalent to a sheaf
topos of this form). In this paper we consider more general
models of type theory, encompassing intensional type theory.
We show, in particular, how any model of intensional type
theory with a universe can be used to construct a new
model of intensional type theory with guarded recursive
functions and guarded recursive types qua fixed points on
the universe of types. The construction preserves several
type-theoretic principles. For instance, when instantiated to a
model of intensional type theory satisfying univalence [21],
e.g., Hofmann and Streicher’s groupoid model [9] (with the
universe of small discrete groupoids), the resulting model
also satisfies univalence. This shows the consistency of the
combination of guarded recursion and univalence. Moreover,
we show that for the groupoid model there is a one-to-one
correspondence between fixed points of endomaps on the
universe of types and fixed points of suitable operators on
types. This result is part of the motivation for considering
models of intensional type theory.

The remainder of the paper is organized as follows. In
Section II we recall a syntactic formulation of guarded re-
cursion from [4] and also explain our new rules for guarded
recursive types qua fixed points on a universe of types. Then
in Section III we recall the extensional topos of trees model

and show how to extend it to one with a universe. We recall
a categorical notion of model of intensional type theory
in Section IV and consider the construction of models for
guarded recursion for intensional type theory in Section V.
The hope is that the concrete treatment in Section III may
serve as an introduction to the more abstract categorical
treatment in Section V. Finally, we relate fixed points qua
contractive maps on the universe to fixed points of operators
on types in Section VI and conclude in Section VII.

II. SYNTACTIC MOTIVATION

We begin by calling to mind how to use types and guarded
recursion to ensure that functions on streams (infinite lists
of natural numbers) are well defined. In this informal intro-
duction we write x :: xs for the stream with head element x
and tail xs . When streams are represented as a coinductive
data type, the stream of zeros can be defined recursively
as zeros = 0 :: zeros . This is a well-defined stream since
the right-hand side is productive, i.e., zeros appears directly
under :: on the right-hand side. On the other hand, an
equation such as xs = xs is not well-defined, since the right-
hand side is not productive. If merge is the function that
merges two streams, and tail is the function that returns the
tail of a stream, then it should also be possible to define the
stream of zeros by zeros = 0 ::merge zeros (tail zeros),
but, alas, this definition is not productive (since zeros does
not appear directly under :: on the right-hand side).

Instead of relying on syntactic productivity checks we can
use types to ensure well-definedness of functions on streams.
The idea is to introduce a type constructor I, pronounced
“later”, with the intuition being that elements of IA are
elements of A that are only available later (after a time-
step has passed). We then use a guarded recursive fixed
point combinator fix: (IA → A) → A to ensure well-
definedness of recursive definitions of streams. For instance,
writing Str for the type of streams and N for the type of
natural numbers, we can give :: the type N ×IStr → Str
and then define zeros as fix(λz : IStr . 0 :: z). By typing
merge and tail appropriately, it is also possible to show
well-definedness of the above alternative definition of zeros .
See [4, 10, 13, 14] for more examples.

With this approach, using guarded recursion, the type of
streams satisfies the isomorphism Str ∼= N×IStr , and thus
the type of streams is an example of a guarded recursive
type. Of course, streams is just one such example and it
is clearly useful to have a general mechanism for defining
guarded recursive types. In our earlier models of guarded
recursion [4], one can form the guarded recursive type of
streams as follows:

Str
def
= µX.N×IX.

Here µ is a new type constructor for guarded recursive types.
The above is a well-defined guarded recursive type, since the
definition follows the syntactic rules for guarded recursive

types, in particular since the recursion variable X occurs
under a I. Observe that well-definedness just relies on X
appearing under a I; in particular, the models in [4] allow
for mixed-variance guarded recursive types (see loc. cit. for
an application to semantics of programming languages with
general references).

A. Fixed Points on Universes

Note that the well-definedness of recursive types in [4],
as recalled above, was expressed using a syntactic check,
akin to the productivity check for recursive functions on
coinductive types. Here, instead, we will consider a type
theory with a universe U of types and define Str by an
ordinary fixed point of a guarded function on the universe.

The type constructor I is modeled by a strong product
preserving functor and hence satisfies the rules for an ap-
plicative functor in the sense of McBride and Paterson [17].
Thus there is the type formation rule

Γ ` A : Type

Γ ` IA : Type

and two associated terms:
Γ ` t : A

Γ ` next(t) : IA

Γ ` t : I(A→ B) Γ ` u : IA

Γ ` t~ u : IB

One intuition is that types are indexed over discrete time and
next captures a form of Kripke monotonicity: if we have a
proof t of A now, then next(t) is a proof of IA, i.e., of
A later. Another, related, intuition is that next transforms
elements we know now to elements we will only use later.
(See the following section for a concrete model.) From this
point of view, t ~ u expresses that if we know later that t
is a function from A to B, and we later have an element of
type A, then we can apply the function at that later time to
get an element of B at that later time, i.e., an element of
IB.

The above terms satisfy the following four equations
for applicative functors (definitional equalities in the type
theory):

next(λx.x) ~ u = u

next(◦) ~ s~ t~ u = s~ (t~ u)

next(t) ~ next(u) = next(t(u))

u~ next(t) = next(λg.g(t)) ~ u

where ◦ is the composition function.
Guarded recursive fixed points are then captured by the

following rule, introducing the fixed point term, and the
following equation, expressing that it yields a fixed point.

Γ, x : IA ` t : A

Γ ` fixx.t : A
(1)

t[next(fixx.t)/x] = fixx.t (2)

Fixed points are unique internally, as expressed by the
following rule:

Γ, f : IA→ A, y : A ` p : IdA(y, f(next(y)))

Γ, f : IA→ A, y : A ` UFP(p) : IdA(y,fixx.f(x))
(3)

The universe of types U is closed under the later operator,
that is, there is also a later operator on codes for types,
denoted �,

Γ ` A : IU

Γ ` �A : U
(4)

The assumption of A : IU rather than A : U is crucial for
representing guarded recursive domain equations as maps
IU → U .

The standard elements-of operator El taking elements of
the universe to types is related to I and next as expressed
by the following equation (in a context with A : U):

El(�(next(A))) = IEl(A) (5)

We follow standard practise and often omit El when it can
be inferred from context.

Using the above rules, we have the following derived rule

Γ, X : IU ` A : U

Γ ` µX.A : U
(6)

where µX.A is simply notation for fixX.A. As an example,
the name of the type of streams can now be defined like
before (assuming N : U)

Str = µX.N×�X : U

Note that

El(Str) = El(N×�(next(Str)))

= N×IEl(Str)

which implies that the type El(Str) is a solution to the
type equation corresponding to the given operation on the
universe. Note that we obtain a solution up to identity, rather
than isomorphism — this is due to the fact that solutions are
found for endomaps on U , i.e., on maps from codes of types
to codes of types. We relate fixed points for endomaps on
U to fixed points for operators on types in Section VI.

Thus we can now define guarded recursive types simply
as fixed points of guarded functions on the universe. For
functions that are suitably functorial and locally contractive
one can show that the fixed point is both an initial algebra
and a final coalgebra. We just consider initiality: Say that
F : U → U is guarded if there exists a G : IU → U
such that F = G ◦ next. Let µF be the fixed point of F .
Assume that F has a contractive functorial action, i.e., a term
F :

∏
X,Y.(X → Y) → (FX → FY) such that, for any

X , Y , there exists a GX,Y such that FX,Y = GX,Y ◦ next
and GX,Y satisfies the functor laws up to external equality.
Then F (µF) = µF is an initial F -algebra: if a : FA→ A

is another algebra, then there exists a unique map fold :
µF → A such that a ◦ FµF,A(fold) = fold . Indeed, fold
is obtained by taking the fixed point of H = λh : µF →
A. a ◦ FµF,A(h), which exists since H is contractive: H =
λh : µF → A. a ◦GµF,A(next(h)).

So far, perhaps the main achievement, compared to the
situation where recursive types are a basic concept and well-
definedness is checked syntactically, is simplicity – which
is important! But using fixed points on universes to define
recursive types allows us also to consider more general
“higher-kinded” types and also provide a simple approach to
guarded recursive dependent types, as we shall now show.

For a simple example of a “higher-kinded” type, consider

λG : IU → U.λA : U.fixX.A×G(X)

which is parameterized on any contractive type operator
G and any type name A. Note that this is easily seen to
be a well-defined type according to the rules given above.
However, because of the use of the parameter G, standard
syntactic checks of the body of the fix-expression would not
allow us to conclude that the above is a well-defined guarded
recursive type.

B. Example: A domain equation using dependent types

Not all recursively defined types used in type theory can
be reduced to fixed points of endomaps on U . We now
show how to solve guarded dependent domain equations,
by considering the following example, from Altenkirch and
Morris [1], of a domain equation defining a dependent type
Lam(n) of lambda terms with at most n free variables:

Lam(n) = Fin(n) + Lam(n)× Lam(n) + Lam(n+ 1)

Here Fin(n) : U is a type containing n elements representing
variables. A guarded recursive version of this type is

Lam(n) = Fin(n) + (ILam(n))2 + ILam(n+ 1) . (7)

In the model of Section III global elements of Lam(0) (i.e.
maps 1 → Lam(0)) correspond to possibly infinite lambda
terms in de Bruijn representation. This domain equation is
not of the form (6) considered above; we cannot reduce it to
taking a family of fixed points indexed by n (because we use
n+1 on the right-hand side of (7)). Rather we must solve a
single dependent domain equation. To that end, we can use
the following definable generalized fixed point operator:

Proposition II.1. Define

Γ, x : A→ IB ` t : A→ B

Γ ` pfixx.t : A→ B

as pfixx.t = fix y : I(A→ B).t[λa.y ~ next(a)/x]. Then

pfixx.t = t[next ◦ (pfixx.t)/x].

Now define

n : N, X : N→ IU ` F (X,n) : U

as F (X,n) = Fin(n) + (�X(n))2 +�X(n+ 1) + 1. Then
Lam(n) = El((pfixX.λn.F (X,n))(n)) satisfies equation
(7).

III. AN EXTENSIONAL MODEL

We now recall the model construction of [4] and describe
how one can construct a universe inside this model from
a given universe in Set. We also explain how to give
semantics to rule (4).

The model considered in [4] is the presheaf category
Setω

op

. Thus a type A is modeled as a sequence of sets
and functions

A1
� rA1 A2

� rA2 A3
�r
A
3 . . .

and a morphism f : A→ B is a family of functions making
the squares below commute

A1
� rA1 A2

� rA2 A3
�r
A
3 . . .

B1

f1

?
� rB1 B2

f2

?
� rB2 B3

f3

?
�r
B
3 . . .

Our intuition is that the set An describes A up to the
information computable in n computation steps, and the
map rAn describes how the information obtained in n + 1
computation steps relates to the information available after
n steps. For example, the type of streams from the previous
section is modeled by the object Str

N �
π

N2 � π
N3 � π

. . .

Where the maps π are projections.
Since Setω

op

is a topos it models dependent types, along
with subset types for a higher order logic. Here we just
describe how to model constructions specific to guarded
recursion.

Given a type A, the type IA is defined as the sequence

1 �
!

A1
� rA1 A2

� rA2 . . .

The term next : A → IA is modeled as the natural
transformation next1 =!, nextn+1 = rAn .

We say that a map f : A → A is contractive if there is
a g such that f = g ◦ next. The next theorem states that
contractive maps have unique fixed points.

Theorem III.1 ([4]). Let A,B be objects of Setω
op

, and let
f : B×IA→ A. There is a unique morphism fixf : B → A
such that

fixf = f ◦ 〈idB ,nextA ◦ fixf〉

From Theorem III.1 one can derive a fixed-point operator
fix: (IA→ A)→ A. To give some intuition for how fixed
points are computed, we recall the construction for the case

of B = 1. In that case the input is a function f : IA→ A,
i.e. a family of maps f1 : 1→ A1, fn+1 : An → An+1. The
fixed point is defined as

(fixf)n = fn ◦ fn−1 ◦ . . . f1 : 1→ An.

The intuition for fixf is that to compute the n’th approxima-
tion of the fixed point, we apply fn to an arbitrary argument.

In [4] we also proved the existence of solutions to a
large class of recursive domain equations. Recall that an
enrichment of a functor F : Setω

op

→ Setω
op

is a family
of maps

FX,Y : (X → Y)→ FX → FY

internalizing the action of F on morphisms in a precise
sense [12], and say that F is locally contractive if it has
an enrichment such that each FX,Y is contractive. Then
every locally contractive functor has a unique fixed point
up to isomorphism, and moreover this fixed point is at the
same time an initial algebra and final coalgebra. This result
generalizes to mixed-variance functors and (for dependent
types) functors on slices [4].

For example, the expression F (X) = N × IX defines
a locally contractive functor. Since products and natural
numbers are given pointwise in Setω

op

, the type Str satisfies
Str ∼= N×IStr and so is the unique solution to the equation
given by F .

In fact, any type expression in simply typed lambda
calculus, as well as many expressions in the dependent type
theory of toposes define locally contractive functors as long
as any occurrence of X is under a I operator. See [4] for
a precise statement.

For A in Setω
op

, by the n’th approximation of A we
mean the finite sequence

A1
� rA1 A2

� rA2 . . . �
rAn−1

An

The key property that locally contractive functors satisfy is
that they are productive in the sense that the (n+ 1)’th ap-
proximation of FX only depends on the n’th approximation
of X (up to isomorphism). Productivity implies the existence
of unique fixed points: the n’th approximation of the fixed
point can be computed by applying Fn to any object. Thus
fixed points on the type level are computed essentially the
same way as fixed points on the term level. We now show
how productivity can be captured using universes.

A. Universes in Setω
op

We now assume that we are given a universe U in
Set and construct a universe V in Setω

op

. By a universe
in Set we mean a set U of sets containing the set of
natural numbers and being closed under subsets, as well as
dependent products and sums indexed over sets in U , as is
the case for example for a Grothendieck universe. A set A
is small if A ∈ U . Following [8] we construct V :

V1
� rV1 V2

� rV2 V3
� rV3 . . .

by defining V1 = U and Vn+1 as the set

{(X1, . . . , Xn+1, f1, . . . , fn) | ∀i.Xi ∈ U, fi : Xi+1 → Xi}

the restriction maps are defined by

rVn (X1, . . . , Xn+1, f1, . . . fn) = (X1, . . . , Xn, f1, . . . fn−1).

In Section IV we describe the universal properties that this
universe satisfies, but for now we just note the intuition: if
we say an object A of Setω

op

is small if each Ai is small,
then an element in Vn is a finite approximation of a small
object. Note also that there is a bijective correspondence
between small objects of Setω

op

and global elements of V ,
i.e., morphisms 1 → V . Maps F : V → V thus induce
constructions on small objects and the contractive maps
correspond to the constructions that are productive in the
sense of the previous subsection. The process of computing
the unique fixed point of F thus corresponds exactly to the
process described at the end of the previous subsection.

Define the map � : IV → V as

�
1

(?) = 1

�
n+1

(X1 . . . Xn, f1 . . . fn−1) = (1, X1 . . . Xn, !, f1 . . . fn−1)

This map internalizes I in the sense that if the small object
A corresponds to Ā : 1 → V then IA corresponds to the
composition

1
Ā - V

nextV- IV
� - V

Since U is closed under products, we can similarly define
a map V × V → V capturing products of small sets. Using
this, � and N ∈ U we can define F (X) = N × IX as a
contractive map V → V . The unique fixed point of F is
Str .

B. Dependent types

In the set theoretic model of dependent type theory a
dependent type over A is modeled as a family of sets indexed
over A. Such a family can equivalently be represented by
a map p : B → A. Varying the definition of the previous
section slightly, we now say a map p is small if each fibre
Ba = {b : B | pb = a} is isomorphic to an element in U .
Let El: E → U where E =

∐
X∈U X be the dependent

projection. Then p is small iff it fits in a pullback diagram

B - E

A

p

? B̄ - U

El

?

We call B̄ a code of B. Codes are usually not unique.
Since Setω

op

is locally cartesian closed we can interpret
dependent type theory in it. A type dependent on A is

modeled as a map B → A. We can define the collection
of elements in the universe as a dependent type

ElV : EV → V

(EV)1 = E

(EV)n+1 =
∐

(X1,...,Xn+1,f1,...,fn)∈Vn+1
Xn+1

with restriction maps

rVn ((X1, . . . , Xn+1, f1, . . . , fn), x)

= ((X1, . . . , Xn, f1, . . . , fn−1), fn(x)) .

Theorem III.2 (Hofmann and Streicher [8]). Let p : B → A
be a morphism in Setω

op

. Say p is small if each pn is small.
Then p is small iff it fits in a pullback diagram of the form

B - EV

A

p

?
- V

ElV

?

For a category C and an object A in C, we write C/A for
the slice category. In [4] we generalized the definition of I
to dependent types by defining a functor IA : Setω

op

/A→
Setω

op

/A mapping pB : B → A to the map pIB fitting in
the following pullback diagram.

IAB - IB

A

pIB

? next- IA

I pB

?

(8)

where I pB is the functorial action of I applied to pB . We
usually omit the subscript and simply write I also for the
operation on slices.

Theorem III.3. If B̄ : A → V is a code for pB : B → A
then � ◦next ◦ B̄ : A→ V is a code for pIB .

Theorem III.3 states that � : IV → V also internalizes
I on dependent types. Moreover, it shows the soundness
of rule (5) (up to coherence issues to be addressed in
Section IV) as we now describe. In the model, a term
Γ ` A : U is interpreted as a map [[A]] : Γ → V , and
Γ ` El(A) : Type is interpreted as [[A]]∗ElV where [[A]]∗

denotes pullback along [[A]]. We can interpret (4) as [[�A]] =
� ◦[[A]]. Soundness of (5) up to isomorphism can be proved
as

[[El(�(next(A)))]] = (� ◦next ◦ [[A]])∗El
∼= IΓ [[El(A)]] Theorem III.3

IV. INTENSIONAL MODELS

Before we generalize the model of the previous section
to a model construction on intensional models we fix a
notion of model of type theory. For this, we follow recent
literature on homotopy type theory, e.g. [2, 6, 11, 19], A
type dependent on A is still modeled as a map B → A,
but unlike locally cartesian closed categories, not all maps
are used to denote dependent types. Following the recent
literature on homotopy type theory, we call the class of
maps denoting dependent types fibrations, but other authors
use the words display maps or dependent projections. For
example, in the groupoid model of type theory [9] a type
dependent on A is modelled as an isofibration p : B → A,
i.e., a homomorphism such that for any b ∈ B, f : a → pb
there exists a map g : b′ → b such that pg = f .

Definition IV.1 ([19]). A type-theoretic fibration category
is a category C with a terminal object 1 together with
a collection of morphisms called fibrations closed under
composition and containing all isomorphisms. Say an object
A is fibrant if the unique map ! : A→ 1 is a fibration. The
following conditions must be satisfied

• All pullbacks of fibrations between fibrant objects exist
and are fibrations

• For any fibration f : A → B between fibrant objects
the reindexing functor

C/B → C/A

has a partial right adjoint defined on fibrations and
whose values are fibrations.

Call a map i an acyclic cofibration if it has the left lifting
property wrt all fibrations p, i.e. if pf = gi then there exists
an h such that hi = f , ph = g.

• If p : A → B is a fibration between fibrant objects
then its diagonal A → A ×B A factors as an acyclic
cofibration followed by a fibration:

A
r- PBA - A×B A

Moreover, this factorization should be preserved by
reindexing along all maps into B.

The object A ×B A is the one obtained by pullback
of p along p. This is the product in the category C/B.
The fibration PBA → A ×B A models the dependent
type b : B, x : A(b), y : A(b) ` IdA(b)(x, y). In the groupoid
model, if B = 1 the groupoid PBA is the discrete groupoid
of morphisms of A. As a degenerate example, note that
any locally cartesian closed category can be seen as a
type-theoretic fibration category where all morphisms are
fibrations. Examples also include the category of simplicial
sets [11] and a type-theoretic fibration category constructed
from the syntax of dependent type theory [19].

Note that although type-theoretic fibration categories are
not locally cartesian closed, the products p×q and exponen-
tials pq do exist in slices over fibrant objects for fibrations
p and q.

Definition IV.2. A universe in a type-theoretic fibration
category C is a fibration El: E → U in C such that U is
fibrant and such that C with the family of fibrations arising
as pullbacks of El is a type-theoretic fibration category.

A fibration in C is small (with respect to El) if it can be
seen as a pullback of El, and an object A is small if A→ 1
is small.

Example IV.3. In Set given a universe U , defining El as in
Section III-B gives a universe in the sense of Definition IV.2.
Say a groupoid X is small if the sets of objects and
morphisms are both in U , and consider the groupoid Grpd
of all small groupoids and isomorphisms between them.
This defines a universe in the category of groupoids: the
groupoid EGrpd is obtained by applying the Grothendieck
construction to the inclusion from Grpd to the (large)
category Grpd of all groupoids. Explicitly, the objects are
pairs (X,x) such that x ∈ X ∈ Grpd and morphisms
(X,x) to (Y, y) are pairs (f, g) such that f : X → Y and
g : x → f−1(y) in X . One can also construct the universe
Grpd∆ of small discrete groupoids similarly.

In the example of the groupoid model, all small fibrations
are split.

Universes are used for two purposes: to model universes
in type theory and to solve coherence issues [7], i.e., the
problem that pullback, which models substitution, usually
does not commute with constructions such as dependent
products and is not associative. We follow a recent ap-
proach for dealing with the coherence issue developed
independently by Streicher [20] and Voevodsky [11]. Es-
sentially the idea is to model types depending on A as
morphisms A → U . Operations on types are then modeled
as chosen maps on the universe. For example to model
binary products, one considers the generic fibered product
π∗1El ×U×U π∗2El → U × U . This can be seen as the
interpretation of the dependent type X,Y : U ` X × Y .
Choose a code ×̄ : U × U → U for π∗1El ×U×U π∗2El,
and define [[Γ ` A×B]] = ×̄ ◦ 〈[[A]], [[B]]〉 : [[Γ]] → U . For
dependent products and sums one considers the object U (1)

defined as the exponential

(U × U → U)El

in the category C/U . The object U (1) is the interpretation
of the generic dependent type context X : U, Y : X → U .
Dependent products are modeled by choosing a code U (1) →
U for the generic dependent type X : U, Y : X → U `∏
x : X.Y (x). We refer to [11, 19] for details.
A universe structure is a universe together with a choice

of codes implementing dependent products, sums, unit and

identity types. A universe embedding is a monomorphism
U → U ′ between universes which fits in a pullback

E - E′

U

El

? i - U ′

El′

?

(i.e. i is a code for El) and which commutes with the
universe structure.

Definition IV.4 ([19]). A model of MLTTU (Martin-Löf
type theory with one universe) is a type-theoretic fibration
category with a universe embedding i : U → U ′ such that
U is small with respect to U ′.

The universe U ′ is used to solve the coherence issue and
U is used to model the universe of the type theory. More
precisely, a type in context Γ is modeled as a map Γ→ U ′,
and a judgement Γ ` A : U as a map [[A]] : Γ → U . The
elements of a term in the universe is modeled as [[El(A)]] =
i◦ [[A]]. Terms Γ ` t : B are modeled as sections of [[B]]∗El′.

The above approach can of course be extended to type
theories with more than one universe. Generally, in these
cases we need to assume one more universe in the semantic
setup than in the type theory. The exception is for type
theories with an increasing family of universes (such as
extended calculus of constructions [15]), where one does not
need a universe containing all universes in the family [19].

Example IV.5. Given two Grothendieck universes U0, U1

such that U0 ∈ U1 and U0 ⊂ U1 the inclusion is a universe
embedding, and also induces universe embeddings between
the corresponding universes of groupoids.

V. A GENERAL MODEL CONSTRUCTION

In this section we assume given a model C of MLTTU as
in Definition IV.4. We generalize the construction of [3] by
equipping Cωop

with the structure of a model of type theory.
Following [19] we use the fibration category structure on
Cωop

given by Reedy fibrations.

Definition V.1. A morphism f : A→ B in Cωop

is a Reedy
fibration if f1 : A1 → B1 is a fibration and for each n, the
induced map h into the pullback

An+1

Bn+1 ×Bn An -

h

-

An

r A
n

-

Bn+1

? rBn -

f
n
+

1

-

Bn

fn

?

is a fibration.

One can prove that if f is a Reedy fibration, then each
fn is a fibration. Recall the following from [19].

Theorem V.2 (Shulman). Let C be a model of MLTTU .
Then Cωop

equipped with Reedy fibrations is also a model
of MLTTU . If, moreover C is a model of univalence, so is
Cωop

.

The interpretation of type theory in Cωop

models contexts
as fibrant objects. Note that the fibrant objects are the
sequences such that B1 is fibrant and each rBn : Bn+1 → Bn
is a fibration. Since fibrations in C model dependent types
we can think of types in the model Cωop

as infinite contexts
a1 : A1, a2 : A2(a1), a3 : A3(a1, a2), A type depending
on A is a Reedy fibration on A, and the condition of
Definition V.1 can be understood as requiring that An+1

is a type dependent on Bn+1 and An:

bn : Bn, an : An(bn), bn+1 :Bn+1(bn)

`An+1(bn, an, bn+1) : Type

We recall Shulman’s construction of the universe because
it is needed in the next section. For the construction, we first
assume given a universe El: E → U in C and construct a
Reedy fibration ElV : EV → V in Cωop

inductively by

V1 = U EV1 = E ElV1 = El

Vn+1 = (Vn × U
π1−→Vn)ElVn

where in the latter definition, the exponent is defined in the
slice C/Vn. For the Reedy fibration we need a fibration
ElVn+1 : EVn+1 → Vn+1 ×Vn

EVn , and this is defined as
ElVn+1 = (π2ev)∗El where ev : Vn+1×Vn

ElVn → Vn×U is
the evaluation map.

Proposition V.3 (Shulman [19]). Let El: E → U be a given
universe in C and say that a map p : A → B in Cωop

is a
Reedy small-fibration if p1 as well as each induced map
An+1 → An ×Bn Bn+1 is small with respect to El. Then
p : A→ B is a Reedy small-fibration if and only if it arises
as a pullback of ElV along some map p̄ : B → V .

Shulman also proves that any universe embedding i : U →
U ′ in C induces a universe embedding j : V → V ′ between
universes in Cωop

. Of course j1 = i. To describe jn+1, note
first that a map X → Vn+1 corresponds to a pair of maps
a : X → Vn, b : a∗EVn → U . Thus we can define jn+1 using
the Yoneda lemma by defining a map

HomC(X,Vn+1)→ HomC(X,V ′n+1) .

which maps (a, b) to the pair consisting of jn ◦ a and

(jn ◦ a)∗EV
′

n
∼= a∗EVn

b - U
i - U ′

(using the property j∗nE
V ′

n
∼= EVn which can be proved by

induction.)

A. Modeling guarded recursion

The definition of I generalizes immediately from Setω
op

to Cωop

: we first define I as a functor on Cωop

mapping A
to

1 �
!

A1
� rA1 A2

� rA2 . . .

and then generalize to slices over Cωop

using (8).

Proposition V.4. If B is Reedy fibrant, so is IB. If
pB : B → A is a Reedy fibration and A is Reedy fibrant,
then pIB is a Reedy fibration.

Proof: Note first that I pB is a Reedy fibration if pB
is. This implies the first statement because I 1 = 1. For
the second part, note that from Theorem V.2 it follows that
Reedy fibrations are closed under pullbacks along all maps
between fibrant objects, so pIB = next∗(I pB) is a Reedy
fibration.

To model (4) we need a map � : IV → V inter-
nalizing I. One way to obtain this is to observe that
since IElV : IEV → IV is a Reedy small-fibration, by
Proposition V.3 it has a code � : IV → V . The following
is then a generalization of Theorem III.3.

Proposition V.5. If Ā : B → V is a code for pA : A → B,
then � ◦next ◦ Ā is a code for IB pA.

Proof: Using naturality of next it suffices to observe
that the following is a pullback (using that I preserves
pullbacks).

IB A - IA - IEV - EV

B

pIA

? next- IB

I pA

? I Ā- IV

IElV

? � - V

ElV

?

We now show that � can be chosen in such a way that
it commutes with the universe embedding. To see why this
is needed recall that judgements Γ ` A : U are interpreted
as maps [[A]] : [[Γ]]→ V , judgements Γ ` A : Type as maps
[[A]] : [[Γ]]→ V ′, and moreover that [[El(A)]] = j◦ [[A]] where
j : V → V ′ is the universe embedding. Thus for soundness
of (5) we need commutativity of the outer square below

V
next- IV

� - V

V ′

j

? next- IV ′

I j

?
� - V ′

j

?

(9)

Note that the square on the left commutes by naturality of
next.

Define �1 : 1→ V1 = U as the code for the unit (hence-
forth denoted 1̄), which is part of the universe structure. For

the inductive definition of �n+1 : Vn → Vn+1, again we
define a map

HomC(X,Vn)→ HomC(X,Vn+1)

natural in X and appeal to the Yoneda lemma. First define
�2 : V1 = U → V2 by mapping a : X → U to the pair
consisting of 1̄◦! : X → U and

(1̄◦!)∗E ∼=X
a - U

Define �n+2 : Vn+1 → Vn+2 by mapping a pair (a : X →
Vn, b : a∗EVn → U) to the pair consisting of �n+1 ◦a and

(�
n+1
◦ a)∗EVn+1

∼= a∗EVn
b - U

using the isomorphism �∗n+1E
V
n+1

∼= EVn which can be
constructed by induction.

Theorem V.6. The family (�n)n as defined above defines
a map IV → V which is a code of IElV . Moreover,
if j : V → V ′ is a universe embedding in Cωop

induced
by a universe embedding i : U → U ′ then the diagram
(9) commutes. As a consequence, Rules (4) and (5) can be
modeled soundly in Cωop

.

B. Term level fixed points

Terms of the form Γ, x : IA ` t : A are interpreted as
morphisms IA→ A in the slice category Cωop

/Γ. The next
proposition states that guarded recursion can be modeled
soundly in Cωop

.

Theorem V.7. Let f : IA→ A be a morphism in Cωop

/Γ.
Then there is a unique map fixf : 1Γ → A such that fixf =
f ◦ next ◦ fixf . As a consequence, Rules (1) and (2) can be
modeled soundly in Cωop

.

We can also prove that fixed points are unique internally
in the model.

Theorem V.8. Rule (3) can be modeled soundly in Cωop

.

For the proof we need the following contractiveness
principle for next.

Lemma V.9. The following principle is sound in Cωop

Γ, x, y : A ` p : I IdA(x, y)

Γ, x, y : A ` NC(p) : IdIA(next(x),next(y))

Proof (outline). The term NC is modeled as the top hori-
zontal composite in the following diagram. This has the right
type because the bottom composite is next× next.

IA×ΓA PΓA - IΓ PΓA
h - PΓIΓA

A×Γ A
? next- IΓ (A×Γ A)

? ∼=- (IΓA)×Γ (IΓA)
?

The left most square is a generalisation of (8). To construct
h first use the left lifting property (Definition IV.1) to obtain
k in the following diagram

IA
s - PIΓIA

IPΓA

I r

? I p-

k

-

I(A×Γ A)
∼=- IA×IΓ IA

q

?

here (r, p) is the factorization of the diagonal as in Defini-
tion IV.1 and likewise (s, q). Since q is a fibration, to apply
the left lifting property, we need I r an acyclic cofibration.
This it is indeed, since acyclic cofibrations in the Reedy
model structure are given pointwise. Now, h can be defined
as the result of pulling back k along next : Γ→ IΓ using
that identity types commute with reindexing.

Proof of Theorem V.8. Using Lemma V.9 we can
construct UFP(p) in the type theory as a fixed
point of a map I IdA(y,fixx.f) → IdA(y,fixx.f)
constructed as follows: if q : I IdA(y,fixx.f(x))
then NC(q) : IdIA(next(y),next(fixx.f(x))). Since
f(next(fixx.f(x))) is externally equal to fixx.f(x) we
thus get an element of IdA(f(next(y)),fixx.f(x)), and we
can apply transitivity to this and p to get an element of
type IdA(y,fixx.f(x)) as desired.

VI. TYPE CONSTRUCTORS VS. UNIVERSE MAPS

We now turn to the question of the relationship between
type constructions in the sense of constructions defined on
objects of a category, and maps on the universe.

Definition VI.1. Let C be a type-theoretic fibration category
and let El: E → U be a universe in C. A small object
operation is a family of operations indexed over fibrant
objects B mapping small fibrations pA : A → B to small
fibrations F (pA) : FA→ B such that
• F commutes with reindexing along all maps
• F maps isomorphic objects to isomorphic objects

We say that F̄ : U → U is a code for F if F̄ ◦ Ā is a code
for FA whenever Ā : B → U is a code for A.

Proposition VI.2. Every small object operation F has a
code F̄ . A fixed point for F̄ is the code of a fixed point (up
to isomorphism) for F .

Proof: Define F̄ to be a code for F (El). Suppose
Ā : 1→ U is a fixed point for F̄ : U → U . Then

F (Ā∗El) ∼= Ā∗F (El) ∼= (F̄ ◦ Ā)∗El = Ā∗El

For example, assuming that C has a natural numbers ob-
ject which is fibrant, we can define a small object operation

F by F (X) = ∆(N) × IX , where ∆(N) is the object
whose components are all N and whose restriction maps are
all identities. If N is small, by Proposition V.3 so is ∆(N)
and we write ∆N for the code of ∆(N). We can define a
contractive code for F as follows

F̄ (X) = ∆N×̄�(next(X)) .

By Proposition VI.2, the unique fixed point of F̄ is the code
of a fixed point for F .

Remark VI.3. Some readers may find it helpful to think of
the above by analogy to Scott’s approach to domains using
information systems [18, 22]: Recall that Scott domains
can be represented as information systems and that there is
a (large) cpo of information systems, such that a solution
to a recursive domain equation can be obtained by taking a
fixed point of an endomap on the cpo of information systems.
This yields a fixed point up to equality; when combined with
the representation of cpos as information systems one gets
solutions up to isomorphism of cpos.

A. The groupoid model

Proposition VI.2 gives the existence of fixed points for
small object operations with contractive codes. Even though
the codes of such operations have unique fixed points, the
small object operations themselves need not have unique
fixed points, since the code of a fixed point for F need not
be a fixed point for F̄ . A related question is that of giving
an inverse of Proposition VI.2: is any map F̄ : U → U a
code for a small object operation? In general the answer is
’no’: the mapping of pA : A → B to (F̄ ◦ Ā)∗El, where Ā
is a code for A is generally not well-defined. In particular,
for the set theoretic model of Section III different choices
of Ā may give objects that are not even isomorphic.

The universe of discrete groupoids in the groupoid model
is much more well-behaved as we now explain. We denote
by ElV∆ : EV∆ → V∆ the universe in Grpdω

op

obtained by
applying the construction of Theorem V.2 to the universe of
small discrete groupoids Grpd∆ of Example IV.3.

Lemma VI.4. Let A be an object of Grpdω
op

and let
B̄, C̄ : A→ V∆ be morphisms. The following two statements
are equivalent
• B̄∗ElV∆

is isomorphic to C̄∗ElV∆
as objects of the slice

category over A
• The type

∏
x : A.IdV∆(B̄(x), C̄(x)) is inhabited, i.e.,

B̄ and C̄ are pointwise internally equal.

Theorem VI.5. Any morphism F̄ : V∆ → V∆ is the code of
a small object operation. If A is a small fibrant object and
Ā : 1 → V∆ is the code for A then A is a fixed point for
F up to isomorphism, i.e., F (A) ∼= A if and only if Ā is a
fixed point F̄ up to internal equality.

Proof: The second statement follows directly from
Lemma VI.4. To prove the first statement we must show that

if B̄∗El ∼= C̄∗El also (F̄ ◦ B̄)∗El ∼= (F̄ ◦ C̄)∗El. But this
follows because if

∏
x : A.IdV∆

(B̄(x), C̄(x)) is inhabited
so is

∏
x : A.IdV∆

(F̄ ◦ B̄(x), F̄ ◦ C̄(x)).

Corollary VI.6. Let F be a small object operation on
Grpdω

op

and suppose F has a contractive code F̄ : V∆ →
V∆. Then F has a fixed point which is unique up to
isomorphism.

Proof: Existence of the fixed point is the second state-
ment of Proposition VI.2. If A is a fixed point of F and
Ā is a code for A, then Ā is a fixed point of F̄ up to
internal equality. By Rule (3) (which holds in the model
by Theorem V.8), this implies that Ā is internally equal to
fix(F̄), which by Lemma VI.4 implies that A is isomorphic
to fix(F̄)∗El.

If F in addition to the assumptions of Corollary VI.6 has a
functorial action (possibly of mixed variance), and is locally
contractive in the sense of [3] then universal properties can
be derived for the unique solution using the techniques
of [4, Section 7]. But not all small object operations can
be equipped with functorial actions.

VII. CONCLUSION AND FUTURE WORK

We have shown that, for any model C of type theory
with a universe, Cωop

is a model of type theory with
guarded recursion in which guarded recursive types can be
obtained simply as fixed points of contractive functions on
the universe of types. Moreover, we have proved that for
the groupoid model Grpd, there is a one-to-one correspon-
dence between fixed points of functions on the universe of
discrete types in Grpdω

op

and fixed points of small object
operations on types.

In future work we plan to investigate the relationship
between guarded recursive types and coinductive types. For
some models C it is the case that elements of a coinductive
type in C correspond to global elements of a corresponding
guarded recursive type in Cωop

, suggesting that guarded
recursive types can be used to as a crutch for higher-order
programming with coinductive types.

Future work also includes extending implementations of
type theory with guarded recursive types so as to allow for
experimentation with larger case studies of applications of
guarded recursion.

Acknowledgments: We thank Andreas Abel, Bob
Atkey, Benno van den Berg, Nils Anders Danielsson,
Daniel Gustafsson, Nicolas Pouillard, Michael Shulman, and
Thomas Streicher for stimulating discussions regarding the
work presented in this paper.

REFERENCES

[1] Thorsten Altenkirch and Peter Morris. Indexed containers. In
LICS, pages 277–285. IEEE Computer Society, 2009.

[2] S. Awodey and M.A. Warren. Homotopy theoretic models of
identity types. Math. Proc. Camb. Phil. Soc., 146(45), 2009.

[3] L. Birkedal, R. Møgelberg, J. Schwinghammer, and
K. Støvring. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. In Proceedings of LICS,
2011.

[4] L. Birkedal, R. Møgelberg, J. Schwinghammer, and
K. Støvring. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. Logical Methods in
Computer Science, 8(4), October 2012.

[5] N.A. Danielsson. Beating the productivity checker using
embedded languages. In Proceedings of PAR, Electronic
Proceedings of Theoretical Computer Science, 2010.

[6] N. Gambino and R. Garner. The identity type weak factor-
ization system. Theoretical Computer Science, 409, 2008.

[7] M. Hofmann. On the interpretation of type theory in locally
cartesian closed categories. In Proc. of CSL, 1994.

[8] Martin Hofmann and Thomas Streicher. Lifting
grothendieck universes. Available online at
http://www.mathematik.tu-darmstadt.de/~streicher/

[9] Martin Hofmann and Thomas Streicher. The groupoid inter-
pretation of type theory. In Twenty-five years of constructive
type theory. Proceedings of a congress, pages 83–111. Ox-
ford: Clarendon Press. Oxf. Logic Guides, 1998.

[10] G. Hutton and M. Jaskelioff. Representing contrac-
tive functions on streams. 2012. Available online at
http://www.cs.nott.ac.uk/~gmh/contractive.pdf

[11] C. Kapulkin, P.L. Lumsdaine, and V. Voevodsky. The simpli-
cial model of univalent foundations. arXiv, 1211.2851, 2012.

[12] G. M. Kelly. Basic Concepts of Enriched Category Theory.
Cambridge University Press, 1982.

[13] N. Krishnaswami. Simple and efficient higher-order
reactive programming. 2012. Available online at
http://www.mpi-sws.org/~neelk/simple-frp.pdf

[14] N.R. Krishnaswami and N. Benton. Ultrametric semantics of
reactive programs. In Proceedings LICS, 2011.

[15] Z. Luo. Computation and Reasoning. A Type Theory for
Computer Science. Number 11 in International Series of
Monographs on Computer Science. Oxford University Press,
1994.

[16] C. McBride. Time flies like an applicative functor. Avail-
able online at http://www.e-pig.org/epilogue/?p=186,
2009.

[17] C. McBride and R. Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1), 2008.

[18] D.S. Scott. Domains for denotational semantics. In Proceed-
ings of ICALP, volume 140 of LNCS, 1982.

[19] M. Shulman. The univalence axiom for inverse diagrams.
arxiv, 1203.3253, 2012.

[20] Thomas Streicher. A model of type theory in simplicial sets.
Unpublished, 2011.

[21] V. Voevodsky. Univalent foundations. Available at
http://www.math.ias.edu/~vladimir/, 2012.

[22] G. Winskel and K.G. Larsen. Using information systems to
solve recursive domain equations effectively. In Proceedings
of Conference on Abstract Data Types, volume 173 of LNCS,
1984.

APPENDIX

A. Proofs for Section V

The following lemma is the generalisation of (8) needed
in the proof of Lemma V.9.

Lemma A.1. Let B → A→ Γ be fibrations and Γ fibrant.
There is a pullback diagram

IAB - IΓB

A
? nextΓ

- IΓA
?

Proof: Consider first the commutative diagram

IΓB - IB

IΓA
?

- IA
?

Γ
? next- IΓ

?

The lower diagram and the outer diagram are both versions
of the pullback (8). The map IΓB → IΓA is defined using
the universal property of the lower pullback square. By the
pullback lemma also the upper square is a pullback.

Now consider the diagram

IAB - IΓB - IB

A
? nextΓ

- IΓA
?

- IA
?

The right square is the one we have just proved is a pullback.
The outer square is the pullback (8) and the map IAB →
IΓB is defined using the universal property of the right
pullback diagram. By the pullback lemma the left diagram
is a pullback.

B. Proofs for Section VI

As a warm-up before proving Lemma VI.4 we prove a
similar statement in the groupoid model

Lemma A.2. Let A be a groupoid and let B̄, C̄ : A →
Grpd∆ be homomorphisms. The following two statements
are equivalent
• B̄∗El is isomorphic to C̄∗El as objects of the slice

category over A
• The type

∏
x : A.IdGrpd∆

(B̄(x), C̄(x)) is inhabited,
i.e., B̄ and C̄ are pointwise internally equal.

Proof: We first spell out the first statement of the
lemma. The homomorphism B̄ : A → Grpd∆ maps each
a in A to a set B̄(a) and each morphism f : a → a′ in A
to a bijection B̄(f) : B̄(a) → B̄(a′). The pullback of El
along B̄ is the groupoid

∫
B̄ obtained by the Grothendieck

construction. The objects are pairs (a, x) such that a ∈ A,
x ∈ B̄(a) and a morphism from (a, x) to (a′, x′) is a map
f : a→ a′ such that B̄(f)(x) = x′.

An isomorphism α as in the first statement is a family
of bijections αa : B̄(a) → C̄(a) such that if f : (a, x) →
(a′, x′) in B̄∗El also f : (a, αa(x))→ (a′, αa(x′)) in C̄∗El.
The latter is equivalent to requiring that the following
diagram commutes for all f : a→ a′ in A:

B̄(a)
αa- C̄(a)

B̄(a′)

B̄(f)

?
αa′- C̄(a′)

C̄(f)

?

The second statement is equivalent to the existence of a
homomorphism h making the following diagram commute.

P(Grpd∆)

A
〈B̄, C̄〉-

h

-

Grpd∆ ×Grpd∆

?

(10)

The object P(Grpd∆) is the groupoid whose set of objects
is

{(X,Y, g) | X,Y ∈ Grpd∆, g : X → Y bijection}

and whose morphisms from (X,Y, g) to (X ′, Y ′, g′) are
pairs of bijections k : X → X ′, l : Y → Y ′ such that the
following diagram commutes

X
k - X ′

Y

g

? l - Y ′

g′

?

A map h as in (10) associates to each a ∈ A a bijection
h(a) : B̄(a) → C̄(a) such that for each f : a → a′ the
following diagram commutes.

B̄(a)
h(a)- C̄(a)

B̄(a′)

B̄(f)

?
h(a′)- C̄(a′)

C̄(f)

?

It should now be clear that the α’s and the h’s are in
bijective correspondence, proving the equivalence of the two
statements of the lemma.

The next step towards proving Lemma VI.4 is to spell out
the universe ElV∆

: EV∆
→ V∆ and the path space P(V∆).

The universe V∆ is essentially the one of Section III
equipped with a groupoid structure: the elements of (V∆)n
are families of small sets and maps

A1
� rA1 A2

� rA2 . . . �
rAn−1

An

and a morphism is a family of bijections f1, . . . , fn making
the following diagram commute.

A1
� A2

� . . . � An

A′1

f1

?
� A′2

f2

?
� . . . � A′n

fn

?

In the following, we shall refer to the condition above as
(f1, . . . , fn) being an isomorphism of finite sequences.

Shulman defines the path space (in the case of B = 1)
over a fibrant object A as (PA)1 = P(A1) and (PA)2 is
best defined using the internal language as

a1, a
′
1 : A1, a2 : A2(a1), a′2 : A2(a′1), p1 : IdA1(a1, a

′
1)

` IdA2(a1)(a2, p
∗
1a
′
2)

where p∗ is the transport operation (which in [19] goes the
other way). In general (PA)n+1 is defined as

an, a
′
n : An, an+1 : An+1(an), a′n+1 : An+1(a′n),

pn : IdAn(an, a
′
n) ` IdAn+1(an)(an+1, p

∗
na
′
n+1)

An element of P(V∆)2 over a pair

(A1 ← A2, A
′
1 ← A′2) ∈ (V∆)2 × (V∆)2

is a pair of a bijection f1 : A1 → A′1 and an isomorphism
f2 : A2 → f∗1A

′
2 in the slice over A1. This is the same as a

pair of bijections f1, f2 making the square

A1
� A2

A′1

f1

?
� A′2

f2

?

In general, an object of P(V∆)n over a pair

(A1 ← . . .← An, A
′
1 ← . . .← A′n) ∈ (V∆)n × (V∆)n

is an isomorphism (f1, . . . , fn) of finite sequences.

Proof of Lemma VI.4. Similarly to the proof of Lemma A.2
we start by spelling out the two statements to be proved
equivalent.

This time the morphism B̄ is a family of maps B̄n : An →
(V∆)n mapping an element a ∈ An to a finite sequence of
sets and morphisms

(B̄n(a))1
� (B̄n(a))2

� . . . � (B̄n(a))n

such that the n−1 first components of this sequence are the
same as

(B̄n−1(a|n−1))1
� . . . � (B̄n−1(a|n−1))n−1

and a morphism f : a → a′ in An is mapped to an
isomorphism of finite sequences.

The pullback B̄∗El is∫
B̄1
�

∫
π2B̄2

� . . . �
∫
πnB̄n � . . .

A1

?
� A2

?
� . . . � An

?
� . . .

where the πi is the homomorphism V∆ → Grpd∆ mapping
a sequence to its i’th element, and the integral sign denotes
the Grothendieck construction as described in the proof of
Lemma A.2.

An isomorphism B̄∗El ∼= C̄∗El is thus a family of
bijections αna : (B̄n(a))n → (C̄n(a))n such that for all
f : a→ a′ in An the following diagram commutes

(B̄n(a))n
αna- (C̄n(a))n

(B̄n(a′))n

(B̄n(f))n

? αna′- (C̄n(a′))n

(C̄n(f))n

?

(11)

and, moreover, such that the following commutes

(B̄n−1(a|n−1))n−1 =(B̄n(a))n−1
� (B̄n(a))n

(C̄n−1(a|n−1))n−1 =

αn−1
a|n−1

?
(C̄n(a))n−1

� (C̄n(a))n

αna

?

(12)

The second condition is equivalent to the existence of a
map h making the following diagram commute

P(V∆)

A
〈B̄, C̄〉-

h

-

V∆ × V∆

?

Such a map h associates to each a ∈ An an isomorphism
of sequences hn : B̄(a)→ C̄(a) with the requirement that

(hn(a))i = (hn−1(a|n−1))i (13)

for all i < n. The requirement that h is a homomorphism
means that for every f : a→ a′ in An and every i ≤ n the
following diagram must commute

(B̄n(a))i
(hn(a))i- (C̄n(a′))i

(B̄n(a))i

(B̄n(f))i

?
(hn(a′))i- (C̄n(a′))i

(C̄n(f))i

?

(14)

To prove that the first statement implies the other, suppose
we are given α. Construct h as h(a) = (α1

a|1 , . . . , α
n
a). Con-

dition (12) ensures that h(a) is an isomorphism of sequences
and condition (13) is almost trivial. Since (B̄n(a))i =
(B̄i(a|i))i and (hn(a))i = (hi(a|i))i requirement (14)
reduces to (11).

On the other hand, if we are given h we can construct
an α as αna = (hn(a))n. Then (11) is a special case of (14)
and (12) follows from hn(a) being an isomorphism of finite
sequences, since (hn−1(a|n−1))n−1 = (hn(a))n−1.

