
A Simple Model of Separation Logic for
Higher-order Store

Lars Birkedal1, Bernhard Reus2, Jan Schwinghammer3, and Hongseok Yang4

1 IT University of Copenhagen 2 University of Sussex, Brighton
3 Saarland University, Saarbrücken 4 Queen Mary, University of London

Abstract. Separation logic is a Hoare-style logic for reasoning about
pointer-manipulating programs. Its core ideas have recently been ex-
tended from low-level to richer, high-level languages. In this paper we
develop a new semantics of the logic for a programming language where
code can be stored (i.e., with higher-order store). The main improve-
ment on previous work is the simplicity of the model. As a consequence,
several restrictions imposed by the semantics are removed, leading to a
considerably more natural assertion language with a powerful specifica-
tion logic.

1 Introduction

Higher-order store is included in modern programming languages in the form
of code pointers and storable objects. “Higher-order” here refers to the fact
that one can keep not only data in the store but also procedures or commands
that manipulate the store themselves. It is widely used in systems code, such as
operating system kernels, device drivers and web servers. For instance, the Linux
kernel keeps multiple linked lists whose nodes store code fragments, and calls
those fragments in response to external events, such as a signal from a printer.

However, formal reasoning about higher-order store is still an open problem.
Although several sound program logics for higher-order store have been pro-
posed, they either are intended for machine code [4] or they fail to combine local
reasoning with intuitive rules for stored code while maintaining the simplicity of
Hoare logic for first-order store [6, 15]. The difficulty is that a logic for higher-
order store should accommodate reasoning about “recursion through the store”,
a tricky implicit recursion implemented by stored procedures.

The goal of our research is to solve the problem of reasoning about higher-
order store using separation logic. Separation logic is a program logic for reason-
ing modularly about programs with pointers. It has been demonstrated that the
logic substantially simplifies formal program verification in low-level C-like pro-
gramming languages as well as richer, higher-level languages [17, 2, 1, 12, 9, 3, 8,
7, 13]. Our aim is to design program logics for higher-order store that keep all the
benefits of separation logic, such as (higher-order) frame rules, while providing
efficient, sound proof rules for recursion through the store.

In this paper, we investigate the semantic foundations for developing sep-
aration logic for higher-order store. We build on previous work of Reus and

Schwinghammer [15], which identified key semantic challenges for such a logic,
and provided fairly sophisticated solutions based on functor categories. In this
paper, we take different approaches to the various problems, and as a result
obtain a more powerful logic and a substantially simpler semantic model.

We now give an overview of two key semantic challenges that are involved
in developing separation logic for higher-order store. We outline how those chal-
lenges were addressed in earlier work [15], and compare with our new model.

The first challenge is to find a model that validates the frame rule known from
separation logic [17]. In traditional models of separation logic [10], the sound-
ness of the frame rule relies on programs satisfying a frame property, which
says that the meaning of each program phrase only relies on its “footprint”.
To ensure that all program phrases – in particular, memory allocation – satisfy
the frame property, the models interpret commands as relations (i.e., functions
from input states to sets of output states), and memory allocation denotes a
function that nondeterministically picks new memory. Now, in a language with
higher-order store, the semantics involves solving recursive domain equations.
With nondeterministic memory allocation, one is naturally led to recursive do-
main equations using powerdomains. These are problematic not only because it
is unclear whether they can be used to show the existence of recursive proper-
ties of the heap but also because programs would no longer denote ω-continuous
functions, due to the countable nondeterminism arising from memory allocation.
Instead, Reus and Schwinghammer considered a functor category, indexed over
finite sets of locations, which made it possible to prove that programs obeyed a
frame property without relying on a nondeterministic allocator. However, this
involved two non-trivial aspects. First, recursive domain equations now had to
be solved not in an ordinary category of domains, but in the functor category.
Second, the frame property became a recursively defined property, whose ex-
istence required a separate non-trivial proof. While Reus and Schwinghammer
succeeded in defining a model that validates the frame rule, the technical com-
plications involved make it difficult to scale the ideas to richer languages and
richer logics, e.g., with higher-order frame rules [3, 2, 11].

In this paper we validate the frame rule without relying on the frame prop-
erty of programs. Instead, we “bake-in” the frame rule into the interpretation of
Hoare triples, using an idea from [3]. (This is described in detail in Section 4.)
In particular, this approach allows us to model memory allocation by a simple
deterministic allocator, so that we can model the programming language using
ordinary recursively defined domains, avoiding the complications in [15]. Fur-
thermore, the approach also allows us to validate a whole range of higher-order
frame rules and to include pointer arithmetic.

The second challenge is to validate proof rules for recursion through the
store [16]. Such rules essentially amount to having recursively defined specifi-
cations, which denote recursive properties of the domain for commands. It is
well-known that to establish the existence of such recursive properties of do-
mains one needs additional conditions involving, in particular, admissibility and
certain forms of downward closure [14]. In [15], these conditions were ensured

e ∈ Exp ::= . . . | ‘C’ quote (command as expression)

C ∈ Com ::= skip | C1;C2 | if (e1=e2) then C1 else C2 no op, sequencing, conditional
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote

Fig. 1. Syntax of expressions and commands

by restricting the assertion language of the logic. In the present paper, we avoid
such restrictions by changing the interpretation of triples and slightly modifying
the recursion rules. In particular, we use an admissible and downwards closure
of the post-condition, similar to the use of ⊥⊥-closure in [3] (see Section 4).

2 Programs, assertions and specifications

Programs The abstract syntax of the programming language is presented in
Fig. 1. It is essentially as in [15], with dynamic allocation (but here we as-
sume a more realistic, deterministic memory allocator) and storable, parameter-
less procedures. The language is deliberately kept simple so that we can study
higher-order store without distraction. We point out two features of the lan-
guage which proved problematic for the semantics given in loc. cit. First, the
language assumes that addresses are natural numbers, so that it is possible to
apply arithmetic operations on addresses. Next, the language includes an allo-
cator that deterministically picks n-consecutive cells.

Assertions The assertions P,Q, . . . used in Hoare triples are built from the for-
mulas of classical predicate logic and the additional separation logic assertions
that describe the heap (e 7→ e′, emp, P ∗Q and P −∗Q; cf. [17]). Note that ex-
pressions in formulas can point to quoted code, as in x 7→ ‘C’, so that they can
be used to specify properties of stored procedures. We use two abbreviations:

e 7→ def= ∃x′. e 7→x′, e 7→ e1, .., en
def= e 7→ e1 ∗ e+1 7→ e2 ∗ .. ∗ e+n−1 7→ en.

where x′ 6∈ fv(e). We write Γ ` P (: Assert) for some finite set of variables Γ ,
when the assertion P contains only free variables in Γ .

Specifications Specifications are formulas of first-order intuitionistic logic with
equality. In addition, it includes Hoare triples as atomic formulas and invariant
extensions ϕ⊗ P (from [3]):

ϕ,ψ ::= e1=e2 | {P}C{Q} | ϕ⊗ P | T | F | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ψ | ∃x.ϕ | ∀x.ϕ

While assertions express properties of states, specifications describe properties
of programs (sometimes using assertions inside Hoare triples). For a finite set Γ
of variables, Γ ` ϕ(: Spec) means that Γ includes all free variables of ϕ.

Proof rules Our specification logic includes all the usual proof rules of intu-
itionistic first-order logic with equality, and special rules for Hoare triples and

Proof Rules for Stored Code(
(∀~y.{P}eval [e]{Q}) ⇒ ∀~y.{P}C{Q}

)
⇒ ∀~y.{P ∗ e 7→ ‘C’}eval [e]{Q ∗ e 7→ ‘C’}

(where ~y /∈ fv(e, C))

(∀x. (∀~y.{P ∗ e 7→x}eval [e]{Q ∗ e 7→x}) ⇒ ∀~y.{P ∗ e 7→x}C{Q ∗ e 7→x})
⇒ ∀~y.{P ∗ e 7→ ‘C’}eval [e]{Q ∗ e 7→ ‘C’} (where x 6∈ fv(P,Q, ~y, e, C), ~y /∈ fv(e, C))

(∀x. (∀~y.{P ∗ e 7→x}eval [e]{Q}) ⇒ ∀~y.{P ∗ e 7→x}C{Q})
⇒ ∀~y.{P ∗ e 7→ ‘C’}eval [e]{Q} (where x 6∈ fv(P,Q, ~y, e, C), ~y /∈ fv(e, C))

Proof Rules for Hoare Triples

(∀x.{P ∗ x 7→ e}C{Q}) ⇒ {P}let x= new e in C{Q} (where x 6∈fv(P,Q, e))

(∀x.{P ∗ e 7→ x}C{Q}) ⇒ {∃x. P ∗ e 7→ x}let x= [e] in C{Q} (where x6∈fv(Q, e))

{e 7→ }free(e){emp} {e 7→ }[e] := e′{e 7→ e′}

JP KAη ⊆
q
P ′

yA
η

and
q
Q′

yA
η
⊆ JQKAη for all η ∈ JΓ K

Γ ` {P ′}C{Q′} ⇒{P}C{Q}

Proof Rules for Invariant Extension −⊗ P

ϕ ⇒ ϕ⊗ P {P}C{P ′}⊗Q ⇔ {P ∗Q}C{P ′ ∗Q}
(e0 = e1)⊗Q ⇔ e0 = e1 (ϕ⊗ P)⊗Q ⇔ ϕ⊗ (P ∗Q)

(ϕ⊕ ψ)⊗ P ⇔ (ϕ⊗ P)⊕ (ψ ⊗ P) (κx. ϕ)⊗ P ⇔ κx. ϕ⊗ P
(where ⊕ ∈ {⇒,∧,∨}) (where κ ∈ {∀, ∃}, x /∈ fv(P))

Fig. 2. Some proof rules

invariant extension ϕ ⊗ P . Fig. 2 lists some of those, where the context Γ for
each specification is omitted. Note that the consequence rule uses semantically
valid implications for assertions, some of which can be proved using the proof
rules from classical logic and the logic of Bunched Implications. In this way, the
consequence rule embeds reasoning about assertions into the specification logic
without the need to commit to a specific proof system for assertions.

Most of the rules in the figure are standard and known from separation logic.
The only exceptions are the three proof rules for stored procedures.1 These rules
are similar to the rule for calling a parameterless, recursive procedure p declared
as p⇐ C, where C is the body of p that may contain a recursive call to p:

(∀~y.{P}call p{Q}) ` ∀~y.{P}C{Q}
∀~y.{P}call p{Q}

(1)

This rule is usually proved sound via fixpoint induction (note that p in the pre-
miss semantically refers to any procedure with the required properties, whereas
in the conclusion p refers to the declared procedure). For the language of Fig. 1,

1 For simplicity, we do not consider mutually recursive stored procedures here, but it is
straightforward to generalize our rules to handle them. Also, the first rule for stored
procedures can be derived from the second and the higher-order frame rules. We
include it in order to point out the subtleties of reasoning about stored procedures.

the fact that stored procedures are in use means that the declaration of a pro-
cedure is now expressed by an assertion e 7→ ‘C’, stating that e is a reference to
the procedure with body C.

In Fig. 2 there are three rules for stored code that might call itself recursively,
establishing partial correctness (and hence do not feature in the logic for total
correctness of [6]). The first rule prohibits any access to the storing location e
except through eval [e], whereas the second and third are more permissive. Note
also that only the first two rules establish that the stored procedure called has
not been altered. This is important in cases where the procedure gets updated.
Updating code after its first call is a general pattern of usage of stored code,
found e.g. in device drivers [5]: the first call is used for initialisation that further
calls rely on.

It would be preferable to have just one rule for recursive procedures, e.g.

(∀x. (∀~y.{P ∗ e 7→x}eval [e]{Q}) ⇒ ∀~y.{P ∗ e 7→x}C{Q})
⇒ ∀~y.{P ∗ e 7→ ‘C’}eval [e]{Q[‘C’/x]} (where x 6∈ fv(P, ~y, e, C), ~y /∈ fv(e, C)) .

Alas we cannot easily prove such a rule sound. Our soundness proof for the
recursion rules relies on pre- and post-condition satisfying properties (a) and
(b), resp., as stated in the proof of Lemma 5 (see Section 4), and an arbitrary
post-condition might violate property (b). We achieve soundness by restricting
the shape of the post-condition to Q ∗ e 7→x and stipulating the side condition
x 6∈ fv(Q). As a consequence, we cannot instantiate the recursion rules with post-
condition e 7→x∗e′ 7→x, as needed for a self-copying command let x=[e] in [e′]:=x
stored at e. Yet, also Q ∗ e 7→x ∗ e′ 7→x satisfies property 2 mentioned above, and
soundness of a corresponding recursion rule could be established analogously to
Lemma 5. This means the logic is incomplete; our objective has been to find rules
that are easy to apply on programs with “common” use of stored procedures.

Alternatively, we could have given a single rule for stored procedures, but
with a semantic side-condition to rule out unsuitable post-conditions.

Example 1 (Factorial). Consider the following specification and implementation:

Fo
def= let x=[o] in let r=[o+1] in

if (x=0) then skip else
(
[o+1]:=r · x; [o]:=x−1; eval [o+2]

)
C

def= [o+2]:=‘Fo’; eval [o+2] o ` {o 7→ 5, 1, }C{o 7→ 0, 5!, ‘Fo’}

The command C implements the factorial function in an object-oriented style,
using three consecutive cells (o, o+1, o+2). The first two cells represent fields
arg and res, and the third cell denotes a method that computes the factorial of
arg (decrementing it as a side effect) and multiplies this onto res. Note that the
procedure Fo stored in o+2 calls itself by recursion through the store; see the
last instruction eval [o+2] of Fo.

The specification expresses that C computes 5! and stores it in cell o+1. The
key step of the proof is the derivation

o ` (∀ij.{o 7→ i, j}eval [o+2]{o 7→ 0, j · i!})⇒ (∀ij.{o 7→ i, j}Fo{o 7→ 0, j · i!})
o ` ∀ij. {o 7→ i, j, ‘Fo’}eval [o+2]{o 7→ 0, j · i!, ‘Fo’}

which shows the correctness of the stored procedure Fo. This step applies the
first rule for stored procedures, and it illustrates the benefit of the rule. Here, the
rule lets us hide the cell o+2 for code Fo in the premise, thereby giving a simple
specification to discharge. The derivation of this specification itself is omitted;
it involves only routine applications of standard separation logic proof rules. ut

Example 2. Next, we illustrate the typical use of the three rules for stored pro-
cedures with program Cn’s below:

F1
def= let j=[i] in

(
if j=0 then skip else ([i]:=j−1; eval [i+1])

)
F2

def= let j=[i] in let f=[i+1] in
(
[i]:=f ; if j=0 then [i]:=0 else ([i]:=j−1; eval [i+1])

)
F3

def= let j=[i] in
(
if j=0 then ([i+1]:=‘skip’) else ([i]:=j−1; eval [i+1])

)
Cn

def= [i+1]:=Fn; eval [i+1]

All of the Cn’s decrease the value of i to zero (rather inefficiently), using recur-
sion through the store. Additionally, C2 dereferences cell i+1 to get the stored
procedure F2 and copy it to cell i temporarily. C3 replaces the stored procedure
in i+1 by skip at the end of the execution. For these programs, we want to prove:

i` {i7→ , }C1{i 7→0, ‘F1’} i` {i7→ , }C2{i 7→0, ‘F2’} i` {i7→ , }C3{i7→0, ‘skip’}.

The major step of the proof of C1 is the use of the first rule for stored procedures:

i ` {i 7→ }eval [i+1]{i 7→ 0} ⇒ {i 7→ }F1{i 7→ 0}
i ` {i 7→ , ‘F1’}eval [i+1]{i 7→ 0, ‘F1’}

which shows a property of the stored procedure F1. Note that the first rule
successfully hides cell i+1 in the premise, giving us a simple subgoal to discharge.
Similarly, the application of rules for stored procedures form the major steps of
the proofs of the remaining triples for C2 and C3:

i ` ∀x. {i 7→ , x}eval [i+1]{i 7→ 0, x} ⇒ {i 7→ , x}F2{i 7→ 0, x}
i ` {i 7→ , ‘F2’}eval [i+1]{i 7→ 0, ‘F2’}

i ` ∀x. {i 7→ , x}eval [i+1]{i 7→ 0, ‘skip’} ⇒ {i 7→ , x}C3{i 7→ 0, ‘skip’}
i ` {i 7→ , ‘F3’}C3{i 7→ 0, ‘skip’}

Since F2 directly accesses cell i+1, which stores the procedure, and F3 updates
the storing cell, we have used the second rule for C2 and the third for C3. ut

3 Semantics of programs and assertions

Our interpretation of the programming language is based on a solution of a
recursive domain equation, which is defined in the category Cppo of directed
complete pointed partial orders (in short, cppos) and strict continuous functions.

Let Nats+ be the set of positive natural numbers, ranged over by ` and n,
and for n ∈ Nats+, write [n] for the set {1, . . . , n}. For a cppo A, we consider a

cppo of Nats+-labelled records with entries from A (i.e. a labelled smash product
of arbitrary finite arity), which will be used to model heaps. Its underlying set is
Rec(A) =

(∑
N⊆fin Nats+(N → A↓)

)
⊥, where (N → A↓) denotes the cpo of maps

from the finite address set N to the cpo A↓ = A− {⊥} of non-bottom elements
of A. For ⊥ 6= ιN (r) ∈ Rec(A) we write dom(r) = N and use record notation
{|`1 = a1, . . . , `n = an|} if N = {`1, . . . , `n} and r(`i) = ai for all i ∈ [n]. Note
that field selection is actually application if the label is in the domain of the
record (for our semantic definitions this restricted form of field selection will be
sufficient). We shall also write r[7̀→a] for the record that maps ` to a and all
other `′ ∈ dom(r) to r(`′) (assuming `′ ∈ dom(r)). In case that r is ⊥, we define
r[7̀→a] to be ⊥. The ordering on Rec(A) is given by

r v r′ def⇔ r 6= ⊥ ⇒
(
dom(r) = dom(r′) ∧ ∀` ∈ dom(r). r(`) v r′(`)

)
.

The disjointness predicate r#r′ on records holds if r, r′ 6= ⊥ and dom(r) ∩
dom(r′) = ∅, and a continuous (partial) combining operation r • r′ is defined by
r • r′ def= if (r#r′) then (r ∪ r′) else

(
if (r=⊥ ∨ r′=⊥) then ⊥ else undefined

)
.

The semantics of the programming language is given by a solution for the
following domain equation:

Val = Integers⊥ ⊕ Com⊥ Heap = Rec(Val) Com = Heap (Terr(Heap)

where Terr(D) = D⊕{error}⊥ is the error monad. We usually omit the tags and
(for h ∈ Heap) will simply write h ∈ Terr(Heap) and error ∈ Terr(Heap), resp.
Recall that a solution i : FCom(Com,Com) ∼= Com can be obtained by the usual
inverse limit construction, where FCom is the evident locally continuous functor
obtained by separating negative and positive occurrences of Com in the right-
hand sides of the three equations above.2 Moreover, such a solution is a minimal
invariant, in the sense that idCom = lfp(λe:Com(Com. i ◦ FCom(e, e) ◦ i−1)
[14]. The soundness proof of the rules for stored procedures exploits this fact.

Interpretation of the programming language Fig. 3 gives the interpretation JCKη
of commands in Heap (Terr(Heap) (which is isomorphic to Com), where η ∈
Env def= (Var → Val↓) is an environment mapping identifiers to (non-bottom)
values in Val . An interpretation function for expressions JeKEη ∈ Val↓ is assumed,
where the only non-standard cases are quoted commands. J‘C’KEη is defined to
be i(JCKη) (which implicitly makes use of the embedding of Com into Val). In
the defining equations in Fig. 3 we assume that h 6= ⊥, and set JCKη ⊥ = ⊥
for all C and η. Note that the conditional only permits restricted comparison of
expressions, so that commands denote continuous functions.

Interpretation of assertions Let P be the set of predicates p ⊆ Heap that contain
⊥. The separating conjunction for these predicates, known from separation logic
[17], is defined by: h ∈ p1 ∗ p2

def⇔ ∃h1, h2. h=h1 • h2 ∧ h1 ∈ p1 ∧ h2 ∈ p2.
Note that p ∗ q ∈ P whenever p ∈ P and q ∈ P. Clearly ‘∗’ is associative and
commutative, since ‘•’ is, and if p ⊆ p′ and q ⊆ q′ then p ∗ q ⊆ p′ ∗ q′.
2 Formally, FCom(X,Y) is Rec(Integers⊥ ⊕X⊥) (Terr(Rec(Integers⊥ ⊕ Y⊥)).

JskipKη h
def
= h

JC1;C2Kη h
def
= if JC1Kη h∈{⊥, error} then JC1Kη else JC2Kη (JC1Kη h)

q
if e=e′ thenC1 elseC2

y
η
h

def
= if {Je1KEη , Je2K

E
η} ⊆ Com then ⊥

else if (JeKEη =
q
e′

yE
η
) then JC1Kη h else JC2Kη h

Jletx=new e1, ..., en inCKη h
def
= let ` = min{` | ∀`′. (`≤`′<`+n)⇒ `′ /∈ dom(h)}

in JCKη[x 7→`] (h • {|`= Je1KEη , . . . , `+n−1= JenKEη |})
Jfree eKη h

def
= if JeKEη /∈ dom(h) then error

else (let h′ s.t. h = h′ • {|JeKEη =h(JeKEη)|} in h′)

J[e1]:=e2Kη h
def
= if Je1KEη /∈ dom(h) then error else (h[Je1KEη 7→ Je2KEη])

Jlet x=[e] in CKη h
def
= if JeKEη /∈ dom(h) then error else JCKη[x 7→h(JeKEη)] h

Jeval [e]Kη h
def
= if (JeKEη /∈ dom(h) ∨ h(JeKEη) /∈ Com) then error

else i−1(h(JeKEη))(h)

Fig. 3. Interpretation of commands JCKη ∈ Heap (Terr(Heap)

Je1 ≤ e2KAη
def
= {h ∈ Heap | h 6= ⊥ ⇒ JeiKEη ∈ Integers ∧ Je1KEη ≤ Je2KEη }

Je1 = e2KAη
def
= {h ∈ Heap | h 6= ⊥ ⇒ Je1KEη = Je2KEη }

J∀x. P KAη
def
=
⋂
{JP KAη[x7→v] | v∈Val} JempKAη

def
= {{||} ,⊥} JP ∗QKAη

def
= JP KAη ∗ JQKAηq

e 7→ e′
yA
η

def
= {h ∈ Heap | h 6= ⊥ ⇒ dom(h) = {JeKEη} ∧ h(JeKEη) =

q
e′

yE
η
}

Fig. 4. Interpretation JP KA : Env→ P of assertions

The poset (P,⊆) forms a complete boolean BI algebra.3 Thus, we get a canon-
ical BI hyperdoctrine Set(−,P), which soundly models classical (higher-order)
predicate BI [1]. In particular this yields an interpretation for the quantifiers.
Some cases of this interpretation of assertions are spelled out in Fig. 4.

4 Semantics of specifications

We now define the interpretation of specifications, and show how it addresses
the two key challenges described in the introduction. The most interesting com-
ponents of our interpretation are semantic Hoare triples, which we will use to
interpret (syntactic) Hoare triples. For each predicate p ∈ P, let Ad(p) be the
admissible, downward closure of p in Terr(Heap) (i.e., the smallest admissible,
downward-closed subset of Terr(Heap) that includes p; it may be obtained as the
intersection of all admissible, downward-closed subsets of Heap that include p).

3 The negation and false of this boolean algebra are slightly unusual, and are defined

by ¬p def
= (Heap − p) ∪ {⊥} and false

def
= {⊥}. Conjunction, disjunction and true are

defined as in the usual powerset boolean algebra.

Definition 1 (Semantic triple). A semantic Hoare triple is a triple of predi-
cates p, q ∈ P and function c ∈ FCom(Com,Com), written {p}c{q}. A semantic
triple {p}c{q} is valid, denoted |={p}c{q}, if and only if, for all r ∈ P and all
h ∈ Heap, we have that h ∈ p ∗ r ⇒ c(h) ∈ Ad(q ∗ r).

Intuitively, a semantic triple {p}c{q} specifies that c should transform an input
state in p to an output state in q. Furthermore, the triple says that this trans-
formation should modify only the portion of memory for p (because, otherwise,
it would not preserve some invariant r when r was ∗-attached to the precondi-
tion p). Note that |= {p}c{q} ensures the absence of memory errors for inputs
in p ∗ r for all r, because Ad(q ∗ r) cannot contain error.

We point out two important aspects of valid semantic Hoare triples and their
relationships to the points raised in the introduction. First, the definition of va-
lidity includes a universal quantification over ∗-added invariants r. Since we will
interpret (syntactic) Hoare triples using the validity of semantic triples, this
universal quantification means that Hoare triples in our logic impose a stronger
requirement on commands than the ones in standard separation logic. In partic-
ular, the requirement is strong enough to imply the frame rule:

Lemma 1 (Frame rule). If |= {p}c{q}, then |= {p ∗ r}c{q ∗ r} for all r ∈ P.

In this way, our model addresses the first challenge in the introduction regarding
the soundness of the frame rule. Second, the definition of the validity takes the
admissible, downward closure Ad(q ∗r) of post-conditions. As a result, whenever
we define a subset of FCom(Com,Com) using a semantic Hoare triple, it is
guaranteed that the resulting set is admissible and downward-closed:

Lemma 2. For all p, q ∈ P, the subset {c | {p}c{q} is valid} is an admissible,
downward-closed subset of FCom(Com,Com).

It is this property that lets us prove the soundness of the proof rules for stored
procedures, without requiring any additional conditions, such as a syntactic re-
striction on assertions [15].

We interpret specifications following the usual Kripke semantics of intuition-
istic logic as classical logic is unsound in presence of higher-order frame rules.
Our interpretation uses a particular Kripke structure that lets us validate all
the higher-order frame rules, i.e., rules for invariant extension ϕ⊗P . Concretely,
the Kripke structure is the preorder (P,v) where the relation v is defined by:
p v q

def⇔ ∃r ∈ P. p ∗ r = q. Each world p in this Kripke structure should be
thought of as an invariant to be added by (higher-order) frame rules, and the
preorder p v q denotes that q is obtained by extending p with some disjoint
invariant r, see also [3] from which we use some results.

Some cases of the definition of the satisfaction relation |= are shown in Fig. 5.
Note that Hoare triples are interpreted using the validity of semantic triples.

Soundness We recall one consequence of our semantics, which is discussed in
more detail in [3]. It is the soundness of the generalized frame rule: ϕ ⇒ ϕ⊗P .
Since the interpretation follows the standard Kripke semantics, every formula ϕ

η, p |= ϕ ∧ ψ def⇔ η, p |= ϕ and η, p |= ψ

η, p |= ϕ⇒ ψ
def⇔ for all r ∈ P, if p v r and η, r |= ϕ, then η, r |= ψ

η, p |= ϕ⊗ P def⇔ η, p ∗ JP KAη |= ϕ

η, p |={P}C{Q} def⇔ |={JP KAη ∗ p} JCKη {JQKAη ∗ p}

Fig. 5. Interpretation η, p |= ϕ of specifications

satisfies the usual Kripke monotonicity: ∀η, r, q. (η, r |= ϕ)∧(rv q)⇒ (η, q |= ϕ).
Since r v q just means that q = r∗p for some p, the above monotonicity condition
is equivalent to ∀η, r, p. (η, r |= ϕ)⇒ (η, r ∗ p |= ϕ). This just means that adding
an invariant p for each specification maintains the truth of a specification, and
explains why the generalized frame rule is sound in our semantics.

Lemma 3 (Invariants, [3]). All the axioms for invariant extensions are sound.

Our semantics validates all the proof rules for specifications. In the following,
we focus on the second rule for stored procedures.

Lemma 4 (Recursion). The second rule for stored procedures is sound.

Proof. For each η ∈ JΓ K and r ∈ P, define a predicate Aη,r on Com × Com by

Aη,r(c, d) def⇔ ∀~v∈Valn. |={JP ∗ e 7→xKAη1 ∗ r}i
−1(d){JQ ∗ e 7→xKAη1 ∗ r}

where η1 = η[~y 7→~v, x 7→c]. Pick any η ∈ JΓ K and r ∈ P. By the definition of
Jeval [e]K and the usual substitution lemma (which holds for our interpretation),
the soundness of the rule boils down to proving the following implication.(
∀c ∈ Com.∀r′ w r. Aη,r′(c, c)⇒ Aη,r′(c, J‘C’Kη)

)
⇒ Aη,r(J‘C’Kη , J‘C’Kη).

Suppose that there is a predicate Sη′,r′ on Com parameterized by (η′, r′), such
that (1) Sη′,r′(c) ⇔ (∀d∈Com. Sη′,r′(d) ⇒ Aη′,r′(d, c)). Then, we have
that (2) ∀c. Sη,r(c) ⇒ Aη,r(c, c). Hence, assuming the precondition ∀c.∀r′ w
r.Aη,r′(c, c)⇒Aη,r′(c, J‘C’Kη), we obtain ∀c. Sη,r(c) ⇒ Aη,r(c, J‘C’Kη) and
therefore Sη,r(J‘C’Kη) by (1). But then (2) shows Aη,r(J‘C’Kη , J‘C’Kη), as re-
quired. It remains to establish the existence of a predicate Sη′,r′ satisfying (1).
This is done in the following Lemma 5. ut

Lemma 5 (Existence). For all η, r, there exists Sη,r ⊆ Com such that Sη,r(c)
holds iff ∀d. Sη,r(d) ⇒ Aη,r(d, c), where Aη,r is as in the proof of Lemma 4.

Proof. The proof builds on the same technique as used in [16], but many details
have changed. Let C denote the set of admissible subsets of Com, which forms a
complete lattice when ordered by ⊆. Pick η and r ∈ P. We define an operation
Φ : Cop→C, by S 7→ {c ∈ Com | ∀d. d ∈ S ⇒ Aη,r(d, c)}. That Φ(S) is
admissible follows from the admissibility of Aη,r(d,−), which itself comes from

Lemma 2. The symmetrisation Φ§(S, T) def= 〈Φ(T), Φ(S)〉 of Φ is a monotonic
map on the complete lattice Cop × C and thus has a least (pre-) fixed point
(S−, S+), by Tarski’s fixed point theorem. Then (S+, S−) is also a fixed point
of Φ§, so one obtains S+ ⊆ S−. A predicate Sη,r ∈ C with the required property
Sη,r = Φ(Sη,r) is obtained by proving the opposite inclusion.

To this end, for l v idCom and S1, S2 ∈ C, define l : S1 ⊂ S2 to mean that
∀c ∈ S1. l(c) ∈ S2. Note that from

(1) l :S1⊂S2 ⇒ (i ◦FCom(l, l) ◦ i−1) :Φ(S2)⊂Φ(S1)

for all l v idCom , it follows by fixed point induction that lfp(λl. i ◦ FCom(l, l) ◦
i−1) : S− ⊂ S+. This is equivalent to idCom : S− ⊂ S+, i.e., S− ⊆ S+, because
lfp(...) is idCom by the minimal invariant property of Com.

It remains to prove (1). For this, one needs only prove the following two prop-
erties. Let Cl↓(p) be the downward closure of a predicate p. For all environments
η′, heaps h and functions l with l v idCom , if j def= Rec(l̂),

(a) h ∈ JP ∗ e 7→xKAη′ implies j(h) ∈ Cl↓JP ∗ e 7→xKAη′[x 7→l(η′(x))],
(b) h ∈ JQ ∗ e 7→xKAη′[x7→l(η′(x))] implies j(h) ∈ Cl↓JQ ∗ e 7→xKAη′ .

To see why it is suffices to prove (a) and (b), suppose l v idCom satisfies
l : S1 ⊂ S2. Pick c ∈ Φ(S2). We have to show (i ◦ FCom(l, l) ◦ i−1)(c) ∈ Φ(S1).
Thus, for all d ∈ S1, we must show that Aη,r(d, (i ◦ FCom(l, l) ◦ i−1)(c)) holds,
i.e., for all ~v ∈ Valn

(2) |= {JP ∗ e 7→ xKAη[~y 7→~v,x7→d]∗r}FCom(l, l)(i−1(c)){JQ ∗ e 7→ xKAη[~y 7→~v,x7→d]∗r}.

For this, pick d ∈ S1 and ~v ∈ Valn. Since l : S1 ⊂ S2, we have that l(d) ∈ S2,
and since c ∈ Φ(S2), it must be the case that

(3) |= {JP ∗ e 7→ xKAη[~y 7→~v,x7→l(d)] ∗ r}i
−1(c){JQ ∗ e 7→ xKAη[~y 7→~v,x7→l(d)] ∗ r}.

We will now prove that (3) implies (2).
To simplify notation, we assume without loss of generality that η is such that

η(~y) = ~v. Pick r′ ∈ P and h ∈ JP ∗ e 7→ xKAη[x 7→d] ∗ r ∗ r′. Let j be Rec(l̂). Then,
we have to show the set membership below:

FCom(l, l)(i−1(c))(h) = Terr(j)(i−1(c)(j(h))) ∈ Ad(JQ ∗ e 7→xKAη[x 7→d] ∗ r ∗ r
′).

By property (a) and definition of j, j(h) is in Cl↓
(
JP ∗ e 7→ xKAη[x 7→l(d)] ∗ r ∗ r′

)
.

So, we have (4) i−1(c)(j(h)) ∈ Ad(JQ ∗ e 7→xKAη[x 7→l(d)] ∗ r ∗ r′), because of (3)
and the monotonicity of i−1(c). Note that by the property (b) and the defi-
nition of j, Terr(j) should map heaps in (JQ ∗ e 7→xKAη[x7→l(d)] ∗ r ∗ r′) to those

in Ad(JQ ∗ e 7→xKAη[x 7→d] ∗ r ∗ r′). Furthermore, for all continuous functions f on
Terr(Heap), if f maps every heap in a predicate p into Ad(q), it also maps all
heaps in Ad(p) into Ad(q). Thus, since Terr(j) is continuous, it maps heaps in
Ad(JQ ∗ e 7→xKAη[x 7→l(d)] ∗ r ∗ r′) into Ad(JQ ∗ e 7→xKAη[x 7→d] ∗ r ∗ r′). By (4), this

means that Terr(j)(i−1(c)(j(h))) belongs to Ad(JQ ∗ e 7→xKAη[x 7→d] ∗ r ∗ r′). ut

5 Conclusion and future work

We have developed a simple model of separation logic for a language with higher-
order store. The model validates proof rules for recursion through the store and
a wide range of higher-order frame rules. Future work includes extending the
model to richer programming languages, in particular to languages with higher-
order functions. In order to obtain modularity it is also necessary to develop a
version of the logic where assertions do not contain code explicitly but rather
abstract specifications of its behaviour. We are confident that the simplicity of
the present model will make that possible. In future work we also plan to extend
the relationally parametric model of separation logic in [3] to higher-order store.

References

1. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM TOPLAS, 29(5), 2007.

2. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for algol-like languages. LMCS, 2(5:1), 2006.

3. L. Birkedal and H. Yang. Relational parametricity and separation logic. In Proc.
FOSSACS’07, volume 4423 of LNCS, 2007.

4. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In Proc. PLDI’07,
pages 66–77, 2007.

5. J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly, 3rd
edition, 2005.

6. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order functions. In Proc. LICS’05, pages 270–279, 2005.

7. N. Krishnaswami, J. Aldrich, and L. Birkedal. Modular verification of the subject-
observer pattern via higher-order separation logic. In FTfJP’07, 2007.

8. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and
mutable ADTs in Hoare type theory. In Proc. ESOP’07, volume 4421 of LNCS,
pages 189–204, 2007.

9. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare
type theory. In Proc. ICFP’06, pages 62–73, 2006.

10. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proc. CSL, volume 2142 of LNCS, pages 1–18, 2001.

11. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In Proc. of 31st POPL, pages 268–280, 2004.

12. M. Parkinson. When separation logic met Java. In FTfJP’06, 2006.
13. M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In

Proc. 35th POPL, 2008.
14. A. M. Pitts. Relational properties of domains. Information and Computation,

127:66–90, 1996.
15. B. Reus and J. Schwinghammer. Separation logic for higher-order store. In Proc.

CSL’06, volume 4207 of LNCS, pages 575–590, 2006.
16. B. Reus and T. Streicher. About Hoare logics for higher-order store. In Proc.

ICALP’05, LNCS, pages 1337–1348, 2005.
17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proc. LICS’02, pages 55–74, 2002.

