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Abstract

Plotkin suggested using a polymorphic dual intuitionistic / linear type
theory (PILLY ) as a metalanguage for parametric polymorphism and recur-
sion. In recent work the first two authors and R.L. Petersen have defined a
notion of parametric LAPL-structure, which are models of PILLY , in which
one can reason using parametricity and, for example, solve a large class of
domain equations, as suggested by Plotkin.

In this paper we show how an interpretation of a strict version of Bierman,
Pitts and Russo’s language Lily into synthetic domain theory presented by
Simpson and Rosolini gives rise to a parametric LAPL-structure. This adds
to the evidence that the notion of LAPL-structure is a general notion suit-
able for treating many different parametric models, and it provides formal
proofs of consequences of parametricity expected to hold for the interpreta-
tion. Finally, we show how these results in combination with Rosolini and
Simpson’s computational adequacy result can be used to prove consequences
of parametricity for Lily. In particular we show that one can solve domain
equations in Lily up to ground contextual equivalence.

1 Introduction

It was first realized by Plotkin [21, 20] that PILLY , a polymorphic type theory with
linear as well as intuitionistic variables and fixed points, is a suitable metalanguage
for the combination of parametric polymorphism and recursion. Plotkin showed
how to encode a number of type constructors including initial algebras and final
coalgebras in PILLY , which by the existence of fixed points gave solutions for
general recursive domain equations, as in Freyd’s theory of algebraically compact
categories [9, 8, 10]. This theory can be seen as an approach to axiomatic domain
theory where the concept of linear and intuitionistic maps correspond to strict and
non-strict continuous maps between domains, and where recursive domain equa-
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tions are solved using polymorphism rather than the traditional limit-colimit con-
struction.

Recently the first two authors together with R.L. Petersen have presented a vari-
ant of Abadi & Plotkin’s logic for parametricity [22] suitable for reasoning about
parametricity in PILLY and defined the categorical notion of parametric LAPL-
structure (Linear Abadi-Plotkin Logic), which are models of the logic [7, 5].Using
Plotkin’s constructions one can solve recursive domain equations in LAPL-structures.
In [6] a concrete domain-theoretic LAPL-structure based on admissible pers over a
reflexive domain is constructed, and in [18] a parametric completion process along
the lines of [23] is presented constructing parametric LAPL-structures out of a
large class of models of PILLY .

In recent work Simpson and Rosolini [24] have constructed an interpretation of
a strict version of Lily [3] — a language that we shall call Lilystrict — based
on Synthetic Domain Theory (SDT), and show the interpretation adequate. The
interpretation uses a class of domains in an intuitionistic set theory, and the type
constructors are interpreted using simple set-theoretic constructions. It is a result
of SDT that such a theory has models, and for each such model the construction
of [24] gives an interpretation of Lilystrict, but the advantage of the set-theoretic
approach is that one does not have to know the details of these models to use the
interpretation.

In this paper we present a parametric LAPL-structure based on the interpretation of
Lilystrict of [24]. We have three motivations for this work. First of all, we would
like to show that the concept of parametric LAPL-structure is general enough to
incorporate many different models. As mentioned we have already constructed a
concrete domain-theoretic parametric LAPL-structure and shown how to construct
parametric LAPL-structures from PILLY -models using a parametric completion
process. In a future paper we intend to construct a parametric LAPL-structure
using operational semantics of Lily, showing that the parametric reasoning used
in [3] can be presented as reasoning in an LAPL-structure.

Our second motivation is that the interpretation presented in [24] is parametric and
thus one should be able to solve recursive domain equations in it. Proving that the
interpretation gives rise to an LAPL-structure provides a formal proof of this.

Our third motivation is that we can use the LAPL-structure and the adequacy of
the interpretation of Lilystrict to show formally consequences of parametricity
for Lily. This builds upon the idea from [24] of giving denotational proofs of
the theorems in [3], and extends it to prove properties not included in [3]. Among
these results is the existence of solutions to recursive type equations in Lily up to
ground contextual equivalence.

The paper is organized as follows. The first section discusses the model-theoretic
setup and the linear structure of the category of domains with strict maps. In Sec-
tions 3-5 we present the LAPL-structure. We first present a model of PILLY based
on the category of domains, then we create a parametric version of this model, and
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finally we construct the full parametric LAPL-structure. In Section 6 we show how
to use the parametric LAPL-structure to reason about Lily.

Acknowledgments. We thank Alex Simpson for helpful discussions.

2 A linear category structure for synthetic domains

We start by recalling some of the setup of [24] on which we will base the construc-
tions of this paper.

In [24] a set theoretic model of the language Lilystrict is constructed. The basis
of the construction is a collection of sets called predomains, which is assumed
given and satisfying a number of axioms. In the setting of classical set theory,
the axioms imply that no nontrivial set can be a predomain, but there do exist
interesting models of the axioms in intuitionistic set theory. In the following, when
we talk of a model of synthetic domain theory (SDT), we shall mean a model of
intuitionistic set theory with a given collection of predomains satisfying the axioms
of loc. cit. (although we later need to be a bit more advanced, see Remark 2.2).

Further, in [24] a notion of pointed set is defined, and a domain is defined to be
a pointed predomain. Strict maps between pointed sets are maps that preserve the
pointed structure and the notation f : A ( B is used to indicate that a map is strict.
We fix the notation Dom for the category of domains with all maps and Dom⊥
for the category of domains with strict maps. Referring to [24] for the details of
the above mentioned definitions we recall the following consequences.

Theorem 2.1 ([24]). The following are consequences of the axioms for predo-
mains.

• The category Dom⊥ is complete and cartesian closed with limits and expo-
nentials computed as in Set.

• The forgetful functor Dom⊥ → Dom has a left adjoint L.

• There exists a set D of domains such that any domain is isomorphic to a
domain in D (via strict maps).

In this paper, when constructing the model, we will work in intuitionistic set theory
following the informal style of [24]. Rather than seeing the construction as a model
in intuitionistic set theory, perhaps it is better to think of the construction as giving a
family of models: for any given model of SDT, the construction gives a parametric
LAPL-structure.

Remark 2.2. For the constructions of this paper we will need a somewhat more
advanced notion of model of SDT, than what is needed for the constructions of [24],
since some of the constructions we need involve constructions on classes. Consider,
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for example, the category of domains with all set theoretic maps Dom. As the
collection of domains is a real class and not a set, the category of endofunctors
on Dom need not be a class. As such constructions on classes will appear in the
following, we sketch for the concerned reader how these issues may be resolved.

As given model of SDT, we will assume that we have a category of classes satisfying
the axioms of Joyal and Moerdijk’s algebraic set theory [12] as refined in [26]
with the notion of classic structure on a regular category with a universe and a
small natural numbers object. We further assume that the collections of morphisms
between any two objects of the category of classes form a class in the external
sense. Given such a setting, the category of domains is an internal category in the
regular category of classes while the collection of all internal functors Dom →
Dom is a class in the external sense, since it is a subclass of the class of morphisms
of the category of classes. This way, the fibrations in Lemma 3.6 below are defined
externally. The example mentioned in [24] of modelling synthetic domain theory
in a realizability topos by taking the well-complete objects [14] as the collection
of predomains still provide models as these embed into categories of classes as
described in [27].

The rest of this section is devoted to showing that the category Dom⊥ has a linear
category structure, in the sense of [1], i.e. a symmetric monoidal closed cate-
gory (SMCC) structure with a symmetric monoidal comonad ! and natural trans-
formations e : !(−) → I and d : !(−) →!(−)⊗!(−) satisfying a number of axioms.
Linear categories model a dual linear / intuitionistic type theory, and showing the
existence of this structure is a first step on the way to the construction of a model
of PILLY .

We know from [24] that for any pair of domains A,B the set A ( B is a do-
main. An application of the General Adjoint Functor Theorem proves that for each
domain A, the functor

A ( (−) : Dom⊥ → Dom⊥

has a left adjoint A ⊗ (−). This gives rise to a tensor product on Dom⊥. By
construction A ⊗ B ( C ∼= A ( (B ( C), and since A ( (B ( C)
is a subset of A → (B → C), there is an injective map from A ⊗ B ( C to
A × B → C. The image of this map consists of the maps in two argumens that
are bistrict, i.e. preserve the pointed structure in each argument separately. The
embedding above determines the universal bistrict map η : A × B → A ⊗ B, as
usual in such cases.

The domain Σ = L1 is a unit for the tensor product, since

A⊗ L1 ( B ∼= A ( (L1 ( B) ∼= A ( (1 → B) ∼= A ( B

This proves the following proposition.

Proposition 2.3. The category Dom⊥ has a symmetric monoidal closed structure
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Lemma 2.4. The forgetful functor U : Dom⊥ → Dom is a symmetric monoidal
functor with respect to the cartesian structure on Dom. The lifting functor L : Dom →
Dom⊥ is a strong symmetric monoidal functor.

Proof. For the first statement, the natural transformations needed are η and the
map 1 → Σ is the unit of the adjunction.

For the second statement, notice that for all domains A,B, C

L(A×B) ( C ∼= A×B → C ∼= A → B → C ∼=
LA ( LB ( C ∼= LA⊗ LB ( C

(1)

so that LA ⊗ LB ∼= L(A× B) and by definition L1 ∼= Σ. This defines the natural
transformation m and map mΣ needed for L to be a strong symmetric monoidal
functor.

Corollary 2.5. The adjunction

Dom⊥
U

22⊥ Dom
Lqq

is symmetric monoidal.

Proof. This is a consequence of a general theorem due to Kelly [13] stating that an
adjunction of symmetric monoidal functors is a symmetric monoidal adjunction if
and only if the left adjoint is strong. See also [19, Theorem 1.4].

Corollary 2.6. The functor LU : Dom⊥ → Dom⊥ extends the SMCC structure
on the category of domains to a linear category structure.

Proof. This follows from Corollary 2.5 by a theorem from [2], see also [19, Propo-
sition 1.14].

3 The domains fibration

In this section we construct a PILLY model based on the linear category structure
on Dom⊥. A PILLY model is a fibred linear category E → B (a fibred symmetric
monoidal closed category with a fibred symmetric monoidal comonad with extra
structure making each fibre a linear category) with base category B cartesian, with a
generic object, simple products (for modelling polymorphism) and a polymorphic
fixed point combinator. However, we shall very often talk about a fibred symmetric
monoidal adjunction

E

p ��?
??

??
??

G

33⊥ D
F

ss

����
��

��
�

B,
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being a PILLY model, meaning that E → B with the fibred comonad FG is a
PILLY model in the first sense and D is the closure of the coKleisli category for
FG under fibred products. The reason for this is that the category D plays an
important role in LAPL-structures (see [16] for a discussion of adjunctions versus
monads as models of dual intuitionistic / linear lambda calculi). The reader is
referred to [5] or [19] for details on PILLY models, and to [11] for background on
the theory of fibrations. The model described in this section will be modified to a
parametric PILLY -model in Section 4.

We now begin the detailed description of the model. Consider the category (Dom⊥)iso
obtained from Dom⊥ by restricting to the isomorphisms. We will define the fibra-
tion

DFam(Dom⊥) → {(Dom⊥)n
iso | n}

by defining the base category to have as objects natural numbers and as morphisms
from n to m functors (Dom⊥)n

iso → (Dom⊥)m
iso. Objects in DFam((Dom⊥)iso)

over n are functors (Dom⊥)n
iso → Dom⊥ and morphisms are natural transfor-

mations. Reindexing is by composition.

Lemma 3.1. The fibration

DFam(Dom⊥) → {(Dom⊥)n
iso | n}

has a fibred linear category structure plus fibred products.

Proof. Suppose f, g : (Dom⊥)n
iso → Dom⊥ are objects of DFam((Dom⊥)iso)n,

we define f ⊗ g by composing the pairing 〈f, g〉 with the functor ⊗ : Dom⊥ ×
Dom⊥ → Dom⊥. Products are likewise defined pointwise, and the comonad is
given by pointwise application of L. We define (f ( g)( ~D) = f( ~D) ( g( ~D)
and if ~i : ~D ( ~D′ is a vector of isomorphisms, then (f ( g)(~i)(h : f( ~D) (
g( ~D)) = g(~i) ◦ h ◦ f(~i−1).

Finally, we notice that the equations required for this to define a fibred linear cate-
gory structure hold, since they hold pointwise.

The next lemma shows how the construction used in [24] to model polymorphism
gives right Kan extensions along projections. This structure is what is needed to
model polymorphism in the fibration

DFam(Dom⊥) → {(Dom⊥)n
iso | n}.

The proof essentially also appears in [24].

Lemma 3.2. There exists right Kan extensions for all functors (Dom⊥)n+1
iso →

Dom⊥ along projections (Dom⊥)n+1
iso → (Dom⊥)n

iso.
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Proof. Suppose g : (Dom⊥)n+1
iso → Dom⊥. We define RKπ(g) : Domn

iso →
Dom⊥ as

RKπ(g)( ~A) = {x ∈
∏

D∈D g( ~A,D) | ∀D,D′ ∈ D, i : D ( D′ iso. g( ~A, i)xD = xD′}

This is a domain since it is the limit of a diagram of domains, and the category of
domains with strict maps is complete with limits computed as sets.

The universal natural transformation τ : RKπ(g) ◦ π ⇒ g is defined as follows.
Given any domain B, there exists i : D ( B isomorphism, and we define

τ ~A,B : RKπ(g)( ~A) ( g( ~A,B)

as the composition

RKπ(g)( ~A)
πD ◦g( ~A,D)

g( ~A,i)
◦g( ~A,B)

where πD is the projection onto the D’th coordinate. To show that this definition
is independent of the choice of D, i, suppose D′, i′ is another such choice. Then
we have a commutative diagram

RKπ(g)( ~A)
πD ◦

πD′
◦M

MMMMMMMMM
g( ~A,D)

g( ~A,i)
◦

g( ~A,(i′)−1◦i)
◦

g( ~A,B)

g( ~A,D′)
g( ~A,i′)

◦sssssssss

where the first triangle commutes by definition of RKπ(g) and the second triangle
commutes because g is a functor.

One may easily check that the correspondence taking t : f ⇒ RKπ(g) to τ ◦
(fπ) : fπ ⇒ g is natural and bijective.

Lemma 3.3. The fibration

DFam(Dom⊥) → {(Dom⊥)n
iso | n}

has a generic object and simple products.

Proof. The generic object is simply the inclusion (Dom⊥)iso → Dom⊥. This is
a split generic object since all functors factorize through it.

Suppose g : (Dom⊥)n+1
iso → Dom⊥. We define the product

∏
g : Domn

iso →
Dom⊥ to be the RKπ(g). The universal property of Kan extensions then gives us
the desired correspondence between maps

π∗f → g
=======
f →

∏
g
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Remark 3.4. From the proof of 3.2 we can extract the interpretation of type spe-
cialization. Suppose x ∈

∏
g( ~A) and B is any domain. To specialize x to B, we

choose D ∈ D and i : D ( B and define

x(B) = g( ~A, i)(xD)

where xD is the D’th component of x.

Consider the fibration DFam(Dom) → {(Dom⊥)n
iso | n} defined to have as

objects in the fiber over n functors (Dom⊥)n
iso → Dom and as vertical maps

natural transformations.

Lemma 3.5. The fibration DFam(Dom) → {(Dom⊥)n
iso | n} is equivalent to

the fibration of finite products of free coalgebras for the comonad ! on DFam(Dom⊥) →
{(Dom⊥)n

iso | n}. The maps of the equivalence together with the identity on
DFam(Dom⊥) form a map of fibred adjunctions.

Proof. The fibration DFam(Dom) → {(Dom⊥)n
iso | n} is the coKleisli fibra-

tion corresponding to the fibred comonad on DFam(Dom⊥) → {(Dom⊥)n
iso |

n}. Now apply Proposition 1.21 of [19].

Proposition 3.6.

DFam(Dom⊥)

))SSSSSSSSSSSSSS 00⊥ DFam(Dom)

uukkkkkkkkkkkkkk

pp

{(Dom⊥)n
iso | n}

is a PILLY -model.

Proof. All that remains to be shown is that the fixed point combinator Y can be
modelled. For this define Y = (fixD)D∈D. Strictly speaking, this (fixD)D∈D is an
element of the wrong set, since

(fixD)D∈D ∈
∏

D∈D(D → D) → D

and we need an element in the set
∏

D∈D L(LD ( D) ( D. But these sets
are isomorphic, and in the following we work with implicit isomorphisms be-
tween them. We need to check that (fixD)D∈D in fact defines an element in
the type [[

∏
α. (α → α) → α]], i.e., the right Kan extension of the functor D 7→

[(D → D) → D]. So we need to check that for all i : D ( D′ isomorphisms
between elements D,D′ ∈ D

((i → i) → i)(fixD) = fixD′
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But ((i → i) → i)(fixD) is the map that maps a function f : D′ → D′ to
i(fixD(i−1 ◦ f ◦ i)) and since the diagram

D
i−1◦f◦i//

i

◦

D

i

◦
D′ f // D′

commutes, uniformity of fix implies that for all f : D′ → D′

i(fixD(i−1 ◦ f ◦ i)) = fixD′(f).

We have proved that Y in fact defines an element of [[
∏

α. (α → α) → α]].

We need to check that f !(Y A !f) = Y A !f for all domains A and all maps
f : A → A. As explained in Remark 3.4, the term Y A is modeled by choosing
an isomorphism i : D → A for some domain D ∈ D and setting [[Y A]] = ((i →
i) → i)fixD, which as we saw before, by uniformity, simply is fixA. Now, to
interpret [[Y A (!f)]] = fixA(f) we should strictly speaking apply the element of
L(LA ( A) ( A corresponding to fixA to {f̄} where f̄ : LA ( A is the strict
map corresponding to f : A → A, but this just gives fixA(f) as one would expect.
Likewise [[f !(Y A (!f))]] = f(fixA f), which is equal to fixA(f).

4 The parametric fibration

In this section, we apply a parametric completion process as in [23, 4] to the model
of the last section. Types in the resulting model will be types in the old model
with a relational interpretation mapping identity relations to identity relations, i.e.,
satisfying the identity extension schema. First we discuss two notions of relations.

By a relation R between domains A,B we mean a subset of A × B and we write
Rel(A,B) for the set of relations from A to B. Following [24] an admissible rela-
tion between domains A,B is a subdomain of A×B and we write AdmRel(A,B)
for the set of admissible relations from A to B. We shall often write R(x, y) for
(x, y) ∈ R.

Lemma 4.1 ([24]). Admissible relations are closed under reindexing by strict maps
and arbitrary intersections, i.e., if R : AdmRel(A,B) and f : A′ ( A, g : B′ (
B are strict maps between domains then

{(x, y) : A′ ×B′ | R(f(x), g(y))}

is an admissible relation, and if (Rx : AdmRel(A,B))x∈X is a set-indexed fam-
ily of admissible relations, then

{(y, z) : A×B | ∀x : X. Rx(y, z)}

is admissible.
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Proof. Reindexing is given by pullbacks

{(x, y) : A′ ×B′ | R(f(x), g(y))} //

��

R

��
A′ ×B′ f×g // A×B

and intersections are limits, so the lemma follows from Dom⊥ being complete.

Consider the category AdmRel(Dom⊥) whose objects are admissible relations
on domains, and whose morphisms are pairs of strict maps preserving relations,
i.e., mapping related elements to related elements. We denote by AdmRel(Dom⊥)iso
the restriction of AdmRel(Dom⊥) to isomorphisms, i.e., morphisms in this cat-
egory are pairs of isomorphisms (f, g) such that (f, g) as well as (f−1, g−1) pre-
serve relations.

We have canonical reflexive graphs of functors:

AdmRel(Dom⊥)iso
//
// (Dom⊥)isooo AdmRel(Dom⊥)

//
// Dom⊥oo

where in both graphs, the functors from left to right map relations to domain and
codomain respectively and the functor going from right to left map a domain to the
identity relation on the domain.

Lemma 4.2. The category AdmRel(Dom⊥) has an SMCC-structure and prod-
ucts. The maps of the reflexive graph

AdmRel(Dom⊥)
//
// Dom⊥oo

commute with the products and the SMCC-structure.

Proof. For R : AdmRel(A,B), S : AdmRel(C,D) we define

R× S : AdmRel(A× C,B ×D)

as
{((x, y), (w, z)) : (A× C)× (B ×D) | R(x,w) ∧ S(y, z)}

and R ( S : AdmRel(A ( C,B ( D) is defined as in [24] as

{(f, g) : (A ( C)× (B ( D) | ∀x : A, y : B.R(x, y) ⊃ S(f(x), g(y))}.

The relation R× S is easily seen to be admissible from Lemma 4.1. For each x, y

{(f, g) : (A ( C)× (B ( D) | R(x, y) ⊃ S(f(x), g(y))} =⋂
(x′,y′)∈R∩{(x,y)}{(f, g) : (A ( C)× (B ( D) | S(f(x′), g(y′))}
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where the intersection is taken inside (A ( C)× (B ( D). And so R ( S can
be written as the intersection⋂

(x,y)∈A×B

⋂
(x′,y′)∈R∩{(x,y)}

{(f, g) : (A ( C)× (B ( D) | S(f(x′), g(y′))}

of admissible relations, and so is admissible by Lemma 4.1.

An admissible relation can be considered as a jointly monic span in the usual sense.
For the definition of the tensor on relations, we will change notation a bit. We write
R̄ for the codomain of the maps of the span in the following, in order not to confuse
this with the relation. The point is that the domain of the relation R ⊗ S will not
necessarily be R̄⊗ S̄ as in the span

R̄⊗ S̄

$$IIII
{{vvvv

A⊗ C B ⊗D,

obtained by tensoring the two spans

R̄

��3
33

����
�

A B

S̄

��2
22

����
�

C D

since we do not know that this is a jointly monic span. instead we define R⊗ S to
be the intersection of all subdomains of (A⊗C)× (B ⊗D) containing the image
of this span. Now, for T : AdmRel(E,F ) and t : A⊗ C ( E, s : B ⊗D ( F
the pair (t, s) preserves relations iff there exists a map r as making

R̄⊗ S̄
r //

$$IIII
zzvvvv

T

��2
22

����
�

A⊗ C

t

44B ⊗D

s

66E F

commute, because if the map r exists, then the pullback of T along t × s is a
subdomain of (A⊗C)×(B⊗D) containing the image of the⊗-span. On the other
hand, if (t, s) preserve relations, then the map r can be defined by composition with
t× s.

Now, by naturality of η, the map r exists iff there exists a map u making

R̄× S̄
u //

$$IIII
zzvvvv

T

��2
22

����
�

A× C

ŝ

44B ×D

t̂

66E F

commute, where t̂, ŝ are the bistrict maps corresponding to s, t. So (s, t) : R ⊗
S ( T correspond bijectively to bistrict pairs (ŝ, t̂) : R× S ( T , and these pairs
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correspond bijectively to maps from R to S ( T showing that (−) ⊗ S is left
adjoint to S ( (−).

The neutral element for⊗ is the identity relation on Σ ∈ Dom⊥. Maps R⊗eqΣ (
S correspond to bistrict maps R × eqΣ ( S, which correspond to strict maps
R ( S so that R ∼= R⊗ Σ.

The structure maps of the SMCC-structure on AdmRel(Dom⊥) such as the nat-
ural transformation

(−)⊗ ((=)⊗ (≡)) ( ((−)⊗ (=))⊗ (≡)

are just given by pairing the corresponding maps in Dom⊥. Of course, one has
to show that these maps preserve relations, but that is easy. Clearly the SMCC-
structures om AdmRel(Dom⊥) and Dom⊥ commute with the domain and codomain
maps. For the equality map, the only difficult thing to show is that eqA ⊗ eqB =
eqA⊗B .

Suppose R is any admissible relation between any pair of domains. Since R is
itself simply a domain, we have the following equivalences

HomAdmRel(Dom⊥)(eqA⊗B, R) ∼= HomDom⊥(A⊗B,R) ∼=
HomDom⊥(A,B ( R) ∼= HomAdmRel(Dom⊥)(eqA, eqB ( R) ∼=

HomAdmRel(Dom⊥)(eqA ⊗ eqB, R).

An easy check shows that this correspondence is given by the identity on the under-
lying pairs of maps, so by the Yoneda Lemma eqA⊗B is isomorphic to eqA ⊗ eqB

with isomorphism given by the pair (idA⊗B, idA⊗B).

Lemma 4.3. The category AdmRel(Dom⊥) has a linear category structure,
commuting with the functors of

AdmRel(Dom⊥)
//
// Dom⊥oo .

Proof. Suppose R : AdmRel(A,B). The relation can be considered as a jointly
monic span

R

��3
33

����
�

A B

in Dom⊥. We define the lifting of R to be the relation obtained by applying the
functor ! to each map in the span. It is an easy exercise to show that the resulting
span is jointly monic.

We need to check that this defines a comonad, and it suffices to check that the maps
of the comonad on Dom⊥ preserve relations, which follows from naturality as in
the diagram for ε:

!R
ε //

��7
77

����
�

R

��5
55

����
�

!A
ε

66!B
ε

66A B.
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The same reasoning applies for the rest of the linear category structure. For ex-
ample, since d is the composition of !∆ with the isomorphism !((−) × (=)) ∼=
!(−)⊗!(=), we see that d preserves relations from the following diagram

!R
!∆ //

��4
44

4

��






!(R×R)
∼= //

&&MMMMM
xxqqq

qq
!R⊗!R

$$IIIII

{{vvv
vv

!A

!∆

33!B

!∆

22!(A×A)
∼=

22!(B ×B)
∼=

33!A⊗!A !B⊗!B.

The span on the right actually represents the relation !R⊗!R, because it is jointly
monic (it is isomorphic to the span in the middle).

The proofs that δ, e,m, mΣ preserve relations is done likewise. The commutative
diagrams of [19, Definition 1.10, Lemma 1.11] commute since they commute in
Dom⊥.

We define the category PDom to have as objects natural numbers, and as mor-
phisms from n to m pairs of functors making the diagram

AdmRel(Dom⊥)n
iso

����

// AdmRel(Dom⊥)m
iso

����
(Dom⊥)n

iso

OO

// (Dom⊥)m
iso

OO

commute.

We define the category PFam(Dom⊥) fibred over PDom to have as objects
over n pairs of functors making the diagram

AdmRel(Dom⊥)n
iso

����

fr
// AdmRel(Dom⊥)

����
(Dom⊥)n

iso

OO

fd
// Dom⊥

OO

commute. A vertical morphisms from (f r, fd) to (gr, gd) is a a pair of natural
transformations (s : f r ⇒ gr, t : fd ⇒ gd) making the obvious diagrams com-
mute, i.e., for all ~R : AdmRel(~α, ~β),

dom(s~R) = t~α
codom(s~R) = t~β

seq~α
= (t~α, t~α)

where dom, codom denote the domain and codomain maps respectively. Since
maps in AdmRel(Dom⊥) are given by pairs of maps in Dom⊥, clearly the
equations determine s from t, so an alternative description of vertical morphisms
would be natural transformations t : fd ⇒ gd such that for all vectors of relations
~R : AdmRel(~α, ~β), (t~α, t~β

) is a map of relations f r(~R) → gr(~R).

Reindexing in the fibration PFam(Dom⊥) → PDom is by composition.

13



Lemma 4.4. The fibration PFam(Dom⊥) → PDom has a fibred linear cate-
gory structure and fibred products.

Proof. The structure is defined pointwise, using Lemma 4.3, i.e., for example for
f = (f r, fd), g = (gr, gd) objects over n, we define

(f ⊗ g)r(~R) = f r(~R)⊗ gr(~R)
(f ⊗ g)d( ~A) = fd( ~A)⊗ gd( ~A).

Of course, as in the proof of Lemma 3.1 since (−) ( (=) is contravariant in the
first variable, to define f ( g for covariant functors f, g as a covariant functor, we
must use that the domain of the functors f, g is a category in which all arrows are
invertible, so that we can define (f ( g)d(i) = fd(i−1) ( gd(i) and likewise for
(f ( g)r.

The needed natural transformations are defined using the corresponding natural
transformations in Dom⊥ and AdmRel(Dom⊥). For example ε is defined as
(ε : !f r ( f r, ε : !fd ( fd), and the equations needed hold, since they hold in
AdmRel(Dom⊥) and Dom⊥. Since the requirement of ( and ⊗ being adjoint
can be expressed 2-categorically, the same argument can be used to show this.

The interpretation of polymorphic types as defined in [24] gives simple products in
our parametric PILLY model:

Lemma 4.5. The fibration PFam(Dom⊥) → PDom has a generic object and
simple products.

Proof. The generic object is the inclusion

AdmRel(Dom⊥)iso

����

// AdmRel(Dom⊥)

����
(Dom⊥)iso

OO

// Dom⊥

OO

For the simple products, we define for fd : (Dom⊥)n+1
iso → Dom⊥ the product

(
∏

f)d : (Dom⊥)n
iso → Dom⊥ by defining (

∏
f)d( ~A) to be

{x ∈
∏

D∈D fd( ~A,D) | ∀D,D′ ∈ D.∀R ∈ AdmRel(D,D′). f r(eq ~A, R)(xD, xD′)}

where we write xD for πD(x). We define the relational interpretation as

(
∏

f)r(~R : AdmRel( ~A, ~B))(x, y)

for x ∈ (
∏

f)d( ~A), y ∈ (
∏

f)d( ~B) iff

∀D,D′ ∈ D.∀R′ ∈ AdmRel(D,D′)f r(~R,R′)(xD, yD′).

14



Since this is an intersection of admissible relations it is admissible by Lemma 4.1.

We show that
∏

f r(eq ~A) = eqfd( ~A), proving that (
∏

f r,
∏

fd) actually defines an
object of PFam(Dom⊥). Suppose first that (x, y) ∈

∏
f r(eq ~A). By definition

(xD, yD) ∈ f r(eq ~A, eqD) = eqfd( ~A,D) ,i.e., xD = yD and so we have proved∏
f r(eq ~A) ⊂ eqfd( ~A). Suppose on the other hand x ∈

∏
fd( ~A). We must prove

that (x, x) ∈
∏

f r(eq ~A), i.e. that for all D,D′ ∈ D, R ∈ AdmRel(D,D′) we
have

(xD, xD′) ∈ f r(eq ~A, R)

which is exactly the definition of x ∈
∏

fd( ~A).

We will define the bijective correspondence between maps (π∗g)d → fd and maps
gd → (

∏
f)d basically as in the proof of Lemma 3.3. We need to show that in this

correspondence maps preserving relations correspond to maps preserving relations.

If t : (π∗g)d → fd such that (t, t) : (π∗g)r ( f r we define t̂ : gd → (
∏

f)d as
t̂ ~A(x) = (t ~A,D(x))D∈D. We show that this defines an element in (

∏
f)d( ~A).

Suppose D,D′ ∈ D, R : AdmRel(D,D′). Since x ∈ gd( ~A), and (x, x) ∈
(π∗g)r(eq ~A, R) = eqgd( ~A), the fact that t preserves relations show that

(t ~A,D(x), t ~A,D′(x)) ∈ f r(eq ~A, R)

as desired. It is clear that if t preserves relations, so does t̂.

Suppose u : gd → (
∏

f)d. We show that û : π∗gd → fd defined as in the proof
of Lemma 3.2 also preserves relations. So suppose we have admissible rela-
tions ~R : AdmRel( ~A, ~B) and R : AdmRel(A,B) and that gr(~R)(x, y). Pick
D,D′ ∈ D and isomorphisms i : D ( A, i′ : D′ ( B, then by definition

û ~A,A(x) = fd(id ~A, i)◦πD◦u ~A(x) û ~B,B(y) = fd(id ~B, i′)◦πD′ ◦u ~B(y). (2)

Since (i, i′)∗R′ ∈ AdmRel(D,D′), and since u preserves relations, we must
have

(πD ◦ u ~A(x), πD′ ◦ u ~B(y)) ∈ f r(~R, (i, i′)∗R′) (3)

by definition of (
∏

f)r(~R). Since (i, i′) : (i, i′)∗R ( R preserve relations and f r

is a functor,

(fd(id ~A, i), fd(id ~B, i′)) : f r(~R, (i, i′)∗R) ( f r(~R,R)

preserve relations, which together with (2) and (3) means that

(û ~A,A(x), û ~B,B(y)) ∈ f r(~R, R)

as desired.

15



We define the category PFam(Dom) fibred over PDom to have the same ob-
jects as PFam(Dom⊥). A vertical morphisms from (f r, fd) to (gr, gd) is a nat-
ural transformation t : fd ⇒ gd whose components are not required to be strict
as they are in PFam(Dom⊥), but still required to preserve relations, i.e., if
~R : AdmRel( ~A, ~B), then the pair (t ~A, t ~B) is a map of relations f r(~R) → gr(~R).
Reindexing in the fibration PFam(Dom) → PDom is given by composition.

Lemma 4.6. The fibration PFam(Dom) → PDom is equivalent to the fibration
of finite products of free coalgebras for the fibred comonad ! on PFam(Dom⊥) →
PDom. The maps of the equivalence together with the identity on PFam(Dom⊥)
form a map of fibred adjunctions.

Proof. It is easy to see that PFam(Dom) → PDom is the fibred co-Kleisli
category for PFam(Dom⊥) → PDom, since maps preserving relations out of

R

��3
33

����
�

A B

correspond to strict maps preserving relations out of

!R
��7

77
����

�

!A !B

Since PFam(Dom⊥) → PDom has fibred products we may appeal to [19,
Proposition 1.21].

Proposition 4.7.

PFam(Dom⊥)

((PPPPPPPPPPPP 00⊥ PFam(Dom)

wwoooooooooooo

pp

PDom

(4)

is a PILLY -model.

Proof. We just need to show how to model the Y -combinator in the fibration

DFam(Dom⊥) → {((Dom⊥)iso)n | n}.

This is given by the family (fixD)D∈D. We show that this element defines a term in
PFam(Dom⊥) → PDom, for which we basically need to show that (fixD)D∈D

is in the relational interpretation of the type
∏

α. (α → α) → α.

So we need to show that

(fixD)D∈D(
∏

α. (α → α) → α)(fixD)D∈D,

16



i.e., that

∀D,D′ ∈ D.∀R : AdmRel(D,D′).∀f : D → D, g : D′ → D′.
(R → R)(f, g) ⊃ R(fixDf, fixD′g).

So suppose we are given D,D′ ∈ D. An admissible relation from D to D′ is given
by an inclusion of a subdomain

R ( D ×D′

and so (R → R)(f, g) means that the restriction of f × g to R factors through R,
i.e., we have a commutative diagram

R
(f×g)|R //

◦

R

◦
D ×D′ f×g // D ×D′.

From uniformity of fixed points we deduce that fixD×D′(f × g) = fixR(f × g)|R
and therefore fixD×D′(f×g) ∈ R. But using naturality on the commutative square

D ×D′

◦

f×g // D ×D′

◦
D

f // D

(and likewise for the other projection) we see that

(fixDf, fixD′g) = fixD×D′(f × g)

and so (fixDf, fixD′g) ∈ R.

Proving that (fixD)D∈D satisfies the required equations is done as in the proof of
Proposition 3.6.

5 The LAPL-structure

In this section we show that the PILLY -model (4) is parametric by constructing a
parametric LAPL-structure around it. An LAPL-structure [5] is a model of Linear
Abadi & Plotkin Logic [7], which is a logic for reasoning about parametricity and
recursion. The construction proceeds in two steps: first a pre-LAPL structure,
given by a diagram of categories and functors:

DFam(Sub(Set))

��
PFam(Dom⊥) 00

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY PFam(Dom)
pp

))SSSSSSSSSSSSSS
// DFam(Set)

��
PDom.

(5)

17



is constructed. The left hand side is the model of polymorphism and recursion
that the logic reasons about. This is just (4). The category DFam(Set) is used
to interpret contexts of the logic. Contexts can contain relational variables of the
form R : Rel(σ, τ) and collections of relations do not naturally live in the model (4).
Finally DFam(Sub(Set)) → DFam(Set) is a logic fibration, which models the
propositions of the logic.

The second half of the construction is a reflexive graph
PFam(Dom⊥)

��
PDom

 Φ //


LinAdmRel

��
AdmRelCtx

oo

oo

of maps of PILLY models where the right hand side is a fibration, whose objects
of the total category essentially are indexed relations, constructed from (5). This
reflexive graph gives a relational interpretation of types of the model, essentially
as was the idea of [15].

The intuition of the reasoning about the model is the following. Even though types
in the model (4) are pairs (f r, fd), when reasoning about parametricity, we will just
consider the fd part of a type. Propositions on types of the model are modelled as
subsets, so DFam(Sub(Set)) → DFam(Set) is essentially an indexed version
of the subobject fibration on Set. We can consider f r as a relational interpretation
of the type (f r, fd) since for each vector of relations ~R : AdmRel( ~A, ~B) we have
f r(~R) : AdmRel(fd( ~A), fd( ~B)). This is reflected in the model by Φ essentially
mapping a type (fp, f r) to f r.

We now give the formal definition of the categories of (5). The category DFam(Set)
is fibred over PDom. Its fibre over n has as objects functors

(Dom⊥)n
iso → Set,

and reindexing along a morphism from m to n in PDom is by composition with
the functor

((Dom⊥)iso)m → ((Dom⊥)iso)n.

The category DFam(Sub(Set)) is a fibred partial order over DFam(Set) and
has as objects over

f : (Dom⊥)n
iso → Set

subfunctors of f ordered by inclusion. The map PFam(Dom) → DFam(Set)
is given by the inclusion of Dom into Set.

Lemma 5.1. The fibration DFam(Set) → PDom has fibred products and prod-
ucts in the base.

Proof. The fibred products are given pointwise.

18



Lemma 5.2. The fibred functor

PFam(Dom)

((RRRRRRRRRRRRR
// DFam(Set)

��
PDom

given by (f r, fd) 7→ i ◦ fd, where i : Dom → Set is the inclusion, preserves
fibred products and is faithful.

Lemma 5.3. The composite fibration DFam(Sub(Set)) → DFam(Set) →
PDom is a fibred first-order logic fibration with products with respect to projec-
tions in PDom.

Proof. The fibred first-order logic structure is defined pointwise using the first-
order logic structure of Sub(Set) → Set.

We should show that for any projection π : n + 1 → n in PDom and any f ∈
DFam(Set)n we have a right adjoint to

(π̄)∗ : DFam(Sub(Set))f → DFam(Sub(Set))π∗f .

To be more precise, suppose f : (Dom⊥)n
iso → Set is an object of DFam(Set)n

and h : (Dom⊥)n+1
iso → Set is a subfunctor of π∗f = f ◦ π. We must define

(
∏

h) : (Dom⊥)n
iso → Set a subfunctor of f and prove that for any other sub-

functor g of f

∀ ~A. g( ~A) ⊆ (
∏

h)( ~A) iff ∀ ~A,B. g( ~A) ⊆ h( ~A,B). (6)

Moreover, we must prove that
∏

is a functor, i.e. if h′ ⊆ h′′ then
∏

h′ ⊆
∏

h′′,
and that the Beck-Chevalley conditions are satisfied.

Define
(
∏

h)( ~A) =
⋂

D∈D

h( ~A,D).

Clearly, the right to left implication of (6) holds. Suppose on the other hand that

∀ ~A. g( ~A) ⊆ (
∏

h)( ~A).

If ~A,B are domains, we must show that g( ~A) ⊆ h( ~A,B). We know that there
exists D ∈ D and isomorphism i : B ∼= D. Since h( ~A, i) : h( ~A,B) → h( ~A,D) is
an isomorphism of subobjects of f( ~A) we must have h( ~A,B) = h( ~A,D), so since
clearly g( ~A) ⊆ h( ~A,D), also g( ~A) ⊆ h( ~A,B) as desired.

It is clear that
∏

(−) defines a functor, i.e. preserves order of subobjects of f .
Concerning the Beck-Chevalley conditions, we must show that

∏
(−) commutes

with reindexing in PDom, which holds since reindexing commutes with taking
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intersections of indexed sets. For the other Beck-Chevalley condition suppose we
have a pullback diagram in DFam(Set):

π∗f
π̄ //

π∗t
��

f

t

��
π∗g

π̄ // g

for f, g : (Dom⊥)n
iso → Set and t vertical, and suppose also we have a subobject

h : (Dom⊥)n+1
iso → Set of π∗g. We can then compute

(t∗(
∏

h)) ~A = (t∗~A(
⋂

D∈D h( ~A,D))) ~A = ({x ∈ f( ~A) | t ~A(x) ∈
⋂

D∈D h( ~A,D)}) ~A

and on the other hand

(
∏

((π∗t)∗(h))) ~A = (
∏

({x ∈ f( ~A) | t ~A(x) ∈ h( ~A,B)}) ~A,B) ~A =
(
⋂

D∈D{x ∈ f( ~A) | t ~A(x) ∈ h( ~A,D)}) ~A

Since these two are clearly equal, the Beck-Chevalley condition is satisfied.

Lemma 5.4. The diagram (5) is a pre-LAPL-structure.

Proof. All that is missing in this proof is the definition of the fibred functor U

PFam(Dom⊥)×PDom PFam(Dom⊥)fop

++WWWWWWWWWWWWWWWWWWWWW
// DFam(Set)

��
PDom

(where (−)fop is the operation that takes the opposite category in each fibre, see [5]).
We define

U((f r, fd), (gr, gd))( ~A) = Rel(fd( ~A), gd( ~A)).

We show that U((f r, fd), (gr, gd)) defines a functor (Dom⊥)n
iso → Set by defin-

ing for~i : ~A → ~A′ the action

U((f r, fd), (gr, gd))(~i) : U((f r, fd), (gr, gd))( ~A) → U((f r, fd), (gr, gd))( ~A′)

as R ∈ U((f r, fd), (gr, gd))( ~A) 7→ (fd(~i−1), gd(~i−1))∗R. The map U defines a
contravariant fibred functor by reindexing, that is, if t : (f r, fd) → ((f ′)r, (f ′)d)
and t : (gr, gd) → ((g′)r, (g′)d) are maps, then U(t, u) is defined as

R : Rel((f ′)d( ~A), (g′)d( ~A)) 7→ (t ~A, u ~A)∗R.

It is easy to see that U satisfies the requirements.
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Lemma 5.5. The subfunctor of U given by

V ((f r, fd), (gr, gd))( ~A) = AdmRel(fd( ~A), gd( ~A))

defines a notion of admissible relations for the APL-structure (5).

Proof. For readability, we will assume that everything here takes place in the fiber
over 0 ∈ PDom. The more general proof will be the same as below, with all
sets replaced by indexed families of sets. Since all constructions used below are
pointwise, the proof generalizes.

An admissible relation from domain A to domain B is simply a subdomain of
A×B. Equality is an admissible relation since it is given by the diagonal map, and
reindexing preserves admissible relations by Lemma 4.1. That admissible relations
are closed under conjunction and universal quantification is a consequence of the
same lemma.

If φ is a proposition and ρ is an admissible relation, then

{(x, y) | φ ⊃ ρ(x, y)} =
⋂

z∈{0|φ}

{(x, y) | ρ(x, y)}

which is an admissible relation by Lemma 4.1. So (x, y). φ ⊃ ρ(x, y) is an admis-
sible relation.

Finally, to show that we have a full LAPL-structure we must show that all types
have a relational interpretation. Of course, such a relational interpretation of a
type (f r, fp) is f r. We must check, however, that the linear category structure
on types defined in the model here agrees with the linear category structure on
LinAdmRel → AdmRelCtx defined abstractly in the LAPL-logic.

Theorem 5.6. The pre-LAPL-structure (5) has a full LAPL-structure.

Proof. The category AdmRelCtx has as objects triples (n, m, f) where n, m
are natural numbers and f is an object of DFam(Set)n+m, i.e. a functor

(Dom⊥)n+m
iso → Set.

A morphisms from (n, m, f) to (n′,m′, f ′) is a pair of morphisms

(ar, ad) : n → n′, (br, bd) : m → m′

in PDom and a vertical morphism t : f → f ′ ◦ (ad × bd) in DFam(Set)n+m.

An object of LinAdmRel over (n, m, f) is a pair of objects ((gr, gd), (hr, hd)) ∈
PFam(Dom⊥)n ×PFam(Dom⊥)m plus a natural transformation

(k ~A, ~B : fd( ~A, ~B) → AdmRel(gd( ~A), hd( ~B)))( ~A, ~B)∈(Dom⊥)n+m
iso

.
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A vertical morphism in LinAdmRel from ((gr, gd), (hr, hd), k) to

(((g′)r, (g′)d), ((h′)r, (h′)d), (k′))

is a pair of morphisms

t : (gr, gd) → ((g′)r, (g′)d) in PFam(Dom⊥)n

s : (hr, hd) → ((h′)r, (h′)d) in PFam(Dom⊥)m

such that for all ~A, ~B, x ∈ fd( ~A, ~B)

∀y, z. k ~A, ~B(x)(y, z) ⊃ k′~A, ~B
(x)(t ~A(y), s ~B(z))

We have a pair of maps of PILLY -models:
PFam(Dom⊥)

��
PDom




LinAdmRel

��
AdmRelCtx

oo

oo

defined by mapping an object of LinAdmRel, ((gr, gd), (hr, hd), k) to (gr, gd)
and (hr, hd) respectively. We define the mapping Φ going the other way by first
defining the map

PDom → AdmRelCtx

to map an object n to (n, n,
∏

i≤n V (πi ◦ π, πi ◦ π′)) where π, π′ are the first and
second projections respectively n + n → n and πi : n → 1 is the i’th projection.
One may also describe this object as the family

(
∏

i≤n AdmRel(Ai, Bi)) ~A∈Domn, ~B∈Domn

in the fibre DFam(Set)n+n.

Since objects in PDom are products of the generic object, if we are to define
a map of PILLY -models, the action of the functor between the base categories
on morphisms is completely determined by the action of the functor on the total
categories, so we will describe the latter.

Suppose (fd, f r) is an object of PFam(Dom⊥)n. We map this to the object
of LinAdmRel given by the pair of types ((fd, f r), (fd, f r)) and the natural
transformation

(~R ∈
∏

i≤n AdmRel(Ai, Bi) 7→ f r(~R) ∈ AdmRel(fd( ~A), fd( ~B))) ~A, ~B.

Given a map t from (fd, f r) to (gd, gr), that is, a natural transformation

(t ~A : fd( ~A) ( gd( ~A)) ~A
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preserving relations, we map it to the pair (t, t). To see that this defines a map from
Φ(fd, f r) to Φ(gd, gr) we need to see that it preserves relations , which writing it
out is the exact same condition as for t to preserve relations in the first place.

It is easy to see that Φ commutes with reindexing and therefore defines a map of
fibrations. It is also evident that Φ together with the domain and codomain maps
constitute a reflexive graph.

The generic object in LinAdmRel → AdmRelCtx is the object over

(1, 1, (AdmRel(A,B))A,B)

in AdmRelCtx given by the pair of types ((id , id), (id , id)) and the natural
transformation

(id : AdmRel(A,B) → AdmRel(A,B))A,B.

It is clear that Φ preserves generic object. It is also clear that it preserves products
in the base.

Let us show that Φ preserves !. Recall that applying ! in PFam(Dom⊥) maps a
relation to the relation obtained by lifting both maps in the span. On the other hand,
we know from [7] that given ~R : AdmRel( ~A, ~B) the relation !Φ(f r, fd)(~R) is the
smallest admissible relation containing

{(ηfp( ~A)(x), ηfp( ~B)(y)) | (x, y) ∈ f r(~R)}

where η : id →!(−) is the unit of the monad L on Dom. It is an easy diagram
chase to see that Φ(!(f r, fd))(~R) satisfies this characterising property, and so
Φ(!(f r, fd))(~R) = !Φ(f r, fd)(~R).

To see that the simple products are preserved, an easy calculation shows that both
combinations of simple products and Φ map (f r, fd) to the relation

~R 7→ {(x, y) ∈
∏

fd( ~A)×
∏

fd( ~B) | ∀D,D′ ∈ D.∀S : AdmRel(D,D′). (xD, xD′) ∈ f r(~R, S)}.

Likewise it is easily seen that Φ preserves (.

Finally, we show that Φ preserves ⊗. Suppose (f r, fd), (gr, gd) are types. Maps
out of Φ((f r, fd)⊗(gr, gd)) in LinAdmRel are easily seen, using an argument as
in Lemma 4.4, to correspond to pairs of bistrict maps out of fd×gd preserving f r×
gr. Since maps out of Φ(f r, fd) ⊗ Φ(gr, gd) satisfy the same universal property,
we get that Φ preserves tensor.

Theorem 5.7. The LAPL-structure (5) is a parametric LAPL-structure, i.e. satis-
fies identity extension, extensionality and very strong equality.

Proof. Let us first prove that (5) satisfies identity extension. Suppose we are given
a type (fd, f r). The relational interpretation of this type is

(f r :
∏

i≤n AdmRel(Ai, Bi) → AdmRel(fd( ~A), fd( ~B))) ~A, ~B.
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Instantiating this at equality we obtain

[[~α | − | − ` (fd, f r)[eq~α] : AdmRel((fd, f r)(~α), (fd, f r)(~α))]]

which is the element of

(AdmRel(fd( ~A), fd( ~A))) ~A

given as
(f r(eq ~A)) ~A = (eqfd( ~A)) ~A

which is also

[[~α | − | − ` eq(fd,fr) : AdmRel((fd, f r)(~α), (fd, f r)(~α))]].

Very strong equality follows from very strong equality in the subobject fibration
over Set. Extensionality is a consequence of very strong equality.
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6 Proving consequences of parametricity for Lily

The parametric LAPL-structure constructed in this paper is based on the interpre-
tation of Lilystrict of [24] with the type constructors defined the same way. Thus
the results about LAPL-structures should be available for us for reasoning about
the interpretation of Lilystrict, and since the computational adequacy result of
[24] gives a strong correspondence between syntax and semantics, we should be
able to lift these results to the syntax. Precisely, in this section we would like to
prove the correctness of encodings of recursive types in Lilystrict up to ground
contextual equivalence.

Rather than working with Lilystrict we shall work with a subset of PILLY equipped
with an operational semantics, which we shall call Lily since it essentially is the
language of [3] (in [3] recursion is introduced via recursive thunks rather than the
recursion operator used here, but these constructions are interdefinable). We do
this because it greatly simplifies the presentation.

The types of Lily are given by the grammar:

σ ::= α | σ ( τ |!σ |
∏

α. σ

The terms are given by the grammar

t ::= x | λx : σ. t | s(t) |!t | let !x be s in t | Λα. t | t(σ) | recx : σ. t

and the typing rules are presented in Figure 1. In the figure, the metanotation Ξ
is used for the context of type variables, Γ is an intuitionistic variable context and
∆ is a linear variable context. In all the rules of the figure, it is assumed that all
typing judgements Ξ | Γ;∆ ` t : σ are well formed, i.e., all the free type variables
occurring in Γ,∆, t and σ are in Ξ.

The language Lily presented here is essentially the subset of PILLY excluding the
⊗ and I type constructors. The only difference is the formulation of the recursion
operator, PILLY having a polymorphic recursion operator

Y :
∏

α. (α → α) → α,

where σ → τ is shorthand for !σ ( τ . The two formulations are interdefinable, as
rec can be defined from Y by

recx : σ. t = Y σ !(λx : σ. t)

where λx : σ. t is shorthand for λ◦y : !σ. let !x be y in t, and Y can be defined
from rec as

Y = Λα. λf : α → α. recx : α. f(x).

Formally the former encoding can be seen as defining an interpretation of Lily
into PILLY .
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Ξ | Γ, x : σ;− ` t : σ

Ξ | Γ;− ` recx : σ. t : σ

Ξ | Γ, x : σ;− ` x : σ Ξ | Γ;x : σ ` x : σ

Ξ | Γ;∆ ` t : σ ( τ Ξ | Γ;∆′ ` u : σ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` t u : τ

Ξ | Γ;∆, x : σ ` u : τ

Ξ | Γ;∆ ` λ◦x : σ. u : σ ( τ

Ξ | Γ;− ` t : σ

Ξ | Γ;− `!t : σ

Ξ, α : Type | Γ;∆ ` t : σ
Ξ | Γ;∆ is well-formed

Ξ | Γ;∆ ` Λα : Type. t :
∏

α : Type. σ

Ξ | Γ;∆ ` t :
∏

α : Type. σ Ξ ` τ : Type

Ξ | Γ;∆ ` t(τ) : σ[τ/α]

Ξ | Γ;∆ ` s : !σ Ξ | Γ, x : σ;∆′ ` t : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` let !x : !σ be s in t : τ

Figure 1: Typing rules for Lily
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The operational semantics is given by an evaluation relation relating programs of
Lily, i.e., closed terms of closed type, to values. The operational semantics is the
call-by-value operational semantics for Lilystrict as defined in [24], which we
recall in Figure 2.

λ◦x : σ. t ⇓ λ◦x : σ. t

s ⇓ λ◦x : σ. t′ t ⇓ v′ t′[v′/x] ⇓ v

s(t) ⇓ v

!t ⇓!t
s ⇓!s′ t[s′/x] ⇓ v

let !x be s in t ⇓ v Λα. t ⇓ Λα. t

t ⇓ Λα. t′ t′[σ/α] ⇓ v

t(σ) ⇓ v

t[recx : σ. t/x] ⇓ v

recx : σ. t ⇓ v

Figure 2: The call-by-value operational semantics of Lily

The next proposition relates Lily to the language Lilystrict of [24]. In particular,
this will allow us to transfer the computational adequacy result from [24] to our
setting (Theorem 6.2 below).

Proposition 6.1. For every well typed term Ξ | Γ;∆ ` t : σ of Lily there exists
a labelling δ such that Γ,∆ | δ `Ξ t : σ is a well typed term of Lilystrict. In
particular, every Lily program is a program in Lilystrict of the same type. The
interpretation of Lilystrict given in [24] coincides on types and programs of Lily
with that of PILLY into the PILLY model (4) up to the interpretation of Lily into
PILLY as defined above.

Proof Sketch. We just sketch the proof of the second half of the theorem as the first
half is straightforward.

Concerning the interpretation of types, the verification is by structural induction on
types, and most cases are straightforward, as the PILLY model in this paper was
constructed using the constructions of [24]. We just show that the two relational
interpretations of the ! type constructor agrees. We write ([−])d, ([−])r for the inter-
pretation defined in [24] and [[−]]d, [[−]]r for the interpretation of PILLY types into
the LAPL-structure. For ~R : AdmRel( ~A, ~B).

([`Ξ!σ])r(~R) = {(e, f) : L([`Ξ σ])d( ~A)× L([`Ξ σ])d( ~A) |
∀x : ([`Ξ σ])d( ~A). x ∈ e ⊃ ∃y ∈ f ⊃ ([`Ξ σ])r(~R)(x, y)∧
∀y : ([`Ξ σ])d( ~B). y ∈ f ⊃ ∃x ∈ e ⊃ ([`Ξ σ])r(~R)(x, y)}

= {(e, f) : L([`Ξ σ])d( ~A)× L([`Ξ σ])d( ~A) |
∃x ∈ e ⊃⊂ ∃y ∈ f ∧ (∀x ∈ e, y ∈ f. (x, y) ∈ ([`Ξ σ])r(~R))}.
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On the other hand, [[Ξ `!σ]]r(~R) is the image of the span obtained by applying the
lifting functor L to both maps in the span

[[Ξ ` σ]]r(~R)

((PPPPPP
wwnnnn

nn

[[Ξ ` σ]]d( ~A) [[Ξ ` σ]]d( ~B).

So [[Ξ `!σ]]r(~R) consists of lifts of pairs from [[Ξ ` σ]]r(~R), i.e., pairs (e, f) such
that ∃x ∈ e ⊃⊂ ∃y ∈ f and x ∈ e, y ∈ f ⊃ (x, y) ∈ [[Ξ ` σ]]r(~R).

For proving that the two interpretations agree on terms, again this is done by struc-
tural induction, and we must construct an induction hypothesis that can be used on
general open terms. An open term

Ξ | x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m ` t : τ

is interpreted in the PILLY model as an indexed family of strict functions

([[t]] ~A :
⊗

i

L[[σi]]d( ~A)⊗
⊗

j

[[σ′j ]]
d( ~A) ( [[τ ]]d( ~A)) ~A.

On the other hand the interpretation of t as defined in [24] is as a family of maps

(([t]) ~A :
∏

i[[σi]]d( ~A)×
∏

j [[σ
′
j ]]

d( ~A) → [[τ ]]d( ~A)) ~A

where A ranges over vectors of domains. Since maps with the type of [[t]] ~A corre-
spond bijectively to maps with the type of ([t]) ~A which are strict in each of the last
m variables, the induction hypothesis states that for all ~A the map [[t]] ~A corresponds
to ([t]) ~A. Further details of the induction proof can be found in [17].

Contextual equivalence is defined with respect to observing termination at !-types.
More precisely, consider two (possibly open) terms t, t′ of the same type in the
same context. We say that t and t′ are contextually equivalent if for all con-
texts C[−] such that both C[t] and C[t′] are programs of some type of the form
!σ, ∃v. C[t] ⇓ v if and only if ∃v. C[t′] ⇓ v. Since Lily is a sublanguage of
Lilystrict every Lily context is a Lilystrict context, and so if two Lily terms
are contextually equivalent considered as Lilystrict terms, they are also equiva-
lent as Lily terms. This allows us to import the following results from [24].

Theorem 6.2 ([24]). The interpretation is computationally adequate in the sense
that if [[t]] = [[t′]] for terms t, t′ of the same type then t and t′ are contextually
equivalent.

Remark 6.3. Theorem 6.2 is proved in [24] by reasoning in the intuitionistic set
theory of the model construction. As argued in loc. cit., this means that given
a model of SDT, Theorem 6.2 holds in the ”real world” (not just as seen from
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the given model of SDT) iff the given model of SDT is 1-consistent in the sense
of [25, 27]: any sentence of the form ∃n : N. φ(n), for φ a primitive recursive
predicate,—a Σ0

1-sentence—is true in the model iff there exists (in the external
sense) a natural number n such that φ(n) is true.

Since such models of SDT do exist (the example of a realizability topos satisfying
the strong completeness axiom [14] where one takes predomains to be the well-
complete objects mentioned earlier is an example), in this section we will assume
that we are given such a model. We emphasise that since the results that we aim to
prove (Theorems 6.5, 6.6 and 6.7) are purely syntactic, they are completely inde-
pendent of the choice of SDT model, and so just the existence of a model satisfying
the requirement above implies that they hold in the ”real world”.

Remark 6.4. We have given a call-by-value operational semantics for Lily, but it
is well known ([3, 24]) that the call-by-name evaluation relation ⇓n obtained from
⇓ by replacing the rule for function evaluation in Figure 2 by

s ⇓n λ◦x : σ. t′ t′[t/x] ⇓n v

s(t) ⇓n v

gives the same notion of contextual equivalence as ⇓, and so the results we prove
here for the call-by-value semantics also hold for call-by-name semantics.

6.1 Consequences of parametricity for Lily

Finally, the results from the theory of parametric LAPL-stuctures can be used to
prove parametricity results for Lily up to contextual equivalence, using the com-
putational adequacy result.

For the formulation of the parametricity results for Lily, consider the category
Lily whose objects are the closed types of Lily and whose morphisms from σ
to τ are closed terms of type σ ( τ of Lily identified up to ground contextual
equivalence.

Theorem 6.5. For all closed types σ of Lily, the types σ and
∏

α. (σ ( α) ( α
are isomorphic as objects of Lily.

Proof. The maps of the isomorphism σ ∼=
∏

α. (σ ( α) ( α are defined as
in [7]. We know from the theory of parametric LAPL structures that both compo-
sitions of these maps are interpreted in the LAPL-structure as identities and thus
by computational adequacy the two maps are each others inverses in Lily up to
contextual equivalence.

As always, type expressions α ` σ(α) in Lily for which α only appears positively
in σ induce functors on Lily.
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Theorem 6.6. All functors Lily → Lily induced by types σ(α) in Lily have
initial algebras and final coalgebras.

Proof. The initial algebra

in : σ(µα. σ(α)) ( µα. σ(α)

and the term fold :
∏

α. (σ(α) ( α) → µα. σ(α) ( α are defined as in
PILLY [7]. To see that this is a week initial algebra, suppose f : σ(τ) ( τ is
a program of Lily. From the theory of parametric LAPL-structures we know that
f ◦ σ(fold τ !f) and (fold τ !f) ◦ in are interpreted equally in the model, and
are thus contextually equivalent. Suppose now Lily programs g, h are maps of
algebras from in to some other algebra. Since we know that in is interpreted as
an initial algebra in the model, g, h are interpreted equally in the model and are
thus contextually equivalent.

The existence of final coalgebras is proved the same way, except that one has to be
more careful about the encoding of the structure, as the encoding used in [7] uses
the ⊗ type constructor which is not in Lily. However, the final coalgebras can be
defined in Lily using Plotkin’s encoding σ ⊗ τ ∼=

∏
α. (σ ( τ ( α) ( α,

which is correct as a consequence of parametricity.

We can even solve recursive type equations with parameters in Lily. For a precise
statement of this, define for each context of free type variables Ξ, the category
(Lily)Ξ whose objects are types `Ξ σ and whose morphisms are closed terms (here
meaning: no free varaibles, only free type variables contained in Ξ) considered
equal up to ground contextual equivalence, as in the definition of Lily.

Theorem 6.7. Suppose `
~α,~β,α,β

σ(~α, ~β, α, β) is a type in Lily, in which the type

variables ~α, α occur only negatively and the type variables ~β, β only positively.
Then there exists a type Fix(σ)(~α, ~β) such that the types

Fix(σ)(~α, ~β) and σ(~α, ~β, Fix(σ)(~β, ~α), Fix(σ)(~α, ~β))

are isomorphic as objects of (Lily)
~α,~β

.

Moreover, the type Fix(σ) together with the isomorphism above satisfies the fol-
lowing indexed version of Freyd’s initial dialgebra property. For any pair of types
`

~α,~β
ω, ω′ and closed terms

g : σ(~α, ~β, ω′, ω) ( ω

g′ : ω′ ( σ(~β, ~α, ω, ω′)

there exists unique h, h′ making

σ(~α, ~β, Fix(σ)(~β, ~α), Fix(σ)(~α, ~β))

σ(~α,~β,h′,h)

◦

∼= ◦Fix(σ)(~α, ~β)

h

◦
σ(~α, ~β, ω′, ω)

g
◦ω

30



ω′
g′

◦

h′

◦

σ(~β, ~α, ω, ω′)

σ(~β,~α,h,h′)

◦
Fix(σ)(~β, ~α)

∼= ◦σ(~β, ~α, Fix(σ)(~α, ~β), Fix(σ)(~β, ~α))

commute.

Proof. As in the proof of 6.6, the solutions to the recursive domain equations are
encoded as in PILLY using encodings of ⊗ and the fixed point combinator Y in
Lily as defined above. The general theory of LAPL-structures then proves that the
relevant equalities hold in the model, which implies that they hold in Lily up to
contextual equivalence.

Remark 6.8. The above reasoning can also be used to prove similar theorems for
Lilystrict.

7 Conclusions

We have constructed an LAPL-structure based on the interpretation of Lilystrict
into models of synthetic domain theory presented in [24]. Comparing this with
the concrete domain theoretic LAPL-structure of [6], the completion process for
LAPL-structures of [18], and the LAPL-structure based on the operational seman-
tics of Lily [3] under development at the moment of writing, this shows that the
notion of LAPL-structure is general enough to handle very different kinds of para-
metric models.

The LAPL-structure also provides formal proof of the consequences of parametric-
ity, such as the existence of recursive types, for the interpretation of [24]. Com-
bining these results with adequacy of the interpretation of Lilystrict, we have
shown consequences of parametricity for Lily up to ground contextual equiva-
lence. These consequences include encodings of inductive, coinductive and recur-
sive types.

A more direct route to proving the consequences of parametricity for Lilystrict
or Lily would have been to work out the proofs used in [7] in the intuitionistic
set theory of the model. For some readers this may be more appealing. However,
apart from showing the generality of the notion of LAPL-structure, the route taken
here has the advantage of giving a model of PILLY and LAPL rather than just
an interpretation, presenting semantic notions of such concepts as open types an
propositions on open types.

The connection between parametricity and the question of strictness vs. linearity
is not fully understood. The concrete model of [6] as well as the LAPL-structure
considered here both model strictness rather than linearity. The LAPL-structure
based on the operational semantics of Lily [3] under construction will be the first
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concrete example of a parametric LAPL-structure modelling linearity rather than
strictness, but it would be interesting to study parametric LAPL-structures not con-
structed syntactically, modelling linearity rather than strictness.
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