
Relational Reasoning for
Recursive Types and References

Nina Bohr and Lars Birkedal

IT University of Copenhagen (ITU)
{ninab,birkedal}@itu.dk

Abstract. We present a local relational reasoning method for reasoning
about contextual equivalence of expressions in a λ-calculus with recur-
sive types and general references. Our development builds on the work
of Benton and Leperchey, who devised a nominal semantics and a local
relational reasoning method for a language with simple types and simple
references. Their method uses a parameterized logical relation. Here we
extend their approach to recursive types and general references. For the
extension, we build upon Pitts’ and Shinwell’s work on relational rea-
soning about recursive types (but no references) in nominal semantics.
The extension is non-trivial because of general references (higher-order
store) and makes use of some new ideas for proving the existence of the
parameterized logical relation and for the choice of parameters.

1 Introduction

Proving equivalence of programs is important for verifying the correctness of
compiler optimizations and other program transformations. Program equivalence
is typically defined in terms of contextual equivalence, which expresses that two
program expressions are equivalent if they have the same observable behaviour
when placed in any program context C. It is generally quite hard to show directly
that two program expressions are contextually equivalent because of the univer-
sal quantification over all contexts. Thus there has been an extensive research
effort to find reasoning methods that are easier to use for establishing contex-
tual equivalence, in particular to reduce the set of contexts one has to consider,
see, e.g., [7, 3, 1, 6] and the references therein. For programming languages with
references, it is not enough to restrict attention to fewer contexts, since one also
needs to be able to reason about equivalence under related stores. To address
this challenge, methods based on logical relations and bisimulations have been
proposed, see, e.g., [8, 2, 13]. The approaches based on logical relations have so
far been restricted to deal only with simple integer references (or references to
such). To extend the method to general references in typed languages, one also
needs to extend the method to work in the presence of recursive types. The lat-
ter is a challenge on its own, since one cannot easily establish the existence of
logical relations by induction in the presence of recursive types. Thus a number
of research papers have focused on relational reasoning methods for recursive
types without references, e.g., [3, 1]. Recently, the bisimulation approach has

been simplified and extended to work for untyped languages with general refer-
ences [5, 4]. For effectiveness of the reasoning method, we seek local reasoning
methods, which only require that we consider the accessible part of a store and
which works in the presence of a separated (non-interfering) invariant that is
preserved by the context. In [2], Benton and Leperchey developed a relational
reasoning method for a language with simple references that does allow for local
reasoning. Their approach is inspired by related work on separation logic [10,
9]. In particular, an important feature of the state relations of Benton and Lep-
erchey is that they depend on only part of the store: that allows us to reason that
related states are still related if we update them in parts on which the relation
does not depend. In this paper we extend the work of Benton and Leperchey
to relational reasoning about contextual equivalence of expressions in a typed
programming language with general recursive types and general references (thus
with higher-order store). We arrive at a useful reasoning method. In particular,
we have used it to verify all the examples of [5]. We believe that the method is
simple to use, but more work remains to compare the strengths and weaknesses
of the method we present here with that of loc.cit.

Before giving an overview of the technical development, we now present two
examples of pairs of programs that can easily be shown contextually equivalent
with the method we develop. The examples are essentially equivalent to (or
perhaps slightly more involved than) examples in [5]. Section 5 contains the
proofs of contextual equivalence.

The programs M and N shown below both take a function as argument
and returns two functions, set and get. In M , there is one hidden reference y,
which set can use to store a function. The get function returns the contents of
y. The program N uses three local references y0, y1 and p. The p reference holds
a integer value. The set function updates p and depending on the value of p it
stores its argument in either y0 or y1. The get function returns the contents of y0

or y1, depending on the value of p. Note that the programs store functions in the
store. Intuitively, the programs M and N are contextually equivalent because
they use local storage. The proof method we develop allows us to prove that they
are contextually equivalent via local reasoning.

M = rec f (g: τ → Tτ ′): T (((τ → Tτ ′) → Tunit)× (unit → T (τ → Tτ ′))) =
let y ⇐ ref g in
let set ⇐ val (rec f1M (g1 : τ → Tτ ′) : Tunit = y := g1) in
let get ⇐ val (rec f2M (x : unit) : T (τ → Tτ ′) = !y) in

(set,get)

N = rec f (g: τ → Tτ ′): T (((τ → Tτ ′) → Tunit)× (unit → T (τ → Tτ ′))) =
let y0 ⇐ ref g in
let y1 ⇐ ref g in
let p ⇐ ref 0 in
let set ⇐ val (rec f1N (g1 : τ → Tτ ′) : Tunit =

if iszero(!p) then
(p := 1; y1 := g1)

else
(p := 0; y0 := g1)) in

let get ⇐ val (rec f2N (x : unit) : (τ → Tτ ′) =
if iszero(!p) then !y0 else !y1) in

(set,get)

Next consider the programs M ′ and N ′ below. They both have a free variable
g of function type. In M ′, g is applied to a function that just returns unit and
then M ′ returns the constant unit function. In N ′, g is applied to a function
that updates a reference local to N ′, maintaining the invariant that the value
of the local reference is always greater than zero. After the call to g, N ′ returns
the constant unit function if the value of the local reference is greater than zero;
otherwise it diverges (Ω stands for a diverging term). Intuitively, it is clear that
M ′ and N ′ are contextually equivalent, since the local reference in N ′ initially
is greater than zero and g can only update the local reference via the function
it is given as argument and, indeed, we can use our method to prove formally
that M ′ and N ′ are contextually equivalent via local reasoning.

M ′ = let f ⇐ val (rec f ′(a : unit) : Tunit = val ()) in
let w ⇐ gf in

val f

N ′ = let x ⇐ ref 1 in
let f ⇐ val (rec f ′(a : unit) : Tunit) = x := !x + 1) in
let w ⇐ gf in

let z ⇐ if iszero(!x) then Ω else (rec f ′(a : unit) : Tunit = val ()) in
val z

We now give an overview of the technical development, which makes use of a
couple of new ideas for proving the existence of the parameterized logical relation
and for the choice of parameters.

In Section 2 we first present the language and in Section 3 we give a deno-
tational semantics in the category of FM-cpo’s. Adapting methods developed
by Pitts [7] and Shinwell [11, 12] we prove the existence of a recursive domain
in (FM-Cpo⊥)4, D = (V, K, M, S), such that i : F (D, D) ∼= D where F is our
domain constructor. The 4-tuple of domains D has the minimal invariant prop-
erty, that is, idD is the least fixed point of δ : (D → D) → (D → D) where
δ(e) = i ◦ F (e, e) ◦ i−1. Denotations of values are given in V, continuations in
K, computations in M and stores in S. We show adequacy via a logical relation,
the existence of which is established much as in [11].

The denotational semantics can be used to establish simple forms of contex-
tual equivalence qua adequacy. For stronger proofs of contextual equivalences
we define a parameterized relation between pairs of denotations of values, pairs
of denotations of continuations, pairs of denotations of computations, pairs of
denotations of stores. We can express contextual equivalence for two computa-
tions by requiring that they have the same terminaton behaviour when placed
in the same arbitrary closing contexts.

Since our denotations belong to a recursive domain, the existence of the pa-
rameterized logical relation again involves a separate proof. The proof requires
that the relations are preserved under approximations. On the other hand we
want the parameters to express invariants for hidden local areas of related stores,
and such properties of stores will not be preserved under approximations. There-
fore our relations are really given by 4-tuples, which we think of as two pairs: the
4-tuples have the form (d′1, d1, d

′
2, d2), where d′1 v d1 and d′2 v d2. We can now

let the approximation be carried out over the primed domain elements d′1, d
′
2,

and preserve the invariant on the non-primed elements d1, d2. Correspondingly,
relatedness of computations is stated as a two-sided termination approximation.
Termination of application of an approximated computation m′

1 to an approxi-
mated continuation k′1 and an approximated store S′1 implies termination in the
other side of the non-approximated elements, m′

1k
′
1S

′
1 = > =⇒ m2k2S2 = >,

and similarly for the other direction. With this separation of approximation from
the local properties that the parameters express, we can prove that the relation
exists. We can then extract a binary relation, defined via reference to the 4-ary
relation, such that the binary relation implies contextual equivalence.

A parameter expresses properties of two related stores; and computations
are related under a parameter if they have equivalent termination behaviour
when executed in stores, which preserve at least the invariants expressed by the
parameter. Our parameters are designed to express relatedness of pairs in the
presence of higher-order store and therefore they are somewhat more complex
than the parameters used by Benton and Leperchey [2]. As we have seen in the
examples above, we can prove contextual equivalence of two functions, which
allocate local store in different ways, and then return functions set and get that
access the hidden local storage. These local locations can be updated later by
application of the exported set-functions to related arguments. In between the
return of the functions and the application of the returned set-functions, there
might have been built up additional local store invariants. Thus functions stored
by a later call to the returned set-function may require further properties of
stores in order to have equivalent behaviour, than was the case when our set and
get functions were returned. To handle this possibility our parameters include
pairs of locations; two stores are then related wrt. such pairs of locations if the
pair of locations contain values that are related relative to the invariants that
hold for the two stores.

In more detail, a parameter has the form ∆{r1, . . . , rn}. Here ∆ is a store type
that types a finite set of locations; these are intuitively our “visible locations.”
The r1, . . . , rn are local parameters. A local parameter ri has its own finite
area of store in each side, disjoint from the visible area and from all the other
local parameters’ store areas. A local parameter ri has the form (P1, LL1) ∨
· · ·∨ (Pm, LLm). The P s express properties of two stores and the LLs are lists of
location pairs. It is possible to decide if two states fulfill the properties expressed
by the P s by only considering the contents of ris private areas of store. At least
one P must hold and the corresponding LL must hold values related relative to
the invariants that hold for the two stores (we can also think of this as related

at the given time in computation). Using FM domain theory makes it posible
for us to express the parameters directly by location names.

We present the definition of our relation, state its existence and the theorem
that relatedness implies contextual equivalence in Section 4. In the following
Section 5 we show how we prove contextual equivalence of our example programs.
We hope that the proofs will convince the reader that our logical relations proof
method is fairly straightforward to apply; in particular the choice of parameters
is very natural. We conclude in Section 6.

For reasons of space most proofs have been omitted from this extended ab-
stract.

2 Language

The language we consider is a call-by-value, monadically-typed λ-calculus with
recursion, general recursive types, and general dynamically allocated references.
Types are either value types τ or computation types Tτ . Values of any closed
value type can be stored in the store.

τ ::= α | unit | int | τ × τ | τ + τ | τref | τ → Tτ | µα.τ
γ ::= τ | Tτ

Typing contexts, Γ , are finite maps from variables to closed value types. We
assume infinite sets of variables, ranged over by x, type variables, ranged over
by α, and locations, ranged over by l. We let L denote the set of locations. Store
types ∆ are finite maps from locations to value types. Terms G are either values
V or computations M :

V ::= x | n | l | () | (V, V ′) | iniV | rec f(x : τ) = M | fold V
M ::= V V ′ | let x ⇐ M in M ′ | val V | πiV | ref V | !V |

V := V ′ | case V of in1x1 ⇒ M1; in2x2 ⇒ M2 |
V = V ′ | V + V ′ | iszero V | unfold V

G ::= M | V.

Continuations K take the following form:

K ::= val x | let y ⇐ M in K

The typing judgments take the form

∆;Γ ` V : τ ∆;Γ ` M : Tτ ∆;` K : (x : τ)>

The typing rules for values and terms are as in [2] extended with rules for
recursive types, except that the type for references is not restricted. Here we
just include the following three selected rules:

∆; Γ ` V : τ

∆; Γ ` refV : T (τref)

∆; Γ ` V : τ [µα.τ/α]

∆; Γ ` fold V : µα.τ

∆; Γ ` V : µα.τ

∆; Γ ` unfold V : T (τ [µα.τ/α])

Stores Σ are finite maps from locations to closed values. A store Σ has store
type ∆, written Σ : ∆, if, for all l in the domain of ∆, ∆;` Σ(l) : ∆(l).

The operational semantics is defined via a termination judgment Σ, let x ⇐
M in K ↓, where M is closed and K is a continuation term in x. Typed contin-
uation terms are defined by:

∆;` val x : (x : τ)>
∆; x : τ ` M : Tτ ′ ∆;` K : (y : τ ′)>

∆;` let y ⇐ M in K : (x : τ)>

The defining rules for the termination judgment Σ, let x ⇐ M in K ↓ are
standard given that the language is call-by-value, with left-to-right evaluation
order. We just include one rule as an example:

Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ unfold(fold V) in K ↓

A context is a computation term with a hole, and we write C[.] : (∆;Γ `
γ) ⇒ (∆;− ` Tτ) to mean that whenever ∆;Γ ` G : γ then ∆;− ` C[G] : Tτ .

The definition of contextual equivalence is standard and as in [2].

Definition 1. If ∆;Γ ` Gi : γ, for i = 1, 2 then G1 and G2 are contextually
equivalent, written

∆;Γ ` G1 =ctx G2,

if, for all types τ , for all contexts C[.] : (∆;Γ ` γ) ⇒ (∆;− ` Tτ) and for all
stores Σ : ∆,

Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓ .

3 Denotational Semantics

We define a denotational semantics of the language from the previous section
and show that the semantics is adequate. The denotational semantics is defined
using FM-domains [11]. The semantics and the adequacy proof, in particular the
existence proof of the logical relation used to prove adequacy, builds on Shin-
well’s work on semantics of recursive types in FM-domains [11]. Our approach is
slightly different from that of Shinwell since we make use of universal domains to
model the fact that any type of value can be stored in the store, but technically
it is a minor difference.

We begin by calling to mind some basic facts about FM-domains; see [11]
for more details. Fix a countable set of atoms, which in our case will be the
locations, L. A permutation is a bijective function π ∈ (L → L) such that the
set {l | π(l) 6= l} is finite. An FM-set X is a set equipped with a permutation
action: an operation π • − : perms(L) × X → X that preserves composition
and identity, and such that each element x ∈ X is finitely supported: there is
a finite set L ⊂ L such that whenever π fixes each element of L, the action

of π fixes x: π • x = x. There is a smallest such set, which we write supp(x).
A morphism of FM-sets is a function f : D → D′ between the underlying
sets that is equivariant: ∀x.π • (fx) = f(π • x). An FM-cpo is an FM-set with
an equivariant partial order relation v and least upper bounds of all finitely-
supported ω-chains. A morphism of FM-cpos is a morphism of their underlying
FM-sets that is monotone and preserves lubs of finitely-supported chains. We
only require the existence and preservation of lubs of finitely-supported chains, so
an FM-cpo may not be a cpo in the usual sense. The sets Z, N, etc., are discrete
FM-cpos with the trivial action. The set of locations, L, is a discrete FM-cpo
with the action π • l = π(l). The category of FM-cpos is bicartesian closed: we
write 1 and × for the finite products, D ⇒ D′ for the internal hom and 0,+ for
the coproducts. The action on products is pointwise, and on functions is given
by conjugation: π • f = λx.π • (f(π−1 • x)). The category is not well-pointed:
morphisms 1 → D correspond to elements of 1 ⇒ D with empty support. The
lift monad, (−)L, is defined as usual with the obvious action. The Kleisli category
FM-Cpo⊥ is the category of pointed FM-cpos (FM-cppos) and strict continuous
maps, which is symmetric monoidal closed, with smash product ⊗ and strict
function space −−◦. If D is a pointed FM-cpo then fix : (D ⇒ D)−−◦D is defined
by the lub of an ascending chain in the usual way. We write O for the discrete
FM-cpo with elements ⊥ and >, ordered by ⊥ v >.

As detailed in [11], one may solve recursive domain equations in FM-Cpo⊥.
For the denotational semantics, we use minimal invariant recursive domains:

V ∼= 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V⊕ V)⊕ (V⊗ V)⊕ (V−−◦M)⊥ ⊕ V
K ∼= (S−−◦ (V−−◦O))
M ∼= (K−−◦ (S−−◦O))
S ∼= L⊥ −−◦ V.

Formally, these are obtained as the minimal invariant solution to a locally FM-
continuous functor F : (FM-Cpo4

⊥)op × FM-Cpo4
⊥ → FM-Cpo4

⊥. We write D for
(V, K, M, S) and i for the isomorphism i : F (D, D) ∼= D. We will often omit the
isomorphism i and the injections into the sum writing, e.g., simply (v1, v2) for
an element of V.

Types, τ are interpreted by [[τ]] = V, computation types Tτ are interpreted
by [[Tτ]] = M, continuation types (x : τ)> are interpreted by [[(x : τ)>]] = K,
and store types ∆ are interpreted by [[∆]] = S. Type environments Γ = x1 :
τ1, . . . , xn : τn are interpreted by Vn.

Typing judgments are interpreted as follows:

– [[∆;Γ ` V : τ]] ∈ ([[Γ]]−−◦ [[τ]])
– [[∆;Γ ` M : Tτ]] ∈ ([[Γ]]−−◦ [[Tτ]])
– [[∆;` K : (x : τ)>]] ∈ K

The actual definition of the interpretations is quite standard, except for alloca-
tion which makes use of the properties of FM-cpo’s:

[[∆;Γ ` refV : T (τref)]] ρ = λk.λS.
k(S([l 7→ [[∆;Γ ` V : τ]] ρ])l

for some/any l /∈ supp(λl′.k(S[l′ 7→ [[∆;Γ ` V : τ]] ρ])l′)

The definition is much as in [2]. The use of FM-cpo’s ensure that it is a good
definition. As in [2], we use the monad T to combine state with continuations to
get a good control over what the new location has to be fresh for.

We only include two additional cases of the semantic definition, namely the
one for unfold and the one for continuations:

[[Γ ` unfold V : T (τ [µα.τ/α])]] ρ = λk.λS.
case [[∆;Γ ` V : µα.τ]] ρ of i1 ◦ inµ(d) then kSd; else⊥,

where inµ is the appropriate injection of V into 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V⊕ V)⊕
(V⊗ V)⊕ (V−−◦M)⊥ ⊕ V and i1 is the isomorphism from this sum into V.

[[∆;` K : (x : τ)>]] = λS.λd.
[[∆;x : τ ` K : Tτ ′]]{x 7→ d}(λS′.(λd′.>)⊥)⊥S

Theorem 1 (Soundness and Adequacy). If ∆;` M : Tτ , ∆;` K : (x : τ)>,
Σ : ∆ and S ∈ [[Σ : ∆]] then

Σ, let x ⇐ M in K ↓ iff [[∆;` M : Tτ]] ∗ [[∆;` K : (x : τ)>]]S = >.

Soundness is proved by induction and to show adequacy one defines a formal
approximation relation between the denotational and the operational semantics.
The existence proof of the relation is non-trivial because of the recursive types,
but follows from a fairly straightforward adaptation of Shinwell’s existence proof
in [11] (Shinwell shows adequacy for a language with recursive types, but without
references).

Corollary 1. [[∆;Γ ` G1 : γ]] = [[∆;Γ ` G2 : γ]] implies ∆;Γ ` G1 =ctx G2.

4 A Parameterized Logical Relation

In this section we define a parameterized logical relation on D and F (D, D), which
we can use to prove contextual equivalence. (In the following we will sometimes
omit the isomorphism i, i−1 between F (D, D) and D).

4.1 Accessibility maps, simple state relations and parameters

Intuitively, the parameters express properties of two related states by expressing
requirements of disjoint areas of states. There is a “visible” area and a finite
number of “hidden invariants.” In the logical relation, computations are related
under a parameter if they have corresponding termination behaviour under the
assumption that they are executed in states satisfying the properties expressed
by the parameter.

Definition 2. A function A : S → Pfin(L) from S to the set of finite subsets of
L is an accessibility map if

∀S1, S2. (∀l ∈ A(S1). S1l = S2l) ⇒ A(S1) = A(S2)

We let A∅ denote the accessibility map defined by ∀S.A∅(S) = ∅, and we let
A{l1,...,lk} denote the accessibility map defined by ∀S.A{l1,...,lk}(S) = {l1, . . . , lk}.

Definition 3. A simple state relation P is a triple (p̂, Ap1, Ap2) satisfying that
Ap1 and Ap2 are accessibility maps and p̂ is a relation on S satisfying, for all
states S1, S2, S

′
1, S

′
2 ∈ S,(

∀l1 ∈ Ap1(S1).S1l1 = S′1l1 ∧ ∀l2 ∈ Ap2(S2).S2l2 = S′2l2
)

⇒
(
(S1, S2) ∈ p̂ ⇔ (S′1, S

′
2) ∈ p̂

)
.

Note that a simple state relation is essentially a relation on states for which it
can be decided whether a pair of states belong to the relation only on the basis
of some parts of the states, defined by a pair of accessibility maps.

We denote the “always true” simple state relation (S× S, A∅, A∅) by T .

We now define the notion of a local parameter, which we will later use to
express hidden invariants of two related states. Intuitively, a local parameter has
its own private areas of the states. These areas are used for testing conditions and
for storing related values. The testing condition is a disjunction of simple state
relations, where to each disjunct there is an associated list of pairs of locations
from the two related states. At least one condition must be satisfied and the
corresponding list of locations hold related values.

Definition 4. A local parameter r is a finite non-empty set of pairs
{(P1, LL1), .., (Pm, LLm)}, where each Pi is a simple state relation
Pi = (p̂i, Api1, Api2) and
each LLi is a finite set of location pairs and closed value types
LLi = { (li11, li12, τi1), . . . , (lini1, lini2, τni) }. (ni ≥ 0).

We often write a local parameter as r = ((P1, LL1) ∨ . . . ∨ (Pm, LLm)). For a
location list LL, we write L1 resp. L2 for the set of locations that occur as first
resp. second components in the location list LL. For a local parameter r, there are
associated accessibility maps Ar1 and Ar2 given by ∀S. Ar1(S) =

⋃
i Api1(S)∪L1

and ∀S. Ar2(S) =
⋃

i Api2(S) ∪ L2.
We denote the “always true” local parameter {(T, ∅)} also simply by T . It

has the associated accessibility maps A∅, A∅.

As explained in the introduction we have included the LL-list to be used
for storing related values which may later be updated by exported updating
functions. The updated values may require more invariants to hold for the stores
in order to have equivalent behaviour. This interpretation of the local parameter
is expressed in the definition of our invariant relation F (∇,∇) below.

Definition 5. A parameter ∆r is a pair (∆, r), with ∆ a store type, and r =
{r1, .., rn} a finite set of local parameters such that T ∈ r.

For a parameter ∆r we associate accessibility maps Ar1 and Ar2, given by
∀S. Ar1(S) =

⋃
Ari1(S) and ∀S. Ar2(S) =

⋃
Ari2(S).

For each store type ∆ we have a special the “always true” parameter ∆id∅ =
∆{T}.

Definition 6. For parameters ∆′r′ and ∆r define
∆′r′ B ∆r

def⇐⇒ ∆′ ⊇ ∆ and r′ ⊇ r.

The ordering relation B is reflexive, transitive and antisymmetric. For all pa-
rameters ∆r it holds that there are only finitely many parameters ∆0r0 such
that ∆r B ∆0r0. For convenience we sometimes write ∆r C ∆′r′ for ∆′r′ B ∆r.

4.2 Parameterized relations and contextual equivalence

In this section we will define a parameterized logical relation on D and F (D, D).
Let D = (DV , DK , DM , DS) ∈ {D, F (D, D)}. We define the set of relationsR(D)
on D as follows.

R(D) = R̂V × R̂K × R̂M × R̂S where

R̂V = all subsets of
D4

V × {τ | τ is a closed value type} × {parameter} that include
{(⊥, v1,⊥, v2, τ, ∆r) | v1, v2 ∈ DV , τ closed value type, ∆r parameter}

R̂K = all subsets of
D4

K × {(x : τ)> | (x : τ)> is a continuation type} × {parameter} that include
{(⊥, k1,⊥, k2, (x : τ)>,∆r) |

k1, k2 ∈ DK , (x : τ)> continuation type, ∆r parameter}
R̂M = all subsets of

D4
M × {Tτ | Tτ is a closed computation type} × {parameter} that include

{(⊥,m1,⊥,m2, T τ, ∆r) |
m1,m2 ∈ DM , T τ closed computation type, ∆r parameter}

R̂S = all subsets of D4
S × {parameter} that include

{(⊥, S1,⊥, S2,∆r) | S1, S2 ∈ DS ,∆r parameter}

A relation (R1, R2, R3, R4) ∈ R(D) is admissible if,
for each i, Ri is closed under least upper bounds of finitely supported chains of
the form (di

1, d1, d
i
2, d2, (type),∆r)i∈ω where d1, d2, type, ∆r are constant. We let

Radm(D) denote the admissible relations over D.

Theorem 2. There exists a relational lifting of the functor F to (R(D)op ×
R(D)) → R(F (D, D)) and an admissible relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈
Radm(D) satisfying the equations in Figure 1 and (i, i) : F (∇,∇) ⊂ ∇ ∧
(i−1, i−1) : ∇ ⊂ F (∇,∇).

Proof (Theorem 2, existence of an invariant relation ∇). The proof makes use of
the ideas mentioned in the Introduction in combination with a proof method in-
spired from Pitts [7]. We have defined a relational structure on the domains
D and F (D, D) ∈ FM-Cpo4

⊥ as products of relations on each of their four
domain-projections. Each of these relations is a 4-ary relation with elements
(d′1, d1, d

′
2, d2, (type),∆r) where d′1 = d′2 = ⊥ relates to everything.

We define the action of F (−,+) on relations R−, R+ ∈ D such that it holds
that d′1 v d1 and d′2 v d2 in elements (d′1, d1, d

′
2, d2, (type),∆r) of F (R−, R+)n,

F (∇,∇)V = {(⊥, v1, ⊥, v2, τ, ∆r) } ∪
{(v′1, v1, v′2, v2, τ, ∆r) |

v′1 v v1 6= ⊥ ∧ v′2 v v2 6= ⊥ ∧
(v′1, v1, v′2, v2, τ, ∆r) ∈ ♦ }

where
♦ = {(in1∗, in1∗, in1∗, in1∗, unit, ∆r) } ∪

{(inZn, inZn, inZn, inZn, int, ∆r) | n ∈ Z } ∪
{(inLl, inLl, inLl, inLl, (∆l)ref, ∆r) | l ∈ dom(∆) } ∪
{(in⊕inid

′
1, in⊕inid1, in⊕inid

′
2, in⊕inid2, τ1 + τ2, ∆r) |

∃∆0r0 C ∆r. (d′1, d1, d2, d2, τi, ∆0r0) ∈ ∇V , i ∈ {1, 2} } ∪
{(in⊗(d′1a, d′1b), in⊗(d1a, d1b), in⊗(d′2a, d′2b), in⊗(d2a, d2b),

τa × τb, ∆r) |
∃∆0r0 C ∆r. (d′1a, d1a, d′2a, d′2a, τa, ∆0r0) ∈ ∇V and

(d′1b, d1b, d′2b, d2b, τb, ∆0r0) ∈ ∇V } ∪
{(in−−◦d′1, in−−◦d1, in−−◦d

′
2 in−−◦d2, τ → Tτ ′, ∆r) |

∀∆′r′ B ∆r, (v′1 , v1, v′2, v2, τ, ∆′r′) ∈ ∇V .
(d′1v

′
1, d1v1, d′2v

′
2, d2v2, Tτ ′, ∆′r′) ∈ ∇M } ∪

{(inµd′1, inµd1, inµd′2, inµd2, µα.τ, ∆r) |
∃∆0r0 C ∆r. (d′1, d1, d′2, d2, τ [µα.τ/α], ∆0r0) ∈ ∇V }

F (∇,∇)K = {(k′1, k1, k′2, k2, (x : τ)>, ∆r) |
k′1 v k1 ∧ k′2 v k2 ∧ ∀∆′r′ B ∆r.
∀(S′1, S1, S′2, S2, ∆′r′) ∈ ∇S .
∀(v′1, v1, v′2, v2, τ, ∆′r′) ∈ ∇V .

(k′1S
′
1v
′
1 = > ⇒ k2S2v2 = >) ∧

(k′2S
′
2v
′
2 = > ⇒ k1S1v1 = >) }

F (∇,∇)M = {(m′
1, m1, m′

2, m2, T τ, ∆r) |
m′

1 v m1 ∧ m′
2 v m2 ∧ ∀∆′r′ B ∆r.

∀(k′1, k1, k′2, k2, (x : τ)>, ∆′r′) ∈ ∇K .
∀(S′1, S1, S′2, S2, ∆′r′) ∈ ∇S .

(m′
1k
′
1S

′
1 = > ⇒ m2k2S2 = >) ∧

(m′
2k
′
2S

′
2 = > ⇒ m1k1S1 = >) }

F (∇,∇)S = {(⊥, S1, ⊥, S2, ∆r) } ∪
{(S′1, S1, S′2, S2, ∆r) | r = {r1, . . . , rn} ∧

S′1 v S1 6= ⊥ ∧ S′2 v S2 6= ⊥ ∧ ∀i 6= j, i, j ∈ 1, . . . , n.
Ari1(S1) ∩Arj1(S1) = ∅ ∧ Ari2(S2) ∩Arj2(S2) = ∅ ∧
dom(∆) ∩Ar1(S1) = ∅ ∧ dom(∆) ∩Ar2(S2) = ∅ ∧
∀l ∈ dom(∆).(S′1l, S1l, S′2l, S2l, ∆l, ∆r) ∈ ∇V ∧
∀ra ∈ r.∃(Pb, LLb) ∈ ra. (S1, S2) ∈ p̂b ∧

∀(l1, l2, τ) ∈ LLb.(S′1l1, S1l1, S
′
2l2, S2l2, τ, ∆r) ∈ ∇V

Fig. 1. Invariant Relation ∇

n ∈ {V,K, M, S}. In the definition of F (R−, R+)S ∈ R(i−1S) the accessibility
maps and the simple state relations mentioned in a parameter ∆r are only
used on the non-primed elements s1, s2 from (s′1, s1, s

′
2, s2,∆r). As explained,

approximation will be carried out on the primed domain elements. Therefore,
we define application of a pair of functions (f, j) to a relation only for f v j with
j an isomorphism j ∈ {i, i−1, idD, idF (D,D)}. In an application (f, j)R we apply
f to the elements in the primed positions, and j to the elements of the non-
primed positions. Then we define (f, j) : R ⊂ S to mean that set theoretically
(f, j)R ⊆ S. It holds that F (R−, R+) preserves admissibility of R+. It also holds
that R−, R+, S−, S+ ∈ R(D) with (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+

implies (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+). These properties are
essential for the proof of existence of the invariant relation ∇.

Proposition 1 (Weakening). For all ∆′r′ B ∆r,

– (v′1, v1, v
′
2, v2, τ, ∆r) ∈ ∇V ⇒ (v′1, v1, v

′
2, v2, τ, ∆

′r′) ∈ ∇V ,
– (k′1, k1, k

′
2, k2, (x : τ)>,∆r) ∈ ∇K ⇒ (k′1, k1, k

′
2, k2, (x : τ)>,∆′r′) ∈ ∇K ,

– (m′
1,m1,m

′
2,m2, T τ, ∆r) ∈ ∇M ⇒ (m′

1,m1,m
′
2,m2, T τ, ∆′r′) ∈ ∇M .

Below we define a binary relation between denotations of typing judgement con-
clusions. This relation will be used as basis for proofs of contextual equivalence.
The relation is defined by reference to the 4-ary relations from ∇. For two closed
terms, two continuations, or two states the binary relation requires that their de-
notations d1, d2 are related as two pairs (d1, d1, d2, d2, (type), parameter) ∈ ∇j .
The denotations of open value-terms with n free variables belong to Vn −−◦ V,
denotations of open computation terms toVn −−◦M. They must give related el-
ements in ∇ whenever they are applied to n-tuples of ∇-related elements form
V.

Definition 7 (Relating denotations of open expressions).

– For all Γ = x1 : τ1, . . . , xn : τn and ∆;Γ ` V1 : τ and ∆;Γ ` V2 : τ
let v1 = [[∆;Γ ` V1 : τ]] and v2 = [[∆;Γ ` V2 : τ]], and define

(v1, v2, τ, ∆r) ∈ ∇Γ
V

def⇐⇒
∀∆′r′ B ∆r.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi,∆

′r′) ∈ ∇V .

(v1(v′1i), v1(v1i), v2(v′2i), v2(v2i), τ, ∆′r′) ∈ ∇V .

– For all Γ = x1 : τ1, . . . , xn : τn, ∆;Γ ` M1 : Tτ and ∆;Γ ` M2 : Tτ ,
let m1 = [[∆;Γ ` M1 : Tτ]] and m2 = [[∆;Γ ` M2 : Tτ]], and define

(m1,m2, T τ, ∆r) ∈ ∇Γ
M

def⇐⇒
∀∆′r′ B ∆r.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi,∆

′r′) ∈ ∇V .

(m1(v′1i),m1(v1i),m2(v′2i),m2(v2i), T τ, ∆′r′) ∈ ∇M .

– For all ∆;` K1 : (x : τ)> and ∆;` K2 : (x : τ)>,
let k1 = [[∆;` K1 : (x : τ)>]] and k2 = [[∆;` K2 : (x : τ)>]], and define

(k1, k2, (x : τ)>,∆r) ∈ ∇∅
K

def⇐⇒ (k1, k1, k2, k2, (x : τ)>,∆r) ∈ ∇K .

– For all Σ1 : ∆, Σ2 : ∆, let S1 ∈ [[Σ1 : ∆]] and S2 ∈ [[Σ2 : ∆]], and define

(S1, S2,∆r) ∈ ∇∅
S

def⇐⇒ (S1, S1, S2, S2,∆r) ∈ ∇S .

Lemma 1.

1. Suppose (m1,m2, T τ, ∆r) ∈ ∇Γ
M . We then have that

∀∆′r′ B ∆r.∀(v1j , v2j , τj ,∆
′r′) ∈ ∇∅

V .∀j ∈ {1, . . . , n}.
∀(k1, k2, (x : τ)>,∆′r′) ∈ ∇∅

K .∀(S1, S2,∆
′r′) ∈ ∇∅

S .
(i−1(m1(v1j)))k1S1 = > ⇐⇒ (i−1(m2(v2j)))k2S2 = >.

Theorem 3 (Fundamental Theorem). For all parameters ∆r it holds that

– if ∆;Γ ` V : τ then ([[∆;Γ ` V : τ]], [[∆;Γ ` V : τ]], τ, ∆r) ∈ ∇Γ
V ,

– if ∆;Γ ` M : Tτ then ([[∆;Γ ` M : Tτ]], [[∆;Γ ` M : Tτ]], T τ, ∆r) ∈ ∇Γ
M .

The Fundamental Theorem is proved in the standard way by showing that all
the typing rules preserve relatedness in ∇Γ ; weakening (Proposition 1) is used
in several proof cases.

Lemma 2.

– ∀r. ([[∆;` val x : (x : τ)>]], [[∆;` val x : (x : τ)>]], (x : τ)>,∆r) ∈ ∇∅
K ,

– if S ∈ [[∆]] then (S, S,∆id∅) ∈ ∇∅
S.

The following theorem expresses that we can show two computations or two
values to be contextually equivalent by showing that they are related in ∇Γ

under a parameter ∆id∅, which does not require that any hidden invariants
hold for states. The computations may themselves be able to build up local
state invariants and a proof of relatedness will often require one to express these
invariants; see the examples in the next section.

Theorem 4 (Contextual Equivalence). Let C[] : (∆;Γ ` γ) ⇒ (∆;` Tτ)
be a context. If ∆;Γ ` G1 : γ and ∆;Γ ` G2 : γ and

([[∆;Γ ` G1 : γ]], [[∆;Γ ` G2 : γ]], γ,∆id∅) ∈ ∇Γ
j , j ∈ {V,M}

then

∀Σ : ∆. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓).

5 Examples

Before presenting our examples, we will first sketch how a typical proof of contex-
tual equivalence proceeds. Thus, suppose we wish to show that two computations
m1 and m2 are contextually equivalent. We then need to show that they are re-
lated in a parameter ∆id∅ or, equivalently, in ∆r, for any r. This requires us to

show, for any extended parameter ∆1r1, any pair1 of continuations k1 and k2

related in ∆1r1, and any pair of states S1 and S2 related in ∆1r1, m1k1S1 and
m2k2S2 have the same termination behaviour. The latter amounts to showing
that k1(S1[. . .])v1 and k2(S2[. . .])v2 have the same termination behaviour, where
S1[. . .] and S2[. . .] are potentially updated versions of S1 and S2; and v1 and v2

are values. Since k1 and k2 are assumed related in ∆1r1, it suffices to define a
parameter ∆2r2 extending ∆1r1 and show that S1[. . .] and S2[. . .] are related
in ∆2r2 and that v1 and v2 are related in ∆2r2. Typically, the definition of the
parameter ∆2r2 essentially consists of defining one or more local parameters,
which capture the intuition for why the computations are related.

In the first example below we prove that M and N from the Introduction are
contextually equivalent. In this case, the only local parameter we have to define
is r̃3 = ((P1, LL1) ∨ (P2, LL2)), where

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0)},
P2 = ({(S1, S2) | S2lp = n 6= 0}, A∅, A{lp}), LL2 = {(ly, ly1)}.

This local parameter expresses that, depending on the value of S2(lp), either the
locations (ly, ly0) or the locations (ly, ly1) contain related values.

In the first subsection below we present the proof of contextual equivalence
of M and N in detail. Formally, there are several cases to consider, but do note
that the proof follows the outline given above and is almost automatic except
for the definition of the local parameter shown above.

5.1 Example 1

Consider the programs M and N from the Introduction.
We want to show that M and N are related in any parameter ∆r, that is

∀∆r. ([[∅;` M : σ]], [[∅;` N : σ]]), σ, ∆r) ∈ ∇∅
V . Here σ = (τ → Tτ ′) → T (σ1 × σ2),

and σ1 = (τ → Tτ ′) → Tunit and σ2 = unit → (τ → Tτ ′)). As M and N are values of
function type, their denotations have the forms in−−◦dM and in−−◦dN . We need to show
∀∆1r1 B ∆r.∀(v′1, v1, v

′
2, v2, τ → Tτ ′, ∆1r1) ∈ ∇V . (dMv′1, dMv1, dNv′2, dNv2, T (σ1 ×

σ2), ∆
1r1) ∈ ∇M .

It suffices to show that ∀∆2r2 B ∆1r1.∀(k′1, k1, k
′
2, k2, (x : σ1 × σ2)

>, ∆2r2) ∈ ∇K .
∀(S′

1, S1, S
′
2, S2, ∆

2r2) ∈ ∇S it holds that (dMv′1)k
′
1S

′
1 = > =⇒ (dNv2)k2S2 = > and

(dNv′2)k
′
2S

′
2 = > =⇒ (dMv1)k1S1 = >.

Now,(dMv1)k1S1 = k1(S1[ly 7→ v1])([[∅; y ` recf1M]](y 7→ ly), [[∅; y ` recf2M]](y 7→ ly)),

where ly is a location that is fresh wrt. the store S1 in combination with the parameter
∆2r2, i.e.,

ly /∈ dom(∆2) ∪Ar21(S1). (1)

The value of (dMv′1)k
′
1S

′
1 is similar.

Moreover,

(dNv2)k2S2 = k2 (S2[lp 7→ inZ0, ly0 7→ v2, ly1 7→ v2])
([[∅; p, y0, y1 ` recf1N]](p 7→ lp, y0 7→ ly0, y1 7→ ly1),
[[∅; p, y0, y1 ` recf2N]](p 7→ lp, y0 7→ ly0, y1 7→ ly1)),

1 Formally, we consider 4-tuples.

where lp, ly0, ly1 are locations that are fresh wrt. the store S2 in combination with the
parameter ∆2r2, i.e

lp, ly0, ly1 /∈ dom(∆2) ∪Ar22(S2). (2)

The value of (dNv′2)k
′
2S

′
2 is similar.

Since the continuations are related in the parameter ∆2r2 it suffices to show that,
if S′

1 6= ⊥∨S′
2 6= ⊥ then we can give an extended parameter ∆3r3 B∆2r2 such that the

updated states and the values (pairs of (set,get)) are related in the extended parameter
∆3r3.

We let ∆3r3 = ∆2(r2 ∪ {r̃3}), where r̃3 = ((P1, LL1) ∨ (P2, LL2)), and

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0, τ → Tτ ′)},
P2 = ({(S1, S2) | S2lp = n 6= 0}, A∅, A{lp}), LL2 = {(ly, ly1, τ → Tτ ′)}.

Recall ∀S. A∅(S) = ∅ ∧ ∀S. A{lp}(S) = {lp}.
Then it holds that the accessibility maps associated with the local parameter r̃3, are
given by ∀S.Ar̃31(S) = {ly} and ∀S.Ar̃32(S) = {lp, ly0, ly1}.

We now verify that

(S′
1[ly 7→ v′1], S1[ly 7→ v1], S

′
2[lp 7→ inZ0, ly0 7→ v′2, ly1 7→ v′2],

S2[lp 7→ inZ0, ly0 7→ v2, ly1 7→ v2], ∆
3r3) ∈ ∇S .

(3)

By (1) and (2), all locations viewed by the local parameter r̃3 are disjoint from
dom(∆2) and from all local areas viewed by r2. The stores have only been changed
in locations viewed by r̃3. Since values related in a parameter are also related in any
extending parameter (weakening) every requirement from ∆2r2 still holds. Finally,
since S2[lp 7→ inZ0, ly0 7→ v2, ly1 7→ v2](lp) = 0 and the values stored in locations ly
and ly0 in the updated stores, namely v′1, v1, v

′
2, v2, are related in ∆1r1 and then by

weakening also in ∆3r3, the first disjunct of r̃3 is satisfied, and hence (3) holds.
It remains to show
A: ([[∅; y ` recf1M]](y 7→ ly), [[∅; y ` recf1M]](y 7→ ly), [[∅; p, y0, y1 ` f1N]](p 7→

lp, y0 7→ ly0, y1 7→ ly1), [[∅; p, y0, y1 ` recf1N]](p 7→ lp, y0 7→ ly0, y1 7→ ly1), (τ → Tτ ′) →
Tunit, ∆3r3) ∈ ∇V and

B: ([[∅; y ` recf2M]](y 7→ ly), [[∅; y ` recf2M]](y 7→ ly), [[∅; p, y0, y1 ` recf2N]](p 7→
lp, y0 7→ ly0, y1 7→ ly1)[[∅; p, y0, y1 ` recf2N]](p 7→ lp, y0 7→ ly0, y1 7→ ly1), (τ → Tτ ′) →
Tunit, ∆3r3) ∈ ∇V

Now let ∆4r4 B ∆3r3, (w′
1, w1, w

′
2, w2, τ → Tτ ′, ∆4r4) ∈ ∇V , and

let ∆5r5 B ∆4r4, (K′
1, K1, K

′
2, K2, (x : τ → Tτ ′)>∆5r5) ∈ ∇K , (S′

1, S1, S
′
2, S2, ∆

5r5) ∈
∇S , (c′1, c1, c

′
2, c2, (x : unit)>, ∆5r5) ∈ ∇K

We have denotations [[∅; y ` recf1M]](y 7→ ly) = in−−◦dM1, [[∅; p, y0, y1 ` recf1N]](p 7→
lp, y0 7→ ly0, y1 7→ ly1) = in−−◦dN1, [[∅; y ` recf2M]](y 7→ ly) = in−−◦dM2, [[∅; p, y0, y1 `
recf2N]](p 7→ lp, y0 7→ ly0, y1 7→ ly1) = in−−◦dN2.

A: Now we want to show relatedness of the setters. As before if w′
1 = w′

2 = ⊥ or
S′

1 = S′
2 = ⊥ we are done. Otherwise we reason as follows.

Observe that (dM1w1)c1S1 = c1(S1[ly 7→ w1])in1∗ and similarly (dM1w1)c
′
1S

′
1 =

c′1(S
′
1[ly 7→ w′

1])in1∗. Also, (dN1w2)c2S2 = c2(S2[lp 7→ inZ0, ly0 7→ w2])in1∗, if S2lP 6=
0, and (dN1w2)c2S2 = c2(S2[lp 7→ inZ1, ly1 7→ w2])in1∗, if S2lP = 0. Similarly for the
approximation (dN1w

′
2)c

′
2S

′
2.

Since the states are related in ∆5r5 which is an extension of ∆3r3 we know that
the content of S2lp is inZn for some n. We know that the continuations c′1, c1, c

′
2, c2

are related in ∆5r5. (in1∗, in1∗, in1∗, in1∗, unit, ∆5r5) since they are related in any
parameter. So if we can show that the updated states are related in ∆5r5 we are done.

The states S′
1, S1, S

′
2, S2 are related in ∆5r5. All changes are only within the store

areas belonging to r̃3 and the changes preserve the invariant for r̃3, hence the updated
states are still related in ∆5r5. We conclude that the setters are related in ∇3r3.

B: Now we want to show relatedness of the getters. As before, if the denotations are
applied to related unit type values where the approximations are ⊥ or if S′

1 = S′
2 = ⊥

we are done. Otherwise we reason as follows. Note that (dM2in1∗)K1S1 = K1S1(S1ly)
and similarly (dM2in1∗)K′

1S
′
1 = K′

1S
′
1(S

′
1ly). Since the states are not ⊥ and are related

in ∆5r5 which is an extension of ∆3r3 we know that the content of S2lp is inZn for
some n. We have that (dN2in1∗)K2S2 = K2S2(S2ly0), if n = 0, and (dN2in1∗)K2S2 =
K2S2(S2ly1), if n 6= 0. Similarly for the approximation (dN2in1∗)K′

2S
′
2.

We know that the continuations K′
1, K1, K

′
2, K2 and the states S′

1S1, S
′
2, S2 are

related in ∆5r5. So if we can show that the retrieved values are related in ∆5r5 we are
done.

Since the states S′
1S1, S

′
2, S2 are related in ∆5r5 they satisfy the invariant of r̃3. So

the content of S2lp is inZn for some n. If n = 0 then S′
1ly, S1ly, S′

2ly0, S2ly0 are related
in ∆5rr, and if n 6= 0 then S′

1ly, S1ly, S′
2ly1, S2ly1 are related in ∆5rr, again by the

requirement from r̃3. This is what we need for the retrieved values to be related. We
conclude that the getters are related in ∇3r3.

Then we can conclude that ([[M]], [[N]], σ, ∆r) ∈ ∇∅
V , and as ∆r was arbitrary that

they are related in any parameter. Hence the programs M and N are contextually

equivalent.

5.2 Example 2

Consider the computation terms M ′ and N ′ from the Introduction. They both have a
free variable g of function type. We want to show that M ′ and N ′ are related in any
parameter ∆r.

We need to show ∀∆1r1 B ∆r.∀(g′1, g1, g
′
2, g2, σ, ∆1r1) ∈ ∇V .

∀∆2r2 B ∆1r1.∀(k′1, k1, k
′
2, k2, (x : σ1)

>, ∆2r2 ∈ ∇K).∀(S′
1, S1, S

′
2, S2, ∆

2r2) ∈ ∇S .
[[∅; g : σ ` M ′ : Tσ1]](g 7→ g′1)k

′
1S

′
1 = > =⇒ [[∅; g : σ ` N ′ : Tσ1]](g 7→ g2)k2S2 = > and

[[∅; g : σ ` N ′ : Tσ1]](g 7→ g′2)k
′
2S

′
2 = > =⇒ [[∅; g : σ ` M ′ : Tσ1]](g 7→ g1)k1S1 = >.

Here σ = σ1 → Tunit, and σ1 = unit → Tunit.

For the proof of this we define a local parameter r̃3 = (P 3, ∅) for P 3 = ({(Sa, Sb)|
Sblx = inZn > 0)}, A∅, A{lx}), where lx is fresh for dom(∆2)∪Ar22(S2). Then we have

a parameter ∆3r3 where ∆3 = ∆2 and r3 = r2 ∪ {r̃3} which we use in the proof.

6 Conclusion

We have presented a local relational proof method for establishing contextual
equivalence of expressions in a language with recursive types and general refer-
ences, building on earlier work of Benton and Leperchey [2]. The proof of exis-
tence of the logical relation is fairly intricate because of the interplay between

recursive types and local parameters for reasoning about higher-order store.
However, the method is easy to use on examples: the only non-trivial steps are
to guess the right local parameters — but since the local parameters express
the intuitive reason for contextual equivalence, the non-trivial steps are really
fairly straightforward. It is possible to extend our method to a language also
with impredicative polymorphism; we will report on that on another occasion.

References

1. A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In P. Sestoft, editor, Programming Languages and Systems. 15th European
Symposium on Programming, ESOP 2006, volume 3924 of Lecture Notes in Com-
puter Science, pages 69–83. Springer, 2006.

2. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proceedings of the Seventh International Conference on Typed Lambda
Calculi and Applications (TLCA’05), volume 3461 of Lecture Notes in Computer
Science. Springer, 2005.

3. L. Birkedal and R. Harper. Constructing interpretations of recursive types in an
operational setting. Information and Computation, 155:3–63, 1999.

4. V. Koutavas and M. Wand. Bisimulations for untyped imperative objects. In
P. Sestoft, editor, Programming Languages and Systems, 15th European Symposium
on Programming, ESOP 2005, Vienna, Austria., volume 3924 of Lecture Notes in
Computer Science. Springer, 2006. to appear.

5. V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order
imperative programs. In POPL ’06: Proceedings of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages 141–152,
New York, NY, USA, 2006. ACM Press.

6. I. A. Mason, S. Smith, and C. L. Talcott. From operational semantics to domain
theory. Information and Computation, 128(1):26–47, 1996.

7. A. Pitts. Relational properties of domains. Information and Computation, 127:66–
90, 1996.

8. A. Pitts and I. Stark. Observable properties of higher order functions that dy-
namically create local names, or: What’s new? In Mathematical Foundations of
Computer Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of Lecture
Notes in Computer Science, pages 122–141. Springer-Verlag, Berlin, 1993.

9. U. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1-3):129–160, Mar. 2004.

10. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), pages 55–74, Copenhagen, Denmark, July 2002. IEEE Press.

11. M. Shinwell. The Fresh Approach: Functional Programming with Names and
Binders. PhD thesis, Computer Laboratory, Cambridge University, Dec. 2004.

12. M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical
Computer Science, 342:28–55, 2005.

13. E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Long Beach, California, 2005.

