
A Relational Realizability Model for

Higher-Order Stateful ADTs

Lars Birkedal, Kristian Støvring, Jacob Thamsborg∗

IT University of Copenhagen

Abstract

We present a realizability model for reasoning about contextual equivalence
of higher-order programs with impredicative polymorphism, recursive types,
and higher-order mutable state.

The model combines the virtues of two recent earlier models: (1) Ahmed,
Dreyer, and Rossberg’s step-indexed logical relations model, which was de-
signed to facilitate proofs of representation independence for “state-dependent”
ADTs and (2) Birkedal, Støvring, and Thamsborg’s realizability logical rela-
tions model, which was designed to facilitate abstract proofs without tedious
step-index arithmetic. The resulting model can be used to give abstract
proofs of representation independence for “state-dependent” ADTs.

Keywords: Abstract Data Types, Logical Relations, Local State,
Parametricity

1. Introduction

Reynolds [31] proposed to use logical relations for reasoning about poly-
morphic programs, in particular, to show equivalence of polymorphic pro-
grams and to show representation independence for abstract data types.
Reynolds’ work focused on System F, a core calculus for polymorphic func-
tional programming. In recent years, there has been a lot of work on giving

∗Corresponding Author
Email addresses: birkedal@itu.dk (Lars Birkedal), kss@itu.dk (Kristian

Støvring), thamsborg@itu.dk (Jacob Thamsborg)
URL: www.itu.dk/~birkedal (Lars Birkedal), www.itu.dk/~kss (Kristian

Støvring), www.itu.dk/~thamsborg (Jacob Thamsborg)
1Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Preprint submitted to The Journal of Logic and Algebraic ProgrammingJanuary 25, 2012

logical relations models for reasoning about contextual equivalence and repre-
sentation independence in increasingly realistic programming languages with
effects [27, 29, 24, 10, 4, 17].

For programming languages involving recursive types and general refer-
ences there are two main technical challenges:

Well-definedness Show that the logical relation is well-defined (that is ex-
ists); traditionally logical relations have been defined by induction on
the structure of types but that is not possible in the presence of recur-
sive types (and/or references).

Mutable Abstract Data Types Define the logical relation in such a way
that one can use it to show equivalences of programs using local state
for implementing mutable abstract data types in different ways

Recently (in 2009) two logical relation models, developed in parallel, were
proposed for reasoning about a call-by-value language with impredicative
polymorphism, recursive types, and general references: one was developed
by Ahmed, Dreyer, and Rossberg (hereafter ADR) [3] and one was devel-
oped by the current authors (hereafter BST) [12]. Both models use Kripke
logical relations to capture that the meaning of types depends on how many
references have been allocated

We now highlight some features of the ADR and BST models to situate
the present paper.

The ADR model is a step-indexed model over the operational semantics
in which the logical relation is indexed by natural numbers, following ideas
of Appel and McAllester [8]. Step-indexing is used to address the challenge
of showing well-definedness of the logical relation. The main technical inno-
vation in the ADR model is an advanced definition of worlds, which makes
it possible to show contextual equivalences of many examples involving local
state. In particular, it is possible to reason about programs using local state
invariants that evolve over time.

The indexing over natural numbers makes reasoning directly in the model
fairly low-level and cumbersome, however, since one has to keep explicit
account of the indeces.

This led Dreyer et al. to develop logics for reasoning more abstractly
about step-indexed logical relation models, first for a language without refer-
ences [20] and then, most recently, for reasoning about the ADR model [22].
The latter logic, called LADR, is a modal relational logic in which one can

2

reason about ADR style contextual equivalences at a higher level of abstrac-
tion avoiding low-level details about steps and worlds.

The focus of the BST model was to obtain a relatively abstract logical
relations model, without any step-indexing, by constructing the logical re-
lations over a simple adequate domain-theoretic model of the programming
language. Thence the well-definedness of the model was more complicated to
establish and the main technical innovations in the BST model were (i) the
observation that one can solve the naturally occurring recursive world equa-
tion in a category of ultrametric spaces and (ii) a novel modeling of locations
with a domain-theoretic codification of approximation information, crucially
used for establishing the well-definedness of the model. The model is indeed
more abstract than the ADR model in the sense that, e.g., two functions
f1 and f2 are related if they map related arguments to related results and
there is no reasoning about steps. On the other hand, the BST model used a
simple form of world, which only allowed to prove equivalences of programs
that used local state in simple ways.

In this paper we extend the BST model with more refined worlds similar
to those from the ADR model (specifically, we use the world description of
LADR, which is a slight simplification of the one in ADR). Thus we show
that the semantic techniques used in the BST model scale to state-of-the-art
world descriptions and the resulting model can be used to show equivalences
like those that can be shown using the ADR model, but with more abstract
reasoning without any step-indexing. We compare reasoning in the resulting
model to reasoning using the ADR model and the LADR logic.

2. Overview of the Technical Development

The present paper is a lengthy and somewhat technical one. To navi-
gate safely the many details, we provide a quick, informal overview of the
development and give extended textual explanations of some high points.

3

The language in question, including typing rules, is introduced in Sec-
tion 3. It is a quite standard call-by-value language with universal,
recursive and reference types.

An untyped denotational semantics is given in Section 4. The seman-
tics is adequate and is given in monadic style by means of a universal
predomain; this again, is obtained as the solution to a recursive do-
main equation. The semantics is quite standard with the exception of
approximate locations, see Subsection 2.1 below. This section also de-
fines the crucial domain-theoretic notions of uniform predomains and
domains.

Some basic metric space theory is recalled in Section 5, in particular
we discuss the notion of ultrametrics. Also we introduce a category of
certain ordered metric spaces with an associated fixed-point theorem
to be used in Section 7.

Bohr relations on uniform predomains and domains are defined and also
equipped with a metric in Section 6. These are the kind of relations
on states and values we will work with; the definition is motivated in
Subsection 2.2 below.

The possible worlds of our Kripke logical relations are built in Section 7.
These mimic the worlds of ADR. They are obtained as the fixed point
of a functor on a certain category of ordered metric spaces; we labo-
riously build this functor and verify that it meets the requirements of
the fixed point theorem. See also Subsection 2.3 below for a short, in-
formal description of the worlds and some considerations on the choice
of categories and fixed-point theorem.

The world-indexed logical relation is finally built in Section 8. The re-
lation on states induced by a world corresponds to the approach taken
in ADR, the interpretation of reference types does not, rather we take a
more extensional approach. The remaining types are interpreted much
as in BST, in particular we rely on our metric setup and Banach’s
fixed-point theorem in the case of recursive types. Also we rely on the
approximate locations discussed in Subsection 2.1 below to ensure that
the interpretation of reference types is well-defined.

4

The fundamental theorem of logical relations and proof resides in Sec-
tion 9 after a definition of semantic relatedness; that the latter im-
plies contextual approximation is an immediate corollary. The proof is
lengthy, but it is a simple matter of verification in light of the defini-
tions of the previous sections, and we only include some of the proof
cases.

A worked-out example is the last Section 10 of the paper. We introduce
some necessary syntactic sugar and prove the equivalence of Example
5.1 in ADR. This particular example is spelled out in ADR too, and
so one can compare reasoning in the two models. Indeed, we conclude
this section with some general considerations on this, also taking into
account the recent LADR logic [22]. This serves as conclusion to the
entire paper as well and has directions for future work.

2.1. Approximate Locations

As mentioned in the introduction, it is not, in general, trivial to prove
the existence of logical relations in the presence of recursive types; a simple
definition by induction on the types will not do. Minimal invariance as
proposed by Pitts [28] and others is, arguably, the method of choice to tackle
this issue, but it is not readily applicable because of the general reference
types. In some sense, the standard, flat modelling of locations as integers
does not provide enough foothold to get the iterative machinery of minimal
invariance going.

Faced with this issue, the authors coined the idea of approximate loca-
tions in earlier work [13]. A location, say l, is modelled by an element λl that
is the least upper bound of an ascending chain λ1

l v λ2
l v · · · v λl of so-called

approximate locations. The interpretation of references to a type ν then has
‘proper’ semantic locations such as λl as well as approximate semantic loca-
tions such as λn+1

k ; the latter intuitively signifies that ν and the type of values
stored at location k might agree only up to the nth approximation. These
approximate locations were the crucial ingredient in a minimal invariance
proof of existence of a logical relation indexed over syntactic worlds.

In BST, the minimal invariance was wrapped in metrics; this permitted
the solution of a definitional circularity involving semantic worlds and se-
mantic types. The approximate locations were still necessary, however; the
interpretation of reference types simply would not be non-expansive without
them. Here, we copy that usage, apart from a minor technical change to the

5

interpretation of lookup and assignment due to the more refined worlds. See
Section 4 for details.

The approximate locations are required for technical reasons as sketched
above. On the other hand, they do not mirror anything in the language
and are, as such, junk. Some implications of their presence in the model is
discussed at the end of Section 10.

2.2. Bohr Relations

One novelty of this paper is the particular choice of conditions we impose
on our relations.

We carve our relations out of a universal predomain V that loosely cor-
responds to the set of closed, syntactic values. V is essentially obtained
as the solution to a recursive domain equation as prescribed by Smyth and
Plotkin [33]. But we must impose some restrictions – it will not do to allow
all relations on V . The presence of recursive terms requires that relations
respect the denotational construction of fixed points. And recursive types
renders the existence of the logical relation non-trivial and the relations must
accommodate that.

In BST we worked with complete, uniform relations. Complete means
chain-complete, i.e., if we have an ascending chain of pairs in a relation, then
the pair of the least upper bounds also must be in the relation. Uniform
loosely means closed under the projections that come with solutions to re-
cursive domain equations. For each n ∈ ω we have a projection πn : V → V⊥;
a relation R ⊆ V × V is uniform if for all (v1, v2) ∈ R and all n ∈ ω we have
that

(πn(v1), πn(v2)) ∈ {⊥,⊥} ∪ {bw1c, bw2c | (w1, w2) ∈ R},

where b−c : V → V⊥ is the standard inclusion. Completeness and uniformity
deal with the issues that arise from recursive terms and types respectively.
Indeed, they are both well-known approaches, completeness is present, e.g.,
in work by Reynolds [31] and uniformity is found, e.g., in work by Abadi and
Plotkin [2] and by Amadio [5].

Restricting to uniform and complete relations comes at a price, however:
we are, e.g., unable to relate an integer to a pair of integers since the latter
but not the former ‘bottom out’ under application of π1 : V → V⊥. Similarly,
one cannot relate, say, a list of integers, to it length; indeed, most non-trivial
relations are not uniform. It is not just a question of taking the appropriate
closure: if a relation has a pair (v1, v2) for which there is n ∈ ω such that, say,

6

πn(v1) = ⊥ 6= πn(v2) then obviously the same is the case for any superset.
This is a shortcoming because the conceptual relations that one ‘plugs into’
universal (and existential) types must be complete and uniform too, which
limits the use of relational parametricity. None of the proofs of example
equivalences of ADR appear to fail on these grounds, but it is easy to build
equivalences that would: relating, say, a standard imperative counter to one
that stores its count as the sum of a pair of integers cannot be done. Note that
the restriction to uniform and complete relations does have some intuitive
merit; we do, after all, approximate contextual equivalence with our relations
and thus relating bottom to non-bottom seems inappropriate.

It is this shortcoming we address with Bohr relations, which we formally
introduce in Section 6. Conceptually, we aim for relations that approximate
contextual approximation rather than contextual equivalence. Technically,
Bohr relations only restrict the left hand side: Bohr relations are chain-
complete and downwards closed in the left coordinate. The former means,
that if we have a sequence of pairs in the relation such that the left coordinates
form an ascending chain and the right coordinates are identical, then the pair
of the least upper bound of the left coordinates and the right coordinate must
be in the relation too. The latter means, that if we have a pair in the relation,
then any pair with a smaller left coordinate and identical right coordinate
must be in the relation too. Being uniform instead of downwards closed in the
left coordinate would work as well, but we stick to the latter for simplicity.

While not all relations on V are Bohr relations, they all have a least
Bohr relation that contain them; this closure can be ‘plugged into’ universal
types. Thus the overall idea is to remove the artificial ‘synchronization’ re-
striction imposed by (two-sided) uniformity and so be free to apply relational
parametric reasoning at will.

Going for contextual approximation instead of contextual equivalence
seems standard in recent step-indexed models of recursive types. There is an
analogy to Bohr relations here: step-indexed models, e.g. [4], do not require
expressions to terminate in the same number of steps in order for them to
be related. Rather they allot a number of steps for the left hand side to ter-
minate, and if this happens then the right hand side is required to terminate
in any number of steps. Requiring the expressions to march in step would,
most likely, not invalidate the soundness of the reasoning but rather prove
fewer (albeit stronger) equivalences.

For expository reasons, we have focused on relations between values and
reasoning by relational parametricity in the explanations above. It is worth-

7

while, however, to note, that the restrictions on relations apply to relations
between states too. In particular, we would have been unable to relate, say,
the empty state to any non-empty state containing a pair with the (two-sided)
uniformity requirement of BST. This posed no problem in BST because of
the simple notion of worlds, but it would have been a severe limitation here.

We finally remark that the idea of approximating contextual approxima-
tion rather than contextual equivalence is present in the 4-tuples of Bohr
and Birkedal [17], hence the nomenclature. Their setup handled any kind of
relation, whether complete or not, uniform or not. We think we have distilled
this ability: 4-tuples are – roughly and in retrospect – just two Bohr relations
grouped together to be able to argue both ways of contextual approximation
in one go.

2.3. Solving Recursive World Equations

Definitional circularities arise when modelling higher-order store phenom-
ena; the main accomplishment of BST is the use of metric space theory to
solve one such circularity. That particular circularity involves both the space
of types and the space of worlds and so one has the choice of solving for either.
This is not, however, an immaterial choice. Types come with no particular
order and we can make do with a classic fixed-point result for functors on
the category of ultrametric spaces by America and Rutten [6]; this was the
approach taken in BST. Worlds, on the other hand, come with an extension
ordering that corresponds to further allocation. Hence we arrive at a functor
on certain ordered metric spaces and the cited result no longer suffices.

In ADR, the notion of world is far more refined than in BST. A world
is a series of islands, each managing separate parts of the store. Islands
themselves are dynamic, they have a population that may grow according
to a population law. Also each island has a heap law that regulates the
part of the store managed by the island; the heap law is indexed by the
population and hence may vary over time. We refer the reader to Section 7
and in particular to ADR for further motivation and explanation; here it shall
suffice to state that the heap laws are indexed also over worlds themselves
and so the definition of worlds is circular. But unlike the circularity solved in
BST, there seems to be no way of ‘cycling’ this circularity to arrive at point
where the fixed-point result of America and Rutten is applicable.

Faced with this challenge, the authors proved a generalized fixed-point
theorem [15] that allows for additional structure on the metric spaces, in

8

particular certain orderings. And it is a special case of this theorem that we
shall apply in Section 7 to build our space of worlds.

Recently, Dreyer et al. have developed the logic LADR [22] to facilitate
reasoning in the ADR model. In the process, they simplified the ADR model
somewhat and it is the notion of worlds from this, simpler model, that we
have chosen to settle on in this paper. We believe that this simplification
has removed the obstacles that prevented the use of the fixed-point result
of America and Rutten in our adaptation of the original ADR model. In
other words, we probably could do without the aforementioned generalized
fixed-point result. It would, however, take some amount of ‘hacking’ to do
so and the development would be more complicated.

A natural question to conclude this subsection is this: why do we use
metric space theory instead of domain theory to solve the definitional circu-
larity; after all, the latter is arguably the more standard tool for computer
scientists. The answer to this is somewhat vague: we probably could have
used the standard solution to recursive domain equations [33], but the or-
derings on the domains would be less natural than the metrics we use here.
Indeed, we have results that translates back and forth between the two ap-
proaches, but just writing out the circularity and equipping the domains with
the standard orderings does not work out well. You could hammer a nail into
the wall with a screwdriver, but using a hammer is the natural choice.

3. Programming Language

We consider the same programming language as the one used in the BST
model [12]. It is a standard call-by-value language with universal types,
iso-recursive types, ML-style reference types, and a ground type of integers.

The language is sketched in Figures 1 and 2. The typing rules are stan-
dard [26]. In the figure, Ξ and Γ range over contexts of type variables and
term variables, respectively. As we do not consider operational semantics in
this article, there is no need for location constants, and hence no need for
store typings.

4. Untyped semantics

The terms of the language above are not intrinsically typed. In other
words, the language consists of an untyped term language and a set of rules

9

Types: τ ::= int | 1 | τ1 × τ2 | 0 | τ1 + τ2 | µα.τ | ∀α.τ | α | τ1 → τ2 | ref τ

Terms: t ::= x | m | ifz t0 t1 t2 | t1 + t2 | t1 − t2 | () | (t1, t2) | fst t | snd t

| void t | inl t | inr t | case t0 x1.t1 x2.t2 | fold t | unfold t

| Λα.t | t [τ] | λx.t | t1 t2 | fix f.λx.t | ref t | !t | t1 := t2

Typing rules:

Ξ | Γ ` x : τ (Ξ ` Γ, Γ(x) = τ) Ξ | Γ ` m : int (Ξ ` Γ)

Ξ | Γ ` t0 : int Ξ | Γ ` t1 : τ Ξ | Γ ` t2 : τ

Ξ | Γ ` ifz t0 t1 t2 : τ

Ξ | Γ ` t1 : int Ξ | Γ ` t2 : int

Ξ | Γ ` t1 ± t2 : int Ξ | Γ ` () : 1 (Ξ ` Γ)

Ξ | Γ ` t1 : τ1 Ξ | Γ ` t2 : τ2

Ξ | Γ ` (t1, t2) : τ1 × τ2

Ξ | Γ ` t : 0

Ξ | Γ ` void t : τ
(Ξ ` τ)

Ξ | Γ ` t : τ1 × τ2

Ξ | Γ ` fst t : τ1

Ξ | Γ ` t : τ1 × τ2

Ξ | Γ ` snd t : τ2

Ξ | Γ ` t : τ1

Ξ | Γ ` inl t : τ1 + τ2

(Ξ ` τ2)
Ξ | Γ ` t : τ2

Ξ | Γ ` inr t : τ1 + τ2

(Ξ ` τ1)

Ξ | Γ ` t0 : τ1 + τ2 Ξ | Γ, xi : τi ` ti : τ (i = 1, 2)

Ξ | Γ ` case t0 x1.t1 x2.t2 : τ

(Continued in Figure 2.)

Figure 1: Programming language

10

Ξ | Γ ` t : τ [µα.τ/α]

Ξ | Γ ` fold t : µα.τ

Ξ | Γ ` t : µα.τ

Ξ | Γ ` unfold t : τ [µα.τ/α]

Ξ, α | Γ ` t : τ

Ξ | Γ ` Λα.t : ∀α.τ
(Ξ ` Γ)

Ξ | Γ ` t : ∀α.τ0

Ξ | Γ ` t [τ1] : τ0[τ1/α]
(Ξ ` τ1)

Ξ | Γ, x : τ0 ` t : τ1

Ξ | Γ ` λx.t : τ0 → τ1

Ξ | Γ ` t1 : τ → τ ′ Ξ | Γ ` t2 : τ

Ξ | Γ ` t1 t2 : τ ′

Ξ | Γ, f : τ0 → τ1, x : τ0 ` t : τ1

Ξ | Γ ` fix f.λx.t : τ0 → τ1

Ξ | Γ ` t : τ

Ξ | Γ ` ref t : ref τ

Ξ | Γ ` t : ref τ

Ξ | Γ ` !t : τ

Ξ | Γ ` t1 : ref τ Ξ | Γ ` t2 : τ

Ξ | Γ ` t1 := t2 : 1

Figure 2: Programming language (ctd.)

for assigning types to untyped terms. We now take advantage of this dis-
tinction and give a semantics of the untyped term language. This “untyped
semantics” is almost identical to the one used in the BST model [12, 16] (we
point out some minor differences below), but we include a description here in
order to keep the article self-contained. See the cited papers and earlier work
[13] by the authors for connections, i.e., adequacy, to a standard operational
semantics.

As usual for models of untyped languages, the semantics is given by means
of a “universal” complete partial order (cpo) in which one can inject integers,
pairs, functions, etc. This universal cpo is obtained by solving a recursive
domain equation.

The only non-standard aspect of the semantics is the treatment of store
locations. As explained in Section 2.1, the model includes approximate lo-
cations. This means that locations are modeled as elements of the cpo
Loc = N × ω where ω is the “vertical natural numbers” cpo: 1 @ 2 @
· · · @ n @ · · · @∞. (For notational reasons it is convenient to call the least
element 1 rather than 0.) The intuitive idea is that locations can be approx-
imated: the element (l,∞) ∈ Loc is the “ideal” location numbered l, while
the elements of the form (l, n) for n <∞ are its approximations. As already
mentioned, these approximate locations are included in order to ensure that
the logical relation we construct is well-defined.

11

4.1. Domain-theoretic preliminaries

We assume that the reader is familiar with basic denotational semantics,
as presented for example in Winskel [35], and with semantics in monadic
style [25].

Let Cpo be the category of ω-cpos and ω-continuous functions. We use the
standard notation for products, sums, and function spaces in Cpo. Injections
into binary sums are written ι1 and ι2. For any set M and any cpo A, the
cpo M ⇀fin A has maps from finite subsets of M to A as elements, and is
ordered as follows: f v f ′ if and only if f and f ′ has the same domain M0

and f(m) v f ′(m) for all m ∈M0.
A complete, pointed partial order (cppo) is a cpo containing a least el-

ement. We use the notation A⊥ = {bac | a ∈ A} ∪ {⊥} for the cppo
obtained by “lifting” a cpo A. The least fixed-point of a continuous function
f : D → D from a cppo D to itself is written fix f . The cppo of strict,
continuous functions from a cpo A to a cppo D is written A (D. For
continuous functions f : A→ B⊥ and g : B → C⊥ we define g ◦ f : A→ C⊥
as follows:

g ◦ f = λa.

{
g b, if f a = bbc,
⊥, otherwise.

Having now specified the kinds of partial orders we use, we follow common
practice and introduce some more abstract terminology: in this article, a
predomain simply means a cpo, and a domain means a cppo.

The semantics below is presented in monadic style [25], i.e., structured
using a monad that models the effects of the language. It is most convenient
to define this monad by means of a Kleisli triple: for every predomain S and
every domain Ans , the continuation-and-state monad TS,Ans : Cpo → Cpo
over S and Ans is given by

TS,Ans A = (A→ S → Ans)→ S → Ans

ηA a = λk.λs. k a s

c ?A,B f = λk.λs. c (λa.λs′.f a k s′) s

where ηA : A → TS,AnsA and ?A,B : TS,AnsA → (A → TS,AnsB) → TS,AnsB.
In the following we omit the type subscripts on η and ?. (Continuations are
included for a technical reason, namely to ensure chain-completeness of the
relations that will be used to model computations.)

12

4.2. A universal uniform predomain

The standard methods for solving recursive domain equations give solu-
tions that satisfy certain induction principles [33, 28]. One way of formulating
this property is that one obtains as a solution not only a domain D, but also
a sequence of “projection” functions $n on D such that each element d of D
is the limit of its projections $0(d), $1(d), etc. These functions therefore
provide a handle for proving properties about D by induction on n.

Definition 4.1.

1. A uniform predomain (A, ($n)n∈ω) is a predomain A together with a
family ($n)n∈ω of continuous functions from A to A⊥, satisfying

$0 v $1 v · · · v $n v . . . (1)⊔
n∈ω

$n = λa.bac (2)

$m ◦ $n = $n ◦ $m = $min(m,n) (3)

$0 = λe.⊥ . (4)

2. A uniform domain (D, ($n)n∈ω) is a domain D together with a family
($n)n∈ω of strict, continuous functions from D to itself, satisfying

$0 v $1 v · · · v $n v . . . (5)⊔
n∈ω

$n = idD (6)

$m ◦$n = $n ◦$m = $min(m,n) (7)

$0 = λe.⊥ . (8)

Uniform domains are called rank-ordered cpos in earlier work by Baier
and Majster-Cederbaum [9].

Proposition 4.2. There exists a uniform predomain (V, (πn)n∈ω) satisfying
the following two properties:

1. The following isomorphism holds in Cpo:

V ∼= Z + Loc + 1 + (V × V) + (V + V) + V

+ TS,AnsV + (V → TS,AnsV) (9)

13

where

TS,AnsV = (V → S → Ans)→ S → Ans

S = N⇀fin V

Ans = (Z + Err)⊥

and

Loc = N0 × ω
Err = 1 .

2. Abbreviate TV = TS,AnsV and K = V → S → Ans. Define the
following injection functions corresponding to the summands on the
right-hand side of the isomorphism (9):

inZ : Z→ V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV)→ V

in1 : 1→ V inµ : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions πn : V → V⊥ satisfy (and are deter-
mined by) the equations shown in Figure 3.

These two properties determine V uniquely, up to isomorphism in Cpo.

Proof (sketch). Proposition 3.2 of Birkedal et al. [14] gives a uniform predo-
main (V, ($n)n∈ω) where V satisfies (9). The proposition furthermore gives
a uniform predomain (S, ($S

n)n∈ω) as well as uniform domains (K, ($K
n)n∈ω)

and (TV, ($T
n)n∈ω) where S, K, and TV are as above. Now define the func-

tions πn as shown in Figure 3, by induction on n. We must show that
(V, (πn)n∈ω) is a uniform predomain.

One can show the following inequalities by mutual induction:

$n v πn+1 v $n+1

$S
n v πSn v $S

n+1

$K
n v πKn v $K

n+1

$T
n v πTn v $T

n+1 .

It follows from the first inequality that (πn)n∈ω is increasing. Furthermore,
the same inequality gives that

⊔
n∈ω πn = λv.bvc since

⊔
n∈ω$n =

⊔
n∈ω$n+1 =

14

π0 = λv.⊥ (10)

πn+1(inZ(m)) = binZ(m)c (11)

πn+1(in1(∗)) = bin1(∗)c (12)

πn+1(inLoc(l,∞)) = binLoc(l, n+ 1)c (13)

πn+1(inLoc(l,m)) = binLoc(l,min(n+ 1,m))c (14)

πn+1(in×(v1, v2)) =

{
bin×(v′1, v

′
2)c if πn v1 = bv′1c and πn v2 = bv′2c

⊥ otherwise

(15)

πn+1(in+(ιi v)) =

{
bin+(ιi v

′)c if πn v = bv′c
⊥ otherwise

(i = 1, 2) (16)

πn+1(inµ v) =

{
binµ v′c if πnv = bv′c
⊥ otherwise

(17)

πn+1(in∀ c) = bin∀(πTn c)c (18)

πn+1(in→ f) =

⌊
in→

(
λv.

{
πTn (f v′) if πn v = bv′c
⊥ otherwise

)⌋
(19)

Here the functions πSn : S → S⊥ and πKn : K → K and πTn : TV → TV are
defined as follows:

πS0 = λs.⊥ πK0 = λk.⊥ πT0 = λc.⊥ (20)

πSn+1(s) =

{
bs′c if πn+1 ◦ s = λl.bs′(l)c
⊥ otherwise

(21)

πKn+1(k) = λv.λs.

{
k v′ s′ if πn+1 v = bv′c and πSn+1 s = bs′c
⊥ otherwise

(22)

πTn+1(c) = λk.λs.

{
c (πKn+1 k) s′ if πSn+1 s = bs′c
⊥ otherwise .

(23)

Figure 3: Characterization of the projection functions πn : V → V⊥.

15

λv.bvc. The remaining requirements in the definition of a uniform predomain
are easy to check.

From here on, let V and (πn)n∈ω be as in the proposition above. We
furthermore use the abbreviations, notation for injections, etc. introduced
in the proposition; in particular, TV = (V → S → Ans) → S → Ans .
Additionally, abbreviate λl = inLoc(l,∞) and λnl = inLoc(l, n). Let errorAns ∈
Ans be the “error answer” and let error ∈ TV be the “error computation”:

errorAns = bι2∗c
error = λk.λs. errorAns .

The proof of the proposition above gives:

Proposition 4.3.

1. (S, (πSn)n∈ω) is a uniform predomain.

2. (K, (πKn)n∈ω) and (TV, (πTn)n∈ω) are uniform domains.

In order to model the three operations of the untyped language that
involve references, we define the three functions alloc, lookup, and assign in
Figure 4.

Lemma 4.4. The functions alloc, lookup, and assign are continuous.

Notice that the definitions of lookup and assign depend on the projec-
tion functions πSn . Intuitively, if one for example looks up the approximate
location (l, n + 1) in a store s, one only obtains the approximate element
πSn+1(s)(l) as result. It would not suffice to define, e.g., lookup(λn+1

l)(k)(s) =
⊥ for l ∈ dom(s), and hence avoid mentioning the projection functions:
lookup would then not be continuous.

We are now ready to define the untyped semantics.

Definition 4.5. Let t be a term and let X be a set of variables such that
FV(t) ⊆ X. The untyped semantics of t with respect to X is the continuous
function [[t]]X : V X → TV defined by induction on t in Figures 5 and 6.

Definition 4.6. Let t be a term with no free term variables or type variables.
The program semantics of t is the element [[t]]p of Ans defined by

[[t]]p = [[t]]∅∅ kinit sinit

16

alloc : V → TV, lookup : V → TV, assign : V → V → TV.

alloc v = λk λs. k (λfree(s)) (s[free(s) 7→ v])

(where free(s) = min{n ∈ N | n /∈ dom(s)})

lookup v = λk λs.



k s(l) s if v = λl and l ∈ dom(s)

k s′(l) s if v = λn+1
l , l ∈ dom(s),

and πSn (s) = bs′c
⊥Ans if v = λn+1

l , l ∈ dom(s),
and πSn (s) = ⊥

errorAns otherwise

assign v1 v2 = λk λs.



k (in1∗) (s[l 7→ v2]) if v1 = λl and l ∈ dom(s)

k (in1∗) (s′[l 7→ v′2]) if v1 = λn+1
l , l ∈ dom(s),

and πSn (s) = bs′c
and πn(v2) = bv′2c

⊥Ans if v1 = λn+1
l , l ∈ dom(s),

and (πSn (s) = ⊥ or πn(v2) = ⊥)

errorAns otherwise

Figure 4: Functions used for interpreting reference operations.

17

For every t with FV(t) ⊆ X, define the continuous [[t]]X : V X → TV by
induction on t:

[[x]]Xρ = η(ρ(x))

[[m]]Xρ = η(inZm)

[[ifz t0 t1 t2]]Xρ = [[t0]]Xρ ? λv0.


[[t1]]Xρ if v0 = inZ 0
[[t2]]Xρ if v0 = inZm where m 6= 0
error otherwise

[[t1 ± t2]]Xρ = [[t1]]Xρ ? λv1. [[t2]]Xρ ? λv2.


η(inZ(m1 ±m2))

if v1 = inZm1
and v2 = inZm2

error otherwise

[[()]]Xρ = η(in1 ∗)
[[(t1, t2)]]Xρ = [[t1]]Xρ ? λv1. [[t2]]Xρ ? λv2. η(in×(v1, v2))

[[fst t]]Xρ = [[t]]Xρ ? λv.

{
η(v1) if v = in×(v1, v2)
error otherwise

[[snd t]]Xρ = [[t]]Xρ ? λv.

{
η(v2) if v = in×(v1, v2)
error otherwise

[[void t]]Xρ = [[t]]Xρ ? λv. error

[[inl t]]Xρ = [[t]]Xρ ? λv. η(in+(ι1 v))

[[inr t]]Xρ = [[t]]Xρ ? λv. η(in+(ι2 v))

(Continued in Figure 6.)

Figure 5: Untyped semantics of terms.

where

kinit = λv.λs.

{
bι1mc if v = inZ(m)
errorAns otherwise

and where sinit ∈ S is the empty store.

Remark. The model in this section differs slightly from the BST model. First,
the projection functions have been modified in order to ease calculations.
Second, the semantic functions lookup and assign depend on projections of
entire stores, not just projections of the individual values to be looked up
or stored. This latter modification seems necessary when relations on stores

18

[[case t0 x1.t1 x2.t2]]Xρ = [[t0]]Xρ ? λv0.


[[t1]]X,x1(ρ[x1 7→ v]) if v0 = in+(ι1 v)
[[t2]]X,x2(ρ[x2 7→ v]) if v0 = in+(ι2 v)
error otherwise

[[λx.t]]Xρ = η(in→(λv. [[t]]X,x(ρ[x 7→ v])))

[[t1 t2]]Xρ = [[t1]]Xρ ? λv1. [[t2]]Xρ ? λv2.

{
g v2 if v1 = in→ g
error otherwise

[[fix f.λx.t]]Xρ = η(in→(fix (λgV→TV . λv. [[t]]X,f,x(ρ[f 7→ in→ g, x 7→ v]))))

[[fold t]]Xρ = [[t]]Xρ ? λv. η(inµ v)

[[unfold t]]Xρ = [[t]]Xρ ? λv.

{
η(v0) if v = inµ v0

error otherwise

[[Λα.t]]Xρ = η(in∀ ([[t]]Xρ))

[[t [τ]]]Xρ = [[t]]Xρ ? λv.

{
c if v = in∀ c
error otherwise

[[ref t]]Xρ = [[t]]Xρ ? λv. alloc v

[[!t]]Xρ = [[t]]Xρ ? λv. lookup v

[[t1 := t2]]Xρ = [[t1]]Xρ ? λv1. [[t2]]Xρ ? λv2. assign v1 v2

Figure 6: Untyped semantics of terms (ctd.)

19

must be described by the more refined “worlds” in this article. Intuitively, the
refined worlds allow binary relations on stores that are not simply composed
from binary relations on the individual values in the stores.

5. Ultrametric spaces

We recall some basic definitions and properties about metric spaces. For
more details, see for example de Bakker and de Vink [18] or the long version
of the article about the BST model [16].

A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X. An
ultrametric space is a metric space that satisfies the ‘ultrametric inequality,’

d(x, z) ≤ max(d(x, y), d(y, z)),

and not just the weaker triangle inequality (where one has + instead of max
on the right-hand side). It might be helpful to think of the function d of an
ultrametric space (X, d) not as a measure of (euclidean) distance between el-
ements, but rather as a measure of the degree of similarity between elements.

A function f : X1 → X2 from a metric space (X1, d1) to a metric space
(X2, d2) is non-expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1.
Stronger, such a function f is contractive if there exists c < 1 such that
d2(f(x), f(y)) ≤ c · d1(x, y) for all x and y in X1.

A metric space is complete if every Cauchy sequence has a limit. By
Banach’s fixed-point theorem, every contractive function from a non-empty,
complete metric space to itself has a unique fixed point.

For a given complete metric space, consider the function fix that maps
every contractive operator to its unique fixed-point. On complete ultrametric
spaces, fix is non-expansive in the following sense [5]:

Proposition 5.1. Let (X, d) be a non-empty, complete ultrametric space.
For all contractive functions f and g from (X, d) to itself, d(fix f, fix g) ≤
d(f, g).

All the metric spaces we consider satisfy the following property:

Definition 5.2. A metric space is bisected if all non-zero distances are of
the form 2−n for some natural number n ≥ 0.

The following notation is convenient when working with bisected metric
spaces: in such a space, x =n y means that d(x, y) ≤ 2−n. Notice that

20

each relation =n is an equivalence relation. Here transitivity follows from
the ultrametric inequality. Also, notice that a bisected metric space is one-
bounded. In other words, the relation x =0 y always holds.

Proposition 5.3. Let (X1, d1) and (X2, d2) be bisected metric spaces. A
function f : X1 → X2 is non-expansive if and only if

x1 =n x
′
1 =⇒ f(x1) =n f(x′1)

holds for all x1, x
′
1 ∈ X1 and all natural numbers n > 0.

5.1. Categories of ultrametric spaces

Let CBUltne be the category with non-empty, complete, 1-bounded ultra-
metric spaces as objects and non-expansive functions as morphisms. This
category is cartesian closed [32, 16]; here one needs the ultrametric inequal-
ity. The terminal object is the one-point metric space. Binary products are
defined in the natural way: (X1, d1)× (X2, d2) = (X1 ×X2, dX1×X2) where

dX1×X2((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2) has the set of non-expansive functions
from (X1, d1) to (X2, d2) as the underlying set, and the ‘sup’-metric dX1→X2

as distance function: dX1→X2(f, g) = sup{d2(f(x), g(x)) | x ∈ X1}. For both
products and exponentials, limits are pointwise.

Let PreCBUltne be the category of pre-ordered, non-empty, complete, 1-
bounded ultrametric spaces. Objects of this category are pairs (A,≤) con-
sisting of an object A of CBUltne and a preorder ≤ on the underlying set of A
such that the following condition holds: if (an)n∈ω and (bn)n∈ω are converging
sequences in A with an ≤ bn for all n, then also limn→∞ an ≤ limn→∞ bn. The
morphisms of the category are the non-expansive and monotone functions be-
tween such objects. We refer to the objects of this category as ‘continuous
preorders’.

Birkedal et al. [14] generalize the standard construction of solutions to
recursive metric-space equations [6, 19] to a large class of categories with
metric-space structure on each set of morphisms. In particular, one can
solve recursive equations in the category PreCBUltne:

Definition 5.4. A functor F : PreCBUltne
op × PreCBUltne → PreCBUltne is

locally non-expansive if d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′)) for all

21

f ,f ′, g, and g′ with appropriate domains and codomains. Stronger, F is
locally contractive if there exists some c < 1 such that d(F (f, g), F (f ′, g′)) ≤
c ·max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′.

Theorem 5.5 ([14]). Every locally contractive functor F : PreCBUltne
op ×

PreCBUltne → PreCBUltne has a unique fixed point: there exists an object Z
of PreCBUltne such that Z ∼= F (Z,Z), and if Z ′ is another such object then
Z ∼= Z ′.

6. Bohr Relations on Uniform Domains and Predomains

We introduce the notion of Bohr relations on domains and predomains.
And we equip spaces of such with complete bisected ultrametrics. To do this,
we need additional structure, we require uniform domains and predomains.

First up, we introduce a Hausdorff metric on the admissible, downwards
closed subsets of a uniform domain. This buys us the metric on Bohr rela-
tions on a uniform domain. Then we show that there is a simple bijective
correspondence between chain-complete, downwards closed subsets of a uni-
form predomain and the admissible, downwards closed subsets of the uniform
domain obtained by lifting. We define a metric on the former by means of
this bijection and this gives us the metric on Bohr relations on a uniform
predomain.

We apply standard metric space constructions such as Hausdorff distance
and carving closed subsets out of complete metric spaces. As such, we save
some mileage by appeal to standard (mostly completeness) results. But the
route is sufficiently indirect that going directly for the Theorems 6.9 and 6.16
by brute force is a viable alternative; indeed, this was the approach of the
authors in [12].

6.1. Distance on ADSub(D)

In the following subsection (D, (πn)n∈ω) denotes an arbitrary uniform
domain.

Based on the additional structure on the domain D given by the projec-
tions, we build a metric on D:

Proposition 6.1. There is a (unique) complete, bisected, ultrametric dπ on
D such that for any n ∈ ω and any two d, e ∈ D we have

d =n e ⇐⇒ πn(d) = πn(e).

22

Proof. We define the map dπ : D ×D → R by mapping any two d, e ∈ D to

dπ(d, e) =

{
0 if d = e

2−max{n∈ω|πn(d)=πn(e)} if d 6= e.

Let us initially verify that this is well-defined, we need to show that for d 6= e
we have that the set {n ∈ ω | πn(d) = πn(e)} is non-empty and finite. The
former is a consequence of having π0(d) = ⊥ = π0(e). Note now that for
m ≤ n we have that πn(d) = πn(e) implies πm(d) = πm(e) since we have
πm(d) = πmin(m,n)(d) = πm(πn(d)) = πm(πn(e)) = πmin(m,n)(e) = πm(e). If
now the set in question was infinite, then all projections of d and e would
agree and they would be equal, contradicting our assumption.

By similar reasoning we easily show that for any n ∈ ω and any two
d, e ∈ D we have d =n e iff πn(d) = πn(e). The map dπ is bisected by
construction and for any two d, e ∈ A we easily have that d = e iff dπ(d, e) = 0
and that dπ(d, e) = dπ(e, d). It remains to prove the strong triangle inequality
and completeness. In search for the former, we pick d, e, f ∈ D and aim to
prove

dπ(d, f) ≤ max(dπ(d, e), dπ(e, f)).

Without loss of generality we may assume d 6= f , d 6= e and e 6= f . There
are n,m ∈ ω such that dπ(d, e) = 2−n and dπ(e, f) = 2−m, let l = min(n,m).
But then d =l e and e =l f and so πl(d) = πl(e) = πl(f) and we have

dπ(d, f) ≤ 2−l = 2−min(n,m) = max(2−n, 2−m) = max(dπ(d, e), dπ(e, f)).

To prove completeness we take an arbitrary Cauchy sequence (dn)n∈ω in
D, we must build an d ∈ D such that limn dn = d. For each m ∈ ω we
pick an Mm ∈ ω such that we for any n ≥ Mm have that dn =m dMm . We
may without loss of generality assume that Mm ≤Mm+1 for all m ∈ ω. Our
candidate for the limit now is

d =
⊔
m∈ω

πm(dMm).

To verify that this least upper bound actually exists, we remark that for any
m ∈ ω we have

πm(dMm) = πm(dMm+1) v πm+1(dMm+1).

23

To finally prove that d is the limit we take any m ∈ ω and note that for any
n ≥Mm we have that

πm(d) = πm

(⊔
o∈ω

πo(dMo)

)
=
⊔
o∈ω

πmin(m,o)(dMo)

=
⊔
o≥m

πm(dMo)

=
⊔
o≥m

πm(dMm)

= πm(dMm)

= πm(dn)

which as noted implies that d =m dn and we are done.

We recollect the notion of Hausdorff distance:

Definition 6.2. The Hausdorff distance dH between two non-empty subsets
X, Y ⊆M of a 1-bounded metric space (M,d) is defined as follows:

dH(X, Y) = max
(

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
)

The notion of Hausdorff distance is standard, cf. Definitions 2.2 and 2.6
and Lemma 2.7 of [18] for an expository presentation. We restrict to 1-
bounded metric spaces to avoid dealing with unbounded suprema and also
focus on non-empty sets to simplify the presentation.

The Hausdorff distance is not a metric on the entire set of non-empty
subsets of M as a distance of zero may fail to imply equality. But if we
restrict ourselves to the closed, non-empty subsets we get a proper metric
and completeness carries over:

Proposition 6.3. The Hausdorff distance is a 1-bounded metric on the set
Pncl(X) of non-empty and closed subsets of a 1-bounded metric space (X, d).
(Pncl(X), dH) is ultrametric and complete if (X, d) is ultrametric and com-
plete, respectively.

24

These are textbook result, cf. Theorems 2.3 and 2.10 of [18].
Intuitively, the Hausdorff distance between X and Y is the least distance

r such that for any x ∈ X we can find y ∈ Y with mutual distance no greater
than r and vice versa. This intuition is captured in the following proposition
under the assumption that the the underlying metric space is bisected:

Proposition 6.4. Let (M,d) be a bisected metric space. Then for any non-
empty X, Y ⊆M we have that dH(X, Y) is zero or of the form 2−n for some
n ∈ ω and for any n ∈ ω we get

X =n Y ⇐⇒ ∀x ∈ X∃y ∈ Y. x =n y ∧ ∀y ∈ Y ∃x ∈ X. x =n y.

Proof. To prove that for two non-empty X, Y ⊆ M we have dH(X, Y) ∈
{0} ∪ { 2−m | m ∈ ω } we simply observe that this set is closed under non-
empty suprema and infima.

We now proceed to prove the biimplication. Pick non-empty X, Y ⊆ M
and n ∈ ω arbitrarily. To prove that the left hand side implies the right hand
side we assume that X =n Y , take arbitrary x ∈ X and need to find y ∈ Y
with x =n y. For the sake of deriving a contradiction we assume that this
cannot be done, i.e., that for every y ∈ Y we have d(x, y) > 2−n. By the
assumption of the proposition this would mean that d(x, y) ≥ 2−n+1 for all
y ∈ Y which would imply that

dH(X, Y) ≥ sup
z∈X

inf
y∈Y

d(z, y) ≥ inf
y∈Y

d(x, y) ≥ 2−n+1

which contradicts our assumption that X =n Y . Proving the other conjunct
proceeds similarly and the reverse implication is standard and does not rely
on the special form of the metric.

We are now in a position to define a distance on the set ADSub(D) of
admissible and downwards closed subsets of D as the Hausdorff distance on
top of the distance dπ on D.

Proposition 6.5. Any downwards closed and chain-complete subset of D is
a closed subset of the metric space (D, dπ).

Proof. Let X ⊆ D be a downwards closed and chain-complete subset of D.
Let (xm)m∈ω be a sequence in X with limm xm = x for some x ∈ D. We must
prove that x ∈ X too. We know that

x =
⊔
m

πm(x)

25

so by chain-completeness of X it suffices to show that πm(x) ∈ X holds
for any m ∈ ω. But this is a consequence of X being downwards closed
since for any m ∈ ω there is Mm ∈ ω with x =m xMm which implies that
πm(x) = πm(xMm) v xMm ∈ X.

Any admissible subset of D is non-empty as it contains the least element
and so ADSub(D) ⊆ Pncl(D). By Propositions 6.3 and Proposition 6.4 we
know that dH is a complete, bisected ultrametric on Pncl(D). Hence dH is
a bisected ultrametric on ADSub(D) too, where we overload dH to mean
both the Hausdorff distance on Pncl(D) and its restriction to ADSub(D). To
obtain completeness we need the following:

Proposition 6.6. The set ADSub(D) is a closed subset of the metric space
(Pncl(D), dH).

Proof. Take some sequence (Xm)m∈ω inADSub(D) and assume that limmXm =
X for some X ∈ Pncl(D), we must prove that X ∈ ADSub(D) too.

Let us initially prove that the least element ⊥ ∈ D is in X. For any
m ∈ ω there is Mm such that XMm =m X. And as ⊥ ∈ XMm we know that
there is a member, xm say, of X with ⊥ =m xm by Proposition 6.4. But then
clearly limm xm = ⊥ and since X was closed we have ⊥ ∈ X.

We now prove X chain-complete. We take an increasing chain (xm)m∈ω
in X and aim to show that x = tmxm ∈ X. Take any n ∈ ω, there is Mn

such that XMn =n X and so the increasing chain (πn(xm))m∈ω is in XMn as
XMn was downwards closed. But XMn was chain-complete too and hence
πn(x) ∈ XMn and so we may find yn ∈ X with yn =n πn(x) =n x. Clearly
limn yn = x and since X was closed we have x ∈ X.

Finally take x, y ∈ D with x v y and y ∈ X, we need to show x ∈ X.
For any m ∈ ω, there is Mm such that XMm =m X and hence πm(y) ∈ XMm

as XMm was downwards closed. But then πm(x) ∈ XMm too as XMm was
downwards closed and we proceed as above.

In summa, we have the following:

Corollary 6.7. There is a (unique) complete, bisected ultrametric dH on
ADSub(D) such that for any two X, Y ∈ ADSub(D) and any n ∈ ω we have

X =n Y ⇐⇒ πn(X) ⊆ Y ∧ πn(Y) ⊆ X.

26

6.2. Bohr Relations on Uniform Domains

Definition 6.8 (Bohr Relation). A relation R ⊆ D ×D on a domain D is
called a Bohr relation if for any e ∈ D we have that

R(−, e) = {d | (d, e) ∈ R}

is admissible and downwards closed.

Theorem 6.9. Let (D, (πn)n∈ω) be a uniform domain. There is a (unique)
complete, bisected ultrametric dB on BohrRel(D) such that for any two
R, S ∈ BohrRel(D) and any n ∈ ω we have

R =nS ⇐⇒ ∀e ∈ D. πn(R(−, e)) ⊆ S(−, e) ∧ πn(S(−, e)) ⊆ R(−, e)

The proof proceeds along the lines of the proof of Theorem 6.16 only we
appeal to Corollary 6.7 instead of Proposition 6.13.

It is not hard to prove the following:

Proposition 6.10. Let (D, (πn)n∈ω) be a uniform domain. Let (Rn)n∈ω and
(Sn)n∈ω be sequences in BohrRel(D) such that limnRn = R and limn Sn = S
for R and S also in BohrRel(D). We then have that

(∀n ∈ ω.Rn ⊆ Sn) =⇒ R ⊆ S.

Summing up, we have that the Bohr relations on a uniform domain
equipped with the metric from Theorem 6.9 above and ordered by set-
theoretic inclusion is an object of PreCBUltne; see also Subsection 5.1.

6.3. Distance on CDSub(A)

In the following subsection, (A, (πn)n∈ω) denotes an arbitrary uniform
predomain.

Now let us return to uniform predomains. Recall our goal of obtaining
a metric on the set of chain-complete and downwards closed subsets of a
uniform predomain. We employ lifting to build a a uniform domain from a
given uniform predomain and then apply the above theory.

It is well known that we may lift a predomain A to a domain A⊥ by
introducing a least element. This idea extends naturally to build uniform
domains from uniform predomains:

27

Proposition 6.11. Define, for m ∈ ω, a new projection π′m : A⊥ → A⊥ by

π′m(d) =

{
πm(a) if d = bac
⊥ if d = ⊥

for each d ∈ A⊥. Then (A⊥, (π
′
m)m∈ω) is a uniform domain.

Proof. That A⊥ is a domain and the new projections continuous are basic
results of domain theory, see, e.g., section 8.3.4 of [35]. As the projections are
strict by definition, it remains to verify the four defining axioms of uniform
domains under the assumption of the axioms of uniform predomains:

For any m ∈ ω we need initially to show π′m ≤ π′m+1. We prove this
pointwise so we take d ∈ A⊥ arbitrary. We may without loss of generality
assume d = bac for some a ∈ A and we have π′m(d) = πm(a) ≤ πm+1(a) =
π′m+1(d).

We need to show tmπ′m = idA⊥ . As above, we take d ∈ A⊥ arbitrary and
discharge the case d = ⊥ easily. So assume d = bac for some a ∈ A we get
that (⊔

m

π′m

)
(d) =

⊔
m

πm(a) =

(⊔
m

πm

)
(a) = bac = d.

For the third axiom we pick m,n ∈ ω and must show that π′m ◦ π′n =
π′n ◦ π′m = π′min(m,n). We prove this pointwise, so we take take d ∈ A⊥ and

may without loss of generality assume that d = bac for some a ∈ A. But
then we need to show that

π′m(πn(a)) = π′n(πm(a)) = πmin(m,n)(a)

which coincides with the third axiom of uniform predomains.
The fourth and final axiom requires π′0 to be constant bottom which is

obviously true as it holds for π0 by assumption.

We now give a bijective correspondence between the set CDSub(A) of
chain-complete, downwards closed subsets of A and the set ADSub(A⊥). For
X ⊆ A we let X⊥ denote {bxc | x ∈ X} ∪ {⊥}; this provides the bijection:

Proposition 6.12. The map (−)⊥ : P(A) → P(A⊥) establishes a bijective
correspondence between CDSub(A) and ADSub(A⊥).

28

Proof. Take X ∈ CDSub(A), we must prove that X⊥ ∈ ADSub(A⊥). To
prove chain-completeness we take an increasing chain (dn)n∈ω in X⊥ and we
must show

⊔
n dn ∈ X⊥ too. We may without loss of generality assume that

no elements of the chain are bottom and hence we can choose an xn ∈ X
with dn = bxnc for all n ∈ ω. But then (xn)n∈ω is an increasing chain too
and we have

⊔
n xn ∈ X by assumption. By continuity we get

⊔
n

dn =
⊔
n

bxnc =

⌊⊔
n

xn

⌋
∈ X⊥

and since ⊥ ∈ X⊥ by definition we have proved admissibility. Downwards
closure is simple, take d, e ∈ A⊥ with d v e and e ∈ X⊥, we must show
d ∈ X⊥ too. If d = ⊥ we are done, otherwise there is x ∈ A and y ∈ X with
d = bxc and e = byc and hence x ≤ y which means that x ∈ X too.

For any two X, Y ∈ P(A) we have that X⊥ = Y⊥ readily implies X = Y .
It remains to show that for any X ∈ ADSub(A⊥) there is an Y ∈ CDSub(A)
with X = Y⊥. Unsurprisingly, we aim for

Y = {a ∈ A | bac ∈ X}

which obviously has Y⊥ = X since we must have ⊥ ∈ X. Continuity of b−c
immediately yields that Y ∈ CDSub(A) and we are done.

Proposition 6.13. There is a (unique) complete, bisected ultrametric d⊥ on
CDSub(A) such that for any two X, Y ∈ CDSub(A) and any n ∈ ω we have

X =n Y ⇐⇒ πn(X) ⊆ Y⊥ ∧ πn(Y) ⊆ X⊥.

Proof. Given the preceding development, it should come as no surprise that
we lift the uniform predomain to obtain the uniform domain (A⊥, (π

′
m)m∈ω)

by Proposition 6.11. A⊥ is endowed with the complete, bisected ultrametric
dπ of Proposition 6.1 and ADSub(A⊥) with the complete, bisected ultramet-
ric dH of Corollary 6.7. For any two X, Y ∈ CDSub(A) we now define

d⊥(X, Y) = dH(X⊥, Y⊥),

which yields a complete, bisected ultrametric on CDSub(A) by Proposition
6.12. Now take any two X, Y ∈ CDSub(A) and any n ∈ ω, we must prove
that

X =n Y ⇐⇒ πn(X) ⊆ Y⊥ ∧ πn(Y) ⊆ X⊥.

29

Assume that we have X =n Y , i.e., that X⊥ =n Y⊥. We take x ∈ X and
must prove that πn(x) ∈ Y⊥. We have bxc ∈ X⊥ and hence there is y ∈ Y⊥
such that bxc =n y. As Y⊥ is downwards closed we have π′n(y) ∈ Y⊥ and so

πn(x) = π′n(bxc) = π′n(y)

and we have proved the desired; proving the other conjunct proceeds simi-
larly.

Going for the other implication, we assume that πn(X) ⊆ Y⊥ ∧ πn(Y) ⊆
X⊥ and must prove X =n Y , i.e., that X⊥ =n Y⊥. So take x ∈ X⊥, we must
produce y ∈ Y⊥ with x =n y. We may without loss of generality assume
x 6= ⊥. So there is x′ ∈ X with x = bx′c and our assumption buys us that
π′n(x) = πn(x′) ∈ Y⊥. But we obviously have π′n(x) =n x and are done; the
symmetric property is proved similarly.

6.4. Bohr Relations on Uniform Predomains

Definition 6.14 (Bohr Relation). A relation R ⊆ A×A on a predomain A
is called a Bohr relation if for any b ∈ A we have that

R(−, b) = {a | (a, b) ∈ R}

is chain-complete and downwards closed.

As the defining property of Bohr relations is preserved by set-theoretic
intersection, we easily get the following closure operator:

Proposition 6.15. For any relation R ⊆ A× A we have that

R =
⋂

R⊆S⊆A×A, S Bohr

S

is a Bohr relation, furthermore it is least such that contain R.

Theorem 6.16. Let (A, (πn)n∈ω) be a uniform predomain. There is a (unique)
complete, bisected ultrametric dB on BohrRel(A) such that for any two
R, S ∈ BohrRel(A) and any n ∈ ω

R =nS ⇐⇒[
∀(a, b) ∈ R. πn(a) = ⊥ ∨ (∃a′ ∈ A. πn(a) = ba′c ∧ (a′, b) ∈ S)

]
∧[

∀(a, b) ∈ S. πn(a) = ⊥ ∨ (∃a′ ∈ A. πn(a) = ba′c ∧ (a′, b) ∈ R)
]
.

30

Proof. Consider the space of all functions A → CDSub(A). We may define
a distance dF between any two members f, g ∈ A → CDSub(A) of this set
by setting

dF (f, g) = sup
b∈A

d⊥(f(b), g(b))

and it is a textbook result that this constitutes a complete ultrametric as
this is the case for CDSub(D) by Proposition 6.13. See, e.g., Lemmas 1.24
and 1.28 of [18] for details. As d⊥ is bisected and the set {0}∪{2−n | n ∈ ω}
is closed under non-empty suprema we have that dF is bisected as well, and
we may replace the supremum by the maximum in the above definition. We
now define the map Φ : BohrRel(A)→ (A→ CDSub(A)) by setting

Φ(R)(b) = R(−, b)

for any R ∈ BohrRel(A) and any b ∈ A. This is well-defined by the definition
of Bohr relations and furthermore a bijection. We define the distance dB
between two R, S ∈ BohrRel(A) by setting

dB(R, S) = dF (Φ(R),Φ(S))

and by a bijection argument we have that dB is a complete, bisected ultra-
metric on BohrRel(A).

Take now two R, S ∈ BohrRel(A) and any n ∈ ω and assume that we
have R =n S. Take (a, b) ∈ R, assume that πn(a) = ba′c for some a′ ∈ A,
we must prove that (a′, b) ∈ S. By definition we have Φ(R) =n Φ(S) which
means that

R(−, b) = Φ(R)(b) =n Φ(S)(b) = S(−, b)
and since a ∈ R(−, b) we have πn(a) ∈ (S(−, b))⊥ by Proposition 6.13.
But since πn(a) = ba′c we must have a′ ∈ S(−, b), i.e., S(a′, b). Proving the
second conjunct of the right hand side of the biimplication proceeds similarly.

So assume now that the right hand side of the desired biimplication holds,
we must prove that R =n S. This means proving Φ(R) =n Φ(S) which again
comes down to proving that for any b ∈ A we have

R(−, b) = Φ(R)(b) =n Φ(S)(b) = S(−, b)

So take a ∈ R(−, b), i.e., R(a, b) holds. We must by Proposition 6.13 prove
that πn(a) ∈ (S(−, b))⊥ but this is exactly what the first disjunct of the right
hand side gives us. And the second disjunct similarly buys us the converse
implication.

31

As was the case for uniform domains, we can prove the following:

Proposition 6.17. Let (A, (πn)n∈ω) be a uniform predomain. Let (Rn)n∈ω
and (Sn)n∈ω be sequences in BohrRel(A) such that limnRn = R and limn Sn =
S for R and S also in BohrRel(A). We then have that

(∀n ∈ ω.Rn ⊆ Sn) =⇒ R ⊆ S.

As concluded for Bohr Relations on uniform domains, we also have that
the Bohr relations on a uniform predomain equipped with the metric from
Theorem 6.16 above and ordered by set-theoretic inclusion is an object of
PreCBUltne; we refer to Subsection 5.1 for a definition of this category.

7. Building Worlds

In this section we build the space of worlds to be used in our Kripke
logical relation. The space of worlds is obtained using Theorem 5.5, i.e., as
the fixed point of a functor on certain pre-ordered metric spaces.

7.1. M-categories

Since we aim to apply Theorem 5.5 we need to keep track of whether the
functors we build are locally contractive. To that end, it is most convenient to
introduce the general M -categories of Birkedal et al. [14]; these are categories
such as CBUltne or PreCBUltne that have a metric-space structure on each
hom-set. This subsection can be skipped on a first reading: one can then
read the definitions of the functors in the following sections while taking for
granted that they do satisfy the required technical conditions.

Definition 7.1. An M -category is a category C where each hom-set C(A,B)
is equipped with a distance function turning it into a non-empty, complete,
1-bounded ultrametric space, and where each composition function

◦ : C(B,C)× C(A,B)→ C(A,C)

is non-expansive with respect to these metrics. (Here the domain of such a
composition function is given the product metric.)

In other words, anM -category is a category where each hom-set is equipped
with a metric which turns it into an object in CBUltne; furthermore, each com-
position function must be a morphism in CBUltne. We observe that if C is an
M -category, then so are Cop (with the same metric on each hom-set as in C)
and Cop × C (with the product metric on each hom-set)

32

Proposition 7.2 ([14]). CBUltne and PreCBUltne are M-categories when each
hom-set is given the ‘sup’-metric:

dC(X1,X2)(f, g) = sup{dX2(f(x), g(x)) | x ∈ X1}

Definition 7.3. A functor F : C → D between M-categories C and D is
called locally ε-Lipschitz for some ε ≥ 0 if, for all morphisms f, g : A → B
of C, we have

d(F (f), F (g)) ≤ ε · d(f, g),

where the leftmost distance is in the hom-set D(F (A), F (B)) and the right-
most is in the hom-set C(A,B).

We also say that the functor has the local Lipschitz constant ε. Notice that
being locally contractive and locally non-expansive comes down to having a
local Lipschitz constant strictly less than one and less than or equal to one,
respectively.

The following are compositional rules for computing the local Lipschitz
constant. They are stated in their most general form, notice in particular
that the shrinking functor of Proposition 7.9 cannot readily be generalized
to arbitrary M -categories. We omit all proofs as they are quite simple.

Proposition 7.4 (Identity Functor). Let C be an M-category. The identity
functor on C is locally 1-Lipschitz.

Proposition 7.5 (Constant Functor). Let C and D be M-categories and
let D be a fixed object of D. The constant functor that maps objects and
morphisms of C to D and 1D respectively is locally 0-Lipschitz.

Proposition 7.6 (Functor Pairing). Let C, D and E be M-categories and
let F : C → D and G : C → E be locally ε-Lipschitz and locally δ-Lipschitz
respectively. Then 〈F,G〉 : C → D × E is locally max{δ, ε}-Lipschitz.

Proposition 7.7 (Hom Functor). Let C be an M-category. The hom functor
(−) → (−) : Cop × C → CBUltne defined in the standard way is locally 1-
Lipschitz.

Note that this is not, in general, an exponential. Rather, we just return
the set of morphisms equipped with the metric structure it has according to
the definition of M -categories.

33

Proposition 7.8 (Functor Composition). Let C, D and E be M-categories
and let F : C → D and G : D → E be locally ε-Lipschitz and locally δ-
Lipschitz respectively. Then G ◦ F : C → E is locally δε-Lipschitz.

Proposition 7.9 (Shrinking Functor). For any 0 < ε ≤ 1 we have that the
functor ε · (−) : CBUltne → CBUltne that multiplies all distances by ε is locally
ε-Lipschitz.

Proposition 7.10 (Product Functor). The standard metric product functor
(−)× (−) : CBUltne × CBUltne → CBUltne is locally 1-Lipschitz.

Proposition 7.11 (Finite Maps Functor). Let X be an arbitrary set. The
functor X ⇀fin (−) : CBUltne → CBUltne is locally 1-Lipschitz. It assigns
the distance 1 to maps with different domains and the pointwise maximum
otherwise, the action on morphisms is the obvious.

7.2. The Space W of Worlds

We now turn to constructing the space of worlds. First, for any set X we
let L(X) denote the set {(x, L) ∈ X ×P(X) | x ∈ L} of pairs of elements of
X and subsets of X such that the former belongs to the latter. It is obviously
non-empty provided that X is.

Proposition 7.12. The functor I : PreCBUltne
op → CBUltne defined by

L(P(V))×
(
P(V)→ 1

2
[− → BohrRel(S)]

)
is locally 1

2
-Lipschitz. And so is the functor W : PreCBUltne

op → CBUltne
defined by

P(Loc)× P(Loc)× (N⇀fin I(−)) .

The proof is a simple application of the above propositions. But the def-
initional one liners call for a few comments: We implicitly equip L(P(V)),
P(V) and P(Loc) with the discrete metric and, as such, consider them ob-
jects of CBUltne. The rightmost arrow in the definition of the functor I is the
standard hom functor on PreCBUltne, i.e., it is the set of all non-expansive
and monotone functions equipped with the supremum metric (see Proposi-
tion 7.7). And the arrow preceding that is the standard hom functor on
CBUltne but reduces to the full function space because of the discrete metric
on P(V). S is just the uniform predomain of states as defined earlier.

34

We need some notation to work with the output of the functors; we strive
for compatibility with the nomenclature of LADR [22]. Let A be an object
of PreCBUltne and let ∆ ∈ W (A), we write

∆ = (∆.ς1,∆.ς2,∆.I)

for ∆.ς1,∆.ς2 ⊆ Loc and ∆.I ∈ N⇀fin I(A). Intuitively, a world2 ∆ oversees
pairs of stores. It has a set of left locations ∆.ς1 and right locations ∆.ς2 that
keep track of the allocated locations in the left and right hand side stores,
respectively. Also it has an island map ∆.I that holds islands, each of which
manages separate parts of the stores.

For Θ ∈ I(A) we write

Θ = (Θ.CP ,Θ.PL,Θ.HL)

for Θ.CP ⊆ V , Θ.PL ⊆ P(V) and Θ.HL ∈ P(V)→ 1
2

[A→ BohrRel(S)]. An
island3 Θ has three components, the current population Θ.CP , the population
law Θ.PL and the heap law Θ.HL. The population captures the current state
of the island, it may vary over time, but only within the bonds given by the
population law: because of our use of L(P(V)) instead of P(V)× P(P(V))
in the definition of the functor I we get that Θ.CP ∈ Θ.PL always holds.
The heap law provides the set of pairs of heaps that the island accepts; the
idea is to feed it the current population and the current world.

Returning to the technical development, we have a locally 1
2
-Lipschitz

functor W : PreCBUltne
op → CBUltne and are almost ready to apply the

fixed-point existence theorem that will give us the space of worlds W . First
we must remedy one shortcoming, though: the functor maps into CBUltne
so we must equip the images under W of objects with continuous preorders;
this will give us a functor that maps into PreCBUltne.

Definition 7.13. Let A be an object of PreCBUltne. For any two ∆1,∆2 ∈
W (A) we say that ∆2 extends ∆1 and we write ∆1 v ∆2 if we have

∆1.ς1 ⊆ ∆2.ς1 ∧∆1.ς2 ⊆ ∆2.ς2 ∧ ∀n ∈ dom(∆1.I). ∆1.I(n) v ∆2.I(n),

2Outside of this subsection, we speak of worlds only as the results of applying W to the
specific fixed-point Ŵ that we produce below, not to an arbitrary object of PreCBUltne.

3As for worlds, an island, in general, belongs to the result of applying I to the specific
fixed point Ŵ built below.

35

where we write Θ1 v Θ2 for any two Θ1,Θ2 ∈ I(A) if we have

Θ1.CP ⊆ Θ2.CP ∧Θ1.PL = Θ2.PL ∧Θ1.HL = Θ2.HL.

On the conceptual level, world extension has two separate components.
We may add new islands to the island map, often to manage newly allocated
store; there are no restrictions on these new islands with respect to the
old world. This is known as width extension in LADR. But the existing
islands can also change: their populations may grow within the bounds of the
population law. The population and heap laws are themselves immutable,
but as we apply the heap law to the current population, it may permit
different pairs of stores in the old and new worlds. Such population growth
loosely corresponds to a state change of some existing object in the store; it
is termed depth extension in LADR.

Proposition 7.14. For any object A of PreCBUltne we have that the above
ordering on W (A) is a continuous preorder; for any morphism f : B → A of
PreCBUltne we have that W (f) : W (A)→ W (B) is monotone with respect to
this ordering.

Proof. The ordering is easily a preorder. To show that it is a continu-
ous preorder we take sequences (∆n)n∈ω and (Γn)n∈ω in W (A) with limits
limn ∆n = ∆ and limn Γn = Γ such that ∆n v Γn for all n ∈ ω; we must
show that we have ∆ v Γ too. We now pick an m ∈ ω such that ∆m =1 ∆
and that Γm =1 Γ. But then by our construction we get

∆.ς1 = ∆m.ς1 ⊆ Γm.ς1 = Γ.ς1,

and by a similar argument we get that ∆.ς2 ⊆ Γ.ς2 and dom(∆.I) ⊆ dom(Γ.I).
Also, for any n ∈ dom(∆.I) we have that ∆m.I(n) =1 ∆.I(n) and Γm.I(n) =1

Γ.I(n). But then

∆.I(n).CP = ∆m.I(n).CP ⊆ Γm.I(n).CP = Γ.I(n).CP

and also ∆.I(n).PL = Γ.I(n).PL. Assume now that we have ∆.I(n).HL 6=
Γ.I(n).HL for some n ∈ dom(∆.I), this means that we can pick l ∈ ω such
that ∆.I(n).HL 6=l Γ.I(n).HL. Pick k ∈ ω such that ∆k =l ∆ and that
Γk =l Γ. But then

∆.I(n).HL =l ∆k.I(n).HL = Γk.I(n).HL =l Γ.I(n).HL

36

which is a contradiction.
We proceed to prove the second property. For f : B → A in PreCBUltne

and ∆ ∈ W (A) arbitrary we can write out the action of the functor W on
the morphism f as follows:

W (f)(∆.ς1,∆.ς2,∆.I) =
(
∆.ς1,∆.ς2, λn ∈ dom(∆.I). I(f)(∆.I(n))

)
.

For Θ ∈ I(A) arbitrary we can similarly write out the action of the functor
I on the morphism f as follows:

I(f)(Θ.CP ,Θ.PL,Θ.HL) =
(
Θ.CP ,Θ.PL, F (f)(Θ.HL)

)
,

where F : PreCBUltne
op → CBUltne is a shorthand for the component functor

P(V)→ 1
2
(− → BohrRel(S)). From these observations it is immediate that

W (f) is monotone with respect to the above ordering.

Corollary 7.15. We may extend W : PreCBUltne
op → CBUltne to a locally

1
2
-Lipschitz functor W : PreCBUltne

op → PreCBUltne by equipping the images
of objects with the continuous preorder from Definition 7.13.

Definition 7.16 (Worlds). Let Ŵ be an object such that Sq : W (Ŵ) ∼=
Ŵ holds in PreCBUltne; existence (and uniqueness up to isomorphism) is
guaranteed by Theorem 5.5. We write W for W (Ŵ).

We conclude with a remark on the metric on worlds. Reasoning in the
finished model often require us to define non-expansive maps out of the space
W of worlds, this is the case, e.g., when we build new types as well as
heap laws for new islands. An example of this is found in Section 10. It is
worthwhile to note, that in many cases we have non-expansiveness for free.

For any two worlds ∆1,∆2 ∈ W with ∆1 =1 ∆2, it is immediate by our
use of discrete metric spaces and the finite maps functor in the construction
of the functor W that we have

∆1.ς1 = ∆2.ς1, ∆1.ς2 = ∆2.ς2, dom(∆1.I) = dom(∆2.I)

and for any n in the shared domain of the island maps we have

∆1.I(n).CP = ∆2.I(n).CP , ∆1.I(n).PL = ∆2.I(n).PL,

again because of our use of the discrete metric on L(P(V)). This means that
we cannot invalidate non-expansiveness by inspection of these components,
or, phrased differently, if we never ‘project out’ any heap laws then we have
non-expansiveness automatically. If, however, we make use of the heap laws,
then we must proceed with caution; see, e.g., the proof Proposition 8.2 for
an example of this.

37

8. Logical Relation

We now construct a Kripke logical relation that uses the space of worldsW
obtained above. First up is the definition of types:

Definition 8.1 (Types). The space of types is T = W →mon BohrRel(V),
i.e., the set of non-expansive and monotone functions fromW to BohrRel(V).
It comes equipped with the supremum metric, i.e., for µ, ν ∈ T and n ∈ ω
we have

µ =n ν ⇐⇒ ∀∆ ∈ W . µ(∆) =n ν(∆).

This is well defined and the metric a complete, bisected ultrametric by
Proposition 7.2.

We need quite a few different function spaces and introduce some section-
specific notation to help out. An arrow between metric spaces denotes the set
of non-expansive maps as, e.g., in T → T . If the metric spaces are ordered
and the arrow has the monotonicity subscript then we restrict attention to
functions that are both non-expansive and monotone; an example is the
definition of the space T of types above. A superscript 1 on the arrow, on the
other hand, indicate that we only require the maps to be one-expansive, i.e.,
Lipschitz continuous with Lipschitz constant 2. This is a weaker requirement
than non-expansive; in the context of bisected metric spaces it means that
elements that are (n+ 1)-equal are mapped to elements that are n-equal, for
all n ∈ ω. An example is W →1 BohrRel(S) which we shall meet soon. (In
general, a one-expansive function from X to Y is the same as a non-expansive
function from X to 1

2
Y .)

There is some room for variation here. If we modified the functor I
that builds the islands of worlds by replacing 1

2
[− →mon BohrRel(S)] with

1
2
(−) →mon BohrRel(S), i.e., by requiring one-contractive heap laws, then

the operations states , cont and comp defined below would be non-expansive.
But then the types would be one-contractive too, and we would rely on that
to prove the allocation case of the fundamental theorem of logical relations.
Similar considerations apply to the slight change of the projection functions
compared to BST, see also the discussion at the end of Section 4; none of
the variations appear superior to the other, however.

The full definition of the logical relation is shown in Figures 7 and 8.
In the rest of this section we show that the logical relation is indeed well-
defined. This essentially amounts to checking that all relations involved in the
definition are Bohr relations, and that all functions involved in the definition

38

are non-expansive or one-expansive and possibly monotone. In particular,
the clause for recursive types is then well-defined by Banach’s fixed-point
Theorem.

In many (but not all) of the cases where we prove non-expansiveness it
is actually possible to prove the stronger property of contractiveness. But
this would clutter the picture, and so we skip it as we do not need this in
the overall development. Remember also that the sets of values and states,
V and S, are uniform predomains whereas the sets of computations and
continuations, TV and K, are uniform domains, see Propositions 4.2 and
4.3. In particular, we have Bohr relations with metric on the former two
according to Definition 6.14 and Theorem 6.16 whereas the Bohr relations
with metric on the latter two follow Definition 6.8 and Theorem 6.9.

We focus on the cases involving states and references. The remaining
cases are essentially as in Birkedal et al. [16], where more details can be
found.

8.1. Relations on states, continuations and computations

Proposition 8.2. The operator states defined in Figure 8 satisfies states ∈
W →1 BohrRel(S).

Proof. We must show that for ∆ ∈ W we have that states(∆) ∈ BohrRel(S),
and we must also show that states : W → BohrRel(S) is one-expansive.
The first property is a consequence of the definition of order on the set of
states S, the finiteness of dom(∆.I) and the fact that for any n ∈ dom(∆.I)
we have that ∆.I(n).HL(∆.I(n).CP) maps into BohrRel(S). As for one-
expansiveness, assume that ∆1 =n+1 ∆2. We must show that states(∆1) =n

states(∆2). By the construction of worlds, we have

∆1.ς1 = ∆2.ς1, ∆1.ς2 = ∆2.ς2, and dom(∆1.I) = dom(∆2.I) .

Also we get for all m ∈ dom(∆1.I) = dom(∆2.I) that ∆1.I(m).CP =
∆2.I(m).CP and hence that

∆1.I(m).HL(∆1.I(m).CP) =n+1 ∆2.I(m).HL(∆2.I(m).CP),

in the space 1
2
(Ŵ → BohrRel(S)). But this means that we only have n-

equality in the space Ŵ → BohrRel(S), and as Sq(∆1) =n+1 Sq(∆2) holds
too, we get

∆1.I(m).HL(∆1.I(m).CP)(Sq(∆1)) =n ∆2.I(m).HL(∆2.I(m).CP)(Sq(∆2)) .

39

For Ξ ` τ we define the non-expansive [[τ]]Ξ : T Ξ → T by induction on τ :

[[α]]Ξϕ = ϕ(α)

[[int]]Ξϕ = λ∆. {(inZn, inZn) | n ∈ Z}
[[1]]Ξϕ = λ∆. {(in1∗, in1∗)}

[[τ1 × τ2]]Ξϕ = [[τ1]]Ξϕ× [[τ2]]Ξϕ

[[0]]Ξϕ = λ∆. ∅
[[τ1 + τ2]]Ξϕ = [[τ1]]Ξϕ+ [[τ2]]Ξϕ

[[ref τ]]Ξϕ = ref ([[τ]]Ξϕ)

[[∀α.τ]]Ξϕ = λ∆. {(in∀c1, in∀c2) | ∀ν ∈ T . ∀∆′ w ∆.
(c1, c2) ∈ comp([[τ]]Ξ,αϕ[α 7→ ν])(∆′)}

[[µα.τ]]Ξϕ = fix (λν. λ∆. {(inµv1, inµv2) | (v1, v2) ∈ [[τ]]Ξ,αϕ[α 7→ ν](∆)})
[[τ1 → τ2]]Ξϕ = [[τ1]]Ξϕ→ [[τ2]]Ξϕ

The following operators and elements are used above:

× : T × T → T comp : T → (W →1 BohrRel(TV))

+ : T × T → T cont : T → (W →1
mon BohrRel(K))

ref : T → T states :W →1 BohrRel(S)

→ : T × T → T RAns ∈ BohrRel(Ans)

(ν1 × ν2)(∆) = { (in×(v1, v2), in×(v′1, v
′
2)) | (v1, v

′
1) ∈ ν1(∆) ∧ (v2, v

′
2) ∈ ν2(∆) }

(ν1 + ν2)(∆) = { (in+(ι1 v1), in+(ι1 v
′
1)) | (v1, v

′
1) ∈ ν1(∆) } ∪

{ (in+(ι2 v2), in+(ι2 v
′
2)) | (v2, v

′
2) ∈ ν2(∆) }

(ν1 → ν2)(∆) = { (in→ f, in→ f
′) | ∀∆′ w ∆. ∀(v, v′) ∈ ν(∆′) .(f v, f ′ v′) ∈ comp(ν2)(∆′) }

comp(ν)(∆) = { (c, c′) | ∀(k, k′) ∈ cont(ν)(∆).
∀(s, s′) ∈ states(∆). (c k s, c′ k′ s′) ∈ RAns }

cont(ν)(∆) = { (k, k′) | ∀∆′ w ∆.∀(v, v′) ∈ ν(∆′).
∀(s, s′) ∈ states(∆′). (k v s, k′ v′ s′) ∈ RAns }

RAns = { (⊥, a) | a ∈ Ans} ∪ { (bι1mc, bι1mc) | m ∈ Z }

(Continued in Figure 8.)

Figure 7: Logical relation.

40

Definition of ref : T → T

ref (ν)(∆) =
{

(λl1 , λl2) | ∀∆′ w ∆. l1 ∈ ∆′.ς1 ∧ l2 ∈ ∆′.ς2 ∧
∀(s1, s2) ∈ states(∆′).

(s1(l1), s2(l2)) ∈ ν(∆′) ∧
∀(v1, v2) ∈ ν(∆′).

(s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(∆′)
}
∪{

(λn+1
l1

, λl2) | ∀∆′ w ∆. l1 ∈ ∆′.ς1 ∧ l2 ∈ ∆′.ς2 ∧
∀(s1, s2) ∈ states(∆′). πn(s1) = bs′1c =⇒

(s′1(l1), s2(l2)) ∈ ν(∆′) ∧
∀(v1, v2) ∈ ν(∆′). πn(v1) = bv′1c =⇒

(s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(∆′)
}
.

Definition of states :W →1 BohrRel(S)

states(∆) = {(s1, s2) | dom(s1) = ∆.ς1 ∧ dom(s2) = ∆.ς2 ∧ (s1, s2) ∈ sep(∆)}

where sep(∆) is an auxiliary relation on S defined by

(s1, s2) ∈ sep(∆) ⇐⇒ ∃σ1, σ2 : dom(∆.I)→ S.

s1 =
⊎

n∈dom(∆.I)

σ1(n) ∧ s2 =
⊎

n∈dom(∆.I)

σ2(n) ∧

∀n ∈ dom(∆.I).

(σ1(n), σ2(n)) ∈ ∆.I(n).HL(∆.I(n).CP)(Sq(∆))

Figure 8: Logical relation (ctd.)

41

Now let (s1, s2) ∈ states(∆1) and assume that πSn (s1) = bs′1c 6= ⊥. We
must show that (s′1, s2) ∈ states(∆2). But this follows easily from the above
equation.

It is worthwhile to note that it is the (necessary) use of the shrinking
factor 1

2
in the construction of worlds in Section 7 that prevents us from

proving non-expansiveness. This will haunt us throughout this subsection.

Lemma 8.3. For all n ∈ ω and all ∆1,∆2,∆
′
1 ∈ W with ∆1 =n ∆2 and

∆1 v ∆′1 there is ∆′2 ∈ W with ∆′1 =n ∆′2 and ∆2 v ∆′2.

Proposition 8.4. The operator cont defined in Figure 7 satisfies cont ∈
T → (W →1

mon BohrRel(K)).

Proof. We must show that for all ν ∈ T and all ∆ ∈ W we have that
cont(ν)(∆) ∈ BohrRel(K). We must furthermore show that cont : T →
(W → BohrRel(S)) is non-expansive in the first argument and one-expansive
in the second argument, and that for all ν ∈ T and all ∆1,∆2 ∈ W we have
that

∆1 v ∆2 =⇒ cont(ν)(∆1) ⊆ cont(ν)(∆2).

The first property is an immediate consequence of the fact that RAns is itself
a Bohr relation on the domain Z⊥. The expansiveness properties follow from
Proposition 8.2, Lemma 8.3, and the definition of πKn in Figure 3. Mono-
tonicity is immediate from the quantification over future worlds.

Proposition 8.5. The operator comp defined in Figure 7 satisfies comp ∈
T → (W →1 BohrRel(TV)).

The proof proceeds just as the proof of Proposition 8.4, except that one
does not need to check monotonicity. This definition is, by the way, the
exact point where we benefit from a continuation passing style semantics.
The obvious direct style definition would not have continuations but rather
call for some future world in which the results of the computations should be
suitably related; this, however, is inherently chain-incomplete, and we would
have a hard time producing relations in BohrRel(TV).

8.2. Some Type Constructors

Proposition 8.6. The operator ref defined in Figure 8 satisfies ref ∈ T → T .

42

Proof. Note first that, in both clauses, we quantify over pairs of states
(s1, s2) ∈ states(∆′); in particular we that l1 ∈ ∆′.ς1 = dom(s1) and l2 ∈
∆′.ς2 = dom(s2) by the definition of states(∆′) and so we only read and
write allocated locations.

We must now show that for all ν ∈ T and all ∆ ∈ W we have that
ref (ν)(∆) ∈ BohrRel(V). Furthermore, we must show that ref : T → W →
BohrRel(V) is non-expansive in both arguments, and that for all ν ∈ T and
all ∆1,∆2 ∈ W we have that

∆1 v ∆2 =⇒ ref (ν)(∆1) ⊆ ref (ν)(∆2).

The first property is a consequence of the fact that states(∆) and ν(∆) are
themselves Bohr relations for all ∆ ∈ W . Monotonicity is immediate from the
quantification over future worlds. Let us, however, prove non-expansiveness
in some detail.

Let n ∈ ω, ν1, ν2 ∈ T and ∆1,∆2 ∈ W be given and assume that
ν1 =n+1 ν2 and ∆1 =n+1 ∆2. We aim to show that

ref (ν1)(∆1) =n+1 ref (ν2)(∆2) .

Take (v1, v2) ∈ ref (ν1)(∆1) and assume that πn+1(v1) = bv′1c holds, we must
prove (v′1, v2) ∈ ref (ν2)(∆2). There must be l2 ∈ Loc such that v2 = λl2 and
there must be l1 ∈ Loc and m ≤ n such that v′1 = λm+1

l1
. Since ref (ν1)(∆1) ∈

BohrRel(V) we have (λm+1
l1

, λl2) ∈ ref (ν1)(∆1). We set forth to prove that

we have (λm+1
l1

, λl2) ∈ ref (ν2)(∆2) too.
According to definition, we take ∆′2 w ∆2 and must show that l1 ∈ ∆′2.ς1

and l2 ∈ ∆′2.ς2. By Lemma 8.3 we pick ∆′1 w ∆1 with ∆′1 =n+1 ∆′2 and get
that l1 ∈ ∆′1.ς1 = ∆′2.ς1 and l2 ∈ ∆′1.ς2 = ∆′2.ς2. We now pick (s1, s2) ∈
states(∆′2) and assume that πm(s1) = bs′1c and get that (s′1, s2) ∈ states(∆′1)
since states(∆′1) =m states(∆′2). Since πm(s′1) = bs′1c we furthermore get
(s′1(l1), s2(l2)) ∈ ν1(∆′1) and

∀(v1, v2) ∈ ν1(∆′1). πm(v1) = bv′1c =⇒
(s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(∆′1).

Now πm(s′1(l1)) = bs′1(l1)c and so (s′1(l1), s2(l2)) ∈ ν2(∆′2) as ν1(∆′1) =n+1

ν2(∆′2). Take now (v1, v2) ∈ ν2(∆′2) and assume that πm(v1) = bv′1c, we must
show that (s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(∆′2). But since (v′1, v2) ∈ ν1(∆′1)
and πm(v′1) = bv′1c we get (s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(∆′1) which in
combination with the fact that πm(s′1[l1 7→ v′1]) = bs′1[l1 7→ v′1]c gives us the
desired.

43

This interpretation of reference types differs markedly from ADR. The
interpretation above is extensional whereas the one in ADR is intensional: it
requires that the world must have an island that looks exactly as if it had
been added according to the proof of the case of allocation in the proof of the
fundamental theorem of logical relations. The intensional definition in ADR
means that we may fail to recognize values as having reference type even
though they, for some reason, behave just as references. The extensional def-
inition above does, on the other hand, only support lookup and assignment.
It would not suffice to model a language with equality testing on references
such as the language in ADR. We conjecture that some notion of bijective
bookkeeping could be added to remedy this, but we have not pursued the
matter.

Proposition 8.7. The operator→ defined in Figure 7 belongs to T ×T → T .

We omit a detailed proof but note that the one-expansiveness (in the
second argument) of the operator comp is cancelled out by the index-shift in
projections, see Equation 19 in Figure 3. A similar story can be told about
the interpretation of universal types and reference types; in the latter case we
do not, however, rely on the projections but rather on the index-shift from
λn+1
l1

to πn in the second clause of the definition of ref . In some sense, this
is as far as the one-expansiveness caused by the shrinking factor gets, confer
the comment following the proof of Proposition 8.2.

Proposition 8.8. The operators × and + defined in Figure 7 belong to
T × T → T .

8.3. Interpretation of Types

Theorem 8.9. For all Ξ ` τ we have that [[τ]]Ξ : T Ξ → T defined by induc-
tion on τ according to Figure 7 is well-defined and non-expansive. Here T Ξ

is equipped with the product metric.

Proof. This is immediate from Propositions 8.6, 8.7, and 8.8 for all except
universal and recursive types. And verifying the claim for Ξ ` ∀α.τ under
the assumption that it holds for Ξ, α ` τ is not hard.

Consider now the case of Ξ ` µα.τ . We assume that [[τ]]Ξ,α : T Ξ,α → T
is well defined and non-expansive. For ϕ ∈ T Ξ we define

Φϕ = λν ∈ T . λ∆ ∈ W . {(inµv1, inµv2) | (v1, v2) ∈ [[τ]]Ξ,αϕ[α 7→ ν](∆)}

44

and it is not hard to see that this constitutes a contractive map Φϕ : T → T .
This means that fix (Φϕ) is well defined by Banach’s fixed point theorem.
Furthermore we have that for any two ϕ1, ϕ2 ∈ T Ξ with ϕ1 =n ϕ2 for some
n ∈ ω we get Φϕ1 =n+1 Φϕ2 . It then follows from Proposition 5.1 that
fix (Φϕ1) =n+1 fix (Φϕ2). In summa, [[µα.τ]]Ξ : T Ξ → T is well-defined and
contractive.

9. Fundamental Theorem of Logical Relations

This definition with ensuing lemma will do much of the bookkeeping for
us in the proofs to come:

Definition 9.1. For µ, ν ∈ T and ∆ ∈ W we define a relation on V → TV
by

µ→∆ ν = {(f1, f2) | ∀∆′ w ∆. ∀(v1, v2) ∈ µ(∆′). (f1v2, f2v2) ∈ comp(ν)(∆′).

Lemma 9.2. For ν ∈ T , ∆ ∈ W and (v1, v2) ∈ ν(∆) we have

(η v1, η v2) ∈ comp(ν)(∆),

and for µ, ν ∈ T , ∆ ∈ W, (c1, c2) ∈ comp(µ)(∆), (f1, f2) ∈ µ→∆ ν we have

(c1 ? f1, c2 ? f2) ∈ comp(ν)(∆).

Proof. To prove the first, we take related pairs (k1, k2) ∈ cont(ν)(∆) and
(s1, s2) ∈ states(∆) and get that

((η v1) k1s2, (η v2) k2s2) = (k1v1s1, k2, v2, s2) ∈ RAns

by the definition of η : V → TV and cont(ν)(∆).
To prove the second, we similarly take related pairs (k1, k2) ∈ cont(ν)(∆)

and (s1, s2) ∈ states(∆) and must prove that

((c1 ? f1) k1s1, (c2 ? f2) k2s2) ∈ RAns.

By definition of ? : TV × (V → TV)→ TV we get that(
(c1?f1) k1s1, (c2?f2) k2s2

)
=
(
c1(λv1. λt1. f1v1k1t1)s1, c2(λv2. λt2. f2v2k2t2)s2

)
and so it remains to prove that

(λv1. λs
′
1. f1v1k1s

′
1, λv2. λs

′
2. f2v2k2s

′
2) ∈ cont(µ)(∆).

45

So we take ∆′ w ∆, (v1, v2) ∈ µ(∆′), (s′1, s
′
2) ∈ states(∆′) and must prove

that we have
(f1v1k1s

′
1, f2v2k2s

′
2) ∈ RAns.

But the definition of µ →∆ ν gives us that (f1v1, f2v2) ∈ comp(ν)(∆′) and
by monotonicity we have (k1, k2) ∈ cont(ν)(∆′) and we are done.

We are now ready to define what it means for two terms of the same type
to be semantically related. First up is the definition of related environments:

Definition 9.3. For every term environment Ξ ` Γ, every ϕ ∈ T Ξ and every
∆ ∈ W we let [[Γ]]Ξϕ(∆) be the binary relation on V dom(Γ) defined by

[[Γ]]Ξϕ(∆) = {(ρ1, ρ2) | ∀x ∈ dom(Γ). (ρ1(x), ρ2(x)) ∈ [[Γ(x)]]Ξϕ(∆)}.

Definition 9.4. Assume Ξ ` Γ and terms t1 and t2 with free variables in
dom(Γ). We say that t1 and t2 are semantically related, written Ξ | Γ |=
t1 ∼ t2 : τ , if for all ϕ ∈ T Ξ, all ∆ ∈ W, and all (ρ1, ρ2) ∈ [[Γ]]Ξϕ(∆),(

[[t1]]dom(Γ)ρ1, [[t2]]dom(Γ)ρ2

)
∈ comp([[τ]]Ξϕ)(∆).

Theorem 9.5 (Fundamental Theorem). Semantic relatedness is preserved
by all typing rules. In particular, we have that any typed term is semantically
related to itself, i.e, for any Ξ | Γ ` t : τ we have Ξ | Γ |= t ∼ t : τ .

Also, and in combination with adequacy, this means that the logical re-
lation approximates contextual approximation; the exact definition of the
latter and the details of the argument is standard and we omit them here.

Proof. We provide proofs for only a few interesting cases, and refer to BST [12]
with associated technical report [16] for the remaining. The definitions that
concern state and references have changed sufficiently that going through the
cases of lookup, assignment and allocation in detail is reasonable.

The Case of Lookup

Consider the case of lookup. Assume that Ξ | Γ ` t1 ∼ t2 : ref τ holds,
we must show that Ξ | Γ ` ! t1 ∼ ! t2 : τ holds too. We unroll the definition;
take ϕ ∈ T Ξ, ∆ ∈ W and (ρ1, ρ2) ∈ [[Γ]]Ξϕ(∆) and aim to show that

([[! t1]]Xρ1, [[! t2]]Xρ2) ∈ comp([[τ]]Ξϕ)(∆),

46

where we for brevity write X for dom(Γ). By definition we have that

([[! t1]]Xρ1, [[! t2]]Xρ2) = ([[t1]]Xρ1 ? λv1. lookup v1, [[t2]]Xρ2 ? λv2. lookup v2),

and by Lemma 9.2 we are down to proving

(λv1. lookup v1, λv2. lookup v2) ∈ [[ref τ]]Ξϕ→∆ [[τ]]Ξϕ.

Again we unroll, take ∆′ w ∆ and related pairs (v1, v2) ∈ [[ref τ]]Ξϕ(∆′),
(k1, k2) ∈ cont([[τ]]Ξϕ)(∆′) and (s1, s2) ∈ states(∆′); our proof obligation
now is

(lookup v1 k1 s1, lookup v2 k2 s2) ∈ RAns.

We branch on the possible values of v1 and v2 according to the definition of
[[ref τ]]Ξϕ(∆′). The first possibility is that there are l1 and l2 in Loc such
that v1 = λl1 and v2 = λl2 and such that we know l1 ∈ dom(s1), l2 ∈ dom(s2)
and (s1(l1), s2(l2)) ∈ [[τ]]Ξϕ(∆′). But in that case we have

(lookup v1 k1 s1, lookup v2 k2 s2) = (k1 s1(l1) s1, k2 s2(l2) s2) ∈ RAns

and are done.
In the second possible branch there are n ∈ ω and l1 and l2 in Loc such

that v1 = λn+1
l1

and v2 = λl2 and such that we know l1 ∈ dom(s1), l2 ∈
dom(s2). Furthermore, we know that if πn(s1) = bs′1c then (s′1(l1), s2(l2)) ∈
[[τ]]Ξϕ(∆′). If now πn(s1) = ⊥ we get

(lookup v1 k1 s1, lookup v2 k2 s2) = (⊥, lookup v2 k2 s2) ∈ RAns,

by the definition of lookup : V → TV . On the other hand, πn(s1) = bs′1c
gives us that

(lookup v1 k1 s1, lookup v2 k2 s2) = (k1 s
′
1(l1) s1, k2 s2(l2) s2) ∈ RAns.

The Case of Assignment

We now turn to assignment. Assume that we have Ξ | Γ ` t1 ∼ t2 : ref τ
and Ξ | Γ ` u1 ∼ u2 : τ , we must prove that Ξ | Γ ` t1 := u1 ∼ t2 := u2 : 1.
Take ϕ ∈ T Ξ, ∆ ∈ W and (ρ1, ρ2) ∈ [[Γ]]Ξϕ(∆) and aim to show that

([[t1 := u1]]Xρ1, [[t2 := u2]]Xρ2) ∈ comp([[1]]Ξϕ)(∆),

47

where we for brevity write X for dom(Γ). As was the case for lookup, we
proceed by recalling the interpretation of the terms; we have that

[[t1 := u1]]Xρ1 = [[t1]]Xρ1 ? λv1. [[u1]]Xρ1 ? λw1. assign v1w1

and similarly that

[[t2 := u2]]Xρ2 = [[t2]]Xρ2 ? λv2. [[u2]]Xρ2 ? λw2. assign v2w2.

By an application of Lemma 9.2 in conjunction with the first assumption of
this case we need to prove only that

(λv1. [[u1]]Xρ1 ? λw1. assign v1w1, λv2. [[u2]]Xρ2 ? λw2. assign v2w2)

is a member of [[ref τ]]Ξϕ→∆ [[1]]Ξϕ. Take ∆′ w ∆, (v1, v2) ∈ [[ref τ]]Ξϕ(∆′)
and apply Lemma 9.2 with the second assumption of this case to arrive at
the proof obligation

(λw1. assign v1w1, λw2. assign v2w2) ∈ [[τ]]Ξϕ→∆′ [[1]]Ξϕ.

We pick ∆′′ w ∆′ and (w1, w2) ∈ [[τ]]Ξϕ(∆′′), (k1, k2) ∈ cont([[1]]Ξϕ)(∆′′) and
(s1, s2) ∈ states(∆′′) and arrive – finally – at the core of this case, as we plan
to show

(assign v1w1 k1 s1, assign v2w2 k2 s2) ∈ RAns.

As above, we branch on the possible values of v1 and v2 according to the
definition of [[ref τ]]Ξϕ(∆′). The first possibility is that there are l1 and l2
in Loc such that v1 = λl1 and v2 = λl2 and such that we know l1 ∈ dom(s1),
l2 ∈ dom(s2) and (s1[l1 7→ w1], s2[l2 7→ w2]) ∈ states(∆′′). This means that

(assign v1w1, k1 s1, assign v2w2 k2 s2) =

(k1 (in1∗) s1[l1 7→ w1], k2 (in1∗) s2[l2 7→ w2]).

and this branch is done.
The second possibility is that there are n ∈ ω and l1 and l2 in Loc such

that v1 = λn+1
l1

and v2 = λl2 and such that we know l1 ∈ dom(s1), l2 ∈
dom(s2). Furthermore, if πn(s1) = bs′1c we have that πn(w1) = bw′1c means
that we have (s′1[l1 7→ w′1], s2[l2 7→ w2]) ∈ states(∆′′). If either πn(s1) = ⊥
or πn(w1) = ⊥ we get that

(assign v1w1, k1 s1, assign v2w2 k2 s2) = (⊥, assign v2w2 k2 s2) ∈ RAns

48

by the definition of assign : V → V → TV . Otherwise we get πn(s1) = bs′1c
and πn(w1) = bw′1c for some s′1 ∈ S and w′1 ∈ V . And this buys us

(assign v1w1, k1 s1, assign v2w2 k2 s2) =

(k1 (in1∗) s′1[l1 7→ w′1], k2 (in1∗) s2[l2 7→ w2])

which is an element of RAns.

The Case of Allocation

We will now go into the allocation of new references. Assume that we
have Ξ | Γ ` t1 ∼ t2 : τ , we must prove Ξ | Γ ` ref t1 ∼ ref t2 : ref τ . We
make the canonical choices of ϕ ∈ T Ξ, ∆ ∈ W and (ρ1, ρ2) ∈ [[Γ]]Ξϕ(∆) and
proceed to show

([[ref t1]]Xρ1, [[ref t2]]Xρ2) ∈ comp([[ref τ]]Ξϕ)(∆),

where we, as usual, write X for dom(Γ). Now, we have by definition that

([[ref t1]]Xρ1, [[ref t2]]Xρ2) = ([[t1]]Xρ1 ? λv1. alloc v1, [[t2]]Xρ2 ? λv2. alloc v2)

and so we apply the assumption of the case together with Lemma 9.2, pick
∆′ w ∆, (v1, v2) ∈ [[τ]]Ξϕ(∆′), (k1, k2) ∈ cont([[ref τ]]Ξϕ)(∆′) and (s1, s2) ∈
states(∆′) and are now down to proving

(alloc v1 k1 s1, alloc v2 k2 s2) ∈ RAns.

As a first step, we rewrite the above pair according to the definition of
alloc : V → TV to get

(alloc v1 k1 s1, alloc v2 k2 s2) = (k1 λl1 s1[l1 7→ v1], k2 λl2 s2[l2 7→ v2])

where l1 ∈ Loc is the least with l1 /∈ dom(s1) and l2 ∈ Loc is the least with
l2 /∈ dom(s2). As we have allocated new locations we should extend the world
correspondingly. We define for each ∆̂ ∈ Ŵ a relation Φ(∆̂) on S by

{(s1, s2) | l1 ∈ dom(s1) ∧ l2 ∈ dom(s2) ∧ (s1(l1), s2(l2)) ∈ [[τ]]Ξϕ(Sq−1(∆̂))}

and remark that Φ : Ŵ → BohrRel(S) is well-defined, monotone and non-
expansive. But then Θ = {∅, {∅}, λ .Φ} easily is an island, i.e., a member of
I(Ŵ). We define ∆′′ ∈ W by

∆′′.ς1 = ∆′.ς1 ∪ {l1},∆′′.ς2 = ∆′.ς2 ∪ {l2},∆′′.I = ∆′.I[n 7→ Θ]

49

where n ∈ ω is the least with n /∈ dom(∆′.I). It is immediate by definition
that ∆′′ w ∆′ and so it remains to prove that (λl1 , λl2) ∈ [[ref τ]]Ξϕ(∆′′) and
that (s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(∆′′).

Addressing the first issue, take ∆′′′ w ∆′′, we have l1 ∈ ∆′′.ς1 ⊆ ∆′′′.ς1
and l2 ∈ ∆′′.ς2 ⊆ ∆′′′.ς2 by definition of world extension. Assume now
that we have (q1, q2) ∈ states(∆′′′). This would imply the existence of sub-
heaps q′1 ⊆ q1 and q′2 ⊆ q2 with (q′1, q

′
2) ∈ Φ(Sq(∆′′′)), also by the def-

inition of world extension. This means that l1 ∈ dom(q′1), l2 ∈ dom(q′2)
and that (q1(l1), q2(l2)) = (q′1(l1), q′2(l2)) ∈ [[τ]]Ξϕ(∆′′′). And if we pick
(w1, w2) ∈ [[τ]]Ξϕ(∆′′′) then we have (q′1[l1 7→ w1], q′2[l2 7→ w2]) ∈ Φ(Sq(∆′′′))
and hence (q1[l1 7→ w1], q2[l2 7→ w2]) ∈ states(∆′′′). In conclusion, (λl1 , λl2) ∈
[[ref τ]]Ξϕ(∆′′). Showing that (s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(∆′′) holds
is not hard as we recall that (s1, s2) ∈ states(∆′) and that for any m ∈
dom(∆′.I) we have ∆′′.I(m) = ∆′.I(m), but do notice that this where we
crucially rely on monotonicity of types and of the heap law of an island.

10. Examples

10.1. Syntactic Sugar: Existential Types

Our language has universal types with associated term constructs but
does not, a priori, come with existential types. But we can apply the standard
encoding of existential types as universal types [26, Section 24.3] as follows:

Definition 10.1. We write ∃α. τ for the type ∀β. (∀α. τ → β)→ β where β
is not in τ . And we write pack σ, t for the term Λβ. λf. f [σ] t.

It is easy to show that

Ξ ` σ Ξ | Γ ` t : τ [σ/α]

Ξ | Γ ` pack σ, t : ∃α. τ

is a derived typing rule. We do not need to unpack existential packages in
the examples to come, but this could be encoded too. Instead we provide
the following semantic lemma that is both useful and reassuring:

Lemma 10.2. Define in∃ : TV → V by in∃(c) = in∀(η(in→(ψc))) where

ψc = λu. η(u) ? λv.

{
d v = in∀(d)

error otherwise
? λw. c ? λx.

{
f x w = in→(f)

error otherwise
.

50

We then have for Ξ, α ` τ , ϕ ∈ T Ξ, ∆ ∈ W and c1, c2 ∈ TV that(
∃ν ∈ T .∀∆′ w ∆. (c1, c2) ∈ [[τ]]Ξ,αϕ[α 7→ ν](∆′)

)
=⇒(

(in∃(c1), in∃(c
′)) ∈ [[∃α. τ]]Ξϕ(∆)

)
.

Notice here the similarity with the interpretation of types, only the quan-
tification is different. And that we cannot reason both ways; we do not know
whether the reverse implication holds. The map in∃ : TV → V was con-
structed by unrolling the interpretation of pack σ, t to the point where no
syntax was left; indeed, we have [[pack σ, t]]Xρ = η(in∃([[t]]Xρ)) whenever all
term variables of t are in X.

10.2. More Sugar: Let Bindings and Sequencing

Definition 10.3. For terms s and t and a variable x we write let x = s in t
for the term (λx. t) s. For terms s and t we write s; t for let x = s in t
where x is not in t.

We have the obvious derived typing rules

Ξ | Γ ` s : τ Ξ | Γ, x : τ ` t : σ

Ξ | Γ ` let x = s in t : σ

Ξ | Γ ` s : τ Ξ | Γ ` t : σ

Ξ | Γ ` s; t : σ

and by using the convenient fact that we have η(v) ? f = f(v) for any v ∈ V
and f ∈ V → TV we easily have the following lemma:

Lemma 10.4. We have that [[let x = s in t]]Xρ = [[s]]Xρ?λv. [[t]]X,xρ[x 7→ v]
and that [[s; t]]Xρ = [[s]]Xρ ? λ . [[t]]Xρ.

10.3. Booleans

We need the type bool of booleans in the example to come. Abbreviate

bool = 1 + 1

true = inl ()

false = inr ()

We also introduce some convenient notation on the semantic side: Let B =
{0, 1} be the discrete two-point predomain, and define inB : B → V by
inB(1) = in+(ι1(∗)) and inB(0) = in+(ι2(∗)). Then [[true]]Xρ = η(inB 1) and
[[false]]Xρ = η(inB 0).

51

It is furthermore convenient to add an integer comparison operator t1 ≤ t2
to the language. It has the following typing rule and semantics:

Ξ | Γ ` t1 : int Ξ | Γ ` t2 : int

Ξ | Γ ` t1 ≤ t2 : bool

[[t1 ≤ t2]]Xρ = [[t1]]Xρ?λv1. [[t2]]Xρ?λv2.


η(inB 1) v1 = inZ n, v2 = inZm, n ≤ m

η(inB 0) v1 = inZ n, v2 = inZm, n > m

error otherwise.

(One can encode this operator using ifz and fix, but the encoding is fairly
complicated.)

10.4. Name Generator

Consider the program t1 given by

t1 = let x = ref 0 in pack int, (λz. x := ! x + 1; ! x, λz. z ≤ ! x).

It is not hard to assign it the type ∃α. (1 → α) × (α → bool). The idea is
that of a name generator, each call to the first function returns a fresh name
of type α by incrementing and then returning the value stored at location x.
The second function is a sanity check, it asserts that a supplied value of
type α is valid, i.e., does not exceed the largest name supplied so far. Put
roughly, it can never return false because there is no way of producing stray
values of α. And indeed, we shall prove e1 contextually equivalent to the
program t2 given by

t2 = let x = ref 0 in pack int, (λz. x := ! x + 1; ! x, λz. true),

where we have replaced the second function with a dummy that always re-
turns true. The approach is, of course, to prove the interpretation of e1

semantically related to the interpretation of e2 at type ∃α. (1 → α) × (α →
bool) and the other way round, we shall do only the first.

So, let us take on the task. We must show that |= t1 ∼ t2 : ∃α. (1 →
α) × (α → bool) where we note that both the type and term contexts are
empty. This means picking ∆ ∈ W arbitrary, taking (k1, k2) ∈ cont(∃α. (1→
α)× (α→ bool))(∆) and (s1, s2) ∈ states(∆) and proving

([[t1]] k1 s1, [[t2]] k2 s2) ∈ RAns.

52

A few calculations gives us that the left component [[t1]] k1 s1 equals

[[pack int, (λz. x := ! x + 1; ! x, λz. z ≤ ! x)]]x[x 7→ λl1] k1 s1[l1 7→ 0]

where l1 ∈ ω is the least such that l1 /∈ dom(s1). Similarly we have that right
component [[t2]] k2 s2 equals

[[pack int, (λz. x := ! x + 1; ! x, λz. true)]]x[x 7→ λl2] k2 s2[l2 7→ 0]

where l2 ∈ ω is the least such that l2 /∈ dom(s2). Writing out a few more
lines we arrive at

k1 in∃([[(λz. x := ! x + 1; ! x, λz. z ≤ ! x)]]xρ1) s1[l1 7→ 0],

and at
k2 in∃([[(λz. x := ! x + 1; ! x, λz. true)]]xρ2) s2[l2 7→ 0]

as our left and right hand side components, respectively. For brevity we write
ρ1 for [x 7→ λl1] and ρ2 for [x 7→ λl2].

We are now, so to speak, at a point where allocation has been made by
both programs and so we aim to extend the world to reflect this. First up,
we define for each n ∈ ω a relation on S indexed by ∆̂ ∈ Ŵ as follows:

Φn(∆̂) = {(s1, s2) | l1 ∈ dom(s1) ∧ l2 ∈ dom(s2) ∧ s1(l1) = s2(l2) = inZ n}

It is easy to verify that Φn : Ŵ → BohrRel(S) is well-defined and since it is
constant it is monotone and non-expansive too. Let now Pn = {1, 2, . . . , n}
for any n ∈ ω, in particular we have P0 = ∅. We then define

Θ =

(
P0, {Pn | n ∈ ω}, λX.

{
Φn X = Pn

otherwise

)

and note that this is island, i.e., Θ ∈ I(Ŵ). The population corresponds
to the names generated so far; as the left and right name generators work
in lock-step they always have the same set of generated names. Notice that
it is initially empty because no names have been generated so far and that
we restrict it to values from {P0, P1, . . .}. The heap law just matches pop-
ulations with the indexed relations on states; the definition requires us to
define images of all of the subsets of V but we shall only ever need images

53

of {P0, P1, . . .} and hence leave the remaining unspecified. We now define
∆′ ∈ W by

∆′.ς1 = ∆.ς1 ∪ {l1},∆′.ς2 = ∆.ς2 ∪ {l2},∆′.I = ∆.I[n 7→ Θ]

where n ∈ ω is the least with n /∈ dom(∆.I). It is immediate that ∆′ w ∆.
Having extended the world with an island that keeps track of the counters

of both name generators we now build the type of generated names. These
are exactly the population of the new island, so we just read them off; define
a relation on V for ∆∗ ∈ W by

ν(∆∗) =

{(inZ v, inZ v) | v ∈ ∆∗.I(n).CP}
n ∈ dom(∆∗.I)∧
∆∗.I(n).PL = Θ.PL

∅ otherwise.

We shall only apply this type to the world ∆′ and possible extensions of this
and so the second clause is really unreachable. But we cannot do without it,
as the definition of T requires us to give values to all worlds. It is not hard to
prove ν : W → BohrRel(V) well defined, non-expansive and monotone; we
rely on the fact that island populations cannot shrink under world extension
for the latter.

We now return to the issue at hand. As continuations are required to
behave in future worlds and as (s1[l1 7→ 0], s2[l2 7→ 0]) easily is a member of
states(∆′), it shall suffice to show that the pair(

in∃([[(λz. x := ! x + 1; ! x, λz. z ≤ ! x)]]xρ1),

in∃([[(λz. x := ! x + 1; ! x, λz. true)]]xρ2)
)

is a member of [[∃α. (1→ α)× (α→ bool)]](∆′). Now take ∆′′ w ∆′ arbi-
trary, by Lemma 10.2 it shall suffice to show that(

[[(λz. x := ! x + 1; ! x, λz. z ≤ ! x)]]xρ1, [[(λz. x := ! x + 1; ! x, λz. true)]]xρ2

)
is a member of comp([[(1→ α)× (α→ bool)]]α[α 7→ ν])(∆′′). This again
comes down to the following two obligations:

1. Prove that ([[λz. x := ! x + 1; ! x]]xρ1, [[λz. x := ! x + 1; ! x]]xρ2) is a mem-
ber of comp([[1→ α]]α[α 7→ ν])(∆′′).

2. Prove that for ∆′′′ w ∆′′ we have that ([[λz. z ≤ ! x]]xρ1, [[λz. true]]xρ2)
is a member of comp([[α→ bool]]α[α 7→ ν])(∆′′′).

54

By inspection of proof obligation 1 we arrive at the following two sub-
obligations that we must address:

1.a. Let ∆′′′ w ∆′′ be arbitrary. Prove that ([[x := ! x + 1]]xρ1, [[x := ! x + 1]]xρ2)
is a member of comp([[1]]α[α 7→ ν])(∆′′′).

1.b. Let ∆† w ∆′′′ be arbitrary. Prove that ([[! x]]xρ1, [[! x]]xρ2) is a member
of comp([[α]]α[α 7→ ν])(∆†).

We now attack the sub-obligation 1.a head-on. Let ∆′′′ w ∆′′ be arbitrary.
By definition of the untyped interpretation we derive that [[x := ! x + 1]]xρ1 is

lookup λl1 ? λv1.

{
η(inZ(m+ 1)) v1 = inZm

error otherwise
? λw1. assign λl1 w1

and the same for [[x := ! x + 1]]xρ2, only exchange λl2 for λl1 . Take (k1, k2) ∈
cont([[1]]α[α 7→ ν])(∆′′′) and (t1, t2) ∈ states(∆′′′). Since ∆′′′ w ∆′ we know
that ∆′′′.I(n) is well-defined and equals Θ defined above, modulo a change of
population. In particular there must be m ∈ ω such that ∆′′′.I(n).CP = Pm
and we know that l1 ∈ dom(t1), l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inZm.
Summing up we get

[[x := ! x + 1]]xρ1 k1 t1 = (η(inZ(m+ 1)) ? λw1. assign λl1 w1) k1 t1

= assign λl1 inZ(m+ 1) k1 t1

= k1 in1(∗) t1[l1 7→ inZ(m+ 1)]

and similarly that

[[x := ! x + 1]]xρ2 k2 t2 = k2 in2(∗) t2[l2 7→ inZ(m+ 1)].

We now build ∆† as a copy of ∆′′′ with the one exception that ∆†.I(n).CP =
Pm+1 which gives us ∆† w ∆′′′ and (t1[l1 7→ inZ(m+1)], t2[l2 7→ inZ(m+1)]) ∈
states(∆†) and this sub-obligation is done. Note, amidst the technicalities,
that we have just generated a new name m+ 1 and updated the population
of island n correspondingly.

Sub-obligation 1.b is a bit shorter. Let ∆† w ∆′′′ be arbitrary. Take
(k1, k2) ∈ cont([[α]]α[α 7→ ν])(∆†) and (t1, t2) ∈ states(∆†). As above, there
must be m ∈ ω such that ∆†.I(n).CP = Pm and we know that l1 ∈ dom(t1),
l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inZm. But then we get

([[! x]]xρ1 k1 t1, [[! x]]xρ2 k2 t2) = (k1 (inZm) t1, k2 (inZm) t2).

55

And all we need to finish this sub-obligation is just to remark that

[[α]]α[α 7→ ν](∆†) = ν(∆†) = {(inZ v, inZ v) | v ∈ Pm} 3 (inZm, inZm).

Finally we tackle obligation 2. Let ∆′′′ w ∆′′ be arbitrary. We can derive
that [[z ≤ ! x]]x,zρ1[z 7→ v1] k1 t1 is

lookup λl1 ? λw1.


η(inB 1) v1 = inZ k, w1 = inZm, k ≤ m

η(inB 0) v1 = inZ k, w1 = inZm, k > m

error otherwise.

Pick ∆† w ∆′′′, (v1, v2) ∈ [[α]]α[α 7→ ν])(∆†) = ν(∆†), (k1, k2) ∈ cont([[bool]]α[α 7→
ν](∆†) and (t1, t2) ∈ states(∆†), we must show that

([[z ≤ ! x]]x,zρ1[z 7→ v1] k1 t1, [[true]]x,zρ2[z 7→ v2] k2 t2) ∈ RAns.

As above, there must be m ∈ ω such that ∆†.I(n).CP = Pm and we know
that l1 ∈ dom(t1), l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inZm. This also
means that (v1, v2) = (inZ k, inZ k) for some 1 ≤ k ≤ m. Combining our
efforts we arrive at

[[z ≤ ! x]]x,zρ1[z 7→ v1] k1 t1 = k1(inB 1) t1

and as we immediately have

[[true]]x,zρ2[z 7→ v2] k2 t2 = k2 (inB1) t2

we are done. Taking a few steps back, all that happens is that the interpre-
tation of the type [[α]]α[α 7→ ν] = ν ensures that the input values must be in
the population of island n; also the heap law enforces that the related states
both contain the maximum name of the population at location l1 and l2
respectively.

10.5. Discussion

We have written out the proof of the Name Generator example in much
detail so as to make it easy to compare this proof with the one in the ADR
model [3]. Looking at the two proofs we can conclude (as claimed in the
introduction) that the semantic techniques from the BST model scale to
state-of-the-art world descriptions and that the resulting model can be used

56

to prove programs equivalent at a fairly abstract level, without any form of
low-level step-indexed reasoning. Indeed the proof we have given here in the
model is at an abstraction level which is similar to the one provided by the
LADR logic [23, Pages 56–58].

The same is the case for the other examples involving local state in
(L)ADR.4 The model similarly gives rise to fairly abstract proofs of the
Plotkin-Power axioms for global state and local state [30] as formulated by
Staton [34].5

For proving some equivalences of programs involving recursive types and/or
reference types, LADR uses a so-called “later” modality and Löb’s rule to
abstractly account for induction over step-indices (This idea comes from [7].)
For example, the later modality and Löb’s rule are used to prove that Landin’s
knot—the construction of a fixed-point using backpatching—works [22, Sec-
tion 9.3]. In the present model, this example would instead proceed via
fixed-point induction.

Note that the proof of the name generator involves references and thus
locations, but that there are no approximate locations in the proof at all.
This is typical of examples that involve allocation and uses of references
(such as the (L)ADR examples); approximate locations do not appear in the
proofs since they are not used as denotations of references allocated in the
programs. But, of course, there are examples, where they show up. Indeed,
when one considers examples involving free variables of reference type (or,
equivalently, functions that take arguments of reference type), then one also
has to consider approximate locations. These approximate locations are in
some sense additional junk in the denotational model, and because of them
there are equivalences that we cannot prove using the model. The simplest
concrete example we know of is the following [12]:

∅ | ∅ |= λx.true 6∼ λx.false : ref 0→ bool

Intuitively, these two functions should be contextually equivalent: since refer-
ences are initialized when allocated, no closed value encountered in a running
program can ever have the type ref 0, and therefore neither of the two func-
tions can ever be applied. However, the two functions are not semantically

4LADR cannot handle the “callback-with-lock” example of ADR and the same is the
case with our model here (see [22] for further discussion).

5Three of the axioms, GS6, GS7, and B3, cannot be formulated as simple, typed
equations in our language, but equivalent semantic formulations do hold in the model.

57

related in our model. Loosely speaking, the reason is that approximate lo-
cations can be related at the type ref 0.

We leave it as future work to investigate further if one can find a more
abstract model, which does not involve either a form of semantic location or
some form of step-indexing. We believe this is a challenging problem — for
an earlier version of the BST model we could show that a putative logical
relation formulated without approximate locations did not exist! — and it
is related to questions of existence of recursively defined relations in [11].

Other future work includes the formulation of a program logic for rea-
soning about equivalence based on the present model. Such a logic would
naturally combine ideas from LADR concerning syntactic formulations of is-
lands, etc., with ideas from earlier domain-theoretically inspired logics for
call-by-value (see, e.g., [1]). In particular it would not include the later
modality and the Löb rule of LADR but rather have a fixed point induction
rule.

Recently, Dreyer, Neis and Birkedal [21] have generalized the world-
dynamics to have proper state transition systems instead of the populations
and population laws of ADR. Their approach features two kinds of tran-
sitions: private and public; all computations are required to perform only
public transitions as seen from the outside, but may realize these, internally,
by means of private transitions. They go on to prove examples that could not
be proved in the ADR model; indeed, they are able to prove all known local-
state examples from the literature. Here we just remark, that we could easily
extend the present model to worlds with state transition systems and private
and public transitions; the shift is big in terms of ideas and applications, but
on the technical / metric-space level it is a minor change.

11. Acknowledgements

We would like to thank Derek Dreyer and Georg Neis for helpful dis-
cussions and insightful comments including, but not limited to, observations
on the consequences of choosing either intensional or extensional interpreta-
tions of references. And we thank the anonymous referees for many valuable
comments, ranging from typos to directions for future work.

References

[1] M. Abadi and M. P. Fiore. Syntactic considerations on recursive types.
In Proceedings of LICS, pages 242–252. IEEE Computer Society, 1996.

58

[2] M. Abadi and G. D. Plotkin. A per model of polymorphism and recursive
types. In Proceedings of LICS, pages 355–365. IEEE Computer Society,
1990.

[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation
independence. In Proceedings of POPL, pages 340–353. ACM Press,
2009.

[4] A. J. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In Proceedings of ESOP, volume 3924 of Lecture Notes
in Computer Science, pages 69–83. Springer, 2006.

[5] R. M. Amadio. Recursion over realizability structures. Inf. Comput., 91
(1):55–85, 1991.

[6] P. America and J. J. M. M. Rutten. Solving reflexive domain equations
in a category of complete metric spaces. J. Comput. Syst. Sci., 39(3):
343–375, 1989.

[7] A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. A very modal
model of a modern, major, general type system. In Proceedings of POPL,
pages 109–122. ACM Press, 2007.

[8] A. W. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. Transactions on Programming Lan-
guages and Systems, 23(5):657–683, 2001.

[9] C. Baier and M. E. Majster-Cederbaum. The connection between initial
and unique solutions of domain equations in the partial order and metric
approach. Formal Aspects of Computing, 9(4):425–445, 1997.

[10] N. Benton and B. Leperchey. Relational reasoning in a nominal seman-
tics for storage. In Proceedings of TLCA, volume 3461 of Lecture Notes
in Computer Science, pages 86–101. Springer, 2005.

[11] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational se-
mantics for effect-based program transformations: higher-order store. In
Proceedings of PPDP, pages 301–312. ACM Press, 2009.

[12] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of
parametric polymorphism, general references, and recursive types. In

59

Proceedings of FOSSACS, volume 5504 of Lecture Notes in Computer
Science, pages 456–470. Springer, 2009.

[13] L. Birkedal, K. Støvring, and J. Thamsborg. Relational parametricity
for references and recursive types. In Proceedings of TLDI, pages 91–104.
ACM Press, 2009.

[14] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space equations. Technical Report TR-2009-
119, IT University of Copenhagen, August 2009.

[15] L. Birkedal, K. Støvring, and J. Thamsborg. Solutions of generalized
recursive metric-space equations. In Proceedings of the 6th Workshop
on Fixed Points in Computer Science, pages 18–24, 2009.

[16] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics
of parametric polymorphism, general references, and recursive types.
Technical Report TR-2010-124, IT University of Copenhagen, January
2010.

[17] N. Bohr and L. Birkedal. Relational reasoning for recursive types and
references. In Proceedings of APLAS, volume 4279 of Lecture Notes in
Computer Science, pages 79–96. Springer, 2006.

[18] J. de Bakker and E. de Vink. Control flow semantics. MIT Press,
Cambridge, MA, USA, 1996.

[19] J. de Bakker and J. Zucker. Processes and the denotational semantics
of concurrency. Information and Control, 54:70–120, 1982.

[20] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. In Proceedings of LICS, pages 71–80. IEEE Computer Society,
2009.

[21] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In P. Hudak and
S. Weirich, editors, ICFP, pages 143–156. ACM, 2010. ISBN 978-1-
60558-794-3.

[22] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal
logic for higher-order stateful ADTs. In Proceedings of POPL, pages
185–198. ACM Press, 2010.

60

[23] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal
logic for higher-order stateful ADTs (technical appendix). Available
at http://www.mpi-sws.org/~dreyer/papers/ladr/appendix.pdf,
2010.

[24] P.-A. Melliès and J. Vouillon. Recursive polymorphic types and para-
metricity in an operational framework. In Proceedings of LICS, pages
82–91. IEEE Computer Society, 2005.

[25] E. Moggi. Notions of computation and monads. Information and Com-
putation, 93:55–92, 1991.

[26] B. C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

[27] A. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7, pages 245–289.
MIT Press, 2005.

[28] A. M. Pitts. Relational properties of domains. Inf. Comput., 127(2):
66–90, 1996.

[29] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with
local state. In Higher order operational techniques in semantics, pages
227–274. Cambridge University Press, New York, NY, USA, 1998.

[30] G. D. Plotkin and J. Power. Notions of computation determine monads.
In Proceedings of FOSSACS, volume 2303 of Lecture Notes in Computer
Science, pages 342–356. Springer, 2002.

[31] J. C. Reynolds. Types, abstraction, and parametric polymorphism. In
Information Processing 83, Paris, France, pages 513–523. Elsevier, 1983.

[32] M. B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science. Oxford Uni-
versity Press, 1992.

[33] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of
recursive domain equations. SIAM J. Comput., 11(4):761–783, 1982.

61

[34] S. Staton. Completeness for algebraic theories of local state.
In Proceedings of FOSSACS, 2010. To appear. Available at
http://www.cl.cam.ac.uk/~ss368/fossacs10.pdf.

[35] G. Winskel. The formal semantics of programming languages: an intro-
duction. MIT Press, Cambridge, MA, USA, 1993.

62

