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Abstract

Frame and anti-frame rules have been proposed as proof rules for modular reasoning about pro-
grams. Frame rules allow one to hide irrelevant parts of the state during verification, whereas the
anti-frame rule allows one to hide local state from the context. We give a possible worlds seman-
tics for Charguéraud and Pottier’s type and capability system including frame and anti-frame rules,
based on the operational semantics and step-indexed heap relations. The worlds are constructed as
a recursively defined predicate on a recursively defined metric space, which provides a considerably
simpler alternative compared to a previous construction.

1 Introduction

Reasoning about higher-order stateful programs is notoriously difficult, and often involves the need to
track aliasing information. A particular line of work that addresses this point are substructural type
systems with regions, capabilities and singleton types [1, 7, 8]. In this context, Pottier [9] presented the
anti-frame rule as a proof rule for hiding local state. It states that (the description of) a piece of mutable
state that is local to a procedure can be removed from the procedure’s external interface (expressed in
the type system). The benefits of hiding local state include simpler interface specifications, simpler
reasoning about client code, and fewer restrictions on the procedure’s use because of potential aliasing.
Thus, in combination with frame rules that allow the irrelevant parts of the state to be hidden during
verification, the anti-frame rule provides an important ingredient for modular reasoning about programs.

Soundness of the frame and anti-frame rules is subtle, and relies on properties of the programming
language. Pottier [9] sketched a proof for the anti-frame rule by a progress and preservation argument,
resting on assumptions about the existence of certain recursively defined types. Subsequently, Schwing-
hammer et al. [12] investigated the semantic foundations of the anti-frame rule by identifying sufficient
conditions for its soundness, and by instantiating their general setup to prove soundness for a separation
logic variant of the rule. The latter was done by giving a Kripke model where assertions are indexed over
recursively defined worlds. The recursive domain equation involved functions that should be monotone
with respect to an order relation that is specified using the isomorphism of the solution itself and an op-
erator on the recursively defined worlds. This means that the standard existence theorems do not appear
to apply, and thence we had to give the solution by a laborious explicit inverse-limit construction [12].

Here we explore an alternative approach, which consists of two steps. First, we consider a recursive
metric space domain equation without any monotonicity requirement, for which we obtain a solution by
appealing to a standard existence theorem. Second, we carve out a suitable subset of what might be called
hereditarily monotonic functions. We show how to define this recursively specified subset. The resulting
subset of monotone functions is, however, not a solution to the original recursive domain equation; hence
we verify that the semantic constructions used to justify the anti-frame rule in [12] suitably restrict to the
recursively defined subset of hereditarily monotone functions. In summa, this results in a considerably
simpler model construction than the earlier one in loc. cit.

In the next section we give a brief overview of Charguéraud and Pottier’s type and capability system
[7, 9] with higher-order frame and anti-frame rules. Section 3 summarizes some background on ultramet-
ric spaces and presents the construction of a set of hereditarily monotonic recursive worlds. Following
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recent work by Birkedal et al. [4], we work with step-indexed heap relations based on the operational
semantics of the calculus. The worlds thus constructed are then used (Section 4) to give a model of the
type and capability system. Due to space limitations, many details have been relegated to an appendix.

2 A Calculus of Capabilities

Syntax and operational semantics. We consider a standard call-by-value, higher-order language with
general references, sum and product types, and polymorphic and recursive types. For concreteness, the
following grammar gives the syntax of values and expressions, keeping close to the notation of [7, 9]:

v ::= x | () | inji v | (v1,v2) | fun f (x)=t | l t ::= v | (vt) | case(v1,v2,v) | proji v | ref v | getv | setv

Here, the term fun f (x)=t stands for the recursive procedure f with body t. The operational semantics is
given by a relation (t |h) 7−→ (t ′ |h′) between configurations that consist of a (closed) expression t and a
heap h. We take a heap h to be a finite map from locations l to closed values, we use the notation h#h′ to
indicate that two heaps h,h′ have disjoint domains, and we write h · h′ for the union of two such heaps.
By Val we denote the set of closed values.

Types. Charguéraud and Pottier’s type system uses capabilities, value types, and memory types. A
capability C describes a heap property, much like the assertions of a Hoare-style program logic. For
instance, {σ : ref int} asserts that σ is a valid location that contains an integer value. More complex
assertions can be built by separating conjunctions C1 ∗C2 and universal and existential quantification
over names σ . Value types τ classify values; they include base types, singleton types [σ ], and are
closed under products, sums, and universal quantification. Memory types χ,θ describe the result of
computations. They extend the value types by a type of references, and also include all types of the form
∃~σ .τ ∗C which describe the final value and heap that result from the evaluation of an expression. Arrow
types (which are value types) have the form χ1 → χ2 and thus, like the pre- and post-conditions of a
triple in Hoare logic, make explicit which part of the heap is accessed and modified when a procedure is
called. We also allow recursive capabilities, value types, and memory types, resp., provided the recursive
definition is (formally) contractive, i.e., the recursion must go through a type constructor such as→.

Frame and anti-frame rules. Each of the syntactic categories is equipped with an invariant extension
operation, ·⊗C. Intuitively, this operation conjoins C to the domain and codomain of every arrow type
that occurs within its left hand argument, which means that the capability C is preserved by all procedures
of this type. This intuition is made precise by regarding capabilities and types modulo a structural
equivalence which subsumes the “distribution axioms” for ⊗ that are used to express generic higher-
order frame rules [6]. Two key cases of the structural equivalence are the distribution axioms for arrow
types, (χ1 → χ2)⊗C = (χ1⊗C ∗C)→ (χ2⊗C ∗C), and for successive extensions, (χ ⊗C1)⊗C2 =
χ⊗ (C1 ◦C2) where the derived operation C1 ◦C2 abbreviates the conjunction (C1⊗C2)∗C2.

There are two typing judgements, x1:τ1, . . . ,xn:τn ` v : τ for values, and x1:χ1, . . . ,xn:χn  t : χ for
expressions. The latter is similar to a Hoare triple where (the separating conjunction of) χ1, . . . ,χn serves
as a precondition and χ as a postcondition. This view provides some intuition for the following “shallow”
and “deep” frame rules, and for the (roughly dual) anti-frame rule:

[SF]
Γ  t : χ

Γ∗C  t : χ ∗C
[DF]

Γ  t : χ

(Γ⊗C)∗C  t : (χ⊗C)∗C
[AF]

Γ⊗C  t : (χ⊗C)∗C

Γ  t : χ
(1)

As in separation logic, the frame rules can be used to add a capability C (which might assert the existence
of an integer reference, say) as an invariant to a specification Γ  t : χ , which is useful for local reasoning.
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The difference between the shallow variant [SF] and the deep variant [DF] is that the former adds C only
on the top-level, whereas the latter also extends all arrow types nested inside Γ and χ , via ·⊗C. While
the frame rules can be used to reason about certain forms of information hiding [6], the anti-frame rule
expresses a hiding principle more directly: the capability C can be removed from the specification if C is
an invariant that is established by t, expressed by · ∗C, and guaranteed to hold whenever control passes
from t to the context and back, expressed by ·⊗C.

3 Hereditarily Monotonic Recursive Worlds

Intuitively, capabilities describe heaps. A key idea of the model that we present next is that capabilities
(as well as types and type contexts) are parameterized by invariants – this will make it easy to interpret
the invariant extension operation ⊗, as in [11, 12]. But, as the frame and anti-frame rules in (1) indicate,
invariants can be arbitrary capabilities again. Thus, we are led to consider a Kripke model where the
worlds are recursively defined: to a first approximation, we need a solution to the equation

W = W → Pred(Heap) . (2)

In fact, we will also need to consider a preorder on W and ensure that the interpretation of capabilities
and types is monotonic. We will find a solution to a suitable variant of (2) using ultrametric spaces.

Ultrametric spaces. We recall some basic definitions and results about ultrametric spaces; for a less
condensed introduction to ultrametric spaces we refer to [13]. A 1-bounded ultrametric space (X ,d) is
a metric space where the distance function d : X ×X → R takes values in the closed interval [0,1] and
satisfies the “strong” triangle inequality d(x,y) ≤ max{d(x,z),d(z,y)}. A metric space is complete if
every Cauchy sequence has a limit. A function f : X1→ X2 between metric spaces (X1,d1), (X2,d2) is
non-expansive if d2( f (x), f (y))≤ d1(x,y) for all x,y∈X1. It is contractive if there exists some δ < 1 such
that d2( f (x), f (y))≤ δ ·d1(x,y) for all x,y ∈ X1. By multiplication of the distances of (X ,d) with a non-
negative factor δ < 1, one obtains a new ultrametric space, δ ·(X ,d) = (X ,d′) where d′(x,y) = δ ·d(x,y).

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive functions between them
form a Cartesian closed category CBUltne. Products are given by the set-theoretic product where the
distance is the maximum of the componentwise distances. The exponential (X1,d1)→ (X2,d2) has the
set of non-expansive functions from (X1,d1) to (X2,d2) as underlying set, and the distance function is
given by dX1→X2( f ,g) = sup{d2( f (x),g(x)) | x ∈ X1}.

The notation x n= y means that d(x,y) ≤ 2−n. Each relation n= is an equivalence relation because of
the ultrametric inequality; we refer to the relation n= as “n-equality.” Since the distances are bounded by
1, x 0= y always holds, and the n-equalities become finer as n increases. If x n= y holds for all n then x = y.

Uniform predicates, worlds and world extension. Let (A,v) be a partially ordered set. An upwards
closed, uniform predicate on A is a subset p ⊆ N×A that is downwards closed in the first and upwards
closed in the second component: if (k,a) ∈ p, j ≤ k and a v b, then ( j,b) ∈ p. We write UPred(A) for
the set of all upwards closed, uniform predicates on A, and we define p[k] = {( j,a) | j < k}. Note that
p[k] ∈ UPred(A). We equip UPred(A) with the distance function d(p,q) = inf{2−n | p[n] = q[n]}, which
makes (UPred(A),d) an object of CBUltne.

In our model, we use UPred(A) with the following concrete instances for the partial order (A,v):
(1) heaps (Heap,v), where hv h′ iff h′ = h ·h0 for some h0#h, (2) values (Val,v), where uv v iff u = v,
and (3) stateful values (Val×Heap,v), where (u,h)v (v,h′) iff u = v and hv h′. We also use variants of
the latter two instances where the set Val is replaced by the set of value substitutions, Env, and by the set
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of closed expressions, Exp. On UPred(Heap), ordered by subset inclusion, we have a complete Heyting
BI algebra structure [3]. Below we only need the separating conjunction and its unit I, given by

p1 ∗ p2 = {(k,h) | ∃h1,h2. h = h1·h2 ∧ (k,h1) ∈ p1∧ (k,h2) ∈ p2} and I = N×Heap .

It is well-known that one can solve recursive domain equations in CBUltne by an adaptation of the
inverse-limit method from classical domain theory [2]. In particular, with regard to (2) above:

Theorem 1. There exists a unique (up to isomorphism) (X ,d)∈CBUltne s.t. ι : 1
2 ·X→UPred(Heap)∼= X.

Using the pointwise lifting of separating conjunction to 1/2·X→UPred(Heap) we define a composi-
tion operation on X , which reflects the syntactic abbreviation C1 ◦C2 = C1⊗C2 ∗C2 of conjoining C1 and
C2 and additionally applying an invariant extension to C1. Formally, ◦ : X ×X → X is a non-expansive
operation that for all p,q,x ∈ X satisfies

ι
−1(p◦q)(x) = ι

−1(p)(q◦ x) ∗ ι
−1(q)(x) ,

and which can be defined by an easy application of Banach’s fixed point theorem as in [11]. One can show
that this operation is associative and has a left and right unit given by emp = ι(λw.I); thus (X ,◦,emp)
is a monoid in CBUltne. Using ◦ we define an extension operation ⊗ : Y (1/2·X)×X → Y (1/2·X) for any
Y ∈ CBUltne by ( f ⊗x)(x′) = f (x◦x′). Without going into details, let us remark that this operation is the
semantic counterpart to the syntactic invariant extension, and thus plays a key role in explaining the frame
and anti-frame rules. However, for Pottier’s anti-frame rule we also need to ensure that specifications are
not invalidated by invariant extension. This requirement is stated via monotonicity, as we discuss next.

Relations on ultrametric spaces and hereditarily monotonic worlds. As a conseqence of the fact
that ◦ defines a monoid structure on X there is an induced preorder on X :

xv y ⇔ ∃x0. y = x◦ x0 .

For modelling the anti-frame rule, we aim for a set of worlds similar to X ∼= 1/2 ·X →UPred(Heap) but
where the function space consists of the non-expansive functions that are additionally monotonic, with
respect to the order induced by ◦ on X and with respect to set inclusion on UPred(Heap):

(W,v) ∼= 1
2 · (W,v)→mon (UAdm,⊆) . (3)

Because the definition of the orderv (induced by ◦) already uses the isomorphism between left-hand and
right-hand side, and because the right-hand side depends on the order for the monotonic function space,
the standard existence theorems for solutions of recursive domain equations do not appear to apply to (3).
Previously we have constructed a solution to this equation explicitly as inverse limit of a suitable chain
of approximations [12]. We show in the following that we can alternatively carve out from X a suitable
subset of what we call hereditarily monotonic functions. This subset needs to be defined recursively.

Let R be the collection of all non-empty and closed relations R⊆ X . Given R ∈R, we define

R[n]
def= {y | ∃x ∈ X . x n= y ∧ x ∈ R} .

Thus, R[n] is the set of all points within distance 2−n of R. Note that R[n] ∈R. In fact, R ⊆ R[n] by the
reflexivity of n-equivalence, and if (yk)k∈N is a sequence in R[n] with limit y then d(yk,y)≤ 2−n for some
k, i.e., yk

n= y. So there exists x ∈ X with x ∈ R and x n= yk, and hence x n= y which gives limn yn ∈ R[n].
We make some further observations that follow from the properties of n-equality on X . First, R⊆ R[n]

by the reflexivity of n-equivalence, and R ⊆ S implies R[n] ⊆ S[n] for any R,S ∈R. Moreover, using the
fact that the n-equalities become increasingly finer it follows that (R[m])[n] = R[min(m,n)] for all m,n ∈ N,
so in particular each (·)[n] is a closure operation on R. As a consequence, we have R⊆ . . .⊆ R[n] ⊆ . . .⊆
R[1] ⊆ R[0]. Finally, R = S if and only if R[n] = S[n] for all n ∈ N.
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Proposition 2. Let d : R×R → R be defined by d(R,S) = inf{2−n | R[n] = S[n]}, where we take inf /0
to mean 1. Then (R,d) is a complete, 1-bounded, non-empty ultrametric space. The limit of a Cauchy
chain (Rn)n∈N with d(Rn,Rn+1)≤ 2−n is given by

⋂
n(Rn)[n], and in particular R =

⋂
n R[n] for any R∈R.

We will now define the set of hereditarily monotonic functions W as a recursive predicate on X . Let
the function Φ on subsets of X be defined by Φ(A) = {ι(p) | ∀x,x0 ∈ A. p(x)⊆ p(x◦x0)}. If A ∈R then
Φ(A) is non-empty and closed (i.e., Φ restricts to a function on R), and it is contractive. By Proposition 2
and the Banach theorem we can now define W as the (uniquely determined) fixed point of Φ and obtain

w ∈W ⇔ ∃p. w = ι(p) ∧ ∀w,w0 ∈W. p(w)⊆ p(w◦w0) .

Note that W thus constructed does not quite satisfy (3). We do not have an isomorphism between W and
the non-expansive and monotonic functions from W (viewed as an ultrametric space itself), but rather
between W and all functions from X that restrict to monotonic functions whenever applied to hereditarily
monotonic arguments. Keeping this in mind, we abuse notation and write

1
2 ·W →mon UPred(A) def= {p : 1

2 ·X → UPred(A) | ∀w1,w2 ∈W. p(w1)⊆ p(w1 ◦w2)} .

Then, for our particular application of interest, we also have to ensure that all the operations restrict
appropriately. First, by induction we show that for all n ∈ N, if w1,w2 ∈W then w1 ◦w2 ∈W[n], and this
entails that the composition operation ◦ restricts to W . In turn, this means that the ⊗ operator restricts
accordingly: if w ∈W and p is in 1

2 ·W →mon UPred(A) then so is p⊗w.

4 Possible World Semantics of Capabilities

We define semantic domains for the capabilities and types of the calculus described in Section 2,

Cap = 1
2 ·W →mon UPred(Heap)

VT = 1
2 ·W →mon UPred(Val)

MT = 1
2 ·W →mon UPred(Val×Heap) ,

so that p ∈ Cap if and only if ι(p) ∈ W. Next, we define operations on the semantic domains that
correspond to the syntactic type and capability constructors. The most interesting of these is the one for
arrow types. Given p,q ∈ 1/2 ·X → UPred(Val×Heap), p→ q in 1

2 ·X → UPred(Val) is defined by

(p→ q)(x) def= {(k, fun f (y)=t) | ∀ j < k. ∀w∈W. ∀r∈UPred(Heap).
∀( j,(v,h)) ∈ p(x◦w)∗ ι

−1(x◦w)(emp)∗r.

( j,(t[ f :=fun f (y)=t,y:=v],h)) ∈ E (q)(x◦w)∗r} ,

(4)

where E (q) is the extension of a world-indexed, uniform predicate on Val×Heap to one on Exp×Heap.
It is here where the index is linked to the operational semantics: (k,(t,h))∈ E (q)(x) iff for all j≤ k, t ′,h′,

(t |h) 7−→ j (t ′ |h′) ∧ (t ′ |h′) irreducible ⇒ (k− j,(t ′,h′)) ∈
⋃

w′∈W q(x ◦w′) ∗ ι−1(x◦w′)(emp) .

Definition (4) realizes the key ideas of our model as follows. First, the universal quantification over
w ∈W and subsequent use of the world x ◦w builds in monotonicity, and intuitively means that p→ q
is parametric in (and hence preserves) invariants that have been added by the procedure’s context. In
particular, (4) states that procedure application preserves this invariant, when viewed as the predicate
ι−1(x◦w)(emp). By also conjoining r as an invariant we “bake in” the first-order frame property, which
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results in a subtyping axiom χ1→ χ2 ≤ χ1 ∗C→ χ2 ∗C in the type system. The existential quantification
over w′, in the definition of E , allows us to absorb a part of the local heap description into the world.
Finally, the quantification over indices j < k in (4) achieves that (p→ q)(x) is uniform. There are two
explanations why we require that j be strictly less than k. Technically, the use of ι−1(x ◦w) in the
definition “undoes” the scaling by 1/2, and j < k is needed to ensure the non-expansiveness of p→ q as
a function 1/2 ·W → UPred(Val). Moreover, it lets us prove the typing rule for recursive functions by
induction on k. Intuitively, the use of j < k for the arguments suffices since application consumes a step.

All these constructors restrict to Cap,VT and MT, respectively. With their help it becomes straight-
forward to define the interpretation of capabilities and types, and to verify that the type equivalences hold
with respect to this interpretation. The semantics of typing judgements is defined in analogy to (4), but
also universally quantifying over worlds and indices, and it validates the typing rules of the calculus.

5 Conclusion and Future Work

To justify proof rules that take advantage of hidden state, like the frame and anti-frame rules, one needs
semantic models that adequately capture this aspect of programming languages. In this paper, we have
described the construction of a suitable possible worlds model where the worlds are given by a recur-
sively defined predicate on a recursively defined metric space. In contrast to a similar model [12] which
involved a tedious explicit inverse-limit construction, the present approach uses standard existence and
fixed point theorems. We believe that this method provides a realistic approach to study frame and anti-
frame rules in the presence of other programming language features, and to investigate the soundness of
generalizations of these rules that have recently proposed by Pottier [10].
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v ::= x | () | inji v | (v1,v2) | fun f (x)=t | l
t ::= v | (vt) | case(v1,v2,v) | proji v | ref v | getv | setv

Figure 1: Syntax of values and expressions

(fun f (x)=t)v |h 7−→ t[ f := fun f (x)=t,x := v] |h
proji(v1,v2) |h 7−→ vi |h for i = 1,2

case(v1,v2, injiv) |h 7−→ vi v |h for i = 1,2
ref v |h 7−→ l |h·[l 7→ v] if l /∈ dom(h)
get l |h 7−→ h(l) |h if l ∈ dom(h)

set(l,v) |h 7−→ () |h[l := v] if l ∈ dom(h)
vt |h 7−→ vt ′ |h′ if t |h 7−→ t ′ |h′

Figure 2: Operational semantics

A Definitions

In this section we give the details of the programming language and the type and capability system. For
more details and motivation we refer to [7, 9, 4, 12].

Figures 1 and 2 give the syntax and operational semantics of a standard call-by-value higher-order
language with recursive procedures. Figures 3 and 4 give the syntax and a structural equivalence relation
on types, and Figure 5 presents some subtyping axioms. Figure 6 gives the typing rules that define the
typing judgements for values and expressions.

Variables ξ ::= α | β | γ | σ
Capabilities C ::= C⊗C | /0 |C ∗C | {σ : θ} | ∃σ .C | γ | µγ.C | ∀ξ .C

Value types τ ::= τ⊗C | 0 | 1 | int | τ + τ | τ× τ | χ → χ | [σ ] | α | µα.τ | ∀ξ .τ

Memory types θ ::= θ ⊗C | τ | θ +θ | θ ×θ | ref θ | θ ∗C | ∃σ .θ | β | µβ .θ | ∀ξ .θ

Computation types χ ::= χ⊗C | τ | χ ∗C | ∃σ .χ

Value environments ∆ ::= ∆⊗C |∅ | ∆,x:τ
Linear environments Γ ::= Γ⊗C |∅ | Γ,x:χ | Γ∗C

Figure 3: Capabilities and types
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monoids

C1 ◦C2
def
= (C1⊗C2) ∗C2 C1 ∗C2 = C2 ∗C1 (5)

(C1 ◦C2)◦C3 = C1 ◦ (C2 ◦C3) (C1 ∗C2)∗C3 = C1 ∗ (C2 ∗C3) (6)

C ◦ /0 = C C ∗ /0 = C (7)

monoid actions

(·⊗C1)⊗C2 = ·⊗ (C1 ◦C2) ·⊗ /0 = · (8)

(· ∗C1)∗C2 = · ∗ (C1 ∗C2) · ∗ /0 = · (9)

action by ∗ on singleton

{σ : θ}∗C = {σ : θ ∗C} (10)

action by ∗ on linear environments

(Γ,x:χ)∗C = Γ,x:(χ ∗C) = (Γ∗C),x:χ (11)

action by ⊗ on capabilities, types, and environments

(· ∗ ·)⊗C = (·⊗C)∗ (·⊗C) (12)

(∃σ .·)⊗C = ∃σ .(·⊗C) if σ /∈ RegNames(C) (13)

/0⊗C = /0 (14)

{σ : θ}⊗C = {σ : θ ⊗C} (15)

0⊗C = 0 (16)

1⊗C = 1 (17)

int⊗C = int (18)

(θ1 +θ2)⊗C = (θ1⊗C)+(θ2⊗C) (19)

(θ1×θ2)⊗C = (θ1⊗C)× (θ2⊗C) (20)

(∀ξ .θ)⊗C = ∀ξ .(θ ⊗C) if ξ /∈ fvC (21)

(χ1→ χ2)⊗C = (χ1 ◦C)→ (χ2 ◦C) (22)

[σ ]⊗C = [σ ] (23)

(ref θ)⊗C = ref (θ ⊗C) (24)

∅⊗C = ∅ (25)

(Γ,x:χ)⊗C = (Γ⊗C),x:(χ⊗C) (26)

(Γ∗C1)⊗C2 = (Γ⊗C2)∗ (C1⊗C2) (27)

region abstraction

∃σ1.∃σ2.·= ∃σ2.∃σ1.· (28)

· ∗ (∃σ .C) = ∃σ .(· ∗C) (29)

{σ1 : ∃σ2.θ}= ∃σ2.{σ1 : θ} where σ1 6= σ2 (30)

focusing

{σ1 : ref θ}= ∃σ2.{σ1 : ref [σ2]}∗{σ2 : θ} (31)

{σ : θ1×θ2}= ∃σ1.{σ : [σ1]×θ2}∗{σ1 : θ1} (32)

{σ : θ1×θ2}= ∃σ2.{σ : θ1× [σ2]}∗{σ2 : θ2} (33)

{σ : θ1 +0}= ∃σ1.{σ : [σ1]+0}∗{σ1 : θ1} (34)

{σ : 0+θ2}= ∃σ2.{σ : 0+[σ2]}∗{σ2 : θ2} (35)

recursion

µγ.C = C[γ:=µγ.C] (36)

µα.τ = τ[α:=µα.τ] (37)

µβ .θ = θ [β :=µβ .θ ] (38)

Figure 4: Structural equivalence
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(first-order) frame axiom

χ1→ χ2 ≤ (χ1 ∗C)→ (χ2 ∗C) (39)

free

C1 ∗C2 ≤C1 (40)

singletons

τ ≤ ∃σ .[σ ]∗{σ : τ} (41)
[σ ]∗{σ : τ} ≤ τ ∗{σ : τ} (42)

Figure 5: Some subtyping axioms

VAR
(x : τ) ∈ ∆

∆ ` x : τ

UNIT

∆ ` () : 1

INJ
∆ ` v : τi

∆ ` (inji v) : (τ1+τ2)

PAIR
∆ ` v1 : τ1 ∆ ` v2 : τ2

∆ ` (v1,v2) : (τ1× τ2)

RECFUN
∆, f : χ1→χ2, x : χ1  t : χ2

∆ ` fun f (x)=t : χ1→χ2

VAL
∆ ` v : τ

∆  v : τ

APP
∆ ` v : χ1→ χ2 ∆,Γ  t : χ1

∆,Γ  (vt) : χ2

PROJ-1
Γ  v : [σ ]∗{σ : τ1×θ2}

Γ  proj1 v : τ1 ∗{σ : τ1×θ2}

PROJ-2
Γ  v : [σ ]∗{σ : θ1× τ2}

Γ  proj2 v : τ2 ∗{σ : θ1× τ2}

CASE
∆ ` v1 : (∃σ1.[σ1]∗{σ : [σ1]+0}∗{σ1 : θ1}∗C)→ χ

∆ ` v2 : (∃σ2.[σ2]∗{σ : 0+[σ2]}∗{σ2 : θ2}∗C)→ χ

∆,Γ  v : [σ ]∗{σ : θ1 +θ2}∗C

∆,Γ  case(v1,v2,v) : χ

∀-INTRO
∆ ` v : τ

∆ ` v : ∀ξ .τ
ξ /∈ ∆

∀-ELIM-1
∆ ` v : ∀α.τ

∆ ` v : τ[α := τ
′]

REF
Γ  v : τ

Γ  ref v : ∃σ .[σ ]∗{σ : ref τ}

GET
Γ  v : [σ ]∗{σ : ref τ}

Γ  getv : τ ∗{σ : ref τ}

SET
Γ  v : ([σ ]× τ2)∗{σ : ref τ1}

Γ  setv : 1∗{σ : ref τ2}

SHALLOW-FRAME
Γ  t : χ

Γ∗C  t : χ ∗C

DEEP-FRAME
Γ  t : χ

(Γ⊗C)∗C  t : (χ⊗C)∗C

ANTI-FRAME
Γ⊗C  t : (χ⊗C)∗C

Γ  t : χ

SUB
Γ  t : χ1 χ1 ≤ χ2

Γ  t : χ2

Figure 6: Typing of values and expressions

B Proofs

B.1 Relations on complete ultrametric spaces

Let (X ,d) ∈ CBUltne, and let R(X) be the collection of all non-empty and closed relations R⊆ X .

Proposition 3. Let d : R(X)×R(X)→ R be defined by d(R,S) = inf{2−n | R[n] = S[n]}, where we take
inf /0 to mean 1. Then (R(X),d) is a complete, 1-bounded, non-empty ultrametric space.

Proof. First, R(X) is non-empty since it contains X itself. Next, since R = S is equivalent to R[n] = S[n]
for all n ∈ N, it follows that d(R,S) = 0 if and only if R = S. That the ultrametric inequality d(R,S) ≤
max{d(R,T ),d(T,S)} holds is immediate by the definition of d, as is the fact that d is symmetric and
1-bounded.

To show completeness, assume that (Rn)n∈N is a Cauchy sequence in R(X). Without loss of gener-
ality we may assume that d(Rn,Rn+1)≤ 2−n holds for all n ∈N, and therefore that (Rn)[n] = (Rn+1)[n] for

9
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all n≥ 0. Writing Sn for (Rn)[n], we define R⊆ X by

R def=
⋂
n≥0

Sn .

R is closed since each Sn is closed. We now prove that R(·,a) is non-empty, and therefore R ∈ R(X),
by inductively constructing a sequence (xn)n∈N with xn ∈ Sn: Let x0 be an arbitrary element in S0 = X .
Having chosen x0, . . . ,xn, we pick some xn+1 ∈ Sn+1 such that xn+1

n= xn; this is always possible because
Sn = (Sn+1)[n] by our assumption on the sequence (Rn)n∈N. Clearly this is a Cauchy sequence in X , and
from Sn ⊇ Sn+1 it follows that (xn)n≥k is in fact a sequence in Sk for each k ∈ N. But then also limn∈N xn

is in Sk for each k, and thus also in R.
We now prove that R is the limit of the sequence (Rn)n∈N. By definition of d it suffices to show

that R[k] = (Rk)[k] for all k ≥ 1, or equivalently, that R[k] = Sk. From the definition of R, R ⊆ Sk, which
immediately entails R[k] ⊆ (Sk)[k] = Sk.

To prove the other direction, i.e., Sk ⊆ R[k], assume that x ∈ Sk. To show that x ∈ R[k] we inductively
construct a Cauchy sequence (xn)n≥k with xn ∈ Sn, xk = x and xn+1

n= xn analogously to the one above.
Then limm xm is in Sn for each n≥ 0, and thus also in R. Since dX(xk, limn≥k xn)≤ 2−k by the ultrametric
inequality, xk ∈ R[k], or equivalently, x ∈ R[k].

B.2 Hereditarily monotonic recursive worlds

Let the function Φ : P(X)→P(X) be defined by Φ(A) = {ι(p) | ∀x,x0 ∈ A. p(x)⊆ p(x◦ x0)}.

Lemma 4. For each A ∈R, Φ(A) is non-empty and closed.

Proof. Φ(A) is non-empty since it contains the constant functions into UPred(Heap). As in [5], one can
use the completeness of UPred(Heap) and the way its metric interacts with subset inclusion to show that
Φ(A) is closed.

Lemma 5. Φ is contractive: A n= B implies Φ(A) n+1= Φ(B).

Proof. Let n ≥ 0 and assume A n= B. Let ι(p) ∈ Φ(A)[n+1]. We must show that ι(p) ∈ Φ(B)[n+1]. By

definition there exists ι(q) ∈ Φ(A) such that p n+1= q. Set r(w) = q(w)[n+1]. Then r n+1= p and it suffices
to show that ι(r) ∈ Φ(B). To this end, let w0,w1 ∈ B. By assumption there exist w′0,w

′
1 ∈ A such that

w′0
n= w0 and w′1

n= w1 in X , or equivalently, w′0
n+1= w0 and w′1

n+1= w1 in 1
2 ·X . Using the non-expansiveness

of ◦, this also implies w′0 ◦w′1
n+1= w0 ◦w1 in 1

2 ·X . Since q(w0)
n+1= q(w′0) ⊆ q(w′0 ◦w′1)

n+1= q(w0 ◦w1)
by the non-expansiveness of q and the assumption that ι(q) ∈ Φ(A) we obtain the required inclusion
r(w0)⊆ r(w0 ◦w1).

Lemma 6. 1
2 ·W →mon UPred(A) is a non-empty and closed subset of 1

2 ·X → UPred(A).

Proof. Similar to the proof of Lemma 4.

B.3 Closure of W under composition

Lemma 7. For all n ∈ N, if w1,w2 ∈W then w1 ◦w2 ∈W[n].

Since W =
⋂

nW[n] it follows that w1,w2 ∈W ⇒ w1 ◦w2 ∈W .

10
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Proof. Since W[0] = X the claim trivially holds in case n = 0. Now suppose n > 0 and let w1,w2 ∈W ;
we must prove that w1 ◦w2 ∈W[n]. Let w′1 be such that ι−1(w′1)(w) = ι−1(w1)(w)[n]. Observe that

w′1 ∈W , and w n= w′ in 1
2 ·X implies w′1(w) = w′1(w

′). Since w1
n= w′1, the non-expansiveness of ◦ implies

w1 ◦w2
n= w′1 ◦w2, and thus it suffices to show that w′1 ◦w2 ∈W = Φ(W ). To see this, let w,w0 ∈W .

Note that by induction hypothesis w2 ◦w ∈W[n−1], i.e., there exists w′ ∈W such that w′ n= w2 ◦w holds
in 1

2 ·W . We thus obtain

ι
−1(w′1 ◦w2)(w) = ι

−1(w′1)(w2 ◦w)∗ ι
−1(w2)(w)

= ι
−1(w′1)(w

′)∗ ι
−1(w2)(w)

⊆ ι
−1(w′1)(w

′ ◦w0)∗ ι
−1(w2 ◦w0)(w)

= ι
−1(w′1)((w2 ◦w)◦w0)∗ ι

−1(w2 ◦w0)(w)

= ι
−1(w′1 ◦w2)(w◦w0) ,

i.e., w′1 ◦w2 ∈W .

B.4 Closure under extension

Lemma 8. If w ∈W and f ∈ 1
2 ·W →mon UPred(A) then f ⊗w ∈ 1

2 ·W →mon UPred(A). Moreover, the
assignment of f ⊗w to f ,w is non-expansive as a function of f and contractive as a function of w.

Proof. Let w1,w2 ∈W . Then w◦w1 ∈W by Lemma 7, and hence

( f ⊗w)(w1) = f (w◦w1)⊆ f ((w◦w1)◦w2) = ( f ⊗w)(w1 ◦w2)

by the assumption that f is in 1
2 ·W →mon UPred(A).

B.5 Closure under universal quantification

Suppose F : S→ (1
2 ·X → UPred(A)). Then we define ∀F : 1

2 ·X → UPred(A) by

(∀F)(x) =
⋂
s∈S

F(s)(x)

Lemma 9. With F as above, ∀F is non-expansive, and (∀F)(x) is upwards closed and uniform. If
F(s) ∈ 1

2 ·W→mon UPred(A) for all s ∈ S then ∀F ∈ 1
2 ·W→mon UPred(A). The assignment of ∀F to F

is non-expansive.

This observation can be used to justify quantification over types, capabilities and region names in
Cap, VT and MT.

B.6 Recursion

Cap, VT and MT are non-empty and closed subsets of complete ultrametric spaces, by Lemma 6. Thus,
any contractive function that restricts to these sets has a unique fixed point in the respective set. This
observation can be used to justify recursive definitions of capabilities and types, noting that formal con-
tractiveness of a syntactic type expression ensures contractiveness of its interpretation (see below). More-
over, the assignment to a contractive function of its unique fixed point is a non-expansive operation.

11
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B.7 Closure of Cap under separating conjunction

Lemma 10. If f ,g ∈ Cap then f ∗g ∈ Cap. Moreover, the assignment of f ∗g to f ,g is non-expansive.

Proof. Let w1,w2 ∈ W, then ( f ∗ g)(w1) = f (w1) ∗ g(w1) ⊆ f (w1 ◦w2) ∗ g(w1 ◦w2) = ( f ∗ g)(w1 ◦w2)
follows from the monotonicity of separating conjunction on UPred(Heap).

B.8 Closure of Cap under singletons

For v ∈ Val and f in 1
2 ·X → UPred(Heap) define {v : f} in 1

2 ·X → UPred(Heap) by

{v : f}(x) def= {(k,h) | (k,(v,h)) ∈ f (x)}

Lemma 11. With v, f as above, {v : f} is non-expansive, and {v : f}(x) is upwards closed and uniform
for all x ∈ X. If f ∈ Cap then {v : f} ∈ Cap, and the assignment of {v : f} to f is non-expansive.

Proof. The non-expansiveness of {v : f} follows from the non-expansiveness of f . Similarly, the claim
{v : f}(x) ∈ UPred(Heap) follows from f (x) ∈ UPred(Val×Heap). Finally, if w1,w2 ∈ W then {v :
f}(w1)⊆ {v : f}(w1 ◦w2) follows if f ∈ Cap, for then f (w1)⊆ f (w1 ◦w2).

B.9 Closure of VT under sums

For f1, f2 in 1
2 ·X → UPred(Val) define f1 + f2 in 1

2 ·X → UPred(Val) by

( f1 + f2)(x)
def= {(k, injiv) | (k−1,v) ∈ fi(x)}

Lemma 12. With f1, f2 as above, f1 + f2 is non-expansive, and ( f1 + f2)(x) is uniform for all x ∈ X. If
f1, f2 ∈ VT then f1 + f2 ∈ VT, and the assignment of f1 + f2 to f1, f2 is contractive.

Proof. Let x n= x′. Then, for any k≤ n, (k−1,v)∈ fi(x) iff (k−1,v)∈ fi(x′) by the non-expansiveness of
fi and the definition of the metric on UPred(Val). Thus ( f1 + f2)(x)

n+1= ( f1 + f2)(x′). That ( f1 + f2)(x)∈
UPred(Val) follows from fi(x) ∈UPred(Val). Finally, if w1,w2 ∈W then ( f1 + f2)(w1)⊆ ( f1 + f2)(w1 ◦
w2) follows from by definition of f1 + f2 if f1, f2 ∈ VT.

B.10 Closure of VT under products

For f1, f2 in 1
2 ·X → UPred(Val) define f1× f2 in 1

2 ·X → UPred(Val) by

( f1× f2)(x)
def= {(k,(v1,v2)) | (k−1,vi) ∈ fi(x)}

Lemma 13. With f1, f2 as above, f1× f2 is non-expansive, and ( f1× f2)(x) is uniform for all x ∈ X. If
f1, f2 ∈ VT then f1× f2 ∈ VT, and the assignment of f1× f2 to f1, f2 is contractive.

Proof. Let x n= x′. Then, for any k≤ n, (k−1,v)∈ fi(x) iff (k−1,v)∈ fi(x′) by the non-expansiveness of
fi and the definition of the metric on UPred(Val). Thus ( f1× f2)(x)

n+1= ( f1× f2)(x′). That ( f1× f2)(x)∈
UPred(Val) follows from fi(x) ∈UPred(Val). Finally, if w1,w2 ∈W then ( f1× f2)(w1)⊆ ( f1× f2)(w1 ◦
w2) follows from by definition of f1× f2 if f1, f2 ∈ VT.

12
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B.11 Extension to expressions

For p ∈ UPred(A×Heap) and r ∈ UPred(Heap) we define p∗ r by

p∗ r = {(k,(a,h ·h′)) | (k,(a,h)) ∈ p ∧ (k,h′) ∈ r} .

Then p∗ r ∈ UPred(A×Heap). This operation can be lifted pointwise, and if f ∈MT and p ∈ Cap then
f ∗ p ∈MT.

Using the former operation on uniform predicates, we define the following extension of memory
types from values to expressions.

Definition 14 (Expression typing). Let p in 1
2 ·X → UPred(Val×Heap). Then the function E (p) : X →

UPred(Exp×Heap) is defined by (k,(t,h)) ∈ E (p)(x) iff

∀ j ≤ k, t ′,h′. (t |h) 7−→ j (t ′ |h′) ∧ (t ′ |h′) irreducible

⇒ (k− j,(t ′,h′)) ∈
⋃

w∈W

p(x◦w)∗ ι
−1(x◦w)(emp) .

Lemma 15. With p as above, E (p) is non-expansive, and E (p)(x) is upwards closed and uniform for
all x ∈ X. Moreover, the assignment of E (p) to p is non-expansive.

B.12 Closure of VT under arrows

For p,q in 1
2 ·X → UPred(Val×Heap) define p→ q in 1

2 ·X → UPred(Val) by

(p→ q)(x) def= {(k, fun f (y)=t) | ∀ j < k. ∀w∈W. ∀r∈UPred(Heap).

∀( j,(v,h)) ∈ p(x◦w)∗ ι
−1(x◦w)(emp)∗r.

( j,(t[ f :=fun f (y)=t,y:=v],h)) ∈ E (q)(x◦w)∗ r}

Lemma 16. With p,q as above, p→ q is non-expansive, and (p→ q)(x) is uniform for all x ∈ X.
Moreover, p→ q ∈ VT, and the assignment of p→ q to p,q is contractive.

Proof. The non-expansiveness is straightforward to check, using Lemma 15. The uniformity is ensured
by the explicit quantification over j < k in the definition of (p→ q)(x). Similarly, that p→ q ∈ VT is
guaranteed by the explicit quantification over w ∈W in the definition of (p→ q)(x), using the closure
of W under ◦ (Lemma 7). Finally, the contractiveness of · → · follows since p(x◦w) and q(◦w◦w′) are
only considered up to index j which is strictly below k.

B.13 Inclusion of VT into MT

The inclusion of value types into memory types,

f ∈ (1
2 ·X → UPred(Val)) 7→ λx.{(k,(v,h)) | h ∈ Heap ∧ (k,v) ∈ f (x)}

is non-expansive and maps into non-expansive functions from 1
2 ·X to UPred(Val×Heap). If f ∈ VT

then the right hand side is in MT.

B.14 Closure of MT under sums

For f1, f2 in 1
2 ·X → UPred(Val×Heap) define f1 + f2 in 1

2 ·X → UPred(Val×Heap) by

( f1 + f2)(x)
def= {(k,(injiv,h)) | (k−1,(v,h)) ∈ fi(x)}

As with the sum types on values, this is well-defined, in MT if both f1 and f2 are in MT, and the
assignment of f1 + f2 to f1 and f2 is contractive.
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B.15 Closure of MT under products

For f1, f2 in 1
2 ·X → UPred(Val×Heap) define f1× f2 in 1

2 ·X → UPred(Val×Heap) by

( f1× f2)(x)
def= {(k,((v1,v2),h1 ·h2)) | (k−1,(vi,hi)) ∈ fi(x)}

As with the product types on values, this is well-defined, f1× f2 is in MT if both f1 and f2 are in MT,
and the assignment of f1× f2 to f1 and f2 is contractive.

B.16 Closure of MT under reference types

For f in 1
2 ·X → UPred(Val×Heap) define ref( f ) in 1

2 ·X → UPred(Val×Heap) by

ref( f )(x) def= {(k,(l,h · [l 7→ v])) | (k−1,(v,h)) ∈ f (x)}

Lemma 17. With f as above, ref( f ) is non-expansive, and ref( f )(x) is upwards closed and uniform for
all x ∈ X. If f ∈MT then ref( f ) ∈MT, and the assignment of ref( f ) to f is contractive.

B.17 Interpretation of types and capabilities

The interpretation depends on an environment η , which maps region names σ ∈ RegName to closed
values η(σ) ∈ Val, capability variables γ to semantic capabilities η(γ) ∈ Cap, and type variables α and
β to semantic types η(α) ∈ VT and η(β ) ∈ MT. Then, we use the semantic type constructors in the
evident way, for instance defining Jχ1→ χ2Kη

= Jχ1Kη
→ Jχ2Kη

. Importantly, we have the extension
operation available to interpret invariant extension:

JC1⊗C2Kη
= JC1Kη

⊗ ι(JC2Kη
) ,

and similarly for τ⊗C and θ ⊗C.
We end up with interpretations JCK

η
∈ Cap, JτK

η
∈ VT and JθK

η
∈MT.

B.18 Distribution of ⊗ over→

As an example of validating the type equivalence in the model we prove, on the semantic level, that the
distribution axiom for arrow types.

Lemma 18. Let f1, f2 ∈MT and p ∈ Cap. Then ( f1→ f2)⊗ p = ( f1⊗ p∗ p)→ ( f2⊗ p∗ p).

Proof. Let x ∈ X and (k,(fun f (y)=t)) ∈ (( f1→ f2)⊗ p)(x) = ( f1→ f2)(ι(p)◦ x). We must prove that
(k,(fun f (y)=t)) ∈ ( f1⊗ p ∗ p)→ ( f2⊗ p ∗ p). To this end, let j < k, w ∈ W, r ∈ UPred(Heap), and
suppose

( j,(v,h)) ∈ ( f1⊗ p∗ p)(x◦w)∗ ι
−1(x◦w)(emp)∗r

= f1(ι(p)◦ x◦w)∗ p(x◦w)∗ ι
−1(x◦w)(emp)∗r

= f1(ι(p)◦ x◦w)∗ ι
−1(ι(p)◦ x◦w)(emp)∗r .

Then, by assumption, ( j,(t[ f :=fun f (y)=t,y:=v],h)) ∈ E ( f2)(ι(p)◦ x◦w)∗ r. By unfolding the defini-
tion of E , the latter is seen to be equivalent to

( j,(t[ f :=fun f (y)=t,y:=v],h)) ∈ E ( f2⊗ p∗ p)(x◦w)∗ r ,

and thus (k,(fun f (y)=t)) ∈ ( f1⊗ p∗ p)→ ( f2⊗ p∗ p).
The other direction is similar.
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Remark 19. Note that we did not use the fact that f1, f2 ∈MT and p ∈ Cap. This is in line with the se-
mantics given in the earlier work by Birkedal et al. [4]. There, the anti-frame rule was not considered and
a model based on the simpler set of worlds X sufficed; the language also contained all of the distribution
axioms that we consider here.

B.19 First-order frame axiom

As an example of validating the subtyping axioms, we consider χ1→ χ2 ≤ χ1 ∗C→ χ2 ∗C.

Lemma 20. Let f1, f2 ∈ MT and p ∈ Cap. Let w ∈ W. Suppose that (k, fun f (y)=t) ∈ ( f1 → f2)(w).
Then (k, fun f (y)=t) ∈ ( f1 ∗ p→ f2 ∗ p)(w).

Proof. By unfolding the definitions, and instantiating the universally quantified r ∈ UPred(Heap) ac-
cordingly. The proof then relies on the fact that p(w◦w′)⊆ p(w◦w′ ◦w′′) holds for all w′,w′′ in W , since
w◦w′ ∈W and p ∈ Cap.

B.20 Semantics of typing judgements

Recall that we have two kinds of judgments, one for typing of values and the other for the typing of
expressions:

∆ ` v : τ Γ  t : χ

The semantics of a value judgement simply establishes truth with respect to all worlds w, all environments
η and all k ∈ N:

|= (∆ ` v : τ) def⇐⇒ ∀η . ∀w ∈W. ∀k ∈ N. ∀(k,ρ) ∈ J∆K
η

w. (k,ρ(v)) ∈ JτK
η

w .

Here ρ(v) means the application of the substitution ρ to v. The judgement for expressions mirrors the
interpretation of the arrow case for value types, in that there is also a quantification over heap predicates
r ∈ UPred(Heap) and an existential quantification over w′ ∈W through the use of E :

|= (Γ  t : χ) def⇐⇒ ∀η . ∀w ∈W. ∀k ∈ N. ∀r∈UPred(Heap).

∀(k,(ρ,h)) ∈ JΓK
η

w∗ ι
−1(w)(emp)∗ r. (k,(ρ(t),h)) ∈ E (JχK

η
)(w)∗ r.

The universal quantifications allow us to have frame rules: the universal quantification over worlds w
ensures the soundness of the deep frame rule, and the universal quantification over heap predicates r
validates the shallow frame rule, as we show next. The existential quantifier plays an important part in
the verification of the anti-frame rule below.

B.21 Shallow frame rule

Soundness of the shallow frame rule is proved analogously to the soundness of the first-order frame
axiom. In particular, it is essential that JCK ∈ Cap below:

Lemma 21. Suppose |= (Γ  t : χ). Then |= (Γ∗C  t : χ ∗C).

15
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B.22 Deep frame rule

Lemma 22. Suppose |= (Γ  t : χ). Then |= (Γ⊗C ∗C  t : χ⊗C ∗C).

Proof. We prove |= (Γ⊗C ∗C  t : χ⊗C ∗C). Let w ∈W , k ∈ N, r ∈ UPred(Heap) and

(k,(ρ,h)) ∈ JΓ⊗C ∗CK(w)∗ ι
−1(w)(emp)∗ r = JΓK(ι(JCK)◦w)∗ ι

−1(ι(JCK)◦w)(emp)∗ r .

Since JCK∈Cap we can instantiate |= (Γ  t : χ) with the world w′ = ι(JCK)◦w to obtain (k,(ρ(t),h))∈
E (JχK)(w′)∗ r. The latter is equivalent to (k,(ρ(t),h)) ∈ E (Jχ⊗C ∗CK)(w)∗ r.

B.23 Anti-frame rule

Our soundness proof of the anti-frame rule employs the technique of so-called commutative pairs. This
idea had already been present in Pottier’s syntactic proof sketch [9], and has been worked out in more
detail in [12].

Lemma 23. For all worlds w0,w1 ∈W, there exist w′0,w
′
1 ∈W such that

w′0 = ι(ι−1(w0)⊗w′1), w′1 = ι(ι−1(w1)⊗w′0), and w0 ◦w′1 = w1 ◦w′0 .

Proof. Fix w0,w1 ∈W, and define a function F on X×X defined by

F(x′0, x′1) =
(
ι(ι−1(w0)⊗ x′1), ι(ι−1(w1)⊗ x′0)

)
.

Then, F is contractive, since ⊗ is contractive in its right argument. Also, F restricts to a function on the
non-empty and closed subset W×W. Thus, by Banach’s fixpoint theorem, there exists a unique fixpoint
w′0 and w′1 of F . This means that

w′0 = ι(ι−1(w0)⊗w′1) and w′1 = ι(ι−1(w1)⊗w′0). (43)

Note that these are the first two equalities claimed by this lemma. The remaining claim is w0 ◦w′1 =
w1 ◦w′0, and it can be proved as follows. Let w ∈ X .

ι−1(w0 ◦w′1)(w) = ι−1(w0)(w′1 ◦w)∗ ι−1(w′1)(w) (by definition of ◦)
= (ι−1(w0)⊗w′1)(w)∗ ι−1(w′1)(w) (by def. of ⊗)
= ι−1(w′0)(w)∗ (ι−1(w1)⊗w′0)(w) (by (43))
= ι−1(w′0)(w)∗ ι−1(w1)(w′0 ◦w) (by def. of ⊗)
= ι−1(w1)(w′0 ◦w)∗ ι−1(w′0)(w) (by commutativity of ∗)
= ι−1(w1 ◦w′0)(w) (by definition of ◦).

Since w was chosen arbitrarily, we have ι−1(w0 ◦w′1) = ι−1(w1 ◦w′0), and the claim follows from the
injectivity of ι−1.

Lemma 24. Suppose |= (Γ⊗C  t : χ⊗C ∗C). Then |= (Γ  t : χ).

Proof. We prove |= (Γ  t : χ). Let w ∈W , k ∈ N, r ∈ UPred(Heap) and

(k,(ρ,h)) ∈ JΓK(w)∗ ι
−1(w)(emp)∗ r .

We must prove (k,(ρ(t),h)) ∈ E (JχK)(w)∗ r.
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By Lemma 23, there exist worlds w1,w2 in W such that

w1 = ι(ι−1(w)⊗w2), w2 = ι(JCK⊗w1) and ι(JCK)◦w1 = w◦w2 . (44)

First, we find a superset of the precondition JΓK(w)∗ ι−1(w)(emp)∗ r in the assumption above. Specifi-
cally, we replace the first two ∗-conjuncts in the precondition by bigger sets as follows:

JΓK(w)⊆ JΓK(w◦w2) (by monotonicity of JΓK and w2 ∈W)
= JΓK(ι(JCK)◦w1) (since ι(JCK)◦w1 = w◦w2)
= JΓ⊗CK(w1) (by definition of ⊗).

ι
−1(w)(emp)⊆ ι

−1(w)(emp◦w2) (by monotonicity of ι
−1(w) and w2 ∈W)

= ι
−1(w)(w2 ◦ emp) (since emp is the unit)

= (ι−1(w)⊗w2)(emp) (by definition of ⊗)

= ι
−1(w1)(emp) (since w1 = ι(ι−1(w)⊗w2))

Thus, we have that

(k,(ρ,h)) ∈ JΓK(w)∗ ι
−1(w)(emp)∗ r ⊆ JΓ⊗CK(w1)∗ ι

−1(w1)(emp)∗ r . (45)

By the assumed validity of the judgement Γ⊗C  t : χ⊗C ∗C, (45) entails

(k,(ρ(t),h)) ∈ E (Jχ⊗C ∗CK)(w1)∗ r . (46)

We need to show that (k,(ρ(t),h))∈ E (JχK)(w)∗r, so assume (ρ(t) |h) 7−→ j (t ′ |h′) for some j≤ k such
that (t ′ |h′) is irreducible. By (46) this means

(k− j,(t ′,h′)) ∈
⋃
w′

Jχ⊗C ∗CK(w1 ◦w′)∗ ι
−1(w1 ◦w′)(emp)∗ r , (47)

Note that we have

Jχ⊗C ∗CK(w1 ◦w′)∗ ι
−1(w1 ◦w′)(emp) = JχK(ι(JCK)◦w1 ◦w′)∗ JCK(w1 ◦w′)∗ ι

−1(w1 ◦w′)(emp)

= JχK(ι(JCK)◦w1 ◦w′)∗ ι
−1(ι(JCK)◦w1 ◦w′)(emp)

= JχK(w◦w′′)∗ ι
−1(w◦w′′)(emp)

for w′′ def= w2 ◦w′, since w◦w2 = ι(JCK)◦w1. Thus, (47) entails

(k− j,(t ′,h′)) ∈
⋃
w′′

JχK(w◦w′′)∗ ι
−1(w◦w′′)(emp)∗ r ,

and we are done.
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