
Relational Parametricity for References and Recursive Types

Lars Birkedal Kristian Støvring Jacob Thamsborg
IT University of Copenhagen

{birkedal,kss,thamsborg}@itu.dk

Abstract
We present a possible world semantics for a call-by-value higher-
order programming language with impredicative polymorphism,
general references, and recursive types. The model is one of the first
relationally parametric models of a programming language with all
these features.

To model impredicative polymorphism we define the semantics
of types via parameterized (world-indexed) logical relations over
a universal domain. It is well-known that it is non-trivial to show
the existence of logical relations in the presence of recursive types.
Here the problems are exacerbated because of general references.
We explain what the problems are and present our solution, which
makes use of a novel approach to modeling references. We prove
that the resulting semantics is adequate with respect to a standard
operational semantics and include simple examples of reasoning
about contextual equivalence via parametricity.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Denotational
semantics; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Denotational Semantics, Possible World Semantics,
Relational Parametricity, Impredicative Polymorphism, General
References, Recursive Types

1. Introduction
Relational parametricity was proposed by Reynolds [34] to reason
about polymorphic programs, in particular, to show equivalence of
polymorphic programs and to show representation independence
for abstract data types. In this paper we provide one of the first1

relationally parametric models of a programming language with
recursive types and general references. We prove that the resulting
semantics is adequate with respect to a standard operational seman-
tics, which means that we can use parametricity to show contextual
equivalence of expressions in the language.

Our model is based on logical relations over an untyped model
of the language. The logical relations are parameterized over pos-

1 Independent work [3] by Ahmed, Dreyer and Rossberg came to our atten-
tion after writing this paper, cf. section 6; we know of no other models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’09, January 24, 2009, Savannah, Georgia,USA.
Copyright c© 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

sible worlds which are used to capture dynamic allocation of ref-
erences, much as in [7, 11, 22, 31]. It is well-known that it is non-
trivial to show the existence of logical relations in the presence of
recursive types [28]. Here the problems are exacerbated because of
general references. We explain the problems and present our solu-
tion, which makes use of a novel approach to modeling references.

In this paper we focus on the challenge of defining an adequate
semantics, in particular on the challenge pertaining to the existence
of the logical relations. The resulting model can be used to prove
equivalence and parametricity results for programs using references
in simple ways. In future work, we plan to extend the parameters
of our logical relations to accommodate local relational reasoning
about programs using local state. We plan to do this using the first
author’s earlier work on relational reasoning for languages with
references and recursive types (but not polymorphism) [11].

1.1 Background
The theory of relational parametricity was originally proposed in
the setting of the second-order lambda calculus. That setting is by
now fairly well-understood, see, e.g., [9, 33]. But, of course, we
would like to use relational parametricity for real programs with
recursion and other effects. There has been a lot of research towards
this goal — the efforts can be grouped roughly into two categories:
equational type theories with effects and programming languages
with effects.

Work in the former category was initiated by Plotkin [32], who
suggested a second-order linear type theory with a polymorphic
fixed-point combinator to combine polymorphism with recursion.
That approach was further investigated in [10]. One of the remark-
able features of this calculus is that it allows one to encode a wide
range of data types, including recursive types, with the desired uni-
versal properties following from parametricity. Hasegawa studied
the combination of polymorphism and another effect, namely con-
trol [15]. Recently, this line of work was extended by Møgelberg
and Simpson [25], who proposed a general polymorphic type the-
ory for effects, as captured by computational monads. The general
framework has been specialized to control effects in [26].

Work in the latter category focuses on programming languages
defined using an operational semantics, specifying evaluation or-
der, etc., and was initiated by Wadler [37]. Relational parametric-
ity is concerned with program equivalence which is here typically
defined as contextual equivalence: two program expressions are
equivalent if they have the same observable behaviour when placed
in any program context C.

It is generally quite hard to show directly that two program ex-
pressions are contextually equivalent because of the universal quan-
tification over all contexts. Thus there has been an extensive re-
search effort to find reasoning methods that are easier to use for
establishing contextual equivalence (see, e.g., [30] for a fairly re-
cent overview), and the work on parametricity for programming
languages with effects has been closely related to the research on
reasoning methods for contextual equivalence. Relationally para-

metric models have been developed for languages with recursion
and inductive / coinductive types, see, e.g., [8, 16, 17, 29] and, re-
cently, also for languages with recursive types [2, 13, 23]. In ad-
dition, a number of bisimulation-based methods for proving con-
textual equivalence have recently been proposed; the methods most
relevant for the work in this paper cover a pure language with re-
cursive and existential types [36], untyped languages with general
references and/or control operators [18, 19, 35], and a pure lan-
guage with parametric polymorphism and recursive types [20, 21].

The two categories of work are, of course, related: the type
theories serve as metalanguages and can be used to give seman-
tics to programming languages. This has, e.g., been done by
Møgelberg [24], who showed how to give a parametric model of
the programming language FPC extended with polymorphism (i.e.,
a language with recursion, recursive types and polymorphism).
Using a model of the type theory, adequacy wrt. the operational
semantics of the programming language was proved, allowing
Møgelberg to prove results about contextual equivalence using the
reasoning principles of the type theory.

1.2 Overview of the technical development
In Section 2 we define the operational semantics of our program-
ming language, which is a standard, direct-style, call-by-value
higher-order language with impredicative polymorphism, recur-
sive types, and references. The operational semantics is non-
deterministic since dynamic allocation of references is modeled in
the standard way via a nondeterministic choice of a new location.

In Section 3 we present an untyped denotational semantics of
the language using a universal domain. In the denotational seman-
tics we assume that the semantic set of locations is well-ordered
(the set of locations is a copy of the natural numbers) and alloca-
tion is modeled by choosing the smallest free location. We use a
novel form of semantic locations in the semantics; the motivation
for these comes from the need to establish the existence of logical
relations in the following section.

We prove that the denotational semantics is sound and adequate
with respect to the operational semantics. This is done almost in
the standard way by defining a logical formal approximation rela-
tion between the operational and denotational semantics. For the
adequacy proof it suffices to give a logical relation for closed types
and therefore, as we show, the existence of the logical relation
can be proved using standard techniques [28]. The adverb ’almost’
above refers to the following. For the existence proof one needs
to show that the relations are suitably admissible and the standard
proofs of that rely on determinacy of the operational semantics,
see [28, Sec. 5, Page 81], but here we have a non-deterministic op-
erational semantics. Intuitively, the denotational semantics should
be adequate since the choice of new location should not matter for
the final result of a program. In earlier domain-theoretic models
of references for which adequacy have been proved [7, 11, 22],
both language and denotational semantics have been defined in a
monadic (continuation-passing) style; hence it was fairly easy to
capture that the choice of location does not matter for the final re-
sult. Here we decide to stick to a direct-style language and opera-
tional semantics to make sure that our results do not depend on a
monadic presentation and instead we define the logical relation in a
continuation-passing style, which suffices for proving adequacy. In
summary, the language is in direct style, but the proof of adequacy
is in continuation-passing style.

The untyped semantics can only be used to establish simple
forms of contextual equivalence. In Section 4 we therefore present
a typed possible world semantics of the language by defining a
family of parameterized logical relations over the universal domain
for which we prove the fundamental theorem of logical relations.
In combination with adequacy of the untyped semantics this proves

adequacy for the typed semantics. To reason about parametricity
we need to give a semantics not only of closed types but also of
open types. This turns out to complicate the existence proof of
the logical relation because, loosely speaking, we need to compare
semantic types in the logical relation for reference types in order
to check that the type for the location in the current world (a store
typing) agrees with the type of the reference. We solve this problem
by modeling references using a novel semantic notion of location
which permits approximations to locations. The approximations are
crucial for the existence proof of the logical relation. We explain
what the problem is by highlighting what goes wrong if we omit
such approximations.

In Section 5 we present a few examples of equivalences that can
be proved using the resulting possible world semantics.

Finally, in Section 6 we conclude and briefly discuss directions
for future work.

For space reasons, parts of the definitions and proofs have been
omitted. A longer version of the paper is available at:

http://www.itu.dk/people/thamsborg/longshadow.pdf

2. Types and Operational Semantics
Types, expressions and values are given in Figure 1. A context of
type variables is a list of type variables with no repeats. For any
such context Ξ and any type τ we write Ξ ` τ if the free type
variables of τ are all in Ξ and we write TypeΞ for all such types.
A world is a partial map with finite domain from N to the set
of types; we have a partial ordering on worlds defined by setting
∆ v ∆′ provided dom(∆) ⊂ dom(∆′) and ∆(l) = ∆′(l) for
all l ∈ dom(∆). A context of term variables is a partial map with
finite domain from the set of term variables to the set of types. For
any context of type variables Ξ and any world ∆ we write Ξ ` ∆
if Ξ ` ∆(l) for all l ∈ dom(∆) and we let WorldΞ be the set of
worlds with this property. We define Ξ ` Γ for a context of term
variables Γ similarly.

We give selected typing rules in Figure 2, a complete presen-
tation is found in the long version of the paper. The rules assign
types to expressions under assumptions of contexts of type vari-
ables, worlds and contexts of term variables. It is not hard to see
that the various side conditions ensure that Ξ | ∆ | Γ ` e : τ im-
plies Ξ ` ∆, Ξ ` Γ as well as Ξ ` τ . Also it is worth noticing that
the language is explicitly typed to ensure type uniqueness: Given
Ξ | ∆ | Γ ` e : τ1 and Ξ | ∆ | Γ ` e : τ2 we can conclude that
τ1 = τ2 and that the derivations of the judgments coincide.

As usual we identify expressions up to α-equivalence. For con-
venience we write λτ0→τ1x. e for fixτ0→τ1f(x).e where f is
some arbitrary variable not occurring free in e.

A syntactic store is a partial map with finite domain from N to
the set of values. Using that definition, we define a standard big-
step operational semantics; selected rules are given in Figure 3,
see the long version of the paper for the unabridged story. It is a
quaternary relation between syntactic stores and expressions on the
one hand and syntactic stores and values on the other. Notice that
the memory allocator is nondeterministic in the standard way: Any
free location may be picked.

For a context Ξ, a world ∆, a context Γ and a syntactic store Π
we write Ξ | ∆ | Γ ` Π to denote that dom(∆) = dom(Π) and
that for all l ∈ dom(∆) we have Ξ | ∆ | Γ ` Π(l) : ∆(l). We have
the following standard proposition (see Chapter 13 of Pierce [27]):

Proposition 1 (Type Preservation). Assume Π, e ⇓ Π′, v. Suppose
furthermore that we have ∅ | ∆ | ∅ ` Π and ∅ | ∆ | ∅ ` e : τ for
some world ∆ and some type τ . Then there is ∆′ w ∆ such that
∅ | ∆′ | ∅ ` Π′ and ∅ | ∆′ | ∅ ` v : τ .

τ ::= α | unit | int | τ ref | τ × τ | τ + τ | µα.τ | ∀α.τ | τ → τ

e ::= x | () | n | l | op(e± e) | ifzero e then e else e | (e, e) | fst(e) | snd(e) | inlτ0+τ1(e) |
inr

τ0+τ1(e) | case e of inl(x). e else inr(x). e | foldµα.τ (e) | unfoldµα.τ (e) |
Λα.e | e[τ] | fixτ0→τ1f(x).e | e(e) | ref(e) | ! e | e := e

v ::= () | n | l | (v, v) | inlτ0+τ1(v) | inrτ0+τ1(v) | foldµα.τ (v) | Λα.e | fixτ0→τ1f(x).e

Figure 1. Types, expressions and values.

Ξ | ∆ | Γ ` l : τ ref (Ξ ` ∆, Ξ ` Γ, l ∈ dom(∆), ∆(l) = τ)

Ξ, α | ∆ | Γ ` e : τ

Ξ | ∆ | Γ ` Λα.e : ∀α.τ
(Ξ ` ∆, Ξ ` Γ)

Ξ | ∆ | Γ ` e : ∀α.τ0
Ξ | ∆ | Γ ` e[τ1] : τ0[τ1/α]

(Ξ ` τ1)

Ξ | ∆ | Γ, f : τ0 → τ1, x : τ0 ` e : τ1

Ξ | ∆ | Γ ` fixτ0→τ1f(x).e : τ0 → τ1

Ξ | ∆ | Γ ` e : τ

Ξ | ∆ | Γ ` ref(e) : τ ref

Ξ | ∆ | Γ ` e : τ ref

Ξ | ∆ | Γ ` ! e : τ

Ξ | ∆ | Γ ` e0 : τ ref Ξ | ∆ | Γ ` e1 : τ

Ξ | ∆ | Γ ` e0 := e1 : unit

Figure 2. Select typing rules. The general form is Ξ | ∆ | Γ ` e :
τ for a context of type variables Ξ, a world ∆, a context of term
variables Γ, an expression e and a type τ .

Π,Λα.e ⇓ Π,Λα.e

Π, fixτ0→τ1f(x).e ⇓ Π, fixτ0→τ1f(x).e

Π, e ⇓ Π′,Λα.e′ Π′, e′[τ/α] ⇓ Π′′, v

Π, e[τ] ⇓ Π′′, v

Π, e0 ⇓ Π′, fixτ0→τ1 f(x).e Π′, e1 ⇓ Π′′, v
Π′′, e[v/x, fixτ0→τ1 f(x).e/f] ⇓ Π′′′, v′

Π, e0(e1) ⇓ Π′′′, v′

Π, e ⇓ Π′, v

Π, ref(e) ⇓ Π′[l 7→ v], l
(l /∈ dom(Π′))

Π, e ⇓ Π′, l

Π, ! e ⇓ Π′, v
(l ∈ dom(Π′), Π′(l) = v)

Π, e0 ⇓ Π′, l Π′, e1 ⇓ Π′′, v

Π, e0 := e1 ⇓ Π′′[l 7→ v], ()
(l ∈ dom(Π′′))

Figure 3. Select rules of the big-step operational semantics. The
general form is Π, e ⇓ Π′, v where Π and Π′ are syntactic stores, e
is an expression and v a value.

The proof is by induction on the structure of the derivation of
the judgment. It relies on basic properties of the type system such
as standard substitution lemmas for type and term variables as well
as the fact that an expression of some type in one world has the
same type in any larger world.

Contextual equivalence of expressions (in empty worlds) is de-
fined in the standard manner:

Definition 2. If Ξ | ∅ | Γ ` ei : τ , for i = 1, 2, then e1 and e2 are
contextually equivalent, written

Ξ | ∅ | Γ ` e1 =ctx e2 : τ ,

if, for all closing contexts C[.] : (Ξ | ∅ | Γ ` τ) ⇒ (∅ | ∅ | ∅ `
int), for all n,

∃Π1. ∅, C[e1] ⇓ Π1, n⇔ ∃Π2. ∅, C[e2] ⇓ Π2, n

3. Untyped Denotational Semantics
We first present an ’untyped’ denotational semantics of our lan-
guage. By this we mean that all expressions are interpreted by
means of a certain complete partial order (cpo) U , and that the
interpretation essentially ignores all type information in the lan-
guage. Since U must in effect allow us to model an untyped variant
of our language, we have the familiar requirement for models of
the untyped λ-calculus: U must contain a copy of a function space
with U itself as the domain. Therefore we construct U by solving a
recursive domain equation.

We work with a concrete, domain-theoretic setting: Let Cppo⊥
be the category of pointed ω-cpos (i.e., cpos containing a least
element) and strict, continuous functions. The cpo U is constructed
by solving a domain equation of the form

U ∼= F (U,U)

where F is a mixed-variance functor on Cppo⊥ (see below).
It is not enough that U is any solution to the equation above:

the standard methods for solving recursive domain equations give
solutions that are so-called minimal invariants [28]. In our setting,
minimal invariance of U means that there exist continuous func-
tions πn : U (U (one for each n ∈ N) satisfying, among other
properties, that for each u ∈ U ,

π0u v π1u v · · · v πnu v · · · and
⊔
n∈N

πnu = u .

We say that each element u of U is the limit of its projections
πnu. The ’projection’ functions πn therefore provide a handle for
proving properties about U by induction on n. Moreover, unlike
in any earlier work we are aware of, these functions are directly
used in the definition of the (untyped) semantics; that will turn out
to be essential when we construct our typed semantics in the next
section.

We now turn to the formal development.

Definition 3. Let i : F (U,U) ∼= U be a minimal invariant of the
locally continuous functor F : Cppoop⊥ × Cppo⊥ → Cppo⊥

defined on objects by

F (D,E) = 1⊥ ⊕ Z⊥ ⊕ (N× E)⊥ ⊕ (E ⊗ E)⊕ (E ⊕ E)⊕

E ⊕
[
(N fin→ D↓)⊥ ((N fin→ E↓)⊥ ⊗ E

]
⊥⊕[

(N fin→ D↓)⊥ ⊗D ((N fin→ E↓)⊥ ⊗ E
]
⊥.

F is assembled from standard components [28] with one ex-
ception: For any pointed cpo D we define a new cpo N fin→ D↓
by having s v s′ if dom(s) = dom(s′) and s(l) v s′(l) for all
l ∈ dom(s). Lifting then yields the pointed cpo (N fin→ D↓)⊥
and this endofunction on objects of Cppo⊥ is extended natu-
rally – much as a smash product – to a locally continuous functor
Cppo⊥ → Cppo⊥ which is used in the above definition. Here
A

fin→ B denotes partial maps with finite domain from a set A to a
set B and D↓ is all but the least element of a pointed cpo D.

Notice that the minimal invariant U exists by virtue of Theorem
3.3 of [28]. In accordance with this source we define the continuous
map δ : (U (U) → (U (U) by δ(e) = i ◦ F (e, e) ◦ i−1

for any e ∈ U (U . We then define πn as δn(⊥) for any
n ∈ N; as discussed above, minimality of the invariant means that⊔
n∈N πn = idU . Note πm ◦ πn = πm∧n for any m,n ∈ N.
The cpo U is our universal domain: one can intuitively think

of U as the domain of all untyped semantic values, analogous to
the untyped closed values of our syntactic language. We define
S = (N fin→ U↓)⊥ which intuitively is the collection of states.
The cpo S (S ⊗U models computations, i.e., functions from an
initial state either diverge or return a state and a semantic value.

From the isomorphism i and the definition of F (U,U) we
obtain functions for injecting integers, pairs, functions, etc. into the
universal domain: inunit : 1 → U , inint : Z → U , inref : (N ×
U)→ U , in× : U⊗U (U , in+ : U⊕U (U , inµ : U (U ,
in∀ : (S (S ⊗ U) → U , and in→ : (S ⊗ U (S ⊗ U) → U .
The injection inref is explained in more detail below. We use the
cpo S (S ⊗ U of ’computations’ as the domain of in∀ because,
in the untyped semantics, a syntactic value Λα.e is treated simply
as a suspension of the computation e: the type argument is ignored.

We now introduce the semantic locations as promised:

Definition 4. For l ∈ N we define Λl : U → U continuous and
order-monic by λu ∈ U. inref(l, u). We define λnl = Λnl (⊥) for
any l, n ∈ N and finally choose

λl =
⊔
n∈N

λnl .

Using the the observation that πn+1 ◦ Λl = Λl ◦ πn holds for
any l, n ∈ N it is not hard to prove the following properties:

Lemma 5 (Location). For any k, l, l′, n ∈ N and u ∈ U we have:

(i) πk(λnl) = λn∧kl , πn(λl) = λnl .

(ii) λn+1
l = λn+1

l′ ⇔ l = l′

(iii) πn(u) w λnl ⇔ πn(u) = λnl , u w λl ⇔ u = λl.
(iv) u v λnl ⇔ ∃j ≤ n. u = λjl , u v λl ⇔ u = λl ∨ ∃j. u = λjl .

Definition 6. Any type judgment Ξ | ∆ | Γ ` e : τ is interpreted
as [[Ξ | ∆ | Γ ` e : τ]] ∈ S ⊗ (dom(Γ) → U↓)⊥ (S ⊗ U by
induction on the typing derivation, important cases are in Figure 4,
see the long version of the paper for a complete presentation.

Verification of continuity is tedious but standard with the one
exception that we use the Location Lemma and the particular or-
dering on S in the cases involving references.

If we have ∅ | ∆ | ∅ ` v : τ for a value v then there naturally
is a unique u ∈ U↓ such that [[∅ | ∆ | ∅ ` v : τ]]s = bs, uc for
any s ∈ S↓, we denote this u by [[∆ ` v : τ]]. Similarly, if we
have ∅ | ∆ | ∅ ` Π we define [[∆ ` Π]] = λl ∈ dom(∆). [[∆ `

Π(l) : ∆(l)]] ∈ S↓. With this notation in place we are ready to
prove adequacy and soundness of our untyped interpretation:

Theorem 7 (Adequacy). For ∅ | ∆ | ∅ ` e : int and ∅ | ∆ | ∅ `
Π we get that

[[∅ | ∆ | ∅ ` e : int]][[∆`Π]] 6= ⊥ =⇒ Π, e ↓ .
Here and below we use write Π, e ↓ to denote termination,

i.e., the existence of a syntactic store Π′ and a value v such that
Π, e ⇓ Π′, v.

Proposition 8 (Soundness). For ∅ | ∆ | ∅ ` e : int and
∅ | ∆ | ∅ ` Π, any syntactic store Π′ and any n ∈ N we get

Π, e ⇓ Π′, n =⇒
∃s ∈ S↓. [[∅ | ∆ | ∅ ` e : int]][[∆`Π]] = bs, inint(n)c.

Proving soundness is slightly nontrivial due to the nondetermin-
istic memory allocation of the operational semantics. On the other
hand, the problem intuitively comes down to location renaming,
i.e., we may perform substitutions of one location for another to
make the operational semantics mimic the ’least free’ memory al-
location of the denotational semantics. Details are deferred to the
long version of the paper.

To prove adequacy we proceed along the lines of the proof of
Proposition 5.1 in [28]. But since our operational semantics is not
deterministic due to the nondeterministic allocation, we resort to
a continuation passing style proof to ensure admissibility of the
’formal approximation’ relations. We introduce continuations for
that purpose, these are just expressions with one free term variable:
For a context of type variables Ξ, a world ∆, an expression K, a
variable x and types τ0 and τ1 we write Ξ | ∆ ` K : (x : τ0 → τ1)
if we have Ξ | ∆ | x : τ0 ` K : τ1 and we refer to K as
a continuation. It is a simple yet important property that for any
syntactic store Π and any expression e we have

Π, (λτ0→τ1x. K)(e) ↓ ⇔ ∃Π′, v. Π, e ⇓ Π′, v ∧Π′,K[v/x] ↓
We fix some further sets of syntax: For a world ∆ and a type

τ with ∅ ` ∆ and ∅ ` τ we let Val∆τ and Expr∆
τ denote the

set of values and expressions respectively that have type τ under
the assumption of ∆ and empty contexts. SynSt∆ is the set of
syntactic stores Π with ∅ | ∆ | ∅ ` Π and Cont∆

x:τ0→τ1 is the set
of continuations K with ∅ | ∆ ` K : (x : τ0 → τ1).

Proposition 9. There is a family of ’formal approximation’ rela-
tions C∆

τ ⊂ U↓ ×Val∆τ with the properties of Figure 5 and with
{u ∈ U↓ | uC∆

τ v} chain complete and C∆
τ ⊂ C∆′

τ for ∆ v ∆′.

Proof. Denote by UAdmSub(U) all uniform and admissible
subsets of U in the sense that they are closed under application of
πn for any n ∈ N, contain ⊥ and are chain complete. This con-
stitutes a complete lattice with ordinary set inclusion as ordering
since all properties are preserved by intersection, and hence the
following is a complete lattice too with pointwise ordering:

K =
{
f ∈

∏
(∆,τ)∈World∅×Type∅

Val∆τ → UAdmSub(U)
∣∣∣

∀∆,∆′ ∈World∅∀τ ∈ Type∅∀v ∈ Val∆τ .

∆ v ∆′ =⇒ f(∆, τ)(v) ⊂ f(∆′, τ)(v)
}
.

In Figure 6 we define a monotone map Φ : Kop × K → K and
mimicking the proof of Theorem 4.16 from [28] one can establish
the existence of a fixed point, i.e., a K ∈ K with Φ(K,K) = K.
We write uC∆

τ v for u ∈ K(∆, τ)(v) \ {⊥} and are done.

Note that in the proof above we make use of a complete lat-
tice of functions from syntactic types (and worlds). This makes it

[[Ξ | ∆ | Γ ` x : τ]]sρ = bs, ρ(x)c [[Ξ | ∆ | Γ ` l : τ ref]]sρ = bs, λlc

[[Ξ | ∆ | Γ ` Λα.e : ∀α.τ]]sρ =
⌊
s, in∀(λs

′ ∈ S↓.[[Ξ, α | ∆ | Γ ` e : τ]]s
′
ρ)
⌋

[[Ξ | ∆ | Γ ` e[τ1] : τ0[τ1/α]]]sρ =

{
ϕ(s′) [[Ξ | ∆ | Γ ` e : ∀α.τ0]]sρ = bs′, in∀(ϕ)c
⊥ otherwise

[[Ξ | ∆ | Γ ` fold
µα.τ (e) : µα.τ]]sρ =

{
bs′, inµ(u)c [[Ξ | ∆ | Γ ` e : τ [µα.τ/α]]]sρ = bs′, uc
⊥ otherwise

[[Ξ | ∆ | Γ ` fix
τ0→τ1f(x).e : τ0 → τ1]]sρ =

⌊
s, (in→ ◦ fix)

(
λϕ ∈ S ⊗ U (S ⊗ U.

λ(s′, u) ∈ S↓ × U↓. [[Ξ | ∆ | Γ, f : τ0 → τ1, x : τ0 ` e : τ1]]s
′
ρ[f 7→in→(ϕ),x 7→u]

)⌋
[[Ξ | ∆ | Γ ` ref(e) : τ ref]]sρ =

 bs′[l 7→ u], λlc
[

[[Ξ | ∆ | Γ ` e : τ]]sρ = bs′, uc,
l /∈ dom(s′), ∀l′ < l. l′ ∈ dom(s′)

⊥ otherwise

[[Ξ | ∆ | Γ ` ! e : τ]]sρ =


bs′, s′(l)c [[Ξ | ∆ | Γ ` e : τ ref]]sρ = bs′, λlc, l ∈ dom(s′)

bs′, πn(s′(l))c
[

[[Ξ | ∆ | Γ ` e : τ ref]]sρ = bs′, uc, πn+1(u) = λn+1
l ,

πn+2(u) 6= λn+2
l , l ∈ dom(s′), πn(s′(l)) 6= ⊥

⊥ otherwise

[[Ξ | ∆ | Γ ` e0 := e1 : unit]]sρ =



bs′′[l 7→ u], inunit(∗)c
[

[[Ξ | ∆ | Γ ` e0 : τ ref]]sρ = bs′, λlc,
[[Ξ | ∆ | Γ ` e1 : τ]]s

′
ρ = bs′′, uc, l ∈ dom(s′′)

bs′′[l 7→ πn(u)], inunit(∗)c

 [[Ξ | ∆ | Γ ` e0 : τ ref]]sρ = bs′, u′c
[[Ξ | ∆ | Γ ` e1 : τ]]s

′
ρ = bs′′, uc, πn+1(u′) = λn+1

l ,
πn+2(u′) 6= λn+2

l , l ∈ dom(s′′), πn(u) 6= ⊥
⊥ otherwise

Figure 4. Untyped interpretation, select cases. The general form of the left hand side is [[Ξ | ∆ | Γ ` e : τ]]sρ with s ∈ S↓ and

ρ ∈ dom(Γ)→ U↓. The right hand side is an element of S ⊗ U , recall that S = (Loc
fin→ U↓)⊥.

uC∆
unit () ⇐⇒ u = inunit(∗)

uC∆
int n ⇐⇒ u = inint(n)

uC∆
τ ref l ⇐⇒ u v λl

uC∆
τ0×τ1 (v0, v1) ⇐⇒ ∃u0, u1 ∈ U↓. u = in×(bu0, u1c) ∧ u0 C∆

τ0 v0 ∧ u1 C∆
τ1 v1

uC∆
τ0+τ1 inl

τ0+τ1(v) ⇐⇒ ∃u′ ∈ U↓. u = (in+ ◦ inl)(u′) ∧ u′ C∆
τ0 v

uC∆
τ0+τ1 inr

τ0+τ1(v) ⇐⇒ ∃u′ ∈ U↓. u = (in+ ◦ inr)(u′) ∧ u′ C∆
τ1 v

uC∆
µα.τ fold

µα.τ (v) ⇐⇒ ∃u′ ∈ U↓. u = inµ(u′) ∧ u′ C∆
τ [µα.τ/α] v

uC∆
∀α.τ Λα.e ⇐⇒ ∃ϕ ∈ S (S ⊗ U. u = in∀(ϕ) ∧ ∀∆′ w ∆.∀τ ′ ∈ Type∅. ϕC∆′

Tτ [τ ′/α] e[τ
′/α]

uC∆
τ0→τ1 fix

τ0→τ1f(x).e ⇐⇒ ∃ϕ ∈ S ⊗ U (S ⊗ U. u = in→(ϕ) ∧ ∀∆′ w ∆. ∀u′, v. u′ C∆′
τ0 v ⇒

λs ∈ S↓. ϕ(bs, u′c) C∆′
Tτ1 e[fix

τ0→τ1f(x).e/f, v/x]

sC∆ Π ⇐⇒ dom(s) = dom(Π) ∧ ∀l ∈ dom(s). s(l) C∆
∆(l) Π(l)

k C∆
Kτ K ⇐⇒ ∀∆′ w ∆. ∀u, v, s,Π. uC∆′

τ v ∧ sC∆′ Π⇒
[
k(bs, uc) 6= ⊥ ⇒ Π, (λτ→intx. K)(v) ↓

]
ϕC∆

Tτ e ⇐⇒ ∀s,Π, k,K. sC∆ Π ∧ k C∆
Kτ K ⇒

[
k(ϕ(s)) 6= ⊥ ⇒ Π, (λτ→intx. K)(e) ↓

]
Figure 5. Desired properties of an indexed family of ’formal approximation’ relations C∆

τ ⊂ U↓ ×Val∆τ . Also we define three auxiliary
families of relations, C∆ ⊂ S↓ × SynSt∆, C∆

Kτ ⊂ (S ⊗ U (S ⊗ U)×Cont∆
x:τ→int and C∆

Tτ ⊂ (S (S ⊗ U)×Expr∆
τ .

particularly easy to define the interpretation of (closed) recursive
and polymorphic types, cf., the definition of Φ in Figure 6, and
means that we find the interpretation of all types by taking one fixed
point of Φ, rather than via a nested sequence of fixed points as in,
e.g., [13, 14]. This idea of using a function-space lattice was also
used in the first author’s earlier work [11], albeit more implicitly.

Proposition 10. Given Ξ | ∆ | Γ ` e : τ with Ξ = α1, . . . , αm
and Γ = x1 : τ1, . . . , xn : τn. Pick σ1, . . . , σm ∈ Type∅
and denote application of the substitution [σ1/α1, . . . , σm/αm]
by overlining. For any ∆0 ∈ World∅ with ∆0 w ∆ and any
u1, . . . , un ∈ U↓ and any values v1, . . . , vn with ui C∆0

τi
vi for all

1 ≤ i ≤ n, we have

λs ∈ S↓.[[Ξ | ∆ | Γ ` e : τ]]sρ C∆0
Tτ e[v1/x1, . . . , vn/xn]

with ρ = [x1 7→ u1, . . . , xn 7→ un] ∈ dom(Γ)→ U↓.

Loosely, this proposition says that any expression is related to
itself. Applying the identity continuation it is not hard to see that it
has adequacy as a corollary as we have [[∆ ` v : τ]] C∆

τ v for any
value v with ∅ | ∆ | ∅ ` v : τ .

Proof. We prove the proposition by induction on the typing deriva-
tion, details follow for a few cases. For the case of memory alloca-

Φ(R,S)(∆, unit)(()) = {⊥} ∪ {inunit(∗)}
Φ(R,S)(∆, int)(n) = {⊥} ∪ {inint(n)}

Φ(R,S)(∆, τ ref)(l) = {u ∈ U | u v λl}
Φ(R,S)(∆, τ0 × τ1)((v0, v1)) = {⊥} ∪ (in× ◦ b−c)(S(∆, τ0)(v0) \ {⊥} × S(∆, τ1)(v1) \ {⊥})
Φ(R,S)(∆, τ0 + τ1)(inl(v)) = {⊥} ∪ (in+ ◦ inl)(S(∆, τ0)(v) \ {⊥})
Φ(R,S)(∆, τ0 + τ1)(inr(v)) = {⊥} ∪ (in+ ◦ inr)(S(∆, τ1)(v) \ {⊥})
Φ(R,S)(∆, µα.τ)(fold(v)) = {⊥} ∪ inµ(S(∆, τ [µα.τ/α])(v) \ {⊥})

Φ(R,S)(∆, ∀α.τ)(Λα.e) = {⊥} ∪
{
in∀(ϕ) | ϕ ∈ S (S ⊗ U ∧

∀∆′ w ∆.∀τ ′ ∈ Type∅. ϕ ∈ ΦT (R,S)(∆′, τ [τ ′/α])(e[τ ′/α])
}

Φ(R,S)(∆, τ0 → τ1)(fixτ0→τ1f(x).e) = {⊥} ∪
{
in→(ϕ) | ϕ ∈ S ⊗ U (S ⊗ U ∧

∀∆′ w ∆. ∀v ∀u ∈ R(∆′, τ0)(v) \ {⊥}.
λs ∈ S↓. ϕ(bs, uc) ∈ ΦT (R,S)(∆′, τ1)

(e[fixτ0→τ1f(x).e/f, v/x])
}

ΦS(S)(∆)(Π) = {⊥} ∪
{
s ∈ S↓ | dom(s) = dom(Π) ∧ ∀l ∈ dom(s). s(l) ∈ S(∆,∆(l))(Π(l)) \ {⊥}

}
ΦK(R,S)(∆, τ)(K) =

{
k ∈ S ⊗ U (S ⊗ U | ∀∆′ w ∆. ∀v,Π.

∀u ∈ R(∆′, τ)(v) \ {⊥}.∀s ∈ ΦS(R)(∆′)(Π) \ {⊥}.
k(bs, uc) 6= ⊥ ⇒ Π, (λτ→intx. K)(v) ↓

}
ΦT (R,S)(∆, τ)(e) =

{
ϕ ∈ S (S ⊗ U | ∀Π,K.

∀s ∈ ΦS(R)(∆)(Π) \ {⊥}. ∀k ∈ ΦK(S,R)(∆, τ)(K).
k(ϕ(s)) 6= ⊥ ⇒ Π, (λτ→intx. K)(e) ↓

}
Figure 6. Definition of Φ : Kop × K → K using three auxiliary maps ΦS : K →

∏
∆∈World∅

SynSt∆ → P(S), ΦK : Kop × K →∏
(∆,τ)∈World∅×Type∅

Cont∆
x:τ→int → P(S⊗U (S⊗U) and ΦT : Kop×K →

∏
(∆,τ)∈World∅×Type∅

Expr∆
τ → P(S (S⊗U).

tion, consider
Ξ | ∆ | Γ ` e : τ

Ξ | ∆ | Γ ` ref(e) : τ ref

and assume that the proposition holds for the premise. Choose types
σ1, . . . , σm, ∆0 w ∆ and u1, . . . , un elements of U↓, values
v1, . . . , vn and ρ ∈ dom(Γ) → U↓ as stated. Furthermore pick
s,Π, k and K with s C∆0 Π and k C∆0

Kτ ref K. We now assume
that

k([[∅ | ∆ | Γ ` ref(e) : τ ref]]sρ) 6= ⊥
and are to prove that

Π, (λτ ref→intx. K)(ref(e[v1/x1, . . . , vn/xn])) ↓ .
The map λ(s, u) ∈ S↓ × U↓. k(bs[l 7→ u], λlc) where we
choose l ∈ N minimal such that l /∈ dom(s) defines a map
k′ ∈ S ⊗ U (S ⊗ U . Also we define a continuation K′ ∈
Cont∆0

x:τ→int by K′ = (λτ ref→intx. K)(ref(x)) and by the
induction hypothesis it suffices to show that k′C∆0

KτK
′. According

to definition we pick ∆′ w ∆0 and u′, v′, s′,Π′ with u′C∆′
τ v′ and

s′ C∆′ Π′, we assume that k′(bs′, u′c) 6= ⊥ and aim to prove that
Π′, (λτ→intx. K′)(v′) ↓. We remark that

⊥ 6= k′(bs′, u′c) = k(bs′[l′ 7→ u′], λl′c)

for l′ ∈ N with l′ /∈ dom(s′). By s′ C∆′ Π′ we have l′ /∈
dom(s′) = dom(Π′) and hence Π′, ref(v′) ⇓ Π′[l′ 7→ v′], l′. We
obviously have ∆′[l′ 7→ τ] w ∆′ and λl′C

∆′[l′ 7→τ]
τ ref l′. Also for any

l ∈ dom(s′) ∪ {l′} we have s′[l′ 7→ u′](l) C∆′
∆′[l′ 7→τ](l) Π′[l′ 7→

v′](l) and hence s′[l′ 7→ u′](l) C∆′[l′ 7→τ]

∆′[l′ 7→τ](l) Π′[l′ 7→ v′](l) too

which means that s′[l′ 7→ u′] C∆′[l′ 7→τ] Π′[l′ 7→ v′] and we are
done as we initially assumed that k C∆0

Kτ ref K.
This case warrants some comments: It is here that we need the

continuations to ’work’ in all future worlds, in the other cases this
property is just pushed through the proof. Also this is where we rely

on the property that the formal approximations grow with larger
worlds. Finally note that the operational semantics may allocate
any free location, in particular we can pick the least free to match
the behavior of the denotational semantics.

Consider now the case of lookup, i.e., consider

Ξ | ∆ | Γ ` e : τ ref

Ξ | ∆ | Γ ` ! e : τ

and assume that the proposition holds for the premise. Choose types
σ1, . . . , σm, a world ∆0 w ∆ and u1, . . . , un elements of U↓,
values v1, . . . , vn and ρ ∈ dom(Γ) → U↓ as stated. Furthermore
pick s,Π, k and K with s C∆0 Π and k C∆0

Kτ K. We now assume
that

k([[∅ | ∆ | Γ `! e : τ]]sρ) 6= ⊥
and are to prove that

Π, (λτ→intx. K)(! e[v1/x1, . . . , vn/xn]) ↓ .

We define k′ ∈ S⊗U (S⊗U by mapping any (s, u) ∈ S↓×U↓
to S ⊗ U by copying the interpretation of lookup and applying k:

k(bs, s(l)c) u = λl, l ∈ dom(s)

k(bs, πn(s(l))c) πn+1(u) = λn+1
l , πn(s(l)) 6= ⊥,

πn+2(u) 6= λn+2
l , l ∈ dom(s)

⊥ otherwise

Similarly we define K′ ∈ Cont∆
x:τ ref→int by

K′ = (λτ→intx. K)(! x)

and by induction it suffices to show that k′ C∆0
Kτ ref K

′.
For that purpose we pick ∆′ w ∆0, u′, v′, s′ and Π′ with

u′ C∆′
τ ref v

′ and s′ C∆′ Π′, we assume that k′(bs′, u′c) 6= ⊥ and
have to prove that Π′, (λτ ref→intx. K′)(v′) ↓. From u′ C∆′

τ ref v
′

we deduce that there is l′ ∈ dom(∆′) with v′ = l′, ∆′(l′) = τ and
u′ v λl′ . Also s′ C∆′ Π′ yields that l′ ∈ dom(∆′) = dom(s′) =

dom(Π′) and this gives Π′, ! l′ ⇓ Π′,Π′(l′) and we also have
s′(l′) C∆′

τ Π′(l′).
Assume now that u′ = λl′ . From the definition of k′ we get

that ⊥ 6= k(bs′, s′(l′)c) and we may use the original assumption
kC∆0

KτK to prove the required. Suppose now that u′ 6= λl′ , i.e., that
u′ = λn

′+1
l′ for some n′ ∈ N. We get ⊥ 6= k(bs′, πn′(s′(l′))c)

which yields⊥ 6= k(bs′, s′(l′)c) by monotonicity and we are back
on the above track.

4. Typed Denotational Semantics
In this section we present the typed possible world semantics. As
mentioned in the Introduction, to reason about parametricity we
need to give a semantics not only of closed types (as sufficed for
proving adequacy in the previous section) but also of open types.
This has two consequences for the technical development which we
explain before proceeding with the technical development proper.

Recall first that the overall idea is to define the semantics of
types by means of world-indexed binary relations over the univer-
sal domain U . These relations will be both uniform and admissible:
such relations are completely determined by their elements of the
form (πnu, πnu

′). One explanation of the formal construction be-
low is therefore the following. To define the various relations that
together constitute the semantics of types, it suffices to determine
for each n ∈ N whether the pairs of the form (πnu, πnu

′) be-
long to the various relations; this can be done by induction on n.
For all types except reference types, this approach works well
due to properties of the πn. For example, πn+1(in+(inl u)) =
in+(inl (πnu)) and πn+1(in×(u1, u2)) = in×(πnu1, πnu2).

For the case of reference types, the idea is roughly that, for a
type Ξ ` τ , for a world ∆ ∈WorldΞ, and for semantics types ν
corresponding to the type environment Ξ,

(u, u′) ∈ [[τ ref]]Ξ(ν)(∆)

if and only if,

∃l ∈ dom(∆). u = u′ = l ∧ [[τ]]Ξ(ν)(∆) = [[∆(l)]]Ξ(ν)(∆).

That is, u and u′ should be the same location l and, moreover, the
interpretation of the type τ should be the same as the interpretation
of the type ∆(l) found in the store type ∆. The latter is, of course,
to ensure sound modelling of lookup and assignment.

The problem with the above definition is that it is not in-
ductive: to determine whether the pair (πn+1 u, πn+1 u

′) be-
longs to [[τ ref]]Ξ(ν)(∆), we need to know the entire relations
[[τ]]Ξ(ν)(∆) and [[∆(l)]]Ξ(ν)(∆), not just their elements of the
form (πnu0, πnu

′
0). That is the reason for introducing semantic

locations λl and λnl . By means of these we can refine the above
idea to what you see in Figure 8. The idea is that approximative
locations λn+1

l are related in case the interpretations of types agree
up to level n and that ideal locations λl are related in case the in-
terpretations really are equal. (As shown, the real definition also
includes a quantification over future worlds, but that is not related
to what we are discussing here.)

More formally, the problem with the definition of [[τ ref]] above
is that it prevents one from proving the existence of the family
of logical relations constituting the semantics of types. The usual
proof by fixed-point induction and minimal invariance [28] does
not go through: indeed, for an earlier variant of the setup presented
here, we could actually give a formal proof showing that relations
satisfying such conditions do not exist.

Clearly, there are some relations between our semantic locations
and step-indexed approaches to recursive types [2, 5, 6]; see Sub-
section 4.1 for comments on how one can attempt to make the con-
nection formal.

The second consequence of interpreting open types is also re-
lated to the use of world-indexed relations. It has to do with how
we should interpret quantified types ∀α. τ . When one is only inter-
ested in a semantics of closed types, one can define the seman-
tics of ∀α. τ simply as the intersection over all syntactic types⋂
σ∈Type[[τ [σ/α]]], as we essentially did in the adequacy proof

earlier. For a semantics of open types, one typically defines the
semantics of ∀α. τ by a big intersection over some universe ST
of semantic types (think of ST as the set of all admissible rela-
tions)

⋂
ν∈ST[[τ]](ν). However, in our case the meaning of a type

depends on the current world. One attempt to accommodate this
dependency would be to interpret a closed universal type ∀α.τ es-
sentially as an intersection over semantic types indexed by closed
worlds:

⋂
ν∈World∅→ST[[τ]](ν). The problem with this attempt is

that in the natural Kripke-style definition of [[τ]](ν) one needs to ap-
ply ν not only to closed worlds, but to worlds containing free occur-
rences of α. Worse, if τ contains nested universal types, one needs
to apply ν to worlds containing additional new type variables. For
example, if α occurs in τ below a universal quantifier ∀β, then one
needs to be able to apply ν to an arbitrary world ∆ ∈Worldα,β .

Informally, one attempt to interpret such an occurrence of α
would be

[[α]]α,β(ν, ν′)(∆) = ν (ν, ν′) (∆) ,

i.e., to interpret α in a world ∆ ∈ Worldα,β , one applies ν
not only to ∆, but also to the ν and ν′ that interpret α and β,
respectively. But this attempt introduces a circularity: it is not clear
what the formal definition of ν should be, since ν must now be
applicable to itself as well as an arbitrary other ν′. To break the
circularity in the above interpretation of α, we instead apply ν to
the interpretation function itself, partially applied to (ν, ν′) and ∆:

[[α]]α,β(ν, ν′)(∆) = ν [λτ0 ∈ Type∅.[[τ0]]α,β(ν, ν′)(∆)] .

In this way (ν, ν′) and ∆ are indirectly passed to ν. (Notice that the
τ0 on the right hand side contains fewer free type variables than α.)

In summary, we use a novel interpretation of types, where ∀α. τ
is interpreted essentially by a big intersection⋂

ν∈(Type→ST)→ST

[[τ]](ν)

over semantic types indexed over a function that can interpret
closed types (i.e., types with one fewer type variable than τ). This
essentially allows us to delay the choice of semantic type until we
know how the world should be interpreted.

We now continue with the formal development after which we
discuss an alternative approach to dealing with the second issue
mentioned above and then present some examples. In the formal
development we make use of admissible relations that satisfy a
couple of additional conditions, uniformity and strictness. Unifor-
mity is typical for interpretations of polymorphism and recursive
types [4]; strictness is used to capture contextual equivalence (also
used in [11]).

Definition 11. Let UARel(U) be the set of binary relations on U
that relate⊥ to⊥ and to nothing else, are closed under πn for any
n ∈ N and are closed under taking least upper bounds of chains.

We speak of uniform and admissible relations over U . It is not
hard to see that UARel(U) with ordinary set inclusion constitutes
a complete lattice as all properties are preserved by intersection. We
can now define the semantic closed types:

Definition 12. For any context of type variables Ξ we let SCTΞ

be the monotone maps ν of[
TypeΞ → UARel(U)

] mon→ UARel(U)

for which it holds that for any two arguments ϕ,ϕ′ ∈ TypeΞ →
UARel(U) and any n ∈ N we have that[

∀τ ∈ TypeΞ. ϕ(τ)
n
= ϕ′(τ)

]
=⇒ ν(ϕ)

n
= ν(ϕ′).

Above and below we use R
n
= S for n ∈ N and R,S ∈

UARel(U) to mean that πn(R) ⊂ S and πn(S) ⊂ R hold;
we shall also use R

n
⊂ S to denote just the first of these properties.

Intuitively, the demand that ’n-equality’ be preserved by semantic
closed types allows us to work with approximations of types – a
property we need to prove the existence of the desired interpreta-
tion of types. For any context of type variables Ξ and any syntactic
type σ ∈ TypeΞ we furthermore define

νΞ(σ) = λϕ ∈ TypeΞ → UARel(U). ϕ(σ)

and it is easily verified that we indeed have νΞ(σ) ∈ SCTΞ.
We shall need a few minor definitions: For every type in context

α1, . . . , αm ` τ we define the following measure

#(α1, . . . , αm ` τ) = min{0 ≤ n ≤ m | α1, . . . , αn ` τ} ;

recall here that type contexts are ordered lists. For a context of type
variables Ξ = α1, α2, . . . , αm we write SCTΞ as shorthand for

SCT∅ × SCTα1 × SCTα1,α2 × · · · × SCTα1,α2,...,αm−1 .

Finally, assume that we have type contexts Ξ, Ξ′, ν ∈ SCTΞ,
ν′ ∈ SCTΞ′ , ∆ ∈ WorldΞ and ∆′ ∈ WorldΞ′ . We now
define [Ξ|ν |∆] v [Ξ′ |ν′ |∆′] to denote the existence of type
variables β1, β2, . . . , βm and semantic closed types ν1 ∈ SCTΞ,
ν2 ∈ SCTΞ,β1 up to νm ∈ SCTΞ,β1,...,βm−1 such that Ξ, β1,
β2, . . . , βm = Ξ′ and (ν, ν1, ν2, . . . , νm) = ν′ and ∆ v ∆′. This
definition captures our typed notion of ’future’ worlds: Not only
does the world itself grow, we also allow extension of the context
of type variables with corresponding semantic closed types. We are
now ready to define the lattice L of type interpretations:

Definition 13. We define a complete lattice by pointwise ordering

L =
{
f ∈

∏
Ξ

SCTΞ → TypeΞ →WorldΞ → UARel(U)
∣∣∣

[Ξ|ν |∆] v [Ξ′ |ν′ |∆′] ∧ τ ∈ TypeΞ =⇒

f(Ξ)(ν)(τ)(∆) ⊂ f(Ξ′)(ν′)(τ)(∆′)
}
.

We also define Ψ : Lop × L → L monotone in Figure 7: The
definition of Ψ(R,S)(Ξ)(ν)(τ)(∆) is by induction on #(Ξ ` τ).

Members of L interpret types, and as we deal with open types
we parameterize over semantic closed types to ’plug in’ for the
free variables as well as over worlds. The intuition behind defining
Ψ by induction on #(Ξ ` τ) is that Ψ(R,S)(Ξ)(ν)(τ)(∆) is
obviously well defined if τ is not a type variable, and from that
point on we can interpret type variables in the order they occur
in Ξ. It is worth noticing that the definition of Ψ in the cases
of references, polymorphic types and functions has been carefully
tailored to comply with monotonicity property in the definition of
L: the quantification over ’future’ worlds has been baked in.

To obtain the desired interpretation of types we could just appeal
to the approach of the proof of Theorem 4.16 of [28] as done above
in the proof of Theorem 7. Instead we construct the sequence of
approximations and the fixed point by hand – we proceed in the
style of Kleene’s fixed point theorem rather than by appeal to the
Knaster-Tarski fixed point theorem. The difference is merely one
of presentation: The present approach is less general but arguably
has a more constructive feel to it that goes well with the intuition
of the semantic locations.

We define R0 ∈ L as constant {(⊥,⊥)}, S0 ∈ L as constant
{(u, u′) ∈ U × U | ∀n ∈ N. πn(u) = ⊥ ⇔ πn(u′) = ⊥} and

inductively Rn+1 = Ψ(Sn,Rn) ∈ L 3 Ψ(Rn,Sn) = Sn+1 for
all n ∈ N. By induction we get the crucial fact that Rn

n
= Sn,

for all n ∈ N, and choosing ∇ = ∩n∈NSn yields a fixed point
of Ψ, i.e., Ψ(∇,∇) = ∇. We are now able to interpret types:
We shall denote ∇(Ξ)(τ)(ν)(∆) \ {(⊥,⊥)} by [[τ]]Ξ(ν)(∆) and
it is immediate that this interpretation has the properties listed in
Figure 8. Also the following is a consequence of the construction:

Lemma 14 (Monotonicity). For [Ξ|ν |∆] v [Ξ′ |ν′ |∆′] and τ ∈
TypeΞ we have [[τ]]Ξ(ν)(∆) ⊂ [[τ]]Ξ′(ν

′)(∆′).

We remark that (1) as for the adequacy proof, we again make
use of a complete lattice of functions, cf., Definition 13; and (2)
we would need to prove the existence of the logical relations using
a proof as the one above, even if we had left out recursive types
from the language. In that case, we could define the relation by
induction on the type, for all other type constructors but ref – for
ref it would not be possible, since the definition in the case for
τ ref involves the meaning of arbitrary types in future worlds.
This is typical for models of higher-order store in which one can
have recursion through the store, even without recursive types.

Lemma 15 (Degenerate Substitution). With natural ranges of vari-
ables, in particular τ ∈ TypeΞ,α,Ξ′ , ∆ ∈ WorldΞ,α,Ξ′ and
σ ∈ TypeΞ, we have that

[[τ]]Ξ,α,Ξ′(ν, νΞ(σ), ν′)(∆) = [[τ [σ/α]]]Ξ,α,Ξ′(ν, νΞ(σ), ν′)(∆).

It is easily proved by induction that the property holds for Sn for
all n ∈ N and the above lemma follows – the validity of this lemma
is partial justification for the definition of interpretation of type
variables. We refer to the lemma as degenerate because we perform
no substitution in the world ∆ and do not remove α and νΞ(σ) on
the right hand side. It is possible to state and prove a more standard
substitution lemma, but we shall not need that.

The main result of this section is a ’fundamental theorem of
logical relations,’ intuitively stating that every well-typed term is
related to itself. First some notation: For any two contexts of type
variables Ξ and Ξ′ we write Ξ ⊂ Ξ′ if all variables of Ξ occur in
Ξ′, i.e., if the inclusion holds when interpreting the contexts as sets.

Definition 16. Two expressions in context Ξ | ∆ | Γ ` ei : τ
(i = 1, 2) are semantically related, written

Ξ | ∆ | Γ ` e1 ∼ e2 : τ ,

if for all Ξ′ ⊃ Ξ, all ν′ ∈ SCTΞ′ , all ∆′ ∈ WorldΞ′ with
∆′ w ∆ and all ρ, ρ′ ∈ dom(Γ) → U↓ such that (ρ(x), ρ′(x)) ∈
[[Γ(x)]]Ξ′(ν

′)(∆′) for each x ∈ dom(Γ), we have that the pair(
λs ∈ S↓.[[Ξ | ∆ | Γ ` e1 : τ]]sρ, λs ∈ S↓.[[Ξ | ∆ | Γ ` e2 : τ]]sρ′

)
belongs to [[τ]]TΞ′(ν

′)(∆′).

Theorem 17. Ξ | ∆ | Γ ` e : τ implies Ξ | ∆ | Γ ` e ∼ e : τ .

Proof. The proof is by induction on the typing derivation, we shall
present three decisive cases. Consider the lookup case, i.e., consider

Ξ | ∆ | Γ ` e : τ ref

Ξ | ∆ | Γ ` ! e : τ

and assume that the proposition holds for the premise. We pick
arbitrary Ξ′ ⊃ Ξ, ν′ ∈ SCTΞ′ , ∆′ ∈ WorldΞ′ with ∆′ w ∆,
and ρ, ρ′ ∈ dom(Γ) → U↓ as specified in the definition of
semantic relatedness. Also we take arbitrary (s, s′) ∈ [[∆′]]SΞ′(ν

′)
and (k, k′) ∈ [[τ]]KΞ′(ν

′)(∆′) and we have to prove that either

k
(
[[Ξ | ∆ | Γ ` ! e : τ]]sρ

)
= ⊥ = k′

(
[[Ξ | ∆ | Γ ` ! e : τ]]s

′
ρ′
)

or that the left hand side and the right hand side both terminate
and moreover both yield the value inint(n) for some n ∈ N,

Ψ(R,S)(α1, . . . , αm)(ν1, . . . , νm)(αn)(∆) = νn
[
λτ ∈ Typeα1,...,αn−1

. Ψ(R,S)(α1, . . . , αm)(ν1, . . . , νm)(τ)(∆)
]

Ψ(R,S)(Ξ)(ν)(1)(∆) = {(⊥,⊥)} ∪ {(inunit(∗), inunit(∗))}
Ψ(R,S)(Ξ)(ν)(int)(∆) = {(⊥,⊥)} ∪ {(inint(n), inint(n)) | n ∈ N}

Ψ(R,S)(Ξ)(ν)(τ ref)(∆) = {(⊥,⊥)} ∪{
(λn+1
l , λn+1

l) | l ∈ dom(∆) ∧ n ∈ N ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆].R(Ξ′)(ν′)(τ)(∆′)

n
⊂ S(Ξ′)(ν′)(∆′(l))(∆′) ∧

R(Ξ′)(ν′)(∆′(l))(∆′)
n
⊂ S(Ξ′)(ν′)(τ)(∆′)

}
∪{

(λl, λl) | l ∈ dom(∆) ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆].R(Ξ′)(ν′)(τ)(∆′) ⊂ S(Ξ′)(ν′)(∆′(l))(∆′) ∧

R(Ξ′)(ν′)(∆′(l))(∆′) ⊂ S(Ξ′)(ν′)(τ)(∆′)
}

Ψ(R,S)(Ξ)(ν)(τ0 × τ1)(∆) = {(⊥,⊥)} ∪
{

(in×(bu0, u1c), in×(bu′0, u′1c)) | (u0, u
′
0) ∈ S(Ξ)(ν)(τ0)(∆) \ {(⊥,⊥)} ∧

(u1, u
′
1) ∈ S(Ξ)(ν)(τ1)(∆) \ {(⊥,⊥)}

}
Ψ(R,S)(ν)(Ξ)(τ0 + τ1)(∆) = {(⊥,⊥)} ∪

{
((in+ ◦ inl)(u), (in+ ◦ inl)(u′)) | (u, u′) ∈ S(Ξ)(ν)(τ0)(∆) \ {(⊥,⊥)}

}
∪
{

((in+ ◦ inr)(u), (in+ ◦ inr)(u′)) | (u, u′) ∈ S(Ξ)(ν)(τ1)(∆) \ {(⊥,⊥)}
}

Ψ(R,S)(ν)(Ξ)(µα.τ)(∆) = {(⊥,⊥)} ∪
{

(inµ(u), inµ(u′)) | (u, u′) ∈ S(Ξ)(ν)(τ [µα.τ/α])(∆) \ {(⊥,⊥)}
}

Ψ(R,S)(Ξ)(ν)(∀α.τ)(∆) = {(⊥,⊥)} ∪
{

(in∀(ϕ), in∀(ϕ
′)) | ϕ,ϕ′ ∈ S (S ⊗ U ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]∀ν ∈ SCTΞ′ .

(ϕ,ϕ′) ∈ ΨT (R,S)(Ξ′, α)(ν′, ν)(τ)(∆′)
}

Ψ(R,S)(Ξ)(ν)(τ0 → τ1)(∆) = {(⊥,⊥)} ∪{
(in→(ϕ), in→(ϕ′)) | ϕ,ϕ′ ∈ S ⊗ U (S ⊗ U ∧

∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]∀(u, u′) ∈ R(Ξ′)(ν′)(τ0)(∆′) \ {(⊥,⊥)}.
[λs ∈ S↓.ϕ(bs, uc), λs′ ∈ S↓.ϕ′(bs′, u′c)] ∈ ΨT (R,S)(Ξ′)(ν′)(τ1)(∆′)

}
ΨS(S)(Ξ)(ν)(∆) = {(⊥,⊥)} ∪

{
(s, s′) ∈ (S↓)

2 | dom(∆) = dom(s) = dom(s′) ∧
∀l ∈ dom(∆). (s(l), s′(l)) ∈ S(Ξ)(ν)(∆(l))(∆) \ {(⊥,⊥)}

}
ΨK(R,S)(Ξ)(ν)(τ)(∆) =

{
(k, k′) ∈ (S ⊗ U (S ⊗ U)2 | ∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆].

∀(s, s′) ∈ ΨS(R)(Ξ′)(ν′)(∆′) \ {(⊥,⊥)}.
∀(u, u′) ∈ R(Ξ′)(ν′)(τ)(∆′) \ {(⊥,⊥)}.

[k(bs, uc) = ⊥ = k′(bs′, u′c)] ∨
[∃t, t′ ∈ S↓∃n ∈ Z. k(bs, uc) = bt, inint(n)c ∧

k′(bs′, u′c) = bt′, inint(n)c
}

ΨT (R,S)(Ξ)(ν)(τ)(∆) =
{

(ϕ,ϕ′) ∈ (S (S ⊗ U)2 | ∀(s, s′) ∈ ΨS(R)(Ξ)(ν)(∆) \ {(⊥,⊥)}.
∀(k, k′) ∈ ΨK(S,R)(Ξ)(ν)(τ)(∆).

[k(ϕ(s)) = ⊥ = k′(ϕ′(s′))] ∨
[∃t, t′ ∈ S↓∃n ∈ Z. k(ϕ(s)) = bt, inint(n)c ∧

k′(ϕ′(s′)) = bt′, inint(n)c
}

Figure 7. Definition of Ψ : Lop × L → L using maps ΨS : L →
∏

Ξ SCTΞ →WorldΞ → P(S2), ΨK : Lop × L →
∏

Ξ SCTΞ →
TypeΞ →WorldΞ → P((S ⊗ U (S ⊗ U)2) and ΨT : Lop × L →

∏
Ξ SCTΞ → TypeΞ →WorldΞ → P((S (S ⊗ U)2).

confer the definition of [[τ]]TΞ′(ν
′)(∆′). Consider now the maps

k0, k
′
0 : S ⊗ U (S ⊗ U built by copying the interpretation

of lookup and applying k respectively k′, i.e., k0 is obtained by
mapping any (s0, u0) ∈ S↓ × U↓ to S ⊗ U as follows

k(bs0, s0(l)c) u0 = λl, l ∈ dom(s0)

k(bs0, πn(s0(l))c) πn+1(u0) = λn+1
l , πn(s0(l)) 6= ⊥,

πn+2(u0) 6= λn+2
l , l ∈ dom(s0)

⊥ otherwise

and k′0 is identical, with k′ exchanged for k. By the induction
hypothesis it suffices to prove that (k0, k

′
0) ∈ [[τ ref]]KΞ′(ν

′)(∆′).
For that purpose we pick [Ξ0 |ν0 |∆0] w [Ξ′ |ν′ |∆′] and we pick
(s0, s

′
0) ∈ [[∆0]]SΞ0(ν0) and (u0, u

′
0) ∈ [[τ ref]]Ξ0(ν0)(∆0). The

latter yields one of two: Either we have u0 = u′0 = λn+1
l for

some l ∈ dom(∆0) and an n ∈ N with [[∆0(l)]]Ξ0(ν0)(∆0)
n
⊂

[[τ]]Ξ0(ν0)(∆0) ∪ {(⊥,⊥)} or we have u0 = u′0 = λl for some
l ∈ dom(∆0) with [[∆0(l)]]Ξ0(ν0)(∆0) = [[τ]]Ξ0(ν0)(∆0). And

in both cases the desired follows from the definitions of k0 and k′0
and from (s0, s

′
0) ∈ [[∆0]]SΞ0(ν0) and (k, k′) ∈ [[τ]]KΞ′(ν

′)(∆′).
Let us now look at the case of memory allocation, i.e., consider

Ξ | ∆ | Γ ` e : τ

Ξ | ∆ | Γ ` ref(e) : τ ref

and assume that the proposition holds for the premise. We proceed
as above, i.e., we pick arbitrary Ξ′ ⊃ Ξ, ν′ ∈ SCTΞ′ , ∆′ ∈
WorldΞ′ with ∆′ w ∆, and ρ, ρ′ ∈ dom(Γ) → U↓ as specified
in the definition of semantic relatedness. Also we take arbitrary
(s, s′) ∈ [[∆′]]SΞ′(ν

′) and (k, k′) ∈ [[τ ref]]KΞ′(ν
′)(∆′) and we

construct k0, k
′
0 : S ⊗ U (S ⊗ U by copying the interpretation

of allocation and applying k respectively k′, i.e., k0 is built from
the map

λ(s0, u0) ∈ S↓ × U↓. k(bs0[l 7→ u0], λlc)

(u, u′) ∈ [[αn]]α1,...,αm(ν1, . . . , νm)(∆)⇔ (u, u′) ∈ νn
[
λτ ∈ Typeα1,...,αn−1

.[[τ]]α1,...,αm(ν1, . . . , νm)(∆) ∪ {(⊥,⊥)}
]
\ {(⊥,⊥)}

(u, u′) ∈ [[1]]Ξ(ν)(∆) ⇐⇒ u = u′ = inunit(∗)
(u, u′) ∈ [[int]]Ξ(ν)(∆) ⇐⇒ ∃n ∈ Z. u = u′ = inint(n)

(u, u′) ∈ [[τ ref]]Ξ(ν)(∆) ⇐⇒
[
∃l ∈ dom(∆)∃n ∈ N. u = u′ = λn+1

l ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]. [[τ]]Ξ′(ν

′)(∆′) ∪ {(⊥,⊥)} n
= [[∆′(l)]]Ξ′(ν

′)(∆′) ∪ {(⊥,⊥)}
]
∨[

∃l ∈ dom(∆). u = u′ = λl ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]. [[τ]]Ξ′(ν

′)(∆′) = [[∆′(l)]]Ξ′(ν
′)(∆′)

]
(u, u′) ∈ [[τ0 × τ1]]Ξ(ν)(∆) ⇐⇒ ∃(u0, u

′
0) ∈ [[τ0]]Ξ(ν)(∆)∃(u1, u

′
1) ∈ [[τ1]]Ξ(ν)(∆). u = in×(bu0, u1c) ∧ u′ = in×(bu′0, u′1c)

(u, u′) ∈ [[τ0 + τ1]]Ξ(ν)(∆) ⇐⇒
[
∃(u0, u

′
0) ∈ [[τ0]]Ξ(ν)(∆). u = (in+ ◦ inl)(u0) ∧ u′ = (in+ ◦ inl)(u′0)

]
∨[

∃(u1, u
′
1) ∈ [[τ1]]Ξ(ν)(∆). u = (in+ ◦ inr)(u1) ∧ u′ = (in+ ◦ inr)(u′1)

]
(u, u′) ∈ [[µα.τ]]Ξ(ν)(∆) ⇐⇒ ∃(u0, u

′
0) ∈ [[τ [µα.τ/α]]]Ξ(ν)(∆). u = inµ(u0) ∧ u′ = inµ(u′0)

(u, u′) ∈ [[∀α.τ]]Ξ(ν)(∆) ⇐⇒ ∃ϕ,ϕ′ ∈ S (S ⊗ U. u = in∀(ϕ) ∧ u′ = in∀(ϕ
′) ∧

∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]∀ν ∈ SCTΞ′ . (ϕ,ϕ′) ∈ [[τ]]TΞ′,α(ν′, ν)(∆′)

(u, u′) ∈ [[τ0 → τ1]]Ξ(ν)(∆) ⇐⇒ ∃ϕ,ϕ′ ∈ S ⊗ U (S ⊗ U. u = in→(ϕ) ∧ u′ = in→(ϕ′) ∧
∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]∀(u0, u

′
0) ∈ [[τ0]]Ξ′(ν

′)(∆′).
[λs ∈ S↓.ϕ(bs, u0c), λs′ ∈ S↓.ϕ′(bs′, u′0c)] ∈ [[τ1]]TΞ′(ν

′)(∆′)

(s, s′) ∈ [[∆]]SΞ(ν) ⇐⇒ dom(∆) = dom(s) = dom(s′) ∧ ∀l ∈ dom(∆). (s(l), s′(l)) ∈ [[∆(l)]]Ξ(ν)(∆)

(k, k′) ∈ [[τ]]KΞ (ν)(∆) ⇐⇒ ∀[Ξ′ |ν′ |∆′] w [Ξ|ν |∆]∀(s, s′) ∈ [[∆′]]SΞ′(ν
′)∀(u, u′) ∈ [[τ]]Ξ′(ν

′)(∆′).[
k(bs, uc) = ⊥ = k′(bs′, u′c)

]
∨[

∃t, t′ ∈ S↓∃n ∈ Z. k(bs, uc) = bt, inint(n)c ∧ k′(bs′, u′c) = bt′, inint(n)c
]

(ϕ,ϕ′) ∈ [[τ]]TΞ(ν)(∆) ⇐⇒ ∀(s, s′) ∈ [[∆]]SΞ(ν) ∀(k, k′) ∈ [[τ]]KΞ (ν)(∆).[
k(ϕ(s)) = ⊥ = k′(ϕ′(s′))

]
∨[

∃t, t′ ∈ S↓∃n ∈ Z. k(ϕ(s)) = bt, inint(n)c ∧ k′(ϕ′(s′)) = bt′, inint(n)c
]

Figure 8. Desired properties of interpretation of types. For u, u′ ∈ U↓, a context Ξ, τ ∈ TypeΞ, ν ∈ SCTΞ and ∆ ∈WorldΞ we specify
when (u, u′) ∈ [[τ]]Ξ(ν)(∆). Also we define [[∆]]SΞ(ν) ⊂ (S↓)

2, [[τ]]KΞ (ν)(∆) ⊂ (S⊗U (S⊗U)2, and [[τ]]TΞ(ν)(∆) ⊂ (S (S⊗U)2.

where we choose l ∈ N with l /∈ dom(s0) and ∀l′ < l. l′ ∈
dom(s0) and k′0 is identical, with k′ exchanged for k. It now re-
mains to prove (k0, k

′
0) ∈ [[τ]]KΞ′(ν

′)(∆′). For that purpose we pick
[Ξ0 |ν0 |∆0] w [Ξ′ |ν′ |∆′] and we pick (s0, s

′
0) ∈ [[∆0]]SΞ0(ν0)

and (u0, u
′
0) ∈ [[τ]]Ξ0(ν0)(∆0). From the former of these we

get k0(bs0, u0c) = k(bs0[l 7→ u0], λlc) and k′0(bs′0, u′0c) =
k′(bs′0[l 7→ u′0], λlc) with l the least such that l /∈ dom(∆0). It is
immediate that (λl, λl) ∈ [[τ ref]]Ξ0(ν0)(∆0[l 7→ τ]) and for any
l′ ∈ dom(∆0[l 7→ τ]) we have (s0[l 7→ u0](l′), s′0[l 7→ u′0](l′)) ∈
[[∆0[l 7→ τ](l′)]]Ξ0(ν0)(∆0) and hence (s0[l 7→ u0], s′0[l 7→
u′0]) ∈ [[∆0[l′ 7→ τ]]]Ξ0(ν0) by the Monotonicity Lemma. And
applying the original assumption (k, k′) ∈ [[τ ref]]KΞ′(ν

′)(∆′) we
are done.

Finally we arrive at the the case of type application, this is where
we require the Degenerate Substitution Lemma. We consider

Ξ | ∆ | Γ ` e : ∀α.τ0
Ξ | ∆ | Γ ` e[τ1] : τ0[τ1/α]

(Ξ ` τ1)

and assume that the proposition holds for the premise. We proceed
as usual, pick arbitrary Ξ′ ⊃ Ξ, ν′ ∈ SCTΞ′ , ∆′ ∈ WorldΞ′

with ∆′ w ∆ and ρ, ρ′ ∈ dom(Γ) → U↓ as specified in the
definition of semantic relatedness. Also we take arbitrary (s, s′) ∈
[[∆′]]SΞ′(ν

′) and (k, k′) ∈ [[τ0[τ1/α]]]KΞ′(ν
′)(∆′) and we construct

k0, k
′
0 : S ⊗ U (S ⊗ U by copying the interpretation of type

application and applying k respectively k′, i.e., k0 is built from the
map

λ(s, u) ∈ S↓ × U↓.
{
k(ϕ(s)) u = in∀(ϕ)
⊥ otherwise

and k′0 is identical, with k′ exchanged for k. It now remains to
prove (k0, k

′
0) ∈ [[∀α.τ0]]KΞ′(ν

′)(∆′). For that purpose we pick
[Ξ0 |ν0 |∆0] w [Ξ′ |ν′ |∆′] and we pick (s0, s

′
0) ∈ [[∆0]]SΞ0(ν0)

and (u0, u
′
0) ∈ [[∀α.τ0]]Ξ0(ν0)(∆0). From the latter we get

ϕ0, ϕ
′
0 ∈ S (S ⊗ U such that u0 = in∀(ϕ0), u′0 = in∀(ϕ

′
0)

and (ϕ,ϕ′) ∈ [[τ0]]TΞ0,α(ν0, νΞ0(τ1))(∆0), now it remains to show
that we have

(s0, s
′
0) ∈ [[∆0]]SΞ0,α(ν0, νΞ0(τ1))

and that we have

(k, k′) ∈ [[τ0]]KΞ0,α(ν0, νΞ0(τ1))(∆0).

The first is an easy consequence of the Monotonicity lemma, for
the latter we use the Degenerate Substitution Lemma to conclude

[[τ0]]KΞ0,α(ν0, νΞ0(τ1))(∆0) = [[τ0[τ1/α]]]KΞ0,α(ν0, νΞ0(τ1))(∆0),

this suffices as [Ξ0, α|(ν0, νΞ0(σ))|∆0] w [Ξ′ |ν′ |∆′].

Corollary 18. Semantically related expressions in context are con-
textually equivalent: if Ξ | ∅ | Γ ` e1 ∼ e2 : τ then Ξ | ∅ | Γ `
e1 =ctx e2 : τ.

Proof. This follows in the standard manner from the proof of the
fundamental theorem (Theorem 17) above together with the ade-
quacy and soundness results from the previous section.

The theorem above, and its corollary, forms the basis for simple
reasoning about parametricity using our model. A few examples are
shown in Section 5.

4.1 Alternative Approach
In this subsection we briefly discuss and sketch an alternative ap-
proach to the second issue: the interpretation of open types depend-
ing on worlds as mentioned in the introduction of Section 4.

Here, we interpret quantified types as intersections over seman-
tic closed types, the latter are members of UARel(U) parameter-
ized over interpretations of types with fewer type variables. This
somewhat syntactic choice goes nicely with syntactic worlds con-
taining free type variables. The alternative approach is to have se-
mantic worlds, mapping locations to semantic types and letting se-
mantic types be world-indexed members of UARel(U). This in-
troduces a mutual dependency between worlds and semantic types;
in effect, we ask for solutions to the mutually recursive equations
(recall that locations are natural numbers):

ST = W → UARel(U)

W = N fin→ ST

It turns out that one can solve equations similar to the above in
suitable categories of complete ultra-metric spaces. Our solution
relies on well-known metrics associated with partial equivalence
relations [1, 4]. The alternative approach gives a more semantic
understanding of open types, in particular one can interpret quan-
tified types ∀α.τ by the more standard

⋂
ν∈ST[[τ]](ν). But it does

come at the price of using (yet) more mathematical machinery. The
present approach is a fairly (if not entirely) simple alternative. And
while the two approaches yield different models, it is not immediate
that either is superior in terms of proving more equivalences.

For lack of space we cannot present the details of the alternative
approach here; that will be done in a forthcoming paper. With this
approach we will also be able to make a more detailed comparison
to the step-indexed approach to recursive types and references [2,
6]; indeed, approximations to equations similar to those shown
above play a key role in recent step-indexed models [6].

5. Examples of Parametricity Reasoning
As explained in the Introduction, this paper focuses on the key
technical challenges involved in defining an adequate, parametric
model for a language with recursive types and general references.
The main contributions of the paper are our solutions to these chal-
lenges, including the concepts of semantic locations and seman-
tic closed types; extending the current setup to allow for more ad-
vanced applications involving local state [11] is deferred to future
work (see Section 6).

As illustrated by the first example below, one can use the para-
metricity results in this paper to prove equivalences between dif-
ferent functional implementations of abstract data types in an im-
perative language. The proof essentially proceeds in the standard
manner — but the point now is that the clients of such abstract data
types may be implemented using all the features of the language,
including general references, recursive types, etc. The remaining
three examples below illustrate that one can prove simple equiva-
lences involving imperative abstract data types and local state.

In the examples we use the standard encoding of n-ary products
by means of binary products. And we refer to the type unit by 1.

Example 19. In the first example, we show that a client of a mod-
ule that implements a counter cannot distinguish between two dif-
ferent, but related implementations of the module. The two imple-
mentations are very simple functional implementations, but we em-
phasize that the reasoning works for any client of the right type; the
client may be implemented using all the features of the language.

The type of counter-module clients is

τcl = ∀α.((1→ α)× (α→ α)× (α→ int)→ int) .

Intuitively, a client c of a counter module takes an unknown type α
(the concrete type used internally by the module to represent coun-
ters) and three functions (the first for creating a new counter, the
second for incrementing a counter, and the third for getting the
value of a counter) and returns a result of type int.

Let the two counter implementations be given by I1 and I2:

I1 = (λx : 1. 0, λx : int. x+ 1, λx : int. x)
I2 = (λx : 1. 0, λx : int. x− 1, λx : int. − x).

We can now use Corollary 18 to prove that

∅ | ∅ | c : τcl ` c[int]I1 =ctx c[int]I2 : int .

The proof of relatedness of c[int]I1 and c[int]I2 proceeds as
expected, except that it is in continuation-passing style, and, of
course, involves the definition of a relation relating each integer
n to−n. Formally, one uses the semantic closed type ν0 ∈ SCTΞ

defined by

ν0(ϕ) = {(⊥,⊥)} ∪ {(inint(n), inint(−n)) | n ∈ N} .

Example 20. Consider now the following type of clients of an
imperative counter module:

τ ′cl = ∀α.((1→ α)× (α→ 1)× (α→ int)→ int) .

As in the previous example, the intuition is that a client takes an
unknown type α and three functions implementing operations on
counters. The difference from the previous example is that the
second of the three functions has the type α → 1, reflecting that
the ’increment’ operation modifies its input and does not need to
return a result.

Let the two imperative implementations be given by I ′1 and I ′2:

I ′1 = (λx : 1. ref(0),
λx : int ref. x := !x+ 1,
λx : int ref. !x)

I ′2 = (λx : 1. ref(0),
λx : int ref. x := !x− 1,
λx : int ref. − (!x))

We can now use Corollary 18 to prove that

∅ | ∅ | c : τ ′cl ` c[int ref]I ′1 =ctx c[int ref]I ′2 : int .

To show semantic relatedness, we let ∆ ∈ WorldΞ and ν ∈
SCTΞ and (c1, c2) ∈ [[τ ′cl]]Ξ(ν)(∆) for some arbitrary Ξ. We now
exploit the fact that ’future worlds’ may contain arbitrary new type
variables. Pick α0 /∈ Ξ; it suffices to show that

([[I ′1]], [[I ′2]]) ∈
[[(1→ α)× (α→ 1)× (α→ int)]]Ξ,α0,α(ν, ν0, ν)(∅) ,

where ν0 is defined as in the previous example, and where ν =
ν(Ξ,α0)(α0 ref) is the semantic closed type corresponding to the
syntactic type α0 ref.

From here, the most interesting part of the proof is the re-
latedness of the two implementations of the operation for cre-
ating a new counter. The core of the proof obligation is the
following: given [Ξ′ |ν′ |∆′] w [(Ξ, α0, α)|(ν, ν0, ν)|∅], states
(s, s′) ∈ [[∆′]]SΞ′(ν

′), and continuations (k, k′) ∈ [[α]]KΞ′(ν
′)(∆′),

we must show that k [[ref 0]]s∅ and k′ [[ref 0]]s
′

∅ are both ⊥ or
contain the same integer component. But the characterization
of [[α]]KΞ′(ν

′)(∆′) in Figure 8 involves a quantification over all
∆′′ w ∆′: we can exploit that quantification by choosing ∆′′ =
∆′[l 7→ α0] where l is the smallest number not in the domain
of ∆′. The result easily follows.

Example 21. As in Crary and Harper [13], we can introduce the
usual encoding of existential types by means of universal types:

∃α.τ = ∀β.(∀α. τ → β)→ β .

We then revisit the previous example: the type

τm = ∃α. (1→ α)× (α→ 1)× (α→ int)

can be used to model imperative counter modules.
Consider the following two module implementations, i.e.,

closed terms of type τm:

J1 = Λβ.λc. c[int ref]I ′1 and J2 = Λβ.λc. c[int ref]I ′2

(where I ′1 and I ′2 are defined in the previous example). We can use
Corollary 18 to prove that J1 and J2 are contextually equivalent.
The reasoning is essentially as in the previous example, except that
the ’answer type’ is now a universally quantified type variable β
instead of the fixed type int.

Example 22. One can alternatively implement an imperative
counter module by means of a local reference and two closures.
Consider the type τlr = 1→ ((1→ 1)× (1→ int)) and the two
counter implementations

J =λx : 1. let r = ref 0 in (λy : 1. r := !r + 1, λy : 1. !r)
J ′=λx : 1. let r = ref 0

in (λy : 1. r := !r − 1, λy : 1. − (!r))

where the let . . . in construct is syntactic sugar for a β-redex in
the usual way. Both J and J ′ are closed terms of type τlr, and we
can use Corollary 18 to show that the two terms are contextually
equivalent. As in Example 20, the proof involves introducing a new
type variable α0, interpreted by ν0.

6. Conclusion and Future Work
We have given a first relationally parametric possible world seman-
tics for a call-by-value higher-order language with impredicative
polymorphism, general references, and recursive types. In particu-
lar, we have discovered a technical challenge in establishing the ex-
istence of the requisite relational interpretations of types and solved
the problem of existence by a novel model of references using a
semantic notion of location that permits a useful approximation re-
lation. We are convinced that the technical challenge is a real one
and think that the reason it has not been observed before when mod-
elling references with domains is that it only shows up when one
insists on modeling open types (as needed for parametricity).

As already mentioned, the logical relations suffice for proving
parametricity results for a language with recursive types and gen-
eral references. They are, however, not tailored for maximal ’proof
strength’, rather the focus is on the underlying semantic challenges.
In particular, reasoning about local state is not in general possible,
we may, e.g., not prove ’garbage collection’ of unused references.
We plan to extend and combine the present work with earlier work
on reasoning about local state [11] — this allows for formal proofs
that two implementations of an abstract type using local state in
different ways are related. Indeed in [12], the first author and Nina
Bohr extended the techniques in [11] to a language with impredica-
tive polymorphism and references to closed types (closed to avoid
the technical challenges addressed in this paper), and were, e.g.,
able to prove two implementations of an abstract stack type related,
one implementation using an ML-style list and the other using a
linked list implementation for the stack [12, Sec. 5].

Finally, recent work [3] by Ahmed, Dreyer and Rossberg came
to our attention after writing this paper. They too provide a relation-
ally parametric possible world semantics of a similar language, but
using a step-indexed approach rather than a domain theoretic. Also

their worlds are more flexible and hence applicable to more exam-
ples. Indeed, their work extend ideas from the aforementioned work
[11] but does so in a step-indexed fashion.

References
[1] M. Abadi and G. Plotkin. A per model of polymorphism and

recursive types. In Proceedings of LICS, pages 355–365, 1990.

[2] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In Proc. of ESOP, pages 69–83, 2006.

[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent
representation independence. To appear at POPL 2009.

[4] R. M. Amadio. Recursion over realizability structures. Information
and Computation, 91(1):55–85, 1991.

[5] A. W. Appel and D. McAllester. An indexed model of recursive types
for foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

[6] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. In Proc. of
POPL, pages 109–122, 2007.

[7] N. Benton and B. Leperchey. Relational reasoning in a nominal
semantics for storage. In Proc. of TLCA, volume 3461 of LNCS,
2005.

[8] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties
of Lily, a polymorphic linear lambda calculus with recursion. In
Proc. of HOOTS, volume 41 of ENTCS, 2000.

[9] L. Birkedal and R. E. Møgelberg. Categorical models of
Abadi-Plotkin’s logic for parametricity. Mathematical Structures in
Computer Science, 15(4):709–772, 2005.

[10] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Linear Abadi &
Plotkin logic. Logical Methods in Computer Science, 2(5:1):1–33,
2006.

[11] N. Bohr and L. Birkedal. Relational reasoning for recursive types and
references. In Proc. of APLAS, pages 79–96, 2006.

[12] N. Bohr and L. Birkedal. Relational parametricity for recursive types
and references of closed types. Technical report, IT University of
Copenhagen, 2007. A Chapter in Nina Bohr’s Ph.D. dissertation
2007.

[13] K. Crary and R. Harper. Syntactic logical relations for polymorphic
and recursive types. ENTCS, 172:259–299, 2007.

[14] A. Filinski. On the relations between monadic semantics. Theoretical
Computer Science, 375(1–3):41–75, 2007.

[15] M. Hasegawa. Relational parametricity and control. Logical Methods
in Computer Science, 2(3):1–22, 2006.

[16] P. Johann. On proving the correctness of program transformations
based on free theorems for higher-order polymorphic calculi.
Mathematical Structures in Computer Science, 10(2):201–229, 2005.

[17] P. Johann and J. Voigtlaender. The impact of seq on free
theorems-based program transformations. Fundamenta Informaticae,
69(1–2):63–102, 2006.

[18] V. Koutavas and M. Wand. Bisimulations for untyped imperative
objects. In Proc. of ESOP, pages 146–161, 2006.

[19] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proc. of POPL, pages 141–152,
2006.

[20] S. B. Lassen and P. B. Levy. Normal form bisimulation for
parametric polymorphism. To appear at LICS 2008.

[21] S. B. Lassen and P. B. Levy. Typed normal form bisimulation. In
Proc. of CSL, volume 4646 of LNCS, pages 283–297, 2007.

[22] P. Levy. Possible world semantics for general storage in
call-by-value. In Proc. of CSL, volume 2471 of LNCS, pages
232–246, 2002.

[23] P.-A. Melliès and J. Vouillon. Recursive polymorphic types and
parametricity in an operational framework. In Proc. of LICS, pages

82–91, 2005.

[24] R. Møgelberg. Interpreting polymorphic FPC into domain theoretic
models of parametric polymorphism. In Proc. of ICALP, pages
372–383, 2006.

[25] R. Møgelberg and A. Simpson. Relational parametricity for
computational effects. In Proc. of LICS, pages 346–355, 2007.

[26] R. Møgelberg and A. Simpson. Relational parametricity for control
considered as a computational effect. In Proc. of MFPS, ENTCS,
pages 295–312, 2007.

[27] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[28] A. M. Pitts. Relational properties of domains. Information and
Computation, 127:66–90, 1996.

[29] A. M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in computer Science, 10:321–359, 2000.

[30] A. M. Pitts. Advanced Topics in Types and Programming Languages,
chapter Typed Operational Reasoning. The MIT Press, 2005.

[31] A. M. Pitts and I. Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s new? In
Proceedings of MFPS, volume 711 of LNCS, pages 122–141, 1993.

[32] G. Plotkin. Second order type theory and recursion. Notes for a talk
at the Scott Fest, Feb. 1993.

[33] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In
Proc. of TLCA, volume 664 of LNCS, pages 361–375, 1993.

[34] J. Reynolds. Types, abstraction, and parametric polymorphism.
Information Processing, 83:513–523, 1983.

[35] K. Støvring and S. B. Lassen. A complete, co-inductive syntactic
theory of sequential control and state. In Proc. of POPL, pages
161–172, 2007.

[36] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. In Proc. of POPL, pages 63–74, 2005.

[37] P. Wadler. Theorems for free! In 4th Symposium on Functional
Programming Languages and Computer Architecture, pages
347–359, 1989.

