
http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Math. Struct. in Comp. Science (2010), vol. 20, pp. 655–703. c© Cambridge University Press 2010

doi:10.1017/S0960129510000162

Realisability semantics of parametric polymorphism,

general references and recursive types

LARS BIRKEDAL, KRIST IAN STØVRING

and JACOB THAMSBORG

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Email: {birkedal;kss;thamsborg}@itu.dk

Received 12 December 2009; revised 9 May 2010

We present a realisability model for a call-by-value, higher-order programming language

with parametric polymorphism, general first-class references, and recursive types. The main

novelty is a relational interpretation of open types that include general reference types. The

interpretation uses a new approach to modelling references.

The universe of semantic types consists of world-indexed families of logical relations over a

universal predomain. In order to model general reference types, worlds are finite maps from

locations to semantic types: this introduces a circularity between semantic types and worlds

that precludes a direct definition of either. Our solution is to solve a recursive equation in an

appropriate category of metric spaces. In effect, types are interpreted using a Kripke logical

relation over a recursively defined set of worlds.

We illustrate how the model can be used to prove simple equivalences between different

implementations of imperative abstract data types.

1. Introduction

In this paper we develop a semantic model of a call-by-value programming language with

impredicative and parametric polymorphism, general first-class references, and recursive

types. Our motivations for conducting this study include:

— Extending the approach to reasoning about abstract data types via relational para-

metricity from pure languages to more realistic languages with effects, in this case

general references. We have already discussed this point of view extensively in Birkedal

et al. (2009).

— Investigating what semantic structures are needed in general models for effects.

Indeed, we see the present work as a pilot study for research into general type theories

and models of effects (see, for example, Levy (2006) and Plotkin and Power (2004)), in

which we identify key ingredients needed for semantic modelling of general first-class

references.

— Paving the way for developing models of separation logic for ML-like languages with

reference types. Earlier such models of separation logic (Petersen et al. 2008) only

treated so-called strong references, where the type on the contents of a reference

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 656

cell can vary: therefore proof rules cannot take advantage of the strong invariants

provided by ML-style reference types.

Overview of the conceptual development of the paper

The development is centred around three recursively defined structures, which are defined

in three steps. In slogan form, there is one recursively defined structure for each of the

type constructors ∀, ref , and μ alluded to in the title.

Step 1: Since the language involves impredicative polymorphism, the semantic model

is based on a realisability interpretation (Amadio 1991) over a certain recursively

defined predomain V . Using this predomain, we can give a denotational semantics

of an untyped version of the language. This part is mostly standard, except for the

fact that we model locations as pairs (l, n), with l a natural number corresponding

to a standard location and n ∈ � ∪ {∞} indicating the ‘approximation stage’ of the

location (Birkedal et al. 2009). These pairs, called semantic locations, are needed for

modelling reference types in step three. Intuitively, the problem with the more standard

approach of modelling locations as natural numbers is that such ‘flat’ locations contain

no approximation information that can be used to define relations by induction.

Step 2: To account for the dynamic allocation of typed reference cells, we follow earlier

work on modelling simple integer references (Benton and Leperchey 2005) and use

a Kripke-style possible worlds model. Here, however, the set of worlds needs to

be recursively defined since we treat general references. Semantically, a world maps

locations to semantic types, which, following the general realisability idea, are certain

world-indexed families of relations on V : this introduces a circularity between semantic

types and worlds that precludes a direct definition of either. This means we need to

solve recursive equations of approximately the form

W = �0 ⇀fin T
T = W → CURel (V)

even in order to define the space in which types will be modelled. (Here CURel (V) is

a set of ‘good’ relations on V .) We formally define the recursive equations in certain

ultrametric spaces and show how to solve them using known results from metric-space

based semantics. The metric we use on relations on V is well known from work on

interpreting recursive types and impredicative polymorphism (Abadi and Plotkin 1990;

Amadio 1991; Amadio and Curien 1998; Cardone 1989; MacQueen et al. 1986); here

we extend its use to reference types (combined with these two other features).

Step 3: Having defined the space in which types should be modelled, we can now define the

actual semantics of types. For recursive types, this also involves a recursive definition.

Since the space T of semantic types is a metric space, we can employ Banach’s

fixed-point theorem to find a solution as the fixed point of a contractive operator

on T.† This involves interpreting the various type constructors of the language as

† Note that the fixed point could also be found using the technique of Pitts (1996); the proof techniques are

very similar because of the particular way the requisite metrics are defined. In this paper we do in any

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 657

non-expansive operators. Doing this for most type constructors is straightforward, but

for the reference-type constructor it is not. This is why we introduce the semantic

locations mentioned above: using these, we can define a semantic reference-type

operator (and show that it is non-expansive). In fact, we give an abstract proof that

the probably most natural interpretation of reference types is, under certain assump-

tions, impossible. Therefore, semantic locations (or some other construct) are indeed

necessary.

Finally, having defined semantics of types using a family of world-indexed logical

relations, we define the typed meaning of terms by proving the fundamental theorem of

logical relations with respect to the untyped semantics of terms.

Limitations

The model we construct does not validate standard equivalences involving local state;

indeed, it can only be used to equate computations that allocate references that are

essentially ‘in lockstep’. More precisely, the model can only relate two program states if they

contain the same number of locations. Furthermore, a certain technical requirement on the

relations we consider (‘uniformity’) seems to be too restrictive. In recent work (Birkedal

et al. 2010b) we have shown that both these problems can be overcome: one can use the

techniques presented here to construct a model that validates sophisticated equivalences

in the style of Ahmed et al. (2009). One key idea is to weaken the model such that the

relations constructed can be thought of as inequalities rather than equalities; then one

can prove results about contextual approximation rather than contextual equivalence.

However, the model in Birkedal et al. (2010b) is rather more complicated than the one

we present here, where our aim is just to present the fundamental ideas behind Kripke

logical relations over recursively defined sets of worlds.

Overview of the rest of the article

The rest of the paper is organised as follows. In Section 2 we sketch the language we will

be considering. In Section 3 we present the untyped semantics – corresponding to step one

in the outline above. In Section 4 we present the typed semantics – corresponding to the

last two steps. In Section 5 we give an abstract proof that a certain simpler interpretation

of reference types is impossible. In Section 6 we present a few examples of reasoning

using the model. Finally, we discuss some related work in Section 7.

2. Language

We consider a standard call-by-value language with universal types, iso-recursive types,

ML-style reference types, and a ground type of integers. The language is sketched in

case need the metric-space formulation, but not the extra separation of positive and negative arguments

in recursive definitions of relations, so we define the meaning of recursive types via Banach’s fixed-point

theorem (Amadio 1991; Amadio and Curien 1998).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 658

Figure 1. Terms are not intrinsically typed; this allows us to give a denotational semantics

of untyped terms. The typing rules are standard (Pierce 2002). In Figure 1, Ξ and Γ range

over contexts of type variables and term variables, respectively.

The constructs that involve references have the following informal meaning:

— The term ref t allocates a new reference cell initialised with the result of evaluating t.
— The term !t looks up t in the current store (and gives an error if t evaluates to

something that is not a location).
— The term t1 := t2 assigns the value of t2 to t1 (provided t1 evaluates to a location).

2.1. Operational semantics

In this section we give a sketch of an operational semantics of the untyped term language

above. For this purpose, we temporarily add syntactic locations to the language:

t ::= · · · | l (l ∈ ω).

The set of syntactic values is then given by

w ::= x | m | l | () | (w1, w2) | inlw | inr w | foldw | Λα.t | λx.t.

A term or syntactic value is closed if it contains no free variables and no free type

variables.

A syntactic store is a finite map from locations to closed syntactic values. Let σ range

over syntactic stores. A configuration is a pair (σ, t) consisting of a syntactic store σ and

a closed term t.

The operational semantics is given by two judgements on configurations:

(1) (σ, t) ⇓ (σ′, w) means that evaluation of t together with the store σ terminates with a

value w and a possibly modified store σ′.
(2) (σ, t) ⇓ error means that evaluation of t together with the store σ results in an error,

either due to a memory fault or, for example, an attempt to apply an integer constant

to an argument.

Figure 2 shows some selected rules for the two judgements. Notice that in the last

rule, the evaluation of allocation is deterministic: the newly allocated location is always

the least one not already in the store. In Birkedal et al. (2009), we treated a non-

deterministic allocation rule; here we stick to deterministic allocation in order to simplify

the relationship with the denotational semantics in the next section.

A configuration (σ, t) converges, written (σ, t) ⇓, if there exist some σ′ and w such

that (σ, t) ⇓ (σ′, w) holds. Two terms t and t′ are contextually equivalent if for every

(many-holed) term context C such that C[t] and C[t′] are closed terms, we have

(�, C[t]) ⇓ ⇐⇒ (�, C[t′]) ⇓
(�, C[t]) ⇓ error ⇐⇒ (�, C[t′]) ⇓ error.

3. Untyped semantics

We now give a denotational semantics for the untyped term language of the previous

section. As is usual for models of untyped languages, the semantics is given by means

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 659

Types: τ ::= int | 1 | τ1 × τ2 | 0 | τ1 + τ2 | μα.τ | ∀α.τ | α | τ1 → τ2 | ref τ

Terms: t ::= x | m | ifz t0 t1 t2 | t1 + t2 | t1 − t2 | () | (t1, t2) | fst t | snd t

| void t | inl t | inr t | case t0 x1.t1 x2.t2 | fold t | unfold t

| Λα. t | t [τ] | λx. t | t1 t2 | fix f.λx.t | ref t | ! t | t1 := t2

Typing rules:

Ξ | Γ � x : τ (Ξ � Γ, Γ(x) = τ) Ξ | Γ � m : int (Ξ � Γ)

Ξ | Γ � t0 : int Ξ | Γ � t1 : τ Ξ | Γ � t2 : τ

Ξ | Γ � ifz t0 t1 t2 : τ

Ξ | Γ � t1 : int Ξ | Γ � t2 : int

Ξ | Γ � t1 ± t2 : int
Ξ | Γ � () : 1 (Ξ � Γ)

Ξ | Γ � t1 : τ1 Ξ | Γ � t2 : τ2

Ξ | Γ � (t1, t2) : τ1 × τ2

Ξ | Γ � t : 0

Ξ | Γ � void t : τ
(Ξ � τ)

Ξ | Γ � t : τ1 × τ2

Ξ | Γ � fst t : τ1

Ξ | Γ � t : τ1 × τ2

Ξ | Γ � snd t : τ2

Ξ | Γ � t : τ1

Ξ | Γ � inl t : τ1 + τ2

(Ξ � τ2)
Ξ | Γ � t : τ2

Ξ | Γ � inr t : τ1 + τ2

(Ξ � τ1)

Ξ | Γ � t0 : τ1 + τ2 Ξ | Γ, xi : τi � ti : τ (i = 1, 2)

Ξ | Γ � case t0 x1.t1 x2.t2 : τ

Ξ | Γ � t : τ[μα.τ/α]

Ξ | Γ � fold t : μα.τ

Ξ | Γ � t : μα.τ

Ξ | Γ � unfold t : τ[μα.τ/α]

Ξ, α | Γ � t : τ

Ξ | Γ � Λα. t : ∀α.τ
(Ξ � Γ)

Ξ | Γ � t : ∀α.τ0

Ξ | Γ � t [τ1] : τ0[τ1/α]
(Ξ � τ1)

Ξ | Γ, x : τ0 � t : τ1

Ξ | Γ � λx. t : τ0 → τ1

Ξ | Γ � t1 : τ → τ′ Ξ | Γ � t2 : τ

Ξ | Γ � t1 t2 : τ′

Ξ | Γ, f : τ0 → τ1, x : τ0 � t : τ1

Ξ | Γ � fix f.λx.t : τ0 → τ1

Ξ | Γ � t : τ

Ξ | Γ � ref t : ref τ

Ξ | Γ � t : ref τ

Ξ | Γ � ! t : τ

Ξ | Γ � t1 : ref τ Ξ | Γ � t2 : τ

Ξ | Γ � t1 := t2 : 1

Fig. 1. Programming language

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 660

(σ, t1) ⇓ (σ′, λx. t) (σ′, t2) ⇓ (σ′′, w2) (σ′′, t[w2/x]) ⇓ (σ′′′, w)

(σ, t1 t2) ⇓ (σ′′′, w)

(σ, t1) ⇓ (σ′, w) w not of the form λx. t

(σ, t1 t2) ⇓ error

(σ, t) ⇓ (σ′, l) l ∈ dom(σ′)

(σ, ! t) ⇓ (σ′, σ′(l))

(σ, t) ⇓ (σ′, l) l /∈ dom(σ′)

(σ, ! t) ⇓ error

(σ, t1) ⇓ (σ′, l) (σ′, t2) ⇓ (σ′′, w) l ∈ dom(σ′′)

(σ, t1 := t2) ⇓ (σ′′[l
→ w], ())

(σ, t) ⇓ (σ′, w) l = min{l ∈ ω | l /∈ dom(σ′)}
(σ, ref t) ⇓ (σ′ � [l
→ w], l)

Fig. 2. Operational semantics (selected rules)

of a ‘universal’ complete partial order (cpo) in which one can inject integers, pairs,

functions, and so on. This universal cpo is obtained by solving a recursive domain

equation.

The only non-standard aspect of the semantics is the treatment of store locations:

locations are modelled as elements of the cpo Loc = �0 × ω where ω is the ‘vertical

natural numbers’ cpo 1 � 2 � · · · � n � · · · � ∞. (For notational reasons it is convenient

to call the least element 1 rather than 0.) The intuitive idea is that locations can be

approximated: the element (l,∞) ∈ Loc is the ‘ideal’ location numbered l, while the

elements of the form (l, n) for n < ∞ are its approximations. It is essential for the

construction of the typed semantics in the next section that these ‘approximate locations’

(l, n) are included – see the remark before Proposition 3.2 below.

3.1. Domain-theoretic preliminaries

We assume that the reader is familiar with basic denotational semantics as presented, for

example, in Winskel (1993), and with semantics in monadic style (Moggi 1991). Methods

for solving recursive domain equations are used in a few of the proofs, but nowhere else

in the paper. Familiarity with methods for proving the existence of invariant relations

(Pitts 1996) should be useful, but is not assumed.

Let Cpo be the category of ω-cpos and ω-continuous functions. We use the standard

notation for products, sums and function spaces in Cpo. Injections into binary sums are

written ι1 and ι2. For any set M and any cpo A, the cpo M ⇀fin A has maps from finite

subsets of M to A as elements, and is ordered as follows: f � f′ if and only if f and f′

has the same domain M0 and f(m) � f′(m) for all m ∈ M0.

A complete pointed partial order (cppo) is a cpo containing a least element. We use

the notation A⊥ = {�a� | a ∈ A} ∪ {⊥} for the cppo obtained by ‘lifting’ a cpo A. The

least fixed-point of a continuous function f : D → D from a cppo D to itself is written

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 661

fix f. The cppo of strict, continuous functions from a cpo A to a cppo D is written

A � D.

We shall also need to work with partial, continuous functions, which will be represented

using the Kleisli category for the lifting monad (−)⊥. Let pCpo be the Kleisli category

for the lifting monad: objects are cpos, while morphisms from A to B are continuous

functions from A to B⊥. The identity maps in pCpo are written id , and are given by

lifting: id = λa.�a�. Composition in pCpo is written ◦:

f ◦ g = λa.

{
f b if g a = �b�
⊥ otherwise.

The semantics below is presented in monadic style (Moggi 1991), that is, structured

using a monad that models the effects of the language. More specifically, we use a

continuation-and-state monad (Benton and Leperchey 2005). It is most convenient to

define this monad by means of a Kleisli triple: for every cpo S and every cppo Ans , the

continuation-and-state monad TS,Ans : Cpo → Cpo over S and Ans is given by

TS,Ans A = (A → S → Ans) → S → Ans

ηA a = λk.λs. k a s

c
A,B f = λk.λs. c (λa.λs′.f a k s′) s

where ηA : A → TS,AnsA and
A,B : TS,AnsA → (A → TS,AnsB) → TS,AnsB. In the following

we will omit the type subscripts on η and
. It is easy to verify that (TS,Ans , η,
) satisfies

the three monad laws:

η a
 f = f a (3.1)

c
 η = c (3.2)

(c
 f)
 g = c
 (λa. f a
 g) . (3.3)

Continuations are included for a technical reason, namely to ensure chain-completeness

of the relations that will be used to model computations. (This will be made precise

in Lemma 4.27 below.) These relations will be defined by ‘biorthogonality’ (Benton

and Hur 2009; Pitts 1998). Informally, computations are related if they map related

continuations and related states to related answers, while continuations are in turn related

if they map related values and related states to related answers. This approach ensures

closure under limits of chains – see also Abadi (2000).

3.2. Uniform cpos

The standard methods for solving recursive domain equations give solutions that satisfy

certain induction principles (Smyth and Plotkin 1982; Pitts 1996). One aspect of these

induction principles is that, loosely speaking, one obtains as a solution not only a cpo

A, but also a family of ‘projection’ functions �n on A (one function for each n ∈ ω)

such that each element a of A is the limit of its projections �0(a), �1(a), and so on.

These functions therefore provide a handle for proving properties about A by induction

on n.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 662

Definition 3.1.

(1) A uniform cpo (A, (�n)n∈ω) is a cpo A together with a family (�n)n∈ω of continuous

functions from A to A⊥ satisfying

�0 � �1 � · · · � �n � . . . (3.4)⊔
n∈ω

�n = idA = λa.�a� (3.5)

�m ◦ �n = �n ◦ �m = �min(m,n) (3.6)

�0 = λe.⊥ . (3.7)

(2) A uniform cppo (D, (�n)n∈ω) is a cppo D together with a family (�n)n∈ω of strict,

continuous functions from D to itself satisfying

�0 � �1 � · · · � �n � . . . (3.8)⊔
n∈ω

�n = idD (3.9)

�m ◦ �n = �n ◦ �m = �min(m,n) (3.10)

�0 = λe.⊥ . (3.11)

Remark. Uniform cppos are exactly the algebras for a certain monad on the category of

cppos and strict, continuous functions. The monad is given by a natural monoid structure

on ω:

TuD = ω ⊗ D

ηue = (∞, e)

μu(m, (n, e)) = (min(m, n), e).

Our locations are modelled using a free algebra for this monad:

Loc⊥ ∼= ω ⊗ (�0)⊥.

Uniform cppos were called rank-ordered cpos in Baier and Majster-Cederbaum (1997).

3.3. A universal uniform cpo

We are now ready to construct a uniform cpo (V , (πn)n∈ω) such that V is a suitable

‘universal’ cpo. The exact requirements on the functions πn are written down rather

verbosely in the proposition below. This is not just convenient for proofs of properties

about V : the functions πn are also used in the definition of the untyped semantics.

Intuitively, if, for example, one looks up the approximate location (l, n + 1) in a store s,

one only obtains the approximate element πn(s(l)) as a result.

More abstractly, in order to construct the typed interpretation in the next section, we

need the property that if one looks up the n+1-th approximation of location l in a store s,

one only obtains πn(s(l)) as a result. This is one reason for introducing approximated

locations: the property would not hold if locations were modelled as standard integers.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 663

Proposition 3.2. There exists a uniform cpo (V , (πn)n∈ω) satisfying the following two

properties:

(1) The following isomorphism holds in Cpo:

V ∼= � + Loc + 1 + (V × V) + (V + V) + V + TS,AnsV + (V → TS,AnsV) (3.12)

where

TS,AnsV = (V → S → Ans) → S → Ans

S = �0 ⇀fin V

Ans = (� + Err)⊥

and

Loc = �0 × ω

Err = 1 .

(2) We use the abbreviations TV = TS,AnsV and K = V → S → Ans , and define the

following injection functions corresponding to the summands on the right-hand side

of the isomorphism (3.12):

in� : � → V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV) → V

in1 : 1 → V inμ : V → V

in× : V × V → V in∀ : TV → V

With this notation, the functions πn : V → V⊥ satisfy (and are determined by) the

equations shown in Figure 3.

These two properties determine V uniquely up to isomorphism in Cpo.

Proof (sketch). We solve the predomain equation (3.12) as usual (Smyth and Plotkin

1982). This gives an almost correct uniform cpo (V , (�n)n∈ω), the only problem being that

the values of the �n on locations are wrong:

�n+1(inLoc p) = inLoc p.

Now define the functions πn (and πT
n , and so on) as in the proposition (by induction

on n). All the requirements in the definition of a uniform cpo except for the fact that

�nπn = id are easy to show. To show that �nπn = id, we first show by induction on m that

πn ◦ �m = �m ◦ πn for all n, and that

(�nπn) ◦ �m = �m .

The conclusion then follows from the fact that �m�m = id since (V , (�)n∈ω) is a uniform

cpo.

As for the choice of answer type Ans in the continuation-and-state monad, we include

an explicit ‘error’ answer in order to show later that well-typed programs do not give

errors (Corollary 4.37).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 664

π0 = λv.⊥ (3.13)

πn+1(in�(m)) = �in�(m)� (3.14)

πn+1(in1(∗)) = �in1(∗)� (3.15)

πn+1(inLoc(l,∞)) = �inLoc(l, n + 1)� (3.16)

πn+1(inLoc(l, m)) = �inLoc(l,min(n + 1, m))� (3.17)

πn+1(in×(v1, v2)) =

{
�in×(v′

1, v
′
2)� if πn v1 = �v′

1� and πn v2 = �v′
2�

⊥ otherwise
(3.18)

πn+1(in+(ιi v)) =

{
�in+(ιi v

′)� if πn v = �v′�
⊥ otherwise

(i = 1, 2) (3.19)

πn+1(inμ v) =

{
�inμ v

′� if πnv = �v′�
⊥ otherwise

(3.20)

πn+1(in∀ c) = �in∀(π
T
n+1 c)� (3.21)

πn+1(in→ f) =

⌊
in→

(
λv.

{
πT
n+1 (f v′) if πn v = �v′�

⊥ otherwise

)⌋
(3.22)

Here the functions πS
n : S → S⊥ and πK

n : K → K and πT
n : TV → TV are defined

as follows:

πS
0 = λs.⊥ πK

0 = λk.⊥ πT
0 = λc.⊥ (3.23)

πS
n+1(s) =

{
�s′� if πn ◦ s = λl.�s′(l)�
⊥ otherwise

(3.24)

πK
n+1(k) = λv.λs.

{
k v′ s′ if πn v = �v′� and πS

n+1 s = �s′�
⊥ otherwise

(3.25)

πT
n+1(c) = λk.λs.

{
c (πK

n+1 k) s
′ if πS

n+1 s = s′

⊥ otherwise .
(3.26)

Fig. 3. Characterisation of the projection functions πn : V → V⊥

From now on, we let V and (πn)n∈ω be as in the proposition above. We will also

use the same abbreviations, notation for injections, and so on, as we introduced in the

proposition: in particular, TV = (V → S → Ans) → S → Ans . Additionally, we use the

abbreviations λl = inLoc(l,∞) and λnl = inLoc(l, n); recall that we have n � 1 here. Let

errorAns ∈ Ans be the ‘error answer’ and let error ∈ TV be the ‘error computation’:

errorAns = �ι2∗�
error = λk.λs. errorAns .

We shall need the following proposition later.

Proposition 3.3.

(1) (S, (πS
n)n∈ω) is a uniform cpo.

(2) (K, (πK
n)n∈ω) and (TV , (πT

n)n∈ω) are uniform cppos.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 665

alloc : V → TV , lookup : V → TV , assign : V → V → TV .

alloc v = λk λs. k (λfree(s)) (s[free(s)
→ v])

(where free(s) = min{n ∈ �0 | n /∈ dom(s)})

lookup v = λk λs.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k s(l) s if v = λl and l ∈ dom(s)

k v′ s if v = λn+1
l , l ∈ dom(s),

and πn(s(l)) = �v′�
⊥Ans if v = λn+1

l , l ∈ dom(s),

and πn(s(l)) = ⊥
errorAns otherwise

assign v1 v2 = λk λs.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k (in1∗) (s[l
→ v2]) if v1 = λl and l ∈ dom(s)

k (in1∗) (s[l
→ v′
2]) if v1 = λn+1

l , l ∈ dom(s),

and πn(v2) = �v′
2�

⊥Ans if v1 = λn+1
l , l ∈ dom(s),

and πn(v2) = ⊥
errorAns otherwise

Fig. 4. Functions used for interpreting reference operations

In order to model the three operations of the untyped language that involve references,

we define the three functions alloc, lookup and assign in Figure 4.

Lemma 3.4. The functions alloc, lookup, and assign are continuous.

Notice that defining, for example, lookup(λn+1
l)(k)(s) = ⊥ for l ∈ dom(s), and hence

avoiding mentioning the projection functions, would not be sufficient since then lookup

would not be continuous.

We are now ready to define the untyped semantics.

Definition 3.5. Let t be a term and X be a set of variables such that FV(t) ⊆ X. The

untyped semantics of t with respect to X is the continuous function �t�X : VX → TV

defined by induction on t in Figure 5.

The semantics of a complete program, that is, a term with no free term variables or

type variables, is defined by supplying an initial continuation and the empty store.

Definition 3.6. Let t be a term with no free term variables or type variables. The program

semantics of t is the element �t�p of Ans defined by

�t�p = �t��� kinit sinit

where

kinit = λv.λs.

{
�ι1 m� if v = in�(m)

errorAns otherwise

and where sinit ∈ S is the empty store.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 666

For every t with FV(t) ⊆ X, define the continuous function �t�X : VX → TV by induction on t:

�x�Xρ = η(ρ(x))

�m�Xρ = η(in� m)

�ifz t0 t1 t2�Xρ = �t0�Xρ
 λv0.

⎧⎪⎨⎪⎩
�t1�Xρ if v0 = in� 0

�t2�Xρ if v0 = in� m where m �= 0

error otherwise

�t1 ± t2�Xρ = �t1�Xρ
 λv1. �t2�Xρ
 λv2.

⎧⎪⎪⎨⎪⎪⎩
η(in�(m1 ± m2))

if v1 = in� m1

and v2 = in� m2

error otherwise

�()�Xρ = η(in1 ∗)

�(t1, t2)�Xρ = �t1�Xρ
 λv1. �t2�Xρ
 λv2. η(in×(v1, v2))

�fst t�Xρ = �t�Xρ
 λv.

{
η(v1) if v = in×(v1, v2)

error otherwise

�snd t�Xρ = �t�Xρ
 λv.

{
η(v2) if v = in×(v1, v2)

error otherwise

�void t�Xρ = �t�Xρ
 λv. error

�inl t�Xρ = �t�Xρ
 λv. η(in+(ι1 v))

�inr t�Xρ = �t�Xρ
 λv. η(in+(ι2 v))

�case t0 x1.t1 x2.t2�Xρ = �t0�Xρ
 λv0.

⎧⎪⎨⎪⎩
�t1�X,x1

(ρ[x1
→ v]) if v0 = in+(ι1 v)

�t2�X,x2
(ρ[x2
→ v]) if v0 = in+(ι2 v)

error otherwise

�λx. t�Xρ = η(in→(λv. �t�X,x(ρ[x
→ v])))

�t1 t2�Xρ = �t1�Xρ
 λv1. �t2�Xρ
 λv2.

{
g v2 if v1 = in→ g

error otherwise

�fix f.λx.t�Xρ = η(in→(fix (λgV→TV . λv. �t�X,f,x(ρ[f
→ in→ g, x
→ v]))))

�fold t�Xρ = �t�Xρ
 λv. η(inμ v)

�unfold t�Xρ = �t�Xρ
 λv.

{
η(v0) if v = inμ v0

error otherwise

�Λα. t�Xρ = η(in∀ (�t�Xρ))

�t [τ]�Xρ = �t�Xρ
 λv.

{
c if v = in∀ c

error otherwise

�ref t�Xρ = �t�Xρ
 λv. alloc v

�! t�Xρ = �t�Xρ
 λv. lookup v

�t1 := t2�Xρ = �t1�Xρ
 λv1. �t2�Xρ
 λv2. assign v1 v2

Fig. 5. Untyped semantics of terms

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 667

3.4. Soundness and adequacy of the untyped semantics

In order to formulate soundness and adequacy of the denotational semantics with respect

to the operational semantics, we extend the denotational semantics to location constants:

�l�X = η(λl).

That is, the meaning of a location constant is the corresponding ideal location. The

meaning of a syntactic store is given pointwise: �σ� = λl ∈ dom(σ).�σ(l)��.

We then have soundness:

(1) If (σ, t) ⇓ (σ′, w), then for all continuations k, we have �t� k �σ� = k v �σ′� where

�w� = η(v).

(2) If (σ, t) ⇓ error, then for all continuations k, we have �t� k �σ� = errAns .

This is shown in the usual way by induction on evaluation derivations. Notice that

no approximate locations occur in the soundness proof since location constants are

interpreted as ideal locations.

Computational adequacy can be stated as follows:

(1) If �t�p = �ι1(m)�, then (�, t) ⇓ (σ, m) for some σ.

(2) If �t�p = errorAns , then (�, t) ⇓ error.

It follows easily from the combination of soundness and adequacy that (possibly open)

terms with the same denotation are contextually equivalent.

We expect that computational adequacy can be shown using the standard technique

(Pitts 1996), even though our semantics of locations, lookup and assignment is non-

standard. We have already shown a computational-adequacy result for a similar untyped

semantics that also contains approximate locations in Birkedal et al. (2009).

4. Typed semantics

In this section we present a ‘typed semantics’, that is, an interpretation of types and typed

terms. As described in the introduction, types will be interpreted as world-indexed families

of binary relations on the universal cpo V . Since worlds depend on semantic types, the

space of semantic types is obtained by solving a recursive metric-space equation, that is,

by finding a fixed-point of a functor on metric spaces.

The rest of this section is structured as follows. Section 4.1 presents the necessary

material on metric spaces. In Section 4.2 we construct an appropriate space of semantic

types. Then, in Section 4.3, we interpret each type of the language as a semantic type. Based

on that interpretation of types, we introduce a notion of semantic relatedness of typed

terms in Section 4.4. We then show that all the term constructs of the language respect

semantic relatedness; as a corollary, we have a ‘fundamental lemma’ stating that every

well-typed term is semantically related to itself. It follows that well-typed terms do not

denote ‘error’. More interestingly, well-typed terms of polymorphic type satisfy a relational

parametricity principle. In fact, all well-typed terms satisfy a relational parametricity

principle involving the store: this principle results from Kripke-style quantification over

all future ‘semantic store typings’.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 668

We assume familiarity with the basic properties of metric spaces (Smyth 1992), but the

relevant definitions are repeated below.

4.1. Ultrametric spaces

Let �+ be the set of non-negative real numbers.

Definition 4.1. A metric space (X, d) is a set X together with a function d : X × X → �+

satisfying the following three conditions:

(i) d(x, y) = 0 ⇐⇒ x = y.

(ii) d(x, y) = d(y, x).

(iii) d(x, z) � d(x, y) + d(y, z).

An ultrametric space is a metric space (X, d) that satisfies the following stronger ultrametric

inequality instead of (iii):

(iii′) d(x, z) � max(d(x, y), d(y, z)).

A metric space (X, d) is 1-bounded if d(x, y) � 1 for all x and y in X.

When we refer to a sequence in a metric space (X, d), we mean an ω-indexed sequence

(xn)n∈ω of elements of X.

Definition 4.2.

(1) A Cauchy sequence in a metric space (X, d) is a sequence (xn)n∈ω of elements of X

such that for all ε > 0, there exists an N ∈ ω such that d(xm, xn) < ε for all m, n � N.

(2) A limit of a sequence (xn)n∈ω in a metric space (X, d) is an element x of X such that

for all ε > 0, there exists an N ∈ ω such that d(xn, x) < ε for all n � N.

(3) A complete metric space is a metric space in which every Cauchy sequence has a limit.

In the following we shall consider complete 1-bounded ultrametric spaces. As a canonical

example of such a metric space, consider the set �ω of infinite sequences of natural

numbers, with distance function d given by:

d(x, y) =

{
2− max{n∈ω|∀m�n. x(m)=y(m)} if x �= y

0 if x = y.

To avoid confusion, we will refer to the elements of �ω as strings rather than sequences.

Here the ultrametric inequality simply states that if x and y agree on the first n ‘characters’

and y and z also agree on the first n characters, then x and z agree on the first n characters.

A Cauchy sequence in �ω is a sequence of strings (xn)n∈ω in which the individual characters

‘stabilise’: for all m, there exists N ∈ ω such that xn1
(m) = xn2

(m) for all n1, n2 � N. In

other words, there is a number k such that xn(m) = k for almost all n, that is, all but

finitely many n. The limit of the sequence (xn)n∈ω is therefore the string x defined by

x(m) = k where xn(m) = k for almost all n.

As illustrated by the above example, it might be helpful to think of the function d of a

complete 1-bounded ultrametric space (X, d) not as a measure of the (Euclidean) distance

between elements, but rather as a measure of the degree of similarity between elements.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 669

Definition 4.3.

(1) A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is

non-expansive if d2(f(x), f(y)) � d1(x, y) for all x and y in X1.

(2) A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is

contractive if there exists c < 1 such that d2(f(x), f(y)) � c · d1(x, y) for all x and y in

X1.

Let CBUlt be the category with complete 1-bounded ultrametric spaces as objects and

non-expansive functions as morphisms. This category is cartesian closed (Wagner 1994).

Products are defined in the natural way: (X1, d1) × (X2, d2) = (X1 × X2, dX1×X2
) where

dX1×X2
((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2) has the set of non-expansive maps from (X1, d1) to

(X2, d2) as the underlying set, and the ‘sup’-metric dX1→X2
as distance function:

dX1→X2
(f, g) = sup{d2(f(x), g(x)) | x ∈ X1} .

Limits are pointwise for both products and exponentials.

Note that the category of (not necessarily ultra-) metric spaces and non-expansive maps

is not cartesian closed: the ultrametric inequality is required in order for the evaluation

maps (corresponding to the exponentials) to be non-expansive (Wagner 1994).

If X0 is a subset of the underlying set X of a metric space (X, d), then the restriction

d0 = d|X0×X0
of d turns (X0, d0) into a metric space. If X0 is closed, then (X0, d0) is

complete – see the following definition.

Definition 4.4. Let (X, d) be a metric space. A subset X0 of X is closed (with respect to

d) if whenever (xn)n∈ω is a sequence of elements of X0 with limit x, the limit element x

belongs to X0.

Proposition 4.5. Let (X, d) be a complete 1-bounded ultrametric space, and let X0 be

a closed subset of X. The restriction d0 = d|X0×X0
of d turns (X0, d0) into a complete

1-bounded ultrametric space.

4.1.1. Banach’s fixed-point theorem. We need the following classical result.

Theorem 4.6 (Banach’s fixed-point theorem). Let (X, d) be a non-empty, complete metric

space, and let f be a contractive function from (X, d) to itself. There exists a unique fixed

point of f, that is, a unique element x of X such that f(x) = x.

For a given complete metric space, consider the function fix that maps every contractive

operator to its unique fixed-point. On complete ultrametric spaces, fix is non-expansive

in the following sense (Amadio 1991).

Proposition 4.7. Let (X, d) be a non-empty, complete ultrametric space. For all contractive

functions f and g from (X, d) to itself, d(fix f, fix g) � d(f, g).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 670

Proof. Let c < 1 be a non-negative number such that d(f(x), f(y)) � c · d(x, y) for all x

and y in X. Now let x = fix f and y = fix g. By the ultrametric inequality,

d(x, y) = d(f(x), g(y))

� max(d(f(x), f(y)), d(f(y), g(y))

� max(d(f(x), f(y)), d(f, g))

� max(c · d(x, y), d(f, g)) .

If max(c · d(x, y), d(f, g)) = c · d(x, y), we have d(x, y) � c · d(x, y), and hence d(x, y) = 0 �
d(f, g). Otherwise, max(c · d(x, y), d(f, g)) = d(f, g), and hence d(x, y) � d(f, g).

4.1.2. Solving recursive metric-space equations. The inverse-limit method for solving re-

cursive domain equations can be adapted from Cpo to CBUlt (America and Rutten 1989).

We sketch an account that is sufficient for this paper.

In CBUlt, one finds fixed points of locally contractive functors instead of locally

continuous functors.

Definition 4.8.

(1) A functor F : CBUltop × CBUlt → CBUlt is locally non-expansive if

d(F(f, g), F(f′, g′)) � max(d(f, f′), d(g, g′))

for all non-expansive functions f, f′, g, and g′.

(2) A functor F : CBUltop × CBUlt → CBUlt is locally contractive if there exists c < 1 such

that

d(F(f, g), F(f′, g′)) � c · max(d(f, f′), d(g, g′))

for all non-expansive functions f, f′, g, and g′.

One can obtain a locally contractive functor from a locally non-expansive one by

multiplying with a ‘shrinking’ factor (America and Rutten 1989).

Proposition 4.9. Let 0 < c < 1.

(1) Let (X, d) ∈ CBUlt, and define c · (X, d) = (X, c · d), where c · d : X × X → �+ is given

by (c · d)(x, y) = c · d(x, y). We have c · (X, d) ∈ CBUlt.

(2) Let F : CBUltop × CBUlt → CBUlt be a locally non-expansive functor. The functor

c · F given by

(c · F)((X1, d1), (X2, d2)) = c · F((X1, d1), (X2, d2))

(c · F)(f, g) = F(f, g)

is locally contractive.

The main theorem about existence and uniqueness of fixed points of locally contractive

functors is actually most conveniently phrased in terms of the category of non-empty

complete 1-bounded ultrametric spaces. The reason is the essential use of Banach’s

fixed-point theorem in the proof. Rather than considering this subcategory, we impose

a technical requirement on the given mixed-variance functor F on CBUlt, namely that

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 671

F(1, 1) �= �, where 1 is the one-point metric space. It is not hard to see that this requirement

holds if and only if F restricts to the full subcategory of non-empty metric spaces.

By a well-known adaptation of the inverse-limit method, in the style of America and

Rutten (1989), one can then show the following theorem.

Theorem 4.10. Let F : CBUltop ×CBUlt → CBUlt be a locally contractive functor satisfying

that F(1, 1) �= �. There exists a unique (up to isomorphism) non-empty (X, d) ∈ CBUlt

such that F((X, d), (X, d)) ∼= (X, d).

4.2. The space of semantic types

The space of semantic types is obtained by applying Theorem 4.10 to a functor that

maps metric spaces to world-indexed binary relations on V . We begin with some standard

definitions.

Definition 4.11. For every cpo A, let Rel (A) be the set of binary relations R ⊆ A×A on A.

(1) A relation R ∈ Rel (A) is complete if for all chains (an)n∈ω and (a′
n)n∈ω such that

(an, a
′
n) ∈ R for all n, also (�n∈ωan,�n∈ωa

′
n) ∈ R. Let CRel (A) be the set of complete

relations on A.

(2) A relation R ∈ Rel (D) on a cppo D is pointed if (⊥,⊥) ∈ R and admissible if it is

pointed and complete. Let ARel (D) be the set of admissible relations on D.

(3) For every cpo A and every relation R ∈ Rel (A), define the relation R⊥ ∈ Rel (A⊥) by

R⊥ = { (⊥,⊥) } ∪ { (�a�, �a′�) | (a, a′) ∈ R }.
(4) For R ∈ Rel (A) and S ∈ Rel (B), let R → S be the set of continuous functions f from

A to B satisfying (f a, f a′) ∈ S for all (a, a′) ∈ R.

For uniform cpos and uniform cppos, we also define the set of uniform binary

relations (Amadio 1991; Abadi and Plotkin 1990). The key point is that a uniform

and complete relation on a uniform cppo (D, (�n)n∈ω) is completely determined by its

elements of the form (�n e, �n e
′).

Definition 4.12.

(1) Let (A, (�n)n∈ω) be a uniform cpo. A relation R ∈ Rel (A) is uniform with respect to

(�n)n∈ω if �n ∈ R → R⊥ for all n. Let CURel (A, (�n)n∈ω) be the set of binary relations

on A that are uniform with respect to (�n)n∈ω and complete.

(2) Let (D, (�n)n∈ω) be a uniform cppo. A relation R ∈ Rel (D) is uniform with respect to

(�n)n∈ω if �n ∈ R → R for all n. Let AURel (D, (�n)n∈ω) be the set of binary relations

on D that are uniform with respect to (�n)n∈ω and admissible.

Proposition 4.13. Let (D, (�n)n∈ω) be a uniform cppo, and assume that R, S ∈
AURel (D, (�n)n∈ω).

(1) If �n ∈ R → S , then �n′ ∈ R → S for all n′ � n.

(2) If �n ∈ R → S for all n, then R ⊆ S .

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 672

We now define a number of metric spaces that will be used in constructing the universe

of semantic types. After defining one of these metric spaces (X, d), the ‘distance function’

d will be fixed, so we usually omit it and call X itself a metric space.

First, as in Amadio (1991), we obtain the following proposition.

Proposition 4.14. Let (D, (�n)n∈ω) be a uniform cppo. Then AURel (D, (�n)n∈ω) is a

complete 1-bounded ultrametric space with the distance function given by

d(R, S) =

{
2− max{ n∈ω | �n∈R→S ∧ �n∈S→R } if R �= S

0 if R = S.

Proof. First we show that the function d is well defined: if R �= S , then there exists a

greatest n in ω such that �n ∈ R → S and �n ∈ S → R. Assume that R �= S . By (3.11), we

always have �0 ∈ R → S and �0 ∈ S → R, so there is at least one such n. Now assume

that there are infinitely many such n. Proposition 4.13 then implies that R ⊆ S and S ⊆ R,

that is, that R = S , which is a contradiction.

Proposition 4.13(1) implies the following property, which we shall need below:

d(R, S) � 2−n if and only if �n ∈ R → S and �n ∈ S → R. (4.1)

It is easy to see that the function d defines a 1-bounded ultrametric. To see that it is

complete, let (Rm)m∈ω be a Cauchy sequence. Then for all n there exists a number Mn

such that d(Rm, Rm′) � 2−n for all m,m′ � Mn. For all m,m′ � Mn, (4.1) then implies that

�n ∈ Rm → Rm′ . Therefore, for all e, e′ ∈ D,

(�n e, �n e
′) ∈ Rm =⇒ ((�n ◦ �n) e, (�n ◦ �n) e

′) ∈ Rm′ (by definition of d)

=⇒ (�n e, �n e
′) ∈ Rm′ . (by (3.10))

We also have the converse by symmetry. This means that the set of related elements of

the form (�n e, �n e
′) is the same in the relations RMn

, RMn+1, and so on. Now define the

relation R by

(e, e′) ∈ R ⇐⇒ for all n, (�n e, �n e
′) ∈ RMn

.

We first show that R is admissible and uniform, and then that R is the limit of (Rm)m∈ω .

First, R is pointed by (3.11) and the fact that each Rn is pointed. R is complete since it

is an intersection of inverse images of the continuous functions �n with respect to the

complete relations RMn
. To show that R is also uniform, let (e, e′) ∈ R. Then for all m and

n, uniformity of RMn
and (3.10) imply that

(�n(�m e), �n(�m e′)) = (�m(�n e), �m(�n e
′)) ∈ RMn

,

and hence (�m e, �m e′) ∈ R.

We still need to show that R is the limit of (Rm)m∈ω . It suffices to show that for all n

and all m � Mn,

�n ∈ R → Rm and �n ∈ Rm → R .

First, let (e, e′) ∈ R. Then (�n e, �n e
′) ∈ RMn

by definition on R, and hence

(�n e, �n e
′) ∈ Rm

since m � Mn.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 673

Then let (e, e′) ∈ Rm. By uniformity of Rm, we also have (�n e, �n e
′) ∈ Rm. But then

(�n e, �n e
′) belongs to RMn

since m � Mn. It then follows easily from (3.10) and the

definition of R that (�n e, �n e
′) ∈ R.

Proposition 4.15. Let (X, d) be a complete 1-bounded ultrametric space. The set �0 ⇀fin X

of finite maps from natural numbers to elements of X is a complete 1-bounded ultrametric

space with the distance function given by

d′(Δ,Δ′) =

{
max {d(Δ(l),Δ′(l)) | l ∈ dom(Δ)} if dom(Δ) = dom(Δ′)

1 otherwise.

Proof (sketch). The proof is standard. CBUlt has all products and sums. Then, the set

�0 ⇀fin X can be viewed as a sum of products:
∑

L⊆fin�0
XL and the distance function

above reflects that fact. In general, two elements of different summands are given the

maximal possible distance 1.

Definition 4.16. For every (X, d) ∈ CBUlt , define an ‘extension’ ordering � on the set

�0 ⇀fin X by

Δ � Δ′ ⇐⇒ dom(Δ) ⊆ dom(Δ′) ∧ ∀l ∈ dom(Δ).Δ(l) = Δ′(l) .

Proposition 4.17. Let (X, d) ∈ CBUlt , let (D, (�n)n∈ω) be a uniform cppo, and let

(�0 ⇀fin X) →mon AURel (D, (�n)n∈ω)

be the set of functions ν from �0 ⇀fin X to AURel (D, (�n)n∈ω) that are both non-

expansive and monotone in the sense that Δ � Δ′ implies ν(Δ) ⊆ ν(Δ′). This set is a

complete 1-bounded ultrametric space with the ‘sup’-metric given by

d′(ν, ν ′) = sup {d(ν(Δ), ν ′(Δ)) | Δ ∈ �0 ⇀fin X} .

Proof. The set (�0 ⇀fin X) →mon AURel (D, (�n)n∈ω) is a subset of the underlying set

of the exponential (�0 ⇀fin X) → AURel (D, (�n)n∈ω) in CBUlt, namely the subset of

monotone as well as non-expansive functions, and the distance function d defined above

is the same as for the larger set. By Proposition 4.5, it therefore suffices to show that the

set of monotone and non-expansive functions is a closed subset of the (complete) metric

space of all non-expansive functions.

Let (νm)m∈ω be a sequence of monotone and non-expansive functions from

(�0 ⇀fin X) to AURel (D, (�n)n∈ω) with limit ν (for some function ν that is non-

expansive). To show that ν is monotone, we let Δ and Δ′ be elements of �0 ⇀fin X

such that Δ � Δ′ and show that ν(Δ) ⊆ ν(Δ′). By Proposition 4.13(2), it suffices to show

that �n ∈ ν(Δ) → ν(Δ′) for all n. So let n be given. Since (νm)m∈ω has limit ν, there exists

an m such that d(ν, νm) � 2−n. By the definition of the metric on exponentials, this implies

that d(ν(Δ), νm(Δ)) � 2−n, and hence that �n ∈ ν(Δ) → νm(Δ) by Proposition 4.13(1). But

νm is assumed to be monotone, so νm(Δ) ⊆ νm(Δ′), and thus �n ∈ ν(Δ) → νm(Δ′). Since

we also have d(ν(Δ′), νm(Δ′)) � 2−n, we have �n ∈ νm(Δ′) → ν(Δ′), and can conclude

using (3.10) that �n ∈ ν(Δ) → ν(Δ′).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 674

Propositions 4.14 and 4.17 and a little extra work give analogous results for uniform

cpos.

Proposition 4.18. Let (A, (�n)n∈ω) be a uniform cpo. In the following we use the abbrevi-

ation CURel (A) = CURel (A, (�n)n∈ω).

(1) The set CURel (A) is a complete 1-bounded ultrametric space with the distance function

given by

d(R, S) =

{
2− max{ n∈ω | �n∈R→S⊥ ∧ �n∈S→R⊥ } if R �= S

0 if R = S.

(2) Let (X, d) ∈ CBUlt , and let (�0 ⇀fin X) →mon CURel (A) be the set of functions ν

from �0 ⇀fin X to CURel (A) that are both non-expansive and monotone in the sense

that Δ � Δ′ implies ν(Δ) ⊆ ν(Δ′). This set is a complete 1-bounded ultrametric space

with the ‘sup’-metric given by

d′(ν, ν ′) = sup {d(ν(Δ), ν ′(Δ)) | Δ ∈ �0 ⇀fin D} .

Proof.

(1) It is easy to see that the family of strict extensions �†
n : A⊥ → A⊥ of the

projection functions �n : A → A⊥ turns (A⊥, (�
†
n)n∈ω) into a uniform cppo. We

use the abbreviation AURel (A⊥) = AURel (A⊥, (�
†
n)n∈ω). By the definition of uniform

relations,

R ∈ CURel (A) if and only if R⊥ ∈ AURel (A⊥) (4.2)

for all R in Rel (A). Proposition 4.14 also gives a metric on the set AURel (A⊥), and

it is easy to see that the distance function on CURel (A) defined in Part 1 above is

induced by the lifting operator, that is, d(R, S) = d(R⊥, S⊥). Since the lifting operator is

injective, this induced distance function turns CURel (A) into a 1-bounded ultrametric

space.

However, not every S in AURel (A⊥) has the form R⊥ for some R in CURel (A):

unless A is empty, some relations in AURel (A⊥) relate ⊥ to elements different from ⊥.

In other words, the lifting operator from CURel (A) to AURel (A⊥) is not surjective.

Therefore, completeness of AURel (A⊥) does not immediately imply completeness of

CURel (A). What we need to show is that the subset of AURel (A⊥) consisting of

strict relations (that is, relations S for which (a,⊥) ∈ S or (⊥, a) ∈ S implies a = ⊥)

is a closed subset of AURel (A⊥). Proposition 4.5 then implies that the subset of

strict relations is a complete metric space, and (4.2) implies that it is isomorphic to

CURel (A), which is therefore also complete.

More generally, we let (D, (� ′
n)n∈ω) be a uniform cppo, and use the abbreviation

AURel (D) = AURel (D, (� ′
n)n∈ω) and then show that the subset SAURel (D) ⊆

AURel (D) of strict relations is closed. So we let (Rm)m∈ω be a sequence of strict

relations (elements of SAURel (D)) with limit R for some R ∈ AURel (D), and then

show that R is strict. So we let (⊥, e) ∈ R and show that e = ⊥. (The case where

(e,⊥) ∈ R is completely symmetric.) By (3.9), it suffices to show that � ′
n e = ⊥ for

all n. Given n, choose m large enough that d(R,Rm) � 2−n. Then � ′
n ∈ R → Rm by

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 675

Proposition 4.13(1), so (⊥, � ′
n e) = (� ′

n ⊥, � ′
n e) ∈ Rm. But this implies that � ′

n e = ⊥
since Rm is strict, therefore we have shown that R is strict.

(2) In the proof of Part 1 we showed that CURel (A) is isomorphic to the complete

1-bounded metric space SAURel (A⊥) of strict, uniform and admissible relations on

A⊥. The isomorphism is the lifting operator on relations, and this operator clearly

preserves and reflects set-theoretic inclusion, that is, R ⊆ S if and only if R⊥ ⊆ S⊥.

It therefore suffices to show that the set (�0 ⇀fin X) →mon SAURel (A⊥) of non-

expansive and monotone functions from �0 ⇀fin X to SAURel (A⊥) is a complete

metric space with the ‘sup’ metric on functions:

d′(ν, ν ′) = sup {d(ν(Δ), ν ′(Δ)) | Δ ∈ �0 ⇀fin D} .

By Proposition 4.5, it is enough to show that (�0 ⇀fin X) →mon SAURel (A⊥) is a

closed subset of (�0 ⇀fin X) →mon AURel (A⊥). But this follows immediately from

the fact that SAURel (A⊥) is a closed subset of CURel (A⊥), as shown in Part 1, since

limits with respect to the ‘sup’ metric on functions are pointwise.

In the rest of this section we will not need the extra generality of uniform cpos:

recall that V is the cpo obtained from Proposition 3.2 – we will use the abbreviation

CURel (V) = CURel (V , (πn)n∈ω).

Proposition 4.19. The operation mapping each (X, d) ∈ CBUlt to the monotone function

space (�0 ⇀fin X) →mon CURel (V) (as given by the previous proposition) can be extended

to a locally non-expansive functor F : CBUltop → CBUlt in the natural way:

F(X, d) = (�0 ⇀fin X) →mon CURel (V)

F(f) = λν. λΔ. ν(f ◦ Δ).

Proof. Let (X1, d1) and (X2, d2) be complete 1-bounded ultrametric spaces. For every

non-expansive function f from X2 to X1, it is clear that the F(f) given above is a

well-defined function from (�0 ⇀fin X1) →mon CURel (V) to the set of functions from

(�0 ⇀fin X2) to CURel (V). It is also easy to see that F(f)(ν) is monotone for every ν

in F(X1, d1): if we let Δ,Δ′ ∈ (�0 ⇀fin X2) such that Δ � Δ′, then f ◦ Δ � f ◦ Δ′ by the

definition of �, and therefore

F(f)(ν)(Δ) = ν(f ◦ Δ) ⊆ ν(f ◦ Δ′) = F(f)(ν)(Δ′)

since ν is monotone.

We now show for all non-expansive functions f and f′ from X2 to X1, all ν and ν ′ in

(�0 ⇀fin X1) →mon CURel (V), and all Δ and Δ′ in (�0 ⇀fin X2), that

d(F(f)(ν)(Δ), F(f′)(ν ′)(Δ′)) � max(d(f, f′), d(ν, ν ′), d(Δ,Δ′)) . (4.3)

By definition, F(f)(ν)(Δ) = ν(f ◦ Δ) and F(f′)(ν ′)(Δ′) = ν ′(f′ ◦ Δ′). By the ultrametric

inequality,

d(f ◦ Δ, f′ ◦ Δ′) � max(d(f ◦ Δ, f′ ◦ Δ), d(f′ ◦ Δ, f′ ◦ Δ′)).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 676

But d(f ◦ Δ, f′ ◦ Δ) � d(f, f′) by the definition of the metric on (�0 ⇀fin X2), and

d(f′ ◦ Δ, f′ ◦ Δ′) � d(Δ,Δ′) by the fact that f′ is non-expansive. Therefore,

d(f ◦ Δ, f′ ◦ Δ′) � max(d(f, f′), d(Δ,Δ′)) .

Then, by the ultrametric inequality and the fact that ν ′ is non-expansive,

d(ν(f ◦ Δ), ν ′(f′ ◦ Δ′)) � max(d(ν(f ◦ Δ), ν ′(f ◦ Δ)), d(ν ′(f ◦ Δ), ν ′(f′ ◦ Δ′)))

� max(d(ν, ν ′), d(f ◦ Δ, f′ ◦ Δ′))

� max(d(ν, ν ′), d(f, f′), d(Δ,Δ′)) ,

which shows (4.3).

Now, for all f and ν, taking f′ = f and ν ′ = ν in (4.3) shows that F(f)(ν) is non-

expansive. Similarly, taking f′ = f and Δ′ = Δ in (4.3) shows that F(f) is non-expansive.

Summarising, we have now shown that F(f) is a morphism from F(X1, d1) to F(X2, d2)

when f is a morphism from (X2, d2) to (X1, d1).

The functor laws are then easily verified:

F(idX) = λν. λΔ. ν(idX ◦ Δ) = λν. λΔ. ν(Δ) = idF(X,d) .

(F(g) ◦ F(f))(ν) = ((λν. λΔ. ν(g ◦ Δ)) ◦ (λν. λΔ. ν(f ◦ Δ)))(ν)

= λΔ. (λΔ′. ν(f ◦ Δ′))(g ◦ Δ))

= λΔ. ν(f ◦ g ◦ Δ)

= F(f ◦ g)(Δ) .

It remains to show that F is locally non-expansive, that is, that

d(F(f), F(f′)) � d(f, f′)

for all non-expansive functions f and f′. But this follows from (4.3) by taking ν ′ = ν and

Δ′ = Δ′.

Proposition 4.19, Proposition 4.9 (with c = 1/2), and Theorem 4.10 now immediately

imply the following theorem.

Theorem 4.20. There exists a complete 1-bounded ultrametric space T̂ such that the

isomorphism

T̂ ∼= 1
2
((�0 ⇀fin T̂) →mon CURel (V)) (4.4)

holds in CBUlt .

Remark 4.21. Since in general the underlying sets of 1/2 · (X, d) and (X, d) are the same,

the theorem above gives a continuous, but not distance-preserving, bijection

T̂ � ((�0 ⇀fin T̂) →mon CURel (V)) .

We use this bijection implicitly below. Notice that the function space (�0 ⇀fin T̂) →mon

CURel (V) consists of non-expansive functions, so one cannot simply forget about the

metric, that is, generalise to the category of sets and functions and view T̂ as a solution

to an equation like (4.4) but without the ‘1/2’. Likewise, one cannot view T̂ as a solution

to such an equation in the category of metric spaces and continuous functions.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 677

4.3. Interpretation of types

In the following, let T̂ be a complete 1-bounded ultrametric space satisfying (4.4),

and let i : T̂ → 1
2
((�0 ⇀fin T̂) →mon CURel (V)) be an isomorphism with inverse

i−1 : 1
2
((�0 ⇀fin T̂) →mon CURel (V)) → T̂. For convenience, we use the following

abbreviations (where the names W and T are intended to indicate ‘worlds’ and ‘types’,

respectively):

W = �0 ⇀fin T̂
T = W →mon CURel (V) .

With this notation, (4.4) expresses the fact that T̂ is isomorphic to 1
2
T.

We choose T as our space of semantic types: types of the language will be interpreted

as elements of T, that is, as certain world-indexed families of relations on V . We

also define families of relations on ‘states’ (elements of S), ‘continuations’ (elements of

K = V → S → Ans) and ‘computations’ (elements of TV).

Definition 4.22. We use the abbreviations

AURel (TV) = AURel (TV , (πT
n)n∈ω)

AURel (K) = AURel (K, (πK
n)n∈ω)

CURel (S) = CURel (S, (πS
n)n∈ω).

Let

TT = W →mon AURel (TV)

TK = W →mon AURel (K)

be the complete uniform 1-bounded ultrametric spaces given by Proposition 4.17. Fur-

thermore, let

TS = W → CURel (S)

be the complete uniform 1-bounded ultrametric space obtained from Propositions 4.15

and 4.18 and the exponential in CBUlt. (The elements of TS are non-expansive but not

necessarily monotone functions.)

In all the ultrametric spaces we consider here, all non-zero distances have the form 2−m

for some m. For such ultrametric spaces, there is a useful notion of the n-approximated

equality of elements.

Definition 4.23. For every complete 1-bounded ultrametric space (D, d), every natural

number n � 0, and all elements x, y ∈ D, the notation x
n
=d y means that d(x, y) � 2−n.

When the distance function d is clear from the context, we shall just write x
n
= y for

x
n
=d y.

(In general, such approximated equality relations can, of course, also be defined for

numbers not of the form 2−n.) The ultrametric inequality implies that each relation
n
=d is

transitive, and therefore an equivalence relation.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 678

Proposition 4.24. If x
n
=d y and y

n
=d z, then x

n
=d z.

The fact that the evaluation map corresponding to a given exponential is non-expansive

can now be expressed as a congruence property for approximated equality: for non-

expansive maps f, f′ : (D1, d1) → (D2, d2) and elements x, x′ ∈ D1,

f
n
= f′ ∧ x

n
= x′ =⇒ f(x)

n
= f′(x′) . (4.5)

This property will be used frequently below.

In order to interpret the types of the language as elements of T, we still need to

define a number of operators on T (and TT and TK) that will be used to interpret the

various type constructors of the language; these operators are shown in the lower part of

Figure 6. Notice that the operator ref is defined in terms of n-approximated equality
n
=

on CURel (V), as defined above.

In order to interpret the fragment of the language without recursive types, it suffices to

verify that these operators are well defined (for example, ref actually maps elements of

T into T.) In order to interpret recursive types, however, we also need to verify that the

operators are non-expansive.

The proofs below depend on a number of lemmas, which are given in Appendix A, that

provide more concrete descriptions of the metric spaces involved. In particular, the factor

1/2 in (4.4) implies that worlds that are ‘(n + 1)-equal’ only contain ‘n-equal’ semantic

types.

Lemma 4.25. The function states from W to Rel (S) defined in the lower part of Figure 6

is an element of TS .

Proof. First, for every Δ ∈ W, the relation states(Δ) is complete: this follows from the

fact that i(Δ(l)) (Δ) is complete for all l ∈ dom(Δ). We now show that

Δ
n
= Δ′ =⇒ πS

n ∈ states(Δ) → states(Δ′)⊥

for all Δ,Δ′ ∈ W. Uniformity then follows from this implication by taking Δ′ = Δ

and using Lemma A.2(1), and non-expansiveness of states follows from Lemma A.2(1)

and symmetry. So, let Δ
n
= Δ′ and let (s, s′) ∈ states(Δ); we must show that either

πS
n (s) = πS

n (s′) = ⊥, or πS
n (s) = �s0� and πS

n (s′) = �s′
0� where (s0, s

′
0) ∈ states(Δ′). If n = 0,

we are done by (3.23), so we assume that n > 0. Then dom(Δ) = dom(Δ′) by the definition

of the metric on W, and, furthermore, for every l ∈ dom(Δ),

i(Δ(l))(Δ)
n
= i(Δ(l)) (Δ′) (i(Δ(l)) non-expansive)
n−1
= i(Δ′(l)) (Δ′) . (Lemma A.1)

By transitivity (Proposition 4.24),

i(Δ(l)) (Δ)
n−1
= i(Δ′(l)) (Δ′),

so Lemma A.2(1) gives

πn−1 ∈ i(Δ(l)) (Δ) → (i(Δ′(l)) (Δ′))⊥ .

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 679

For every Ξ � τ, define the non-expansive function �τ�Ξ : TΞ → T by induction on τ:

�α�Ξϕ = ϕ(α)

�int�Ξϕ = λΔ. { (in� k, in� k) | k ∈ � }
�1�Ξϕ = λΔ. { (in1 ∗, in1 ∗) }

�τ1 × τ2�Ξϕ = �τ1�Ξϕ × �τ2�Ξϕ

�0�Ξϕ = λΔ.�

�τ1 + τ2�Ξϕ = �τ1�Ξϕ + �τ2�Ξϕ

�ref τ�Ξϕ = ref (�τ�Ξϕ)

�∀α.τ�Ξϕ = λΔ. { (in∀ c, in∀ c
′) | ∀ν ∈ T. (c, c′) ∈ comp(�τ�Ξ,αϕ[α
→ ν])(Δ) }

�μα.τ�Ξϕ = fix
(
λν. λΔ. { (inμ v, inμ v

′) | (v, v′) ∈ �τ�Ξ,αϕ[α
→ ν] (Δ) }
)

(see Theorem 4.29)

�τ1 → τ2�Ξϕ = (�τ1�Ξϕ) → (comp(�τ2�Ξϕ))

The following operators and elements are used in the above:

× : T × T → T comp : T → TT

+ : T × T → T cont : T → TK

ref : T → T states ∈ TS

→ : T × TT → T RAns ∈ CRel (Ans)

(ν1 × ν2)(Δ) = { (in×(v1, v2), in×(v′
1, v

′
2)) | (v1, v

′
1) ∈ ν1(Δ) ∧ (v2, v

′
2) ∈ ν2(Δ) }

(ν1 + ν2)(Δ) = { (in+(ι1 v1), in+(ι1 v
′
1)) | (v1, v

′
1) ∈ ν1(Δ) } ∪

{ (in+(ι2 v2), in+(ι2 v
′
2)) | (v2, v

′
2) ∈ ν2(Δ) }

ref (ν)(Δ) = { (λl , λl) | l ∈ dom(Δ) ∧ ∀Δ1 � Δ. i(Δ(l)) (Δ1) = ν(Δ1) } ∪
{ (λn+1

l , λn+1
l) | l ∈ dom(Δ) ∧ ∀Δ1 � Δ. i(Δ(l)) (Δ1)

n
= ν(Δ1) }

(ν → ξ)(Δ) = { (in→ f, in→ f′) | ∀Δ1 � Δ. ∀(v, v′) ∈ ν(Δ1) .(f v, f′ v′) ∈ ξ(Δ1) }

cont(ν)(Δ) = { (k, k′) | ∀Δ1 � Δ. ∀(v, v′) ∈ ν(Δ1).

∀(s, s′) ∈ states(Δ1). (k v s, k
′ v′ s′) ∈ RAns }

comp(ν)(Δ) = { (c, c′) | ∀Δ1 � Δ. ∀(k, k′) ∈ cont(ν)(Δ1).

∀(s, s′) ∈ states(Δ1). (c k s, c
′ k′ s′) ∈ RAns }

states(Δ) = { (s, s′) | dom(s) = dom(s′) = dom(Δ)

∧ ∀l ∈ dom(Δ). (s(l), s′(l)) ∈ i(Δ(l)) (Δ) }

RAns = { (⊥,⊥) } ∪ { (�ι1 m�, �ι1 m�) | m ∈ � }

Fig. 6. Interpretation of types

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 680

Since the above holds for every l ∈ dom(Δ), Equation (3.24) gives either πS
n (s) = πS

n (s′) = ⊥,

and we are done, or πS
n (s) = �s0� and πS

n (s′) = �s′
0� for some s0 and s′

0 such that

(s0(l), s
′
0(l)) ∈ i(Δ′(l)) (Δ′) for all l ∈ dom(Δ′). But the latter means exactly that (s0, s

′
0) ∈

states(Δ′).

Lemma 4.26. Let Δ, Δ′ and Δ1 be elements of W such that Δ
n
= Δ′ and Δ � Δ1. There

exists a Δ′
1 such that Δ1

n
= Δ′

1 and Δ′ � Δ′
1.

Proof. If n = 0, we can take Δ′
1 = Δ′; in fact, any extension of Δ′ would do. If n > 0,

we have dom(Δ) = dom(Δ′) by definition of the metric on W. Now define Δ′
1 ∈ W with

dom(Δ′
1) = dom(Δ1) by

Δ′
1(l) =

{
Δ′(l) if l ∈ dom(Δ)

Δ1(l) if l ∈ dom(Δ1) \ dom(Δ).

Clearly, Δ′ � Δ′
1 since dom(Δ) = dom(Δ′). Also, by the definition of the metric on W (as

a maximum of the distances for each ‘l’), d(Δ1,Δ
′
1) = d(Δ,Δ′) � 2−n.

Lemma 4.27. The operators ×, +, ref , →, cont and comp defined in the lower part of

Figure 6 are non-expansive.

Proof. We will show that each operator maps into the appropriate codomain and that

it is non-expansive.

× : T × T → T:

It is easy to see that (ν1 × ν2)(Δ) is complete for all Δ ∈ W. To see that ν1 × ν2 belongs

to T, it therefore suffices to verify the two conditions of Lemma A.2(3).

Condition (a), monotonicity, is immediate.

For Condition (b), we show the more general fact, which also implies the non-

expansiveness of ×, that for all ν1, ν2, ν
′
1, and ν ′

2 in T and all Δ and Δ′ in �0 ⇀fin T̂,

ν1
n
= ν ′

1 ∧ ν2
n
= ν ′

2 ∧ Δ
n
= Δ′ =⇒ πn ∈ (ν1 × ν2)(Δ) → (ν ′

1 × ν ′
2)(Δ)⊥ .

Condition (b) then follows by taking ν1 = ν ′
1 and ν2 = ν ′

2. Non-expansiveness of ×
follows by taking Δ = Δ′ and using parts 1 and 2 of Lemma A.2 (and symmetry).

So, we assume that ν1
n
= ν ′

1 and ν2
n
= ν ′

2 and Δ
n
= Δ′, and let

(in×(v1, v2), in×(v′
1, v

′
2)) ∈ (ν1 × ν2)(Δ) .

We must show that either:

(1) πn(in×(v1, v2)) = πn(in×(v′
1, v

′
2)) = ⊥; or

(2) πn(in×(v1, v2)) = �w� and πn(in×(v′
1, v

′
2)) = �w′� for some w and w′ such that

(w,w′) ∈ (ν ′
1 × ν ′

2)(Δ
′).

If n = 0, we are done by Equation (3.4), so we assume that n > 0. By the definition

of (ν1 × ν2)(Δ), we know that (v1, v
′
1) ∈ ν1(Δ) and (v2, v

′
2) ∈ ν2(Δ). Since ν1 and ν2 are

non-expansive functions, (4.5) gives

ν1(Δ)
n−1
= ν ′

1(Δ
′) and ν2(Δ)

n−1
= ν ′

2(Δ
′).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 681

Therefore, πn−1 ∈ ν1(Δ) → ν ′
1(Δ

′)⊥ and πn−1 ∈ ν2(Δ) → ν ′
2(Δ

′)⊥ by Lemma A.2(1). By

the definition of νi(Δ) → ν ′
i (Δ

′)⊥ (for i = 1, 2), there are now two cases:

(1) πn−1(v1) = πn−1(v
′
1) = ⊥ or πn−1(v2) = πn−1(v

′
2) = ⊥.

(2) There exist (w1, w
′
1) ∈ ν ′

1(Δ
′) and (w2, w

′
2) ∈ ν ′

2(Δ
′) where πn−1(v1) = �w1� and

πn−1(v
′
1) = �w′

1� and πn−1(v2) = �w2� and πn−1(v
′
2) = �w′

2�.
For case (1), (3.18) gives πn(in×(v1, v2)) = πn(in×(v′

1, v
′
2)) = ⊥ and we are done.

For case (2), (3.18) gives πn(in×(v1, v2)) = �in×(w1, w2)� and πn(in×(v′
1, v

′
2)) =

�in×(w′
1, w

′
2)�. By the definition of (ν ′

1 × ν ′
2)(Δ

′), we have (in×(w1, w2), in×(w′
1, w

′
2)) ∈

(ν ′
1 × ν ′

2)(Δ
′), and we are done.

ref : T → T:

First, ref (ν)(Δ) is complete for all Δ because of the general fact that if R
n
= S for all

n ∈ ω, then d(R, S) = 0 and hence R = S . It is also easy to see that ref (ν) is monotone.

Using similar reasoning to the previous case, we then show that ref (ν) belongs to T
and that ref is non-expansive by showing that

ν
n
= ν ′ ∧ Δ

n
= Δ′ =⇒ πn ∈ ref (ν)(Δ) → ref (ν ′)(Δ′)⊥

for all ν and ν ′ in T and all Δ and Δ′ in �0 ⇀fin T̂.

So, we assume that ν
n
= ν ′ and Δ

n
= Δ′, and let (λml , λ

m
l) ∈ ref (ν)(Δ). (The case

where (λl , λl) ∈ ref (ν)(Δ) is similar, but slightly easier.) If n = 0, we are done by

Equation (3.4). If n > 0, (3.17) gives πn(λ
m
l) = �λmin(n,m)

l �, and it therefore just remains

for us to show that (λmin(n,m)
l , λ

min(n,m)
l) ∈ ref (ν ′)(Δ′). To do this, we let l ∈ dom(Δ′) and

Δ′
1 � Δ′ and show that

i (Δ′(l)) (Δ′
1)

min(n,m)−1
= ν ′(Δ′

1).

Lemma 4.26 gives a Δ1 � Δ such that Δ1
n
= Δ′

1. So,

i(Δ′(l)) (Δ′
1)

n
= i(Δ′(l)) (Δ1) (i(Δ′(l)) non-expansive)

n−1
= i(Δ(l)) (Δ1) (Lemma A.1)

m−1
= ν(Δ1) (since (λml , λ

m
l) ∈ ref (ν)(Δ))

n
= ν ′(Δ1) (Lemma A.2(2))
n
= ν ′(Δ′

1) . (ν ′ non-expansive)

Hence, by transitivity, i(Δ′(l)) (Δ′
1)

min(n,m)−1
= ν ′(Δ′

1).

+ : T × T → T:

It is easy to see that (ν1 + ν2)(Δ) is complete for all Δ ∈ W , and that ν1 + ν2 is

monotone. It then suffices to show that

ν1
n
= ν ′

1 ∧ ν2
n
= ν ′

2 ∧ Δ
n
= Δ′ =⇒ πn ∈ (ν1 + ν2)(Δ) → (ν ′

1 + ν ′
2)(Δ

′)⊥

for all ν1, ν2, ν
′
1, and ν ′

2 in T and all Δ and Δ′ in �0 ⇀fin T̂.

So we assume that ν1
n
= ν ′

1 and ν2
n
= ν ′

2 and Δ
n
= Δ′, and let

(in+(ι1 v), in+(ι1v
′)) ∈ (ν1 + ν2)(Δ) .

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 682

(The case with ι2 instead of ι1 is completely symmetric.) If n = 0, we are done by

Equation (3.4), so we assume that n > 0. By the definition of (ν1 + ν2)(Δ), we have

(v, v′) ∈ ν1(Δ). Then, since ν1
n
= ν ′

1 and Δ
n
= Δ′ implies ν1(Δ)

n
= ν ′

1(Δ
′), there are two

cases:

(1) πn−1(v) = πn−1(v
′) = ⊥, and we are done; or

(2) πn−1(v) = �w� and πn−1(v
′) = �w′� where (w,w′) ∈ ν ′

1(Δ
′). But then (3.19) gives

πn(in+(ι1v)) = �in+(ι1w)�
πn(in+(ι1v

′)) = �in+(ι1w
′)�

with (in+(ι1w), in+(ι1w
′)) ∈ (ν ′

1 + ν ′
2)(Δ

′).

cont : T → TK :

First, cont(ν)(Δ) is admissible for each Δ ∈ W since RAns is admissible. Also, cont(ν)

is monotone. By Lemma A.3(3), it then suffices to show that

ν
n
= ν ′ ∧ Δ

n
= Δ′ =⇒ πK

n ∈ cont(ν)(Δ) → cont(ν ′)(Δ′)

for all ν and ν ′ in T and all Δ and Δ′ in W. So we assume that ν
n
= ν ′ and Δ

n
= Δ′,

let (k, k′) ∈ cont(ν)(Δ) and then show that (πK
n (k), πK

n (k′)) ∈ cont(ν ′)(Δ′).

If n = 0, this follows from (3.23) and the fact that cont(ν ′)(Δ′) is pointed.

If n > 0, we let Δ′
1 � Δ′ and (v, v′) ∈ ν ′(Δ′

1) and (s, s′) ∈ states(Δ′
1), and then show that

(πK
n (k) v s, πK

n (k′) v′ s′) ∈ RAns . First, Lemma 4.26 gives a Δ1 � Δ such that Δ1
n
= Δ′

1.

By (4.5), ν(Δ1)
n
= ν ′(Δ′

1). Furthermore, the fact that states belongs to TS , as we showed

earlier, implies that states(Δ1)
n
= states(Δ′

1). Therefore, by (3.25), either:

(1) πK
n (k) v s = πK

n (k′) v′ s′ = ⊥, and we are done; or

(2) πK
n (k) v s = k w s0 and πK

n (k′) v′ s′ = k′ w′ s′
0 where πn(v) = �w� and πn(v

′) = �w′�
and πS

n (s) = �s0� and πS
n (s′) = �s′

0� with (w,w′) ∈ ν(Δ1) and (s0, s
′
0) ∈ states(Δ1), in

which case, (k w s0, k
′ w′ s′

0) ∈ RAns since (k, k′) ∈ cont(ν)(Δ) and Δ � Δ1.

comp : T → TT :

This is similar to cont . First, comp(ν)(Δ) is admissible for each Δ ∈ W since RAns is

admissible. Also, comp(ν) is monotone. By Lemma A.3(3), it then suffices to show that

ν
n
= ν ′ ∧ Δ

n
= Δ′ =⇒ πT

n ∈ comp(ν)(Δ) → comp(ν ′)(Δ′)

for all ν and ν ′ in T and all Δ and Δ′ in W. So we assume that ν
n
= ν ′ and Δ

n
= Δ′,

let (c, c′) ∈ comp(ν)(Δ), and then show that (πT
n (c), πT

n (c′)) ∈ comp(ν ′)(Δ′).

If n = 0, this follows from (3.23) and the fact that comp(ν ′)(Δ′) is pointed.

If n > 0, we let Δ′
1 � Δ′ and (k, k′) ∈ cont(ν ′)(Δ′

1) and (s, s′) ∈ states(Δ′
1), and then show

that (πT
n (c) k s, πT

n (c′) k′ s′) ∈ RAns . Lemma 4.26 gives a Δ1 � Δ such that Δ1
n
= Δ′

1.

Since cont is non-expansive,

cont(ν)(Δ1)
n
= cont(ν ′)(Δ1)

n
= cont(ν ′)(Δ′

1) .

Furthermore, the fact that states belongs to TS implies that states(Δ1)
n
= states(Δ′

1).

Therefore, by (3.26), either:

(1) πT
n (c) k s = πT

n (c′) k′ s′ = ⊥, and we are done; or

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 683

(2) πT
n (c) k s = c (πK

n (k)) s0 and πT
n (c′) k′ s′ = c′ (πK

n (k′)) s′
0 where πS

n (s) = �s0� and

πS
n (s′) = �s′

0� with (πK
n (k), πK

n (k′)) ∈ cont(ν)(Δ1) and (s0, s
′
0) ∈ states(Δ1), in which

case,

(c (πK
n (k)) s0, c

′ (πK
n (k′)) s′

0) ∈ RAns

since (c, c′) ∈ comp(ν)(Δ) and Δ � Δ1.

→: T × TT → T:

It is easy to see that (ν → ξ)(Δ) is admissible for all Δ ∈ W since ξ maps worlds to

admissible relations. Also, ν → ξ is obviously monotone. By Lemma A.3(3), it then

suffices to show that

ν
n
= ν ′ ∧ ξ

n
= ξ′ ∧ Δ

n
= Δ′ =⇒ πn ∈ (ν → ξ)(Δ) → (ν ′ → ξ′)(Δ′)⊥

for all ν and ν ′ in T, all ξ and ξ′ in TT , and all Δ and Δ′ in W. So we assume that

ν
n
= ν ′ and ξ

n
= ξ′ and Δ

n
= Δ′, and let (in→f, in→f′) ∈ (ν → ξ)(Δ). If n = 0, we are

done by Equation (3.4), so we assume that n > 0. Define the two functions

g = λv.

{
πT
n (f w) if πn−1 v = �w�

⊥ otherwise

g′ = λv′.

{
πT
n (f′ w′) if πn−1 v

′ = �w′�
⊥ otherwise.

By (3.22), it suffices to show that (in→(g), in→(g′)) ∈ (ν ′ → ξ′)(Δ′). To do this, we let

Δ′
1 � Δ′ and (v, v′) ∈ ν ′(Δ′

1), and then show that (g(v), g′(v′)) ∈ ξ′(Δ′
1). Lemma 4.26

gives a Δ1 � Δ such that Δ1
n
= Δ′

1. So ν(Δ1)
n−1
= ν ′(Δ′

1), and there are therefore two

cases:

(1) πn−1 v = πn−1 v
′ = ⊥, and we are done; or

(2) πn−1 v = �w� and πn−1 v
′ = �w′� for some w,w′ such that (w,w′) ∈ ν(Δ1), in which

case (f w, f′ w′) ∈ ξ(Δ1) since (f, f′) ∈ (ν → ξ)(Δ) and Δ1 � Δ. Then, by (4.5),

ξ(Δ1)
n
= ξ′(Δ′

1), so (πT
n (f w), πT

n (f′ w′)) ∈ ξ′(Δ′
1). But this means precisely that

(g(v), g′(v′)) ∈ ξ′(Δ′
1).

It is at this point that we need the approximate locations λnl in order to show that ref

is well defined (and non-expansive). Suppose, for the sake of argument, that locations

were modelled simply using a flat cpo of natural numbers, that is, suppose Loc = �0

and π1(inLoc l) = �inLoc l� for all l ∈ �0. The definition of ref would then have the

form ref (ν)(Δ) = {(inLoc l, inLoc l) | l ∈ dom(Δ) ∧ . . . }. The function ref (ν) from worlds

to relations must be non-expansive. But assume then that Δ =1 Δ′. Then ref (ν)(Δ) =1

ref (ν)(Δ′) by non-expansiveness, and hence ref (ν)(Δ) = ref (ν)(Δ′) since π1 is the (lifted)

identity on locations. In other words, ref (ν) would only depend on the ‘first approximation’

of its argument world Δ, which can never be correct, no matter what the particular

definition of ref †. This observation generalises to variants where πn(inLoc l) = �inLoc l�)
for some arbitrary finite n.

† In particular, the obvious definition of ref as ref (ν)(Δ) = {(inLoc l, inLoc l) | l ∈ dom(Δ) ∧ ∀Δ1 �
Δ. i(Δ(l)) (Δ1) = ν(Δ1)} would not be well defined since it would not be non-expansive in Δ.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 684

For any finite set Ξ of type variables, the set TΞ of functions from Ξ to T is a metric

space with the product metric

d′(ϕ,ϕ′) = max{ d(ϕ(α), ϕ′(α)) | α ∈ Ξ } .

We are now ready to formulate the interpretation of types.

Definition 4.28. Let τ be a type and Ξ be a type environment such that Ξ � τ. The relational

interpretation of τ with respect to Ξ is the non-expansive function �τ�Ξ : TΞ → T defined

by induction on τ in Figure 6. The interpretation of recursive types is by appeal to

Banach’s fixed-point theorem (see Theorem 4.29).

In more detail, well definedness of �τ�Ξ must be argued along with non-expansiveness

by induction on τ (see below). This is similar to the more familiar situation encountered

with the untyped semantics of terms presented in Section 3: there, well-definedness must

be argued along with continuity because of the use of Kleene’s fixed-point theorem in the

interpretation of fix f.λx.t.

Theorem 4.29. Let τ be a type such that Ξ � τ.

(1) The function �τ�Ξ : TΞ → T defined in Figure 6 is non-expansive.

(2) If Ξ = Ξ′, α, then for all ϕ′ ∈ TΞ′
, we have that λν. λΔ. { (inμ v, inμ v

′) | (v, v′) ∈
�τ�Ξ′ ,αϕ

′[α
→ ν] Δ } is a contractive function from T to T. In particular, �μα.τ� is

well-defined.

Proof. First, we generalise Part 2:

(2′) λϕ λΔ. { (inμ v, inμ v
′) | (v, v′) ∈ �τ�Ξϕ Δ } is a contractive function from TΞ to T.

By the definition of the product metric, 2′ implies 2.

We now show 1 and 2′ by simultaneous induction on τ:

(1) If τ is int, 1 or 0, then �τ�Ξ is a constant function and hence trivially non-expansive.

If τ is a type variable α, then non-expansiveness of �τ�Ξ follows directly from the

definition of the product metric. In the cases where τ is τ1 × τ2, τ1 + τ2, ref τ′ or

τ1 → τ2, non-expansiveness follows directly from Lemma 4.27 and the induction

hypothesis.

We still need to consider the cases where τ is μα.τ′ or ∀α.τ′. First, assume that τ is

μα.τ′ for some τ′ such that Ξ, α � τ′. We know from 2′ and the induction hypothesis

that �μα.τ′�Ξ is a (well-defined) function from TΞ to T. To show that �μα.τ′�Ξ is non-

expansive, we let ϕ
n
= ϕ′ and show that �μα.τ′�Ξϕ

n
= �μα.τ′�Ξϕ

′. By Proposition 4.7, it

suffices to show that the two contractive functions g, g′ : T → T defined by

g = λν. λΔ. { (inμ v, inμ v
′) | (v, v′) ∈ �τ′�Ξ,αϕ[α
→ ν] Δ }

g′ = λν. λΔ. { (inμ v, inμ v
′) | (v, v′) ∈ �τ′�Ξ,αϕ

′[α
→ ν] Δ }

satisfy g
n
= g′. So we let ν ∈ T be given and then show that g ν

n
= g′ ν. But this

follows from 2′ and the induction hypothesis. Therefore, �μα.τ′�Ξ is non-expansive.

Now we assume that τ is ∀α.τ′ for some τ′ such that Ξ, α � τ′. First, �∀α.τ′�Ξϕ Δ

is complete for all Δ ∈ W since arbitrary intersections of complete relations are

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 685

complete. It is also easy to see that �∀α.τ′�Ξϕ is monotone since comp(�τ′�Ξ,αϕ[α → ν])

is monotone for all ν ∈ T. By Lemma A.2(3), it then suffices to show that

ϕ
n
= ϕ′ ∧ Δ

n
= Δ′ =⇒ πn ∈ �∀α.τ′�ΞϕΔ → (�∀α.τ′�Ξϕ

′ Δ′)⊥

for all ϕ and ϕ′ in TΞ and all Δ and Δ′ in W. So, let (in∀ c, in∀ c
′) ∈ �∀α.τ′�ΞϕΔ. If

n = 0, we are done by Equation (3.4), so we assume that n > 0. By (3.21), it then

suffices to show that (in∀(π
T
n c), in∀(π

T
n c′)) ∈ �∀α.τ′�Ξϕ

′ Δ′. To this end, we let Δ′
1 � Δ′

and ν ∈ T and show that (πT
n c, πT

n c′) ∈ comp(�τ′�Ξ,αϕ
′[α
→ ν])Δ′

1. Lemma 4.26

gives a Δ1 � Δ such that Δ1
n
= Δ′

1. Then (c, c′) ∈ comp(�τ′�Ξ,αϕ[α
→ ν])Δ1 since

(in∀ c, in∀ c
′) ∈ �∀α.τ′�ΞϕΔ. By the induction hypothesis, �τ′�Ξ,α is non-expansive, so

�τ′�Ξ,αϕ[α
→ ν]
n
= �τ′�Ξ,αϕ

′[α
→ ν]

by the definition of the product metric. Now, the operator comp is non-expansive by

Lemma 4.27, so

comp(�τ′�Ξ,αϕ[α
→ ν])
n
= comp(�τ′�Ξ,αϕ

′[α
→ ν]) .

Finally, by (4.5),

comp(�τ′�Ξ,αϕ[α
→ ν])Δ1
n
= comp(�τ′�Ξ,αϕ

′[α
→ ν])Δ′
1 ,

and we can conclude that

(πT
n c, πT

n c′) ∈ comp(�τ′�Ξ,αϕ
′[α
→ ν])Δ′

1

by Lemma A.3(1) and the fact that (c, c′) ∈ comp(�τ′�Ξ,αϕ[α
→ ν])Δ1.

(2′) Let G = λϕ λΔ. { (inμ v, inμ v
′) | (v, v′) ∈ �τ�ΞϕΔ }. We must show that G is a contractive

function from TΞ to T. First, it is easy to see that G(ϕ) is monotone and that G(ϕ)(Δ)

is admissible for all ϕ and Δ. So in order to show that G has codomain T, we still

need to verify Condition (b) of Lemma A.2(3). We show the more general property,

which also implies that G is contractive, that for all ϕ and ϕ′ in TΞ and all Δ and Δ′

in W,

ϕ
n
= ϕ′ ∧ Δ

n
= Δ′ =⇒ πn+1 ∈ G(ϕ)(Δ) → G(ϕ′)(Δ′)⊥ .

Notice the n+1 on the right-hand side: the above property implies that G is contractive

with factor δ = 1/2 (by taking Δ = Δ′ and using Lemma A.2(1) and symmetry).

So, let ϕ
n
= ϕ′ and Δ

n
= Δ′, and let (inμ v, inμ v

′) ∈ G(ϕ)(Δ). We know that (v, v′) ∈
�τ�Ξϕ Δ by the definition of G. Part 1 gives us that �τ�Ξ is non-expansive, so �τ�Ξϕ

n
=

�τ�Ξϕ
′. By (4.5), �τ�Ξϕ Δ

n
= �τ�Ξϕ

′ Δ′, so there are two cases:

(a) πn v = πn v
′ = ⊥, in which case we are done by (3.20); or

(b) there exists (w,w′) ∈ �τ�Ξϕ
′ Δ′ such that πn v = �w� and πn v

′ = �w′�, in

which case, (3.20) gives πn+1(inμ v) = �inμ w� and πn+1(inμ v
′) = �inμ w

′� where

(inμ w, inμ w
′) ∈ G(ϕ′)(Δ′).

Finally, in order that we can appeal to Banach’s fixed-point theorem and conclude

that the interpretation of recursive types is well defined, we need to ensure that the

complete metric space T is non-empty. We have already observed that, for example,

the constant function λΔ.�, used to interpret the type 0, belongs to T.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 686

We need the following weakening and substitution properties, which are easily proved

by induction on τ.

Proposition 4.30.

(1) Let τ be a type such that Ξ � τ, and let α /∈ Ξ. For all ϕ in TΞ and ν ∈ T,

�τ�Ξϕ = �τ�Ξ,αϕ[α
→ ν] .

(2) Let τ and τ′ be types such that Ξ, α � τ and Ξ � τ′. For all ϕ in TΞ,

�τ[τ′/α]�Ξϕ = �τ�Ξ,α(ϕ[α
→ �τ′�Ξϕ]) .

Corollary 4.31. For Ξ, α � τ and ϕ ∈ TΞ,

�μα.τ�Ξϕ = λΔ. { (inμ v, inμ v
′) | (v, v′) ∈ �τ[μα.τ/α]�ΞϕΔ } .

4.4. Interpretation of terms

For the interpretation of terms, we must show that the untyped meaning of a typed term

is related to itself at the appropriate type. We first show that comp respects the operations

η and
 of the monad T (defined in Section 3.1).

Definition 4.32. For ν ∈ T and ξ ∈ TT and Δ ∈ W, let ν
Δ→ ξ be the binary relation on

functions V → TV defined by

ν
Δ→ ξ = { (f, f′) | ∀Δ1 � Δ.∀(v, v′) ∈ ν(Δ1). (f v, f′ v′) ∈ ξ(Δ1) } .

Proposition 4.33. Let ν, ν1, ν2 ∈ T and Δ ∈ W.

(1) If (v, v′) ∈ ν(Δ), then (η v, η v′) ∈ comp(ν)(Δ).

(2) If (c, c′) ∈ comp(ν1)(Δ) and (f, f′) ∈ ν1
Δ→ comp(ν2), then

(c
 f, c′
 f′) ∈ comp(ν2)(Δ) .

Proof.

(1) Assume that (v, v′) ∈ ν(Δ). By definition, η v = λk.λs. k v s, and similarly for η v′. To

show that (η v, η v′) ∈ comp(ν)(Δ), we let Δ1 � Δ and (k, k′) ∈ cont(ν)(Δ1) and (s, s′) ∈
states(Δ1), and then show that ((η v) k s, (η v′) k′ s′) ∈ RAns , that is, that (k v s, k′ v′ s′) ∈
RAns . But this follows directly from the definition of cont(ν)(Δ1) since (v, v′) ∈ ν(Δ) ⊆
ν(Δ1) by monotonicity.

(2) Assume that (c, c′) ∈ comp(ν1)(Δ) and (f, f′) ∈ ν1
Δ→ comp(ν2). By definition,

c
 f = λk.λs. c (λv.λs1.f v k s1) s,

and similarly for c′
 f′. To show that (c
 f, c′
 f′) ∈ comp(ν2)(Δ), we let Δ1 � Δ and

(k, k′) ∈ cont(ν2)(Δ1) and (s, s′) ∈ states(Δ1), and show that ((c
 f) k s, (c′
 f′) k′ s′) ∈
RAns , that is, that

(c (λv.λs1.f v k s1) s, c
′ (λv′.λs′

1.f
′ v′ k′ s′

1) s
′) ∈ RAns .

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 687

Since (c, c′) ∈ comp(ν1)(Δ) and Δ1 � Δ and (s, s′) ∈ states(Δ1), it suffices to show that

(λv.λs1.f v k s1, λv
′.λs′

1.f
′ v′ k′ s′

1) ∈ cont(ν1)(Δ1). So we let Δ2 � Δ1 and (v, v′) ∈ ν1(Δ2)

and (s1, s
′
1) ∈ states(Δ2), and show that (f v k s1, f

′ v′ k′ s′
1) ∈ RAns . First, (f v, f′ v′) ∈

comp(ν2)(Δ2) by assumption on (f, f′). By monotonicity of cont(ν2), we have (k, k′) ∈
cont(ν2)(Δ2), and by assumption, (s1, s

′
1) ∈ states(Δ2). Therefore, it follows from the

definition of comp(ν2)(Δ2) that (f v k s1, f
′ v′ k′ s′

1) ∈ RAns .

Definition 4.34. For every term environment Ξ � Γ, every ϕ ∈ TΞ and every Δ ∈ W, let

�Γ�ΞϕΔ be the binary relation on V dom(Γ) defined by

�Γ�Ξϕ Δ = { (ρ, ρ′) | ∀x ∈ dom(Γ). (ρ(x), ρ′(x)) ∈ �Γ(x)�Ξϕ Δ } .

Definition 4.35. Two typed terms Ξ | Γ � t : τ and Ξ | Γ � t′ : τ of the same type are

semantically related, written Ξ | Γ |= t ∼ t′ : τ, if for all ϕ ∈ TΞ, all Δ ∈ W and all

(ρ, ρ′) ∈ �Γ�ΞϕΔ, (
�t�dom(Γ)ρ, �t

′�dom(Γ)ρ
′) ∈ comp(�τ�Ξϕ)(Δ) .

Theorem 4.36 (Fundamental Theorem). Every typed term is semantically related to itself:

if Ξ | Γ � t : τ, then Ξ | Γ |= t ∼ t : τ.

Proof. We will show the stronger property that semantic relatedness is preserved

by all the term constructs. We use Proposition 4.33 to avoid tedious reasoning about

continuations and states for the term constructs that do not directly involve references.

We will just give the details for some illustrative cases:

(1) If Γ(x) = τ, then Ξ | Γ |= x ∼ x : τ.

Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�Ξϕ Δ be given. Then (ρ(x), ρ′(x)) ∈
�τ�Ξϕ Δ. Therefore, by Proposition 4.33(1),

(�x�dom(Γ)ρ, �x�dom(Γ)ρ
′) = (η(ρ(x)), η(ρ′(x))) ∈ comp(�τ�Ξϕ)(Δ) ,

as required.

(2) If Ξ | Γ |= t ∼ t′ : μα.τ, then Ξ | Γ |= unfold t ∼ unfold t′ : τ[μα.τ/α].

Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�ΞϕΔ be given. Recall that

�unfold t�dom(Γ)ρ = �t�dom(Γ)ρ
 f and �unfold t′�dom(Γ)ρ
′ = �t′�dom(Γ)ρ

′
 f where f :

V → TV is given by

f v =

{
η(v0) if v = inμ v0

error otherwise.

By assumption,

(�t�dom(Γ)ρ, �t′�dom(Γ)ρ
′) ∈ comp(�μα.τ�Ξϕ)(Δ).

So, by Proposition 4.33(2), it suffices to show that

(f, f) ∈ �μα.τ�Ξϕ
Δ→ comp(�τ[μα.τ/α]�Ξϕ) .

To see this, we let Δ1 � Δ and (v, v′) ∈ �μα.τ�ΞϕΔ1 be given, and show that (f v, f v′) ∈
comp(�τ[μα.τ/α]�Ξϕ)(Δ1). By Corollary 4.31, (v, v′) = (inμ v0, inμ v

′
0) for some (v0, v

′
0) ∈

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 688

�τ[μα.τ/α]�ΞϕΔ1. But then by Proposition 4.33(1),

(f v, f v′) = (η(v0), η(v
′
0)) ∈ comp(�τ[μα.τ/α]�Ξϕ)(Δ1) ,

as required.

(3) If Ξ, α | Γ |= t ∼ t′ : τ and Ξ � Γ, then Ξ | Γ |= Λα.t ∼ Λα.t′ : ∀α.τ.
Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�ΞϕΔ be given. Recall that

�Λα.t�dom(Γ)ρ = η(in∀(�t�dom(Γ)ρ)) and that �Λα.t′�dom(Γ)ρ
′ = η(in∀(�t

′�dom(Γ)ρ
′)). We

must therefore show that(
η(in∀(�t�dom(Γ)ρ)), η(in∀(�t

′�dom(Γ)ρ
′))

)
∈ comp(�∀α.τ�Ξϕ)(Δ) .

By Proposition 4.33(1), it suffices to show that(
in∀(�t�dom(Γ)ρ), in∀(�t

′�dom(Γ)ρ
′)
)

∈ �∀α.τ�ΞϕΔ .

We proceed according to the definition of �∀α.τ�Ξ. We let ν ∈ T be given and show

that

(�t�dom(Γ)ρ, �t′�dom(Γ)ρ
′) ∈ comp(�τ�Ξ,αϕ[α
→ ν])(Δ).

But this follows from the assumption that Ξ, α | Γ |= t ∼ t′ : τ since Proposition 4.30(1)

(weakening) gives (ρ, ρ′) ∈ �Γ�Ξ,αϕ[α
→ ν].

(4) If Ξ | Γ |= t ∼ t′ : ∀α.τ0 and Ξ � τ1, then Ξ | Γ |= t [τ1] ∼ t′ [τ1] : τ0[τ1/α].

Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�ΞϕΔ be given. Recall that

�t [τ1]�dom(Γ)ρ = �t�dom(Γ)ρ
 g and �t′ [τ1]�dom(Γ)ρ
′ = �t′�dom(Γ)ρ

′
 g where g : V → TV

is given by

g v =

{
c if v = in∀ c

error otherwise.

By assumption,

(�t�dom(Γ)ρ, �t′�dom(Γ)ρ
′) ∈ comp(�∀α.τ�Ξϕ)(Δ).

So, by Proposition 4.33(2), it suffices to show that

(g, g) ∈ �∀α.τ�Ξϕ
Δ→ comp(�τ0[τ1/α]�Ξϕ) .

To see this, we let Δ1 � Δ and (v, v′) ∈ �∀α.τ�Ξϕ Δ1 be given, and then show that

(g v, g v′) ∈ comp(�τ0[τ1/α]�Ξϕ)(Δ1). By the definition of �∀α.τ0�Ξ, we know that (v, v′) =

(in∀ c, in∀ c
′) for some c and c′ satisfying

(c, c′) ∈ comp(�τ0�Ξ,αϕ[α
→ ν])(Δ1)

for all ν ∈ T. Now choose ν = �τ1�Ξϕ. Proposition 4.30(2) (substitution) then gives

(g v, g v′) = (c, c′) ∈ comp(�τ0[τ1/α]�Ξϕ)(Δ1) ,

as required.

(5) If Ξ | Γ |= t ∼ t′ : τ, then Ξ | Γ |= ref t ∼ ref t′ : ref τ.

Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�ΞϕΔ be given. Recall that

�ref t�dom(Γ)ρ = �t�dom(Γ)ρ
 λv. alloc v and �ref t′�dom(Γ)ρ
′ = �t′�dom(Γ)ρ

′
 λv. alloc v.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 689

By assumption, (�t�dom(Γ)ρ, �t′�dom(Γ)ρ
′) ∈ comp(�τ�Ξϕ)(Δ). Therefore, by Proposi-

tion 4.33(2), it suffices to show that

(alloc, alloc) ∈ �τ�Ξϕ
Δ→ comp(�ref τ�Ξϕ) .

To see this, we let Δ1 � Δ and (v, v′) ∈ �τ�ΞϕΔ1 be given, and then show that

(alloc v, alloc v′) ∈ comp(�ref τ�Ξϕ)(Δ1).

We proceed according to the definition of comp. We let Δ2 � Δ1 and (k, k′) ∈
cont(�ref τ�Ξϕ)(Δ2) and (s, s′) ∈ states(Δ2) be given, and show that

(alloc v k s, alloc v′ k′ s′) ∈ RAns . (4.6)

We know that dom(s) = dom(s′) = dom(Δ2). Let l0 ∈ �0 be the least number such

that l0 /∈ dom(Δ2). Then

alloc v k s = k λl0 (s[l0
→ v]) (4.7)

alloc v′ k′ s′ = k′ λl0 (s′[l0
→ v′]) . (4.8)

We now aim to use the assumption that (k, k′) ∈ cont(�ref τ�Ξϕ)(Δ2). Define Δ3 =

Δ2[l0
→ i−1(�τ�Ξϕ)] (where i is the isomorphism associated with the recursive metric-

space equation.) Clearly, Δ3 � Δ2 since l0 /∈ dom(Δ2). Then (λl0 , λl0) ∈ �ref τ�ΞϕΔ3 =

ref (�τ�Ξϕ)(Δ3) since for all Δ4 � Δ3 we have

i(Δ4(l0)) = i(Δ3(l0)) = i(i−1(�τ�Ξϕ)) = �τ�Ξϕ .

Furthermore,

(s[l0
→ v], s′[l0
→ v′]) ∈ states(Δ3)

since for l ∈ dom(Δ2), we have

((s[l0
→ v])(l), (s′[l0
→ v′])(l)) = (s(l), s′(l)) ∈ i(Δ2(l)) (Δ2)

= i(Δ3(l)) (Δ2)

⊆ i(Δ3(l)) (Δ3),

by monotonicity of i(Δ3(l)) ∈ W →mon CURel (V), and, also,

((s[l0
→ v])(l0), (s′[l0
→ v′])(l0)) = (v, v′) ∈ �τ�ΞϕΔ1

⊆ �τ�ΞϕΔ3 ,

by monotonicity of �τ�Ξϕ. Therefore, (4.7), (4.8) and the assumption that (k, k′) ∈
cont(�ref τ�Ξϕ)(Δ2) gives (4.6), as required.

(6) If Ξ | Γ |= t ∼ t′ : ref τ, then Ξ | Γ |= ! t ∼ !t′ : τ.

Indeed, let ϕ ∈ TΞ and Δ ∈ W and (ρ, ρ′) ∈ �Γ�ΞϕΔ be given. Using exactly the

same reasoning as in the previous case, we see that it suffices to show that

(lookup, lookup) ∈ �ref τ�Ξϕ
Δ→ comp(�τ�Ξϕ).

Therefore, we let Δ1 � Δ and (v, v′) ∈ �ref τ�ΞϕΔ1 be given, and show that

(lookup v, lookup v′) ∈ comp(�τ�Ξϕ)(Δ1).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 690

According to the definition of �ref τ�Ξϕ = ref (�τ�Ξϕ), there are two cases:

(a) v = v′ = λl for some l ∈ dom(Δ1); or

(b) v = v′ = λn+1
l for some n ∈ ω and l ∈ dom(Δ1).

We will just consider the second case; the first is similar, but easier.

We proceed according to the definition of comp. So we let Δ2 � Δ1 and (k, k′) ∈
cont(�τ�Ξϕ)(Δ2) and (s, s′) ∈ states(Δ2) be given, and then show that

(lookup v k s, lookup v′ k′ s′) ∈ RAns . (4.9)

By the definition of ref , we have v = v′ = λn+1
l where i(Δ1(l))(Δ2)

n
= �τ�ΞϕΔ2. Since

(s, s′) ∈ states(Δ2), we know that

(s(l), s′(l)) ∈ i(Δ2(l))(Δ2).

Since l ∈ dom(Δ1) and Δ2 � Δ1, we have

i(Δ2(l))(Δ2) = i(Δ1(l))(Δ2)
n
= �τ�Ξϕ Δ2 .

There are therefore two cases:

(a) πn(s(l)) = πn(s
′(l)) = ⊥, in which case, the definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (⊥,⊥) ∈ RAns .

and we are done; or

(b) (πn(s(l)), πn(s
′(l))) = (�v0�, �v′

0�) where (v0, v
′
0) ∈ �τ�Ξϕ Δ2, in which case, the

definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (k v0 s, k
′ v′

0 s
′). (4.10)

By assumption, (k, k′) ∈ cont(�τ�Ξϕ)(Δ2). Therefore, by the definition of cont , we

have (k v0 s, k
′ v′

0 s
′) ∈ RAns . We can then conclude (4.9) from (4.10), and we are

done.

For many of the remaining cases, the core of the proof is to show that comp preserves

logical relatedness. For example:

(�t1�ρ, �t′1�ρ
′) ∈ comp(�τ → τ′�Ξϕ)(Δ) ∧ (�t2�ρ, �t′2�ρ

′) ∈ comp(�τ�Ξϕ)(Δ) =⇒
(�t1 t2�ρ, �t′1 t

′
2�ρ

′) ∈ comp(�τ′�Ξϕ)(Δ) (4.11)

(�t1�ρ, �t′1�ρ
′) ∈ comp(�τ1�Ξϕ)(Δ) ∧ (�t2�ρ, �t′2�ρ

′) ∈ comp(�τ2�Ξϕ)(Δ) =⇒
(�(t1, t2)�ρ, �(t′1, t

′
2)�ρ

′) ∈ comp(�τ1 × τ2�Ξϕ)(Δ) (4.12)

Corollary 4.37.

(1) If � | � � t : τ is a closed term of type τ, then �t��� �= error.

(2) If � | � � t : int is a closed term of type int, then �t�p �= errorAns .

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 691

Proof.

(1) The theorem gives (�t���, �t���) ∈ comp(�τ���)(�). Now let sinit ∈ S be the

empty store and k0 ∈ K be the continuation that always gives the answer 0, that

is, k0 v s = ι1 0 for all v and s. It follows immediately from the definitions that

(k0, k0) ∈ cont(�τ���)(�) and that (sinit , sinit) ∈ states(�). Therefore,

(�t��� k0 sinit , �t��� k0 sinit) ∈ RAns .

By the definition of RAns , we must then have �t��� k0 sinit �= errorAns , which implies

that �t��� �= error.

(2) Recall that �t�p = �t��� kinit sinit where sinit ∈ S is the empty store and where

kinit = λv.λs.

{
�ι1 m� if v = in�(m)

errorAns otherwise .

It is easy to show that (kinit , kinit) ∈ cont(�int���)(�). Furthermore, as we have

already argued, (sinit , sinit) ∈ states(�).

The theorem gives (�t���, �t���) ∈ comp(�τ���)(�), which then implies that

(�t�p, �t�p) = (�t��� kinit sinit , �t��� kinit sinit) ∈ RAns .

Therefore �t�p �= errorAns by the definition of RAns .

5. On the need for approximate locations

Consider the following tentative interpretation of reference types:

ref (ν)(Δ) = {(λl , λl) | l ∈ dom(Δ) ∧ ∀Δ1 � Δ. i(Δ(l))(Δ1) = ν(Δ1)} .

As we argued in the discussion following the proof of Lemma 4.27, this function ref (ν)

is not non-expansive and hence does not belong to the space T of semantic types.

Accordingly, we have introduced approximate locations and settled for a more complicated

interpretation of reference types.

Still, it might be that one could interpret semantic types and worlds differently, perhaps

by solving a recursive equation in a different category so that we could have achieved a

‘simple’ interpretation of reference types.

In this section we show, in an abstract setup, and under some relatively mild assump-

tions, that such a simple interpretation is impossible. The proof works for an arbitrary set

V , which is not required to be a domain, and there is no requirement that the elements

λl are particular values such as integers. The intuitive idea of the proof is that semantic

worlds (as expressed by a solution to the recursive equations between types and worlds)

can in a certain sense be used to encode recursive types, and that recursive types and

‘simple’ reference types are incompatible.

Let V be a set and GRel (V) be a set of subsets of V × V that is closed under finite

intersections and contains the empty set. We think of GRel (V) as the set of ‘good’ relations

on V . For example in the context of this paper, V would be the universal predomain from

Proposition 3.2 and GRel (V) would be CURel (V).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 692

Now assume that T̂ is a set and that i : T̂ → T is a bijection into some subset T of

(Loc ⇀fin T̂) →mon GRel (V). That is, T is a subset of those functions that are monotone

with respect to the ‘extension’ order on W = Loc ⇀fin T̂ and the inclusion order on

GRel (V). We assume that T contains all the constant functions, and that for all ν1 ∈ T
and ν2 ∈ T the monotone function ν1 ∧ ν2 given by

(ν1 ∧ ν2)(Δ) = ν1(Δ) ∩ ν2(Δ)

belongs to T.

The idea is that T should be thought of as the set of ‘good’ monotone func-

tions. In the concrete metric-space context, T consists of the non-expansive, monotone

functions.

We now add the following assumption.

Assumption 5.1. There is an injective function c : V → V such that for every l ∈ ω, the

monotone function νl given by

νl(Δ) =

{
{(c(v), c(v′)) | (v, v′) ∈ i(Δ(l))(Δ)} if l ∈ dom(Δ)

� otherwise

belongs to T.

For every R ∈ GRel (V), we define c(R) = {(c(v), c(v′) | (v, v′) ∈ R}. With this notation,

the assumption implies that νl(Δ) = c(i(Δ(l))(Δ)) when l ∈ dom(Δ). The idea is that νl
is a ‘self-application’ operator up to some function c, which could potentially be the

identity function. We also assume that for every R ∈ GRel (V), the relation c(R) belongs

to GRel (V).

In the concrete model presented in this paper, we can choose c = inμ. Then the function

νl defined above is indeed non-expansive (and hence belongs to T): Lemma A.1 says that

if Δ =n Δ′ for some n > 0, then dom(Δ) = dom(Δ′). The same lemma also says that if l be-

longs to these two domains, then i(Δ(l)) =n−1 i(Δ
′(l)) and hence i(Δ(l))(Δ) =n−1 i(Δ

′(l))(Δ′).

Finally, by the definition of the projection functions, inμ(i(Δ)(Δ)) =n inμ(i(Δ
′)(Δ′)), as

desired.

Returning to the abstract case, we now show that νl has the following ‘universality’

property.

Proposition 5.2. For every ν ∈ T there exists Δ0 ∈ W such that

νl(Δ) = c(ν(Δ)) for all Δ � Δ0.

Proof. Choose Δ0 = [l
→ i−1(ν)]. Then for all Δ � Δ0, we have

νl(Δ) = c(i(Δ(l))(Δ)) = c(ν(Δ)).

Even though the proof of the proposition is about as simple as it could be, the

proposition itself is in our opinion slightly counterintuitive: how can it possibly be that

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 693

every type ν ∈ T ‘agrees with νl ’ somewhere? One answer is that the set of worlds

W is not just some abstract preorder; it is a set that is so large that it includes T
itself.

It follows that all endofunctions on T have ‘fixed points up to c’ in a certain sense.

Corollary 5.3. For every function F from T to T there exists some ν ′ ∈ T and Δ0 ∈ W
such that

ν ′(Δ) = c(F(ν ′)(Δ)) for all Δ � Δ0.

Furthermore, for every location l ∈ ω, one can choose the ν ′ and Δ0 above such that

dom(Δ0) = {l}.

Proof. Choose ν = F(νl) in the previous proposition.

Using these results, we show that the simple interpretation of reference types is

impossible:

Proposition 5.4. Let λ(−) : ω → V be an arbitrary, injective function. There is no function

ref : T → T satisfying

ref (ν)(Δ) = {(λl , λl) | l ∈ dom(Δ) ∧ ∀Δ1 � Δ. i(Δ(l))(Δ1) = ν(Δ1)}

for all ν ∈ T and Δ ∈ W.

Proof. We assume that ref is such a function and derive a contradiction.

First, observe that every singleton relation {(λl , λl)} belongs to GRel (V): for an arbitrary

ν ∈ T, we have {(λl , λl)} = ref (ν)([l
→ i−1(ν)]), so {(λl , λl)} is in the image of ref (ν) ∈ T.

Then, by assumption on c, the relation {(c(λl), c(λl))} also belongs to GRel (V). Finally,

the function single(c(λl)) = λΔ.{(c(λl), c(λl))} belongs to T since we have assumed that

T contains all the constant functions.

Let l ∈ ω be an arbitrarily chosen number and define F : T → T by F(ν) =

ref (ν ∧ single(c(λl))). Corollary 5.3 gives ν ∈ T and Δ0 ∈ W such that

ν(Δ) = c(F(ν)(Δ))

for all Δ � Δ0. By the last clause of the corollary, we can assume that l /∈ dom(Δ0) (by

choosing dom(Δ0) = {l′} for some l′ �= l). We now let Δ′
0 = Δ0[l
→ i−1(λΔ.�)] and aim to

show that

(λl , λl) /∈ F(ν)(Δ) for all Δ � Δ′
0. (5.1)

To do this, we assume that (λl , λl) ∈ F(ν)(Δ) for some Δ � Δ′
0. First, the definition of F

and the assumption on ref give i(Δ(l))(Δ) = (ν ∧ single(c(λl))(Δ) (here we use the fact that

λ(−) is injective). Then, since Δ � Δ′
0,

ν(Δ) ∩ {(c(λl), c(λl))} = (ν ∧ single(c(λl)))(Δ)

= i(Δ(l))(Δ)

= i(Δ′
0(l))(Δ)

= �,

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 694

which means that (c(λl), c(λl)) /∈ ν(Δ). But ν(Δ) = c(F(ν)(Δ)) since Δ � Δ′
0 � Δ0, and we

therefore conclude that (λl , λl) /∈ F(ν)(Δ), which gives a contradiction. This shows (5.1).

In particular, taking Δ = Δ′
0 in (5.1), we get that (λl , λl) /∈ F(ν)(Δ′

0). But then, by the

definition of F and the assumption on ref , there is some Δ � Δ′
0 such that i(Δ′

0(l))(Δ) �=
(ν ∧ single(c(λl))(Δ). Since i(Δ′

0(l))(Δ) = �, this means that (ν ∧ single(c(λl))(Δ) is non-

empty; in other words, (c(λl), c(λl)) ∈ ν(Δ). Therefore, since ν(Δ) = c(F(ν)(Δ)) and since c

is injective, (λl , λl) ∈ F(ν)(Δ). But this contradicts (5.1).

This proof only depends on the existence of a particular ‘recursive type’ ν(Δ) =

c(F(ν)(Δ)). Accordingly, one can show a more syntactic variant of the proposition above

that does not depend on Assumption 5.1: below we merely assume that c : V →
V is some injective function satisfying c(R) ∈ GRel (V) for all R ∈ GRel (V). The

semantic type ν will then be obtained as the interpretation of a syntactic recursive

type.

In order to express the syntactic counterpart of the semantic type ν, we add finite

intersection types τ1 ∧ τ2 to the language.

Proposition 5.5. Let λ(−) : ω → V be an arbitrary, injective function. There is no

interpretation function �−�(−), mapping types in context Ξ to functions from TΞ to

T, that satisfies

�α�Ξϕ(Δ) = ϕ(α)(Δ)

�ref τ�Ξϕ(Δ) = {(λl , λl) | l ∈ dom(Δ) ∧ ∀Δ1 � Δ. i(Δ(l))(Δ1) = �τ�Ξϕ(Δ1)}
�μα.τ�Ξϕ(Δ) = {(c(v), c(v′)) | (v, v′) ∈ �τ[μα.τ/α]�Ξϕ(Δ)}

�τ1 ∧ τ2�Ξϕ(Δ) = �τ1�Ξϕ(Δ) ∩ �τ2�Ξϕ(Δ)

for all τ and Δ.

To show this, one essentially repeats the argument in the previous proof, but taking

ν = �μα. ref (α ∧ β)�β[β
→ single(c(λl))].

6. Examples

The model can be used to prove the equivalences in Birkedal et al. (2009, Section 5). More

specifically, one can use the model to prove that some equivalences between different

functional implementations of abstract data types are still valid in the presence of general

references, and also prove some simple equivalences involving imperative abstract data

types. (See Section 7 for more about extending the model to account properly for local

state.) Here we will only sketch two of these examples, together with a ‘non-example’: an

equivalence that cannot be shown because of the existence of approximated locations in

the model.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 695

6.1. Encoding of existential types

We use the usual encoding of existential types by means of universal types (Crary and

Harper 2007): ∃α.τ = ∀β.(∀α. τ → β) → β where β does not occur free in τ. At the term

level, we define pack(τ′, t) = Λβ.λx.x [τ′] t where x does not occur free in t.

The natural proof principle for relatedness at existential types is then derivable.

Proposition 6.1. Let Ξ | Γ � pack(τ1, t) : ∃α.τ and Ξ | Γ � pack(τ2, t
′) : ∃α.τ. Assume that

ν ∈ T satisfies the condition that for all Δ ∈ W, all ϕ ∈ TΞ and all (ρ, ρ′) ∈ �Γ�ϕ(Δ),(
�t�ρ, �t′�ρ′) ∈ comp(�τ�(ϕ[α
→ ν]))(Δ).

Then

Ξ | Γ |= pack(τ1, t) ∼ pack(τ2, t
′) : ∃α.τ.

Proof. By the congruence properties of semantic relatedness (see the proof of The-

orem 4.36), it suffices to show

Ξ, β | Γ, x : ∀α.τ → β |= x [τ1] t ∼ x [τ2] t
′ : β.

(Here we have renamed β and x to ensure that they do not occur in Ξ and Γ, respectively.)

To this end, we let Δ ∈ W and ϕ ∈ TΞ,β and (ρ, ρ′) ∈ �Γ, x : ∀α.τ → β�ϕ(Δ) be given,

and then show (
�x [τ1] t�ρ, �x [τ2] t

′�ρ′) ∈ comp(ϕ(β))(Δ). (6.1)

Since ρ and ρ′ are related, we have ρ(x) = in∀ c and ρ′(x) = in∀ c
′ for some c and c′ with

(in∀ c, in∀ c
′) ∈ �∀α.τ → β�ϕ(Δ). The interpretation of universal types then gives(

�x [τ1]�ρ, �x [τ2]�ρ
′) = (c, c′) ∈ comp(�τ → β�(ϕ[α
→ ν]))(Δ). (6.2)

The assumption of the proposition (and weakening with respect to β and x) gives(
�t�ρ, �t′�ρ′) ∈ comp(�τ�(ϕ[α
→ ν]))(Δ). (6.3)

Then, using (4.11), we get that (6.2) and (6.3) imply (6.1).

6.2. Example: imperative counter module

Here we use the encoding of existential types presented in the previous section. The type

τm = ∃α. (1 → α) × (α → 1) × (α → int)

can be used to model imperative counter modules: the idea is that a value of type τm

consists of some hidden type α, which is used to represent imperative counters, as well

as three operations for creating a new counter, incrementing a counter and reading the

value of a counter, respectively.

Consider the following two module implementations, that is, closed terms of type τm:

J = pack(ref int, I)

J ′ = pack(ref int, I ′)

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 696

where

I = (λx.ref 0, λx. x := !x + 1, λx.!x)

I ′ = (λx.ref 0, λx. x := !x − 1, λx.−(!x).

We now show by parametricity reasoning, that is, by exploiting the universal quantification

in the interpretation of universal types, that � | � |= J ∼ J ′ : τm.

We use the abbreviation τ = (1 → α)× (α → 1)× (α → int). By Proposition 6.1 it suffices

to find ν ∈ T such that (�I�, �I ′�) ∈ comp(�τ�[α → ν])(Δ) for all Δ.

Let R = {(inZ (n), inZ (−n)) | n ∈ ω} and choose ν = ref (λΔ.R). That is, we choose ν to

be the semantic type of locations that point to R-related values. Now let Δ ∈ W be given.

By (4.12), it suffices to show

(�λx.ref 0�, �λx.ref 0�) ∈ comp(�1 → α�[α
→ ν])(Δ) (6.4)

(�λx. x := !x + 1�, �λx. x := !x − 1�) ∈ comp(�α → 1�[α
→ ν])(Δ) (6.5)

(�λx.!x�, �λx.−!x�) ∈ comp(�α → int�[α
→ ν])(Δ). (6.6)

In all three cases we use the first part of Proposition 4.33. Then, (6.5) and (6.6) follow

straightforwardly from the definitions given our choice of ν.

To show (6.4), we let η(in→f) = �λx.ref 0� and show that

(in→f, in→f) ∈ �1 → α�[α
→ ν](Δ). (6.7)

Let Δ1 � Δ and (v, v′) ∈ �1�(Δ) be given. We must now show that (f(v), f(v′)) ∈
comp(ν)(Δ1). To do this, we unfold the definition of comp: let Δ2 � Δ1 and (k, k′) ∈
cont(ν)(Δ2) and (s, s′) ∈ states(Δ2) be given. We must show that

(f(v) k s, f(v′) k′ s′) ∈ RAns .

By the interpretation of allocation, f(v) k s = k λl (s[l
→ inZ0]) where l is the smallest

number such that l /∈ dom(s). Since (s, s′) ∈ states(Δ2), we have dom(s) = dom(s′) =

dom(Δ2), and, therefore, f(v′) k′ s′ = k′ λl (s
′[l
→ inZ0]). (That is, the new location is the

same one as above.) Since (k, k′) ∈ cont(ν)(Δ2), it therefore suffices to find Δ3 � Δ2 such

that

(λl , λl) ∈ ν(Δ3) (6.8)

(s[l
→ inZ0], s′[l
→ inZ0]) ∈ states(Δ3). (6.9)

Choose Δ3 = Δ2[l
→ i−1(λΔ.R)]. Then (6.8) follows directly from the fact that ν =

ref (λΔ.R): indeed, for all Δ4 � Δ3, we have

i(Δ4(l))(Δ4) = R = (λΔ.R)(Δ4).

To show (6.9), first it is clear that

((s[l
→ inZ0])(l), (s′[l
→ inZ0])(l)) = (inZ0, inZ0) ∈ i(Δ3(l))(Δ3).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 697

Then, for l′ �= l, the fact that (s, s′) ∈ states(Δ2) (and monotonicity) gives

((s[l
→ inZ (0)])(l′), (s′[l
→ inZ (0)])(l′)) = (s(l′), s′(l′)) ∈ i(Δ2(l))(Δ2)

= i(Δ3(l))(Δ2)

⊆ i(Δ3(l))(Δ3).

We can now conclude that (6.9) holds, and hence that � | � |= J ∼ J ′ : τm.

6.3. Example: local references and closures

One can also implement an imperative counter module by means of a local reference and

two closures. Consider the type τlr = 1 → ((1 → 1) × (1 → int)) and the two counter

implementations

M = λx : 1. let r = ref 0 in (λy : 1. r := !r + 1, λy : 1. !r)

M ′ = λx : 1. let r = ref 0 in (λy : 1. r := !r − 1, λy : 1. −(!r))

where the let . . . in construct is syntactic sugar for a β-redex in the usual way. Both

M and M ′ are closed terms of type τlr. By ‘store parametricity’ reasoning, that is, by

exploiting the universal quantification over all larger worlds in the definition of cont, one

can show that � | � |= M ∼ M ′ : τlr.

In a little more detail, let η(in→f) = �M� and η(in→f′) = �M ′�. We let Δ ∈ W be given

and show that (in→f, in→f′) ∈ �τlr�(Δ). To do this, we let Δ1 � Δ and (v, v′) ∈ �1�(Δ1) be

given and show that

(f(v), f′(v′)) ∈ comp(�(1 → 1) × (1 → int)�)(Δ1). (6.10)

We unfold the definition of comp: let Δ2 � Δ1 and

(k, k′) ∈ cont(�(1 → 1) × (1 → int)�)(Δ2)

and (s, s′) ∈ states(Δ2) be given. We must now show that

(f(v) k s, f′(v′) k′ s′) ∈ RAns . (6.11)

Let l ∈ ω be the least number not in dom(Δ2). Then

f(v) k s = k (in×(in→g1, in→g2)) (s[l
→ inZ (0)])

f′(v′) k′ s′ = k′ (in×(in→g′
1, in→g′

2)) (s′[l
→ inZ (0)])

where

η(in→g1) = �λy : 1. r := !r + 1�[r
→ λl]

and

η(in→g2) = �λy : 1. !r�[r
→ λl],

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 698

and similarly for g′
1 and g′

2. In order to show (6.11), it therefore suffices to find Δ3 � Δ2

such that

(in→g1, in→g′
1) ∈ �1 → 1�(Δ3)

(in→g2, in→g′
2) ∈ �1 → int�(Δ3)

(s[l
→ inZ (0)], s′[l′
→ inZ (0)]) ∈ states(Δ3).

It is not hard to see that these conditions can be satisfied by choosing Δ3 = Δ2[l
→
i−1(λΔ.R)] where R = {(inZ (n), inZ (−n)) | n ∈ ω} as in the previous example.

6.4. Example: references to the empty type

Consider the two terms K = λx.2 and K ′ = λx.3 of type ref 0 → int. Given a standard

operational semantics for the language, a simple bisimulation-style argument should suffice

to show that K and K ′ are contextually equivalent: no reference cell can ever contain a

value of type 0, and therefore neither function can ever be applied. However, as we will

show next, the equivalence � | � |= K ∼ K ′ : ref 0 → int does not hold. Briefly, the

reason for this is the existence of approximate locations in the model.

First, by the congruence property of semantic relatedness (Theorem 4.36), if � | � |=
K ∼ K ′ : ref 0 → int holds, then so does � | x : ref 0 |= K x ∼ K ′ x : int. Hence it suffices

to show that the latter does not hold.

Let R ∈ CURel (V) be the singleton relation {(in1∗, in1∗)}. (Any other non-empty

relation in CURel (V) would also do.) Also, let l ∈ ω be an arbitrary location and define

Δ = [l
→ i−1(λΔ′.R)]. Then

(λ1
l , λ

1
l) ∈ �ref 0�(Δ) (6.12)

since l ∈ dom(Δ) and i(Δ(l))(Δ1)
0
= �0�(Δ1) holds vacuously for all Δ1. Now let ρ = [x
→

λ1
l], so (ρ, ρ) ∈ �x : ref 0�(Δ). We claim that(

�K x�ρ, �K ′ x�ρ
)
/∈ comp(�int�)(Δ), (6.13)

which shows that � | x : ref 0 |= K x ∼ K ′ x : int does not hold. Indeed, �K x�ρ = η(inZ2)

while �K ′ x�ρ = η(inZ3), so(
�K x�ρ kinit [l
→ in1∗], �K ′ x�ρ kinit [l
→ in1∗]

)
=

(
�ι1(2)�, �ι1(3)�

)
/∈ Ans ,

which shows (6.13). We conclude that � | x : ref 0 |= K x ∼ K ′ x : int does not hold and

hence that � | � |= K ∼ K ′ : ref 0 → int does not hold.

Looking back, the problem is indeed the presence of approximate locations: equa-

tion (6.12) intuitively implies that ref 0 is ‘inhabited’, while the operational equivalence

between K and K ′ expresses exactly the fact that ref 0 is not inhabited.

7. Related work

Metric spaces

As we have already mentioned, the metric-space structure on uniform relations over

universal domains is well known (Abadi and Plotkin 1990; Amadio 1991; Amadio and

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 699

Curien 1998; Cardone 1989; MacQueen et al. 1986). The inverse-limit method for solving

recursive domain equations was first adapted to metric spaces by America and Rutten

(America and Rutten 1989).

Approximate locations

Approximate (or ‘semantic’) locations were first introduced in Birkedal et al. (2009), which

contains an adequacy proof with respect to an operational semantics, and also an entirely

different, quasi-syntactic, interpretation of open types. Here we have instead presented

what is in some ways a more natural interpretation that results from solving a recursive

metric-space equation, thereby obtaining a proper universe of semantic types. Open types

are then interpreted in the expected way, that is, as maps from environments of semantic

types to semantic types.

Game semantics

Abramsky et al. (1998) presented a game semantics for a language with general reference

types. References are, informally speaking, modelled as pairs of ‘get’ and ‘set’ functions,

following an idea by Reynolds. This model of references allows a compositional interpret-

ation of reference types, as in this paper. In other words, the meaning of the reference

type ref τ is completely determined by the meaning of the type τ. On the other hand,

modelling references as pairs of functions introduces the so-called ‘bad variable’ problem:

there is no guarantee that a pair of functions inhabiting the reference type behaves like

a reference cell, in the sense that, for example, calling ‘get’ returns the most recent value

given to ‘set’. Another consequence is that the model cannot be used to interpret the

equality testing of references.

Our model has a related, but milder variant of the bad variable problem. As illustrated

by the example in Section 6.4, there is no guarantee that an inhabitant of a semantic

reference type behaves like an actual location in terms of observations performed by

lookup and assignment. It is, however, guaranteed that every inhabitant corresponds to

an actual reference cell, and that lookup and assignment operations are domain-theoretic

approximations of the ‘real’ operations on that reference cell. The model can easily be used

to interpret equality testing of references. On the other hand, Abramsky et al.’s model is

fully abstract for a language that includes a ‘bad-variable constructor’, while our model

is far from fully abstract.

Laird (2007) presents a fully abstract trace semantics for a language with general

references. This model, which has a strong game-semantics ‘flavour’, does not exhibit the

bad variable problem.

Game semantics has been used to model recursive types (McCusker 2000) and

impredicative polymorphism (Abramsky and Jagadeesan 2005). The latter model features

a very different approach to parametricity that allows for non-relational reasoning about

terms of polymorphic type. We are not aware of any game semantics that models the

combination of impredicative polymorphism, general reference types and recursive types

that we have considered in this article.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 700

Step-indexing and recursively defined worlds

The technique of solving a metric-space equation in order to build a Kripke-style model,

as presented in this paper, has subsequently been used by Schwinghammer et al. in

their model of separation logic for a language with higher-order store (Schwinghammer

et al. 2009), and in their more recent extension (with F. Pottier) in Schwinghammer

et al. (2010), which includes an ‘anti-frame rule’ for local reasoning about state.

The fundamental circularity between worlds and types in realisability-style possible-

worlds models of polymorphism and general references was observed in Ahmed (2004,

page 62) in the setting of operational semantics (and for unary relations). Rather than

solve a recursive equation, her solution was to stratify worlds and types into different

levels, represented by natural numbers. So-called step-indexing is used in the definition to

ensure that a stratified variant of the fundamental theorem holds. These stratified worlds

and types are somewhat analogous to the approximants of recursive-equation solutions

that are employed in the inverse-limit method. The main advantage in ‘going to the

limit’ of the approximations and working with an actual solution (as we do here) is that

approximation information is then not ubiquitous in definitions and proofs; by analogy,

the only ‘approximation information’ in our model is in the interpretation of references

and in the requirement that user-supplied relations are uniform†.

In recent work, the authors of the current paper, and others, have shown that the

metric-space approach presented here can be used with step-indexing to provide a high-

level approach to giving operational semantics that involve recursively defined structures

(Birkedal et al. 2010a). In particular, we have presented a model of Charguéraud and

Pottier’s type-and-capability system for an ML-like higher-order language, together with

an operational model of the logic of Schwinghammer et al. (2009).

Ahmed et al. have recently (and independently) proposed a step-indexed model of a

language very similar to ours, but in which worlds are defined in a more complicated

way (Ahmed et al. 2009): this allows for proofs of much more advanced equivalences

involving local state. As we described in the introduction, we have recently shown that

our approach extends to this style of worlds (Birkedal et al. 2010b). In future work, we

also plan to investigate local-state parameters in the style of Bohr and Birkedal (2006). By

contrast, in the present paper, our intention has just been to present the fundamental ideas

behind Kripke logical relations over recursively defined sets of worlds as required for the

semantic modelling of parametric polymorphism, recursive types, and general references.

Appendix A. Concrete descriptions of some metric spaces

Recall that the set T = W →mon CURel (V) is a subset of the underlying set of the

exponential T = W → CURel (V) in CBUlt, and as such is given a natural metric by

Proposition 4.18. We call this metric d1 in the following, and let d2 be the metric on T̂
associated with the isomorphism i : T̂ → 1/2 · T obtained from Theorem 4.20. The fact

† We plan to carry out a more formal comparison in future work.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 701

that i is an isomorphism then implies that

d2(ν̂, ν̂
′) = 1/2 · d1(i(ν̂), i(ν̂

′)) (A.1)

for all ν̂ and ν̂ ′ in T̂.

Lemma A.1. For Δ,Δ′ ∈ W, we have that Δ
n
= Δ′ if and only if either

(1) n = 0; or

(2) n > 0 and dom(Δ) = dom(Δ′) and

i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0

for all l ∈ dom(Δ) and all Δ0 ∈ W.

(The ‘n − 1’ comes from the ‘1/2’ on the right-hand side of the isomorphism (4.4).)

Proof.

Only if: We assume that Δ
n
= Δ′ and that n > 0 and show that dom(Δ) = dom(Δ′)

and that i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0 for all l ∈ dom(Δ) and all Δ0 ∈ W. Since d(Δ,Δ′) �

2−n < 1, the definition of the metric on W implies that dom(Δ) = dom(Δ′) and that

d(Δ,Δ′) = max{d2(Δ(l),Δ′(l)) | l ∈ dom(Δ)}. Now let l ∈ dom(Δ) and Δ0 ∈ W. First,

d2(Δ(l),Δ′(l)) � d(Δ,Δ′) � 2−n, and (A.1) therefore gives

d1(i(Δ(l)), i(Δ′(l))) = 2 · d2(Δ(l),Δ′(l)) � 2−(n−1) .

Then, by the definition of the metric d1 on T (Proposition 4.18),

d(i(Δ(l))Δ0, i(Δ
′(l))(Δ0)) � d1(i(Δ(l)), i(Δ′(l))) � 2−(n−1) ,

that is, i(Δ(l))Δ0
n−1
= i(Δ′(l))(Δ0), and we are done.

If: The relation Δ
0
= Δ′ holds for any Δ and Δ′ since W is 1-bounded. So we assume that

n > 0, that dom(Δ) = dom(Δ′) and that i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0 for all l ∈ dom(Δ) and

all Δ0 ∈ W. Then for every l ∈ dom(Δ), we have d1(i (Δ(l)), i(Δ′(l))) � 2−(n−1) by the

definition of d1, and hence

d2(Δ(l),Δ′(l)) = 1/2 · d1(i(Δ(l)), i(Δ′(l))) � 2−n

by (A.1). Therefore, d(Δ,Δ′) � 2−n, that is, Δ
n
= Δ′.

Lemma A.2. Let (A, (�n)n∈ω) be a uniform cpo. We use the abbreviation

CURel (A) = CURel (A, (�n)n∈ω)

and consider the metrics on CURel (A) and W →mon CURel (A) given by Proposition 4.18:

(1) For R, S ∈ CURel (A), we have R
n
= S if and only if �n ∈ R → S⊥ and �n ∈ S → R⊥.

(2) For ν, ν ′ ∈ W →mon CURel (A), we have ν
n
= ν ′ if and only if ν(Δ0)

n
= ν ′(Δ0) for all

Δ0 ∈ W.

(3) A function ν from W to CRel (A) belongs to W →mon CURel (A) if and only if it

satisfies the following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ � Δ′, then ν(Δ) ⊆ ν(Δ′).

(b) If Δ
n
= Δ′, then �n ∈ ν(Δ) → ν(Δ′)⊥.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

L. Birkedal, K. Støvring, and J. Thamsborg 702

Lemma A.3. Let (D, (�n)n∈ω) be a uniform cppo. We use the abbreviation

AURel (D) = AURel (D, (�n)n∈ω)

and consider the metrics on AURel (D) and W →mon AURel (D) given by Propositions 4.14

and 4.15.

(1) For R, S ∈ AURel (D), we have R
n
= S if and only if �n ∈ R → S and �n ∈ S → R.

(2) For ξ, ξ′ ∈ W →mon AURel (D), we have ξ
n
= ξ′ if and only if ξ(Δ0)

n
= ξ′(Δ0) for all

Δ0 ∈ W.

(3) A function ξ from W to ARel (D) belongs to W →mon AURel (D) if and only if it

satisfies the following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ � Δ′, then ξ(Δ) ⊆ ξ(Δ′).

(b) If Δ
n
= Δ′, then �n ∈ ξ(Δ) → ξ(Δ′).

Acknowledgements

We are grateful to the anonymous referees for comments and suggestions. We would

also like to thank Nick Benton, Lennart Beringer, Stephen Brookes, Martin Hofmann,

Andrew Kennedy, Paul Blain Levy, Rasmus Møgelberg, François Pottier, Bernhard Reus,

John Reynolds, Jan Schwinghammer and Hongseok Yang for comments and discussions

regarding this work.

References

Abadi, M. (2000) Top-top-closed relations and admissibility. Mathematical Structures in Computer

Science 10 (3) 313–320.

Abadi, M. and Plotkin, G.D. (1990) A per model of polymorphism and recursive types. In:

Proceedings of LICS 355–365.

Abramsky, S., Honda, K. and McCusker, G. (1998) A fully abstract game semantics for general

references. In: Proceedings of LICS 334–344.

Abramsky, S. and Jagadeesan, R. (2005) A game semantics for generic polymorphism. Annals of

Pure and Applied Logic 133 (1–3) 3–37.

Ahmed, A. (2004) Semantics of Types for Mutable State, Ph.D. thesis, Princeton University.

Ahmed, A., Dreyer, D. and Rossberg, A. (2009) State-dependent representation independence. In:

Proceedings of POPL 340–353.

Amadio, R.M. (1991) Recursion over realizability structures. Information and Computation 91 (1)

55–85.

Amadio, R.M. and Curien, P.-L. (1998) Domains and Lambda-Calculi, Cambridge University Press.

America, P. and Rutten, J. J.M.M. (1989) Solving reflexive domain equations in a category of

complete metric spaces. J. Comput. Syst. Sci. 39 (3) 343–375.

Baier, C. and Majster-Cederbaum, M.E. (1997) The connection between initial and unique solutions

of domain equations in the partial order and metric approach. Formal Aspects of Computing 9

(4) 425–445.

Benton, N. and Hur, C.-K. (2009) Biorthogonality, step-indexing and compiler correctness. In:

Proceedings of ICFP 97–108.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 14 Jul 2010 IP address: 130.226.133.62

Parametric polymorphism, general references and recursive types 703

Benton, N. and Leperchey, B. (2005) Relational reasoning in a nominal semantics for storage. In:

Proceedings of TLCA. Springer-Verlag Lecture Notes in Computer Science 3461 86–101.

Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J. and Yang, H. (2010a)

Step-indexed kripke models over recursive worlds. Submitted for publication. Available at http:

//www.itu.dk/people/birkedal/papers/step-recworld-conf.pdf.

Birkedal, L., Støvring, K. and Thamsborg, J. (2009) Relational parametricity for references and

recursive types. In: Proceedings of TLDI 91–104.

Birkedal, L., Støvring, K. and Thamsborg, J. (2010b) A relational realizability model for higher-order

stateful ADTs. Submitted for publication. Available at http://www.itu.dk/people/birkedal/

papers/relrmhoadt.pdf.

Bohr, N. and Birkedal, L. (2006) Relational reasoning for recursive types and references. In:

Proceedings of APLAS. Springer-Verlag Lecture Notes in Computer Science 4279 79–96.

Cardone, F. (1989) Relational semantics for recursive types and bounded quantification. In:

Proceedings of ICALP. Springer-Verlag Lecture Notes in Computer Science 372 164–178.

Crary, K. and Harper, R. (2007) Syntactic logical relations for polymorphic and recursive types.

Electronic Notes in Theoretical Computer Science 172 259–299.

Laird, J. (2007) A fully abstract trace semantics for general references. In: Proceedings of ICALP.

Springer-Verlag Lecture Notes in Computer Science 4596 667–679.

Levy, P. B. (2006) Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order

and Symbolic Computation 19 (4) 377–414.

MacQueen, D. B., Plotkin, G.D. and Sethi, R. (1986) An ideal model for recursive polymorphic

types. Information and Control 71 (1/2) 95–130.

McCusker, G. (2000) Games and full abstraction for FPC. Information and Computation 160 (1–2)

1–61.

Moggi, E. (1991) Notions of computation and monads. Information and Computation 93 55–92.

Petersen, R. L., Birkedal, L., Nanevski, A. and Morrisett, G. (2008) A realizability model for

impredicative Hoare type theory. In: Proceedings of ESOP. Springer-Verlag Lecture Notes in

Computer Science 4960 337–352.

Pierce, B. C. (2002) Types and Programming Languages, The MIT Press.

Pitts, A.M. (1996) Relational properties of domains. Information and Computation 127 66–90.

Pitts, A.M. (1998) Existential types: Logical relations and operational equivalence. In: Proceedings

of ICALP. Springer-Verlag Lecture Notes in Computer Science 1443 309–326.

Plotkin, G.D. and Power, J. (2004) Computational effects and operations: An overview. Electronic

Notes in Theoretical Computer Science 73 149–163.

Schwinghammer, J., Birkedal, L., Reus, B. and Yang, H. (2009) Nested Hoare triples and frame

rules for higher-order store. In: Proceedings of CSL. Springer-Verlag Lecture Notes in Computer

Science 5771 440–454.

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F. and Reus, B. (2010) A semantic foundation for

hidden state. In: Proceedings of FOSSACS. Springer-Verlag Lecture Notes in Computer Science

6014 2–17.

Smyth, M.B. (1992) Topology. In: Abramsky, S., Gabbay, D. and Maibaum, T. S. E. (eds.) Handbook

of Logic in Computer Science, Oxford University Press.

Smyth, M.B. and Plotkin, G.D. (1982) The category-theoretic solution of recursive domain

equations. SIAM Journal on Computing 11 (4) 761–783.

Wagner, K.R. (1994) Solving Recursive Domain Equations with Enriched Categories, Ph.D. thesis,

Carnegie Mellon University.

Winskel, G. (1993) The Formal Semantics of Programming Languages, Foundation of Computing

Series, The MIT Press.

http://www.journals.cambridge.org

