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Resumé

I denne opgave studerer vi typesikkerhed af en udgave af System
F med referencer og rekursive funktioner og typer. Vi tager først
den klassiske tilgang, idet vi beviser sætninger om progress og
preservation som medfører typesikkerhed for dette sprog.

For et fragment af dette sprog uden referencer og rekursion
beviser vi også typesikkerhed ved hjælp af et logisk prædikat, og
vi definerer en binær logisk relation som kan benyttes til at vise
kontekstuel ækvivalens af programmer.

Abstract

In this report we study type safety of a version of System F with
references and recursive functions and types. We first take the
classical approach, proving progress and preservation theorems
which imply type safety for this language.

For a fragment of this language without references and recur-
sion we also prove type safety using a logical predicate, and we
define a binary logical relation which can be used to show contex-
tual equivalence of programs.
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Preface

For the computer scientist, programming languages and programming
in general are both an important tool and an interesting and fruitful
subject of study. While we will briefly discuss practical applications
of type systems, this report is chiefly concerned with the latter: In
particular, we study how to describe programming languages and their
semantics in a manner that is amenable to proof, how type systems give
guarantees on runtime safety of programs, and how we can talk about
two programs being ‘the same’.

The genesis of this project was a project course on logical relations
led by Lars Birkedal and Simon Oddershede Gregersen in the autumn
of 2023, the purpose of my own project essentially being to write up the
solutions to exercises in all their gory detail, for the benefit of current
and future students. While this purpose can hardly be said to have
survived the writing process, I have tried as far as possible to be clear
and pedagogical, with the hope that the present report reads more like
a textbook than a journal article.

There is of course another motivation for writing a report like this
one: Namely, obtaining a bachelor’s degree. And the report must then,
in part, show that I have learnt enough to warrant this distinction.
Hopefully this is the case, though I will certainly claim that the process
of writing it has been a great learning experience.

The end result is a report that is, quite frankly, all over the place. I
have been rather (some would say too) detailed in my presentation of
the syntax and semantics of programming languages, something which
I have rarely, if at all, seen done in the introductory literature. On the
other hand I make liberal (some would say gratuitous) references to
category theory, topology, algebra and even measure theory to try to
explicate the concepts being studied. I hope that the reader not familiar
with these topics will forgive me.

Organisation

Chapter 1 is a miscellany of foundational topics that appear throughout
the report. It covers the elementary theory of inference rules, induc-
tion and recursive definitions, making ample use of Appendix A on
order theory. Next abstract syntax is introduced, and we give a rather
thorough, if informal, treatment of abstract syntax trees in the style of
Harper (2016). Then follows short sections on reduction, partitions and
coinduction, whose purpose is more or less to introduce definitions and
fix notation.

In Chapter 2 we introduce the two languages we study throughout
the rest of the report. These are the pure language Fwhich is a variant of

ix
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Girard’s System F, and the extension F9,µ,ref which among other things
include references as well as recursive functions and types. After a
tour of the type system of these languages, we prove some of their
fundamental properties. Keywords are ‘inversion’ and ‘canonical forms’.

Chapters 3 and 4 are both concerned with type safety. The first of
these chapters proves type safety for F9,µ,ref using the classic approach
of ‘progress and preservation’. The second instead focuses on F and uses
a logical predicate to prove type safety.

Next, Chapter 5 introduces (binary) logical relations, which are ex-
tensions of logical predicates to two arguments. We consider how to
define equivalence of programs, and define a logical relation as a tool to
prove equivalence of concrete programs.

Appendix A is a fairly extensive and mostly self-contained appendix
covering elementary order theory with a view towards the fixed-point
theorems we need to get us o↵ the ground in Chapter 1. We generalise
the theory beyond what is necessary for our purposes: It turns out that
the theory underlying recursive definitions of things like type systems or
operational semantics appears in a more general context in mathematics,
in particular in topology and measure theory. While a more elementary
approach is su�cient to cover our applications of the theory, we wish to
highlight exactly what it is that makes type systems di↵erent from e.g.
topologies or �-algebras. This all but necessitates the use of transfinite
induction and recursion, but we provide an elementary path through
the material for readers either not familiar with the requisite set theory,
or readers simply not interested in the aforementioned generalisations.

Appendix B collects the syntax and semantics of our languages. To
avoid cluttering the body of the text, this is the only place the complete
specifications of the languages are located. To mitigate flipping to and
from this appendix, we thus encourage the reader to either open a
second copy of this report in another window, or to use a pdf-reader
with a ‘back’-button. Every cross reference includes a link for precisely
this purpose.

Finally, after the bibliography are located two fairly extensive indices
that will hopefully help the reader find their way through the report.
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Preliminaries 1
This first chapter introduces various topics that will be needed in the
sequel. In particular we consider recursive definitions of sets and func-
tions, inference rules and generating functions, abstract syntax, reduc-
tion systems, partitions and coinduction.

1.1 ⇧ Notation

We begin by fixing notation.
If X is a set, then we denote by P (X) the power set of X, and for a

cardinal  we furthermore write P(X) for the collection of subsets of Readers unfamiliar with cardinal
and ordinal numbers can for our pur-
poses safely think of  as an element
of N[ {1}, and of ! as1.

X with cardinality strictly less than . If A 2 P(X), then we also write
A ✓ X. For ordinals ↵ we do not distinguish between the ordinal !↵

and the cardinal @↵ , and we write !B !0. Hence P!(X) denotes the set
of finite subsets of X, and A ✓! X means that A is a finite subset of X.

If Y is another set, then we denote the set of partial maps from X

to Y by (X * Y ). If f 2 (X * Y ) then we let dom f and ran f denote the
domain and range of f , respectively. We also write (X * Y ) for the
partial functions f 2 (X * Y ) with dom f ✓ X. For x0 2 X and y0 2 Y

we denote by f [x0 7! y0] the partial map given by

f [x0 7! y0](x) =

8>><>>:
y0, x = x0,

f (x), x 2 dom f \ {x0}.

Hence dom f [x0 7! y0] = dom f [ {x0}, so that if f 2 (X *! Y ), then also
f [x0 7! y0] 2 (X *! Y ). Any partial map with empty domain is denoted
?.

We let N denote the set of natural numbers, including 0, Z the set
of integers, and N+ the set of strictly positive integers.

The image of a set A ✓ X under a function f : X ! Y is denoted
f [A]. We similarly write f �1[B] for the preimage of B ✓ Y under f . The It is common to write simply f (A) for

the image of A under f , relying on
context to distinguish this from the
value of f at an element A of X.

restriction of f to A is denoted f |A.
An indexed family of elements of a set X is a map I ! X, where I is

any set called the index set of the family. If A is an indexed family of
elements of X and Y is some set, then we write A ✓ Y if the image of A
is a subset of Y . If the image of i 2 I under the indexed family is xi , then
we also write (xi )i2I . If I is the finite set {1, . . . ,n}, then we also denote
the family (xi )i2I by ~x. The set of finite sequences of elements from X is
denoted X

⇤.

1



2 1. preliminaries

1.2 ⇧ Definition by recursion

1.2.1. Generating functions

Let (P,) be a poset, and let f : P ! P be a monotone map. We think
of f as a generating function, in the sense that given an element x 2 P
representing a set of states of some system, it generates a new set of
states f (x). The fact that f is monotone models that given a larger set of
states as input, a larger set of new states is also generated.

We wish to find an element x 2 P such that f cannot generate any-
thing new from it—i.e., x should be f -closed—and we don’t want this
element to contain any ‘redundancies’: It should contain only those
states mandated by f . More precisely, x should be the least f -closed
element in P. But Lemma A.4.2 says that x is then a fixed-point of f , in-
deed its smallest fixed-point, and is denoted µ(f ). Hence we may instead
focus our attention on fixed-points.

In this generality it is not possible to systematically study the fixed-
points of f . Indeed, f may not even have any! Hence we must impose
appropriate further requirements on P or f . If P is a power set, then
it is in particular a complete lattice, and we thus have access to the
Knaster–Tarski fixed-point theorem (cf. Theorem A.4.9), ensuring the
existence of both a least and a greatest fixed-point.

We will also have occasion to consider fixed-points of monotone
functions defined on posets that are not complete lattices. Most import-
antly, notice that a set (X * Y ) of partial functions is not generally a
complete lattice, but that it does satisfy a collection of weaker proper-
ties: The empty map ? is its least element, and every directed subset
D of (X * Y ) has a join, namely the map whose graph is the union of
the graphs of the elements in D. This means that (X * Y ) is a dcppo,
and thus Kleene’s fixed-point theorem applies (cf. Theorems A.4.12
and A.4.13). This also ensures that µ(f ) is the least f -closed element of
P. Especially important in the present context is the following:

1.2.1 • Corollary: Principle of induction.
Let P be a dcppo and let f : P ! P be monotone. If y 2 P is f -closed, then
µ(f )  y. ⌅

1.2.2. Inference rules
Specialising to the case where P is a power set P (X), one way to defineWhen we in Theorem 1.2.5 study

how to define functions recursively
using inference rules, it will be im-
portant that H is indexed. Compare
e.g. Pitts (2013, §7.1) who only con-
siders H as a set.

a generating function is using inference rules. An inference rule over
X is a pair (H,y), where H is an indexed family of elements of X called
the hypotheses of the rule, and y 2 X is its conclusion. We denote this
rule by1 H �) y, and if we give this rule the name R, then we also write

1This is not standard notation. Pitts
(2013, §7.1) simply denotes it by
(H,y), but we prefer to use a slightly
more distinctive notation.

R : H �) y. The index set of H is then also denoted i(R).
If R has finitely many premises ~x = (x1, . . . ,xn), then we say that R is

finitary. In this case we naturally write R : ~x �) y, and we also use the



1.2. definition by recursion 3

notation
R

x1 x2 · · · xn

y
.

We allow n to be zero, in which case we call the rule an axiom and write
�) y.

Given a (usually infinite) collectionR of inference rules, we construct While the collection of inference
rules will usually be infinite, they
will be presented in the form of fi-
nitely many rule schemas, as is usual
when presenting axioms in (first-
order) logic.

a generating function F : P (X) ! P (X) by defining F(A) for a subset
A ✓ X as follows: For y 2 X we let y 2 F(A) if and only if there is a rule
H �) y in R with H ✓ A. We say that F is represented by R. In this case
F is clearly monotone, so by Theorem A.4.9 it has a least and a greatest
fixed-point. Since it is often unnecessary to explicitly talk about F, we
also write µ(R) and ⌫(R) for these fixed-points.

By Corollary 1.2.1we also get a principle of induction for F. However,
it is useful to restate induction in terms of the inference rules, since we
usually have explicit rules in mind when defining F. If R is a collection
of inference rules on X, then we say that a subset K ✓ X isR-closed if,
given any rule A �) y in R, A ✓ K implies that y 2 K .

1.2.2 • Lemma. If F is represented by a collectionR of inference rules, then
a subset A ✓ X is F-closed if and only if it is R-closed.

Proof. First assume that A is F-closed so that F(A) ✓ A, and consider a
ruleH �) y fromR withH ✓ A. Since F is represented byR, this implies
that y 2 F(A) ✓ A, so A is R-closed.

If A is R-closed, then let y 2 F(A). Then there is a rule H �) y in
R with H ✓ A. But since A is R-closed, this implies that y 2 A, and so
F(A) ✓ A. ⌅

1.2.3 • Theorem: Principle of rule induction.
If R is a set of inference rules on X and A ✓ X, then µ(R) ✓ A if and only if
the following condition holds: For every inference rule H �) y in R, H ✓ A

implies y 2 A.

Proof. Let F be the function represented by R. The condition says
precisely that A is R-closed, which by Lemma 1.2.2 is equivalent to A

being F-closed. The claim thus follows from Corollary 1.2.1. ⌅

Notice that the principle of induction follows since fixed-points are
closed. But fixed-points are also consistent, which leads to the following
important result:

1.2.4 • Theorem: Inversion.
IfR is a collection of inference rules and y 2 µ(R), then there is a ruleH �) y

in R such that H ✓ µ(R).

Proof. Let F be the function represented by R. Then we in particular
have y 2 µ(F) ✓ F(µ(F)), which by definition of F implies that there is an
inference rule H �) y with H ✓ µ(F), as desired. ⌅
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This is particularly useful if there to any y 2 µ(R) is a unique inference
rule with y as its conclusion, but sometimes this is not even necessary, as
long as we have the right knowledge about which inference rules have y
as their conclusion. We will see an application of this in Lemma 2.4.3.

These kinds of results are sometimes proved by rule induction, for
instance by Pitts (2013, §7.2) or Harper (2016, Lemma 4.2), and this
approach is indeed more elementary, circumventing Theorem A.4.9 or
similar results. But notice that the proof above does not have anything
to do with induction: Indeed, as mentioned above induction concerns
properties of closed sets, while inversion follows from the consistency of
fixed-points. In fact, the proof of Theorem 1.2.4 goes through if µ(R) is
replaced with any F-consistent set.

Inversion is also sometimes justified by appealing to a notion of ‘de-
rivation’ of elements of µ(R), by arguing that y is obtained by applying
a series of inference rules to the set of axioms. It is then claimed that
there is a last such application, which must have the form H �) y, and
since this application is valid it follows that H ✓ µ(R). If all rules in R
are finitary, then it is indeed possible, and in fact very simple, to set
up a deductive calculus that does precisely this. This is the approach
taken in Hindley (1997, e.g. Remark 2A8.6), using a version of natural
deduction.

1.2.3. Recursive functions
As is usual, the above principle of proof by induction allows us to define
functions by recursion.

(a) Total functions. We begin by proving that we can define total
functions recursively. In contrast to recursion on N, it may be possible
to obtain an element of the relation µ(R) by applying multiple di↵erent
rules, in which case it is not obvious that a purported recursive function
is well-defined. We only consider the case where each element in µ(R)
is the conclusion of a unique rule, since this is all we will need in the
sequel.

The statement of Theorem 1.2.5 is
based on Moschovakis (2006, Corol-
lary 5.12), while the proof is inspired
by Davey and Priestley (2002, §8.18)
and Moschovakis (2006, §6.30).

1.2.5 • Theorem: Recursion.
Let R be a set of inference rules such that each y 2 µ(R) is the conclusion of
a unique rule, and let Z be any set. For each R 2R let hR : µ(R)⇥Zi(R)

! Z

be a function. Then there is a unique function f : µ(R)! Z such that if
R : (xi )i2i(R) �) y, then

f (y) = hR

⇣
y, (f (xi ))i2i(R)

⌘
. (1.1)

Proof. Define a function G : (µ(R) * Z)! (µ(R) * Z) as follows: For
f : µ(R) * Z let domG(f ) be the set of elements y 2 µ(R) such that if
R : (xi )i2i(R) �) y is the unique rule with conclusion y, then (xi )i2i(R) ✓
dom f . For y 2 domG(f ) we then let

G(f )(y) = hR

⇣
y, (f (xi ))i2i(R)

⌘
.
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Clearly G is monotone, so Theorem A.4.13 implies that G has a least
fixed-point f ⇤.

We prove that f ⇤ is indeed a total function, i.e., that µ(R) ✓ dom f
⇤.

By Theorem 1.2.3 it su�ces to show that if R : (xi )i2i(R) �) y is a rule with
(xi ) ✓ dom f

⇤, then also y 2 dom f
⇤. But notice that dom f

⇤ = domG(f ⇤),
so y lies in dom f

⇤ just when (xi ) ✓ dom f
⇤. Hence f ⇤ is total. It follows

that
f
⇤(y) = G(f ⇤)(y) = hR

⇣
y, (f ⇤(xi ))i2i(R)

⌘

for all rules R : (xi )i2i(R) �) y.
Finally, to prove that f ⇤ is unique simply note that any partial func-

tion f that satisfies (1.1) is a fixed-point of G, so f
⇤
 f by minimality

of f ⇤. But since f ⇤ is total, this implies that f ⇤ = f . ⌅

(b) Finitary rules. If every rule in R is finitary, then it turns out
that we can avoid an appeal to Theorem A.4.13, instead using The-
orem A.4.12. Of course G is monotone, and we claim that it is compact
(cf. Definition A.3.2). Assume that f 2 domG and y 2 domG(f ). If ~x �) y

is the unique rule with y as conclusion, let f0 B f |~x. Then f0 is finite and
y 2 domG(f0) with

G(f0)(y) = hR

⇣
y, f0(x1), . . . , f0(xn)

⌘

= hR

⇣
y, f (x1), . . . , f (xn)

⌘

= G(f )(y),

so G is compact. Hence it is continuous by Proposition A.3.3, so The-
orem A.4.12 implies that G has a least fixed-point f ⇤. The rest of the
proof is identical to the above.

(c) Partial functions. We also sometimes wish to define partial func-
tions recursively. This is no issue due to the correspondence between
partial and total functions described in §A.3.1: To define a partial func-
tion f : X * Y , first define a total function f⇤ : X ! Y⇤ by recursion,
letting f⇤(x) = ⇤ if x is supposed to lie outside the domain of f . Then
restrict f⇤ to the set {x 2 X | f⇤(x) , ⇤}.

1.3 ⇧ Abstract syntax

In this report we have no interest in the concrete syntax of languages; in-
stead we seek an abstract representation of the structure of programs.We
describe one formulation of abstract syntax trees—inspired by Harper
(2016)—but we do not go into painstaking detail in either the definition
of such trees, nor in the proofs of their properties, for a few reasons:

I The definition of abstract syntax trees that support bindings (what
Harper calls ‘abstract binding trees’) is fairly involved, and our
naïve understanding of abstract syntax is accurate enough not to
cause issues.
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I What is important is not the precise formulation of any kind of
abstract syntax, but rather its existence and basic properties.

I An abstract syntax that is readable to humans is di�cult to form-
alise in a proof assistant, so if that is our ultimate goal then we
will have to revisit these issues anyway.

While our abstract syntax is of course heavily inspired by the �-calculus,
note that the �-calculus is usually defined2 by a concrete syntax (i.e., as2For instance by Barendregt (1984).
a formal language).

1.3.1. Abstract syntax trees

An abstract syntax tree (or simply AST) is a rooted tree whose leaves are
variables, and whose interior nodes are operators. Operators simultan-
eously play the roles of functions and of binding constructs, analogous
to function symbols and quantifiers in formal logic, respectively. There-
fore, each operator not only has an arity (which may be zero), for each
argument it also specifies which variables it binds inside this argument.

Wemay use inference rules to define the set of ASTs. Fix some infinite
set V of variables and O of operators which have been assigned arities.Since programs are finite, V need not

be more than countably infinite, but
for our purposes we do not need to
assume that it is countable.

For each x 2 V we have the axiom

x
(1.2)

saying that x itself is an AST. Next, say that the operator ' 2 O takes n
arguments, and in the ith argument it binds ki variables. If a1, . . . , an are
ASTs and ~xi 2 V

ki , then we have the ruleFor instance, we might have an AST
on the form let(a;x.b), which has the
desired interpretation of letting xB
a in b. Since there are no variables
bound in the first argument, we have
omitted the period.

a1 · · · an

'(~x1.a1; . . . ;~xn.an)
(1.3)

This is supposed to denote the application of the operator ' to the ASTs
a1, . . . , an, in which the variables ~x1, . . . ,~xn have been bound, yielding a
new AST. It should be clear that any AST is the conclusion of a unique
rule; on the other hand, many rules with the same hypotheses have
di↵erent conclusions.

Of course, for this to be well-defined we need some ‘ground set’ from
which we draw the ASTs, i.e., which plays the role of the set X in §1.2.2.
We do not care precisely what X looks like, but if we think of expressions
such as '(~x1.a1; . . . ;~xn.an) as being a sort of nested tuple, then we can
take X to be the set of all finitely nested tuples whose elements are
operators or variables.We do not wish to think of expres-

sions such as '(~x1.a1; . . . ;~xn.an) as
denoting formal expressions, as this
would defeat the purpose of defin-
ing an abstract syntax, requiring us
to concern ourselves with issues of
parsing, unique readability, etc.

1.3.1 • Definition: Abstract syntax trees.
The set of abstract syntax trees with variables V and operators O is
the set generated by the inference rules (1.2) and (1.3) and is denoted
A[V ,O]. N
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(a) Free and bound variables. Having defined the set of ASTs recurs-
ively, Theorem 1.2.5 allows us to recursively define functions on ASTs:
We first define what is meant by free variables. This will be a function
FV: A[V ,O]! P (V ) with the properties

FV(x) = {x},

FV
⇣
'(~x1.a1; . . . ;~xn.an)

⌘
=

n[

i=1

⇣
FV(ai ) \ ~xi

⌘
.

The function FV is usually ‘defined’ simply by writing down the above
two equations, but to properly justify this definition we must go through
Theorem 1.2.5. We illustrate the application of this theorem once, leav-
ing it implicit in later recursive definitions.

According to the theorem, we must specify for each inference rule R
a function hR : A[V ,O]⇥P (V )i(R)! P (V ). If R is a rule as in (1.2), then
i(R) = ; and we let hR(a) = {a}. If instead R is as in (1.3), then we let If the first argument to hR is instead a

variable, then we may let the value of
hR be an arbitrary element of P (V ).

hR

⇣
'(~x1.a1; . . . ;~xn.an),A1, . . . ,An

⌘
=

n[

i=1

(Ai \ ~xi ).

It is then easy to check that Theorem 1.2.5 yields a function f = FV with
the desired properties.

We similarly define the set of bound variables in an AST by

BV(x) = ;,

BV
⇣
'(~x1.a1; . . . ;~xn.an)

⌘
=

n[

i=1

⇣
~xi [BV(ai )

⌘
.

The set of all variables occurring in an AST a is then V(a)B FV(a)[BV(a).
If FV(a) = ;, then we say that a is closed and otherwise that it is open.

(b) Sorts. We wish to be able to construct ASTs which both contains
expressions and types, first of all to obtain a unified way of describing
these entities syntactically, as well as to support language features such
as type annotations, ascription, and so on. Expressions and types are
examples of sorts. We let S be a set of sorts, and we attribute sorts to
variables and operators in the following way: To build the function type ⌧1! ⌧2 as

an AST we might write func(⌧1;⌧2).
An expression of this type could be
the explicitly typed lambda abstrac-
tion lam(⌧1;x.e), which takes as argu-
ments an AST ⌧1 of type sort, and an
AST e of expression sort in which the
parameter x is bound.

I Each variable is assigned a sort. The set of variables with sort s is
denoted Vs, and we assume that there are infinitely many variables
of each sort.

I Each operator ' of arity n, which binds ki variables in its ith
argument, is assigned k1 + · · ·+ kn +n+1 sorts: One for each bound
variable, one for each of the n arguments, and one as its return
sort. We denote this collection of sorts by (~s1.t1; . . . ;~sn.tn)! s to
match the notation for the application of ' to a series of ASTs. Call
this collection of sorts the arity of '.
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We leave open the question of whether variables and operators can be
assigned multiple sorts and arities at the same time, and return to this
in §2.1.3. Our languages will only have two sorts, expressions and types,
but we could also use sorts for various other purposes, for instance to
distinguish between pure and impure parts of the language.33For an example of this, see Harper

(2016, Chapter 34). We assign sorts to ASTs by defining a binary relation a : s with
a 2A[V ,O] and s 2 S as follows: For x 2 Vs we have the rule

x : s

and for an operator ' 2 O with arity (~s1.t1; . . . ;~sn.tn)! s we have the rule

a1 : t1 · · · an : tn
'(~x1.a1; . . . ;~xn.an) : s

where each ~xi 2 V
⇤ is a sequence of variables with sorts ~si . Again we need

some ground set to define this relation on, but this is simply A[V ,O]⇥S .
If s is a sort, then we write FVs(a) for the set of free variables in a of

sort s.

1.3.2. ↵-equivalence and substitution

Properly defining substitution is rather technical and would take us too
far afield, so we give an overview of the problems one has to consider to
make it precise.

(a) ↵-equivalence. Inspired by the �-calculus, we say that two ASTs
a,b 2A[V ,O] are ↵-equivalent, written a =↵ b, if we may obtain b from
a by renaming bound variables. Some care must be taken in that not all
renamings are allowed4, but we won’t go into detail. It is clear that =↵

4For instance, if an operator ' binds
two variables x and y in the same
argument, say '(xy.a), we clearly do
not allow x to be renamed y, or vice
versa. If a already contains another
free variable z, then we also do not
allow x to be renamed z.

is an equivalence relation. Furthermore, one can show that renaming
respects sorts in the sense that if a : s and x and y are variables of the
same sort, then renaming x to y in a yields an AST of sort s.

It is standard to use the so-called Barendregt convention5: This says

5See Barendregt (1984, 2.1.13),
though he of course did not name it
after himself, instead calling it the
‘variable convention’.

that whenever ASTs a1, . . . , an occur in the same context, we choose the
bound variables in each ai such that the sets FV(a1)[ · · ·[ FV(an) and
BV(a1)[ · · ·[BV(an) are disjoint. In our setting we must also choose the
new bound variables to have the same sorts as the original ones. This
is clearly possible since we have infinitely many variables of each sort,
and we need only perform finitely many renamings.

There are also other ways of dealing with bound variables, most not-
ably de Bruijn indices (see for instance Barendregt 1984, Appendix C).
These are less human-friendly but are more amenable to formalisation.

(b) Substitution. Defining substitution is tricky, not least because of
its relationship with ↵-equivalence. We take the following approach:
If a and b are ASTs, then we roughly speaking define a[b/x] to be the
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AST6 obtained by replacing every occurrence of x in a with b, if this is 6The precise definition of substitu-
tion makes it clear that a[b/x] is in
fact an AST.

allowed. Some such substitutions will be undefined7, but one can show

7As an example, if x , y, x is free in
a and y is free in b, then the substi-
tution '(y.a)[b/x] is undefined, since
the free occurrences of y in b would
be ‘captured’ by the binding of y.

that it is always possible to find an AST a
0 with the same sort as a, such

that a =↵ a
0 and a

0[b/x] is defined.
It then turns out that substitution preserves ↵-equivalence, in the

sense that if a =↵ a
0 then a[b/x] =↵ a

0[b/x], as long as the substitutions
are defined. Hence we may define substitution on ↵-equivalence classes
by

[a]↵[b/x]B
h
a[b/x]

i
↵
,

where [a]↵ is the ↵-equivalence class of a, and where we choose the
representative a such that a[b/x] is defined.

Furthermore, it is of course possible to follow the Barendregt con-
vention while choosing ↵-equivalent ASTs to perform substitution.

1.4 ⇧ Reduction

1.4.1. Abstract reduction systems

An abstract reduction system is a pair (X,!), where X is a set and An abstract reduction system is also
called an abstract rewriting system to
underline the fact that the reduction
!may not in fact describe a ‘reduc-
tion’ in the usual sense of the word.

! is a binary relation on X called a reduction. In the present context,

Recall that a (binary) relation
between sets X and Y is simply a
subset R ✓ X ⇥ Y . If (x,y) 2 R, then
we also write xRy. If S ✓ Y ⇥ Z

is another relation, recall the
composition S � R ✓ X ⇥ Z : Writing
R · S B S �R following Terese (2003,
Definition A.1.1(iii)), this is defined
so that x(R · S)z if and only if xRy

and ySz for some y 2 Y . If X = Y ,
then we write R

n for the n-fold
composition R � · · · � R and R

⇤ for
the reflexive and transitive closureS

n2NR
n, where R

0 by definition is
equality. The reflexive and transitive
closure of a relation! is also often
denoted⇣. Finally, the inverse R

�1

of the relation R is defined by the
property that xR

�1
y if and only if

yRx.

X will be a set of expressions in a language, and! will describe how
expressions may reduce to other expressions. For instance, the expres-
sion (�x.xy)(�z.z) in the untyped �-calculus reduces to the expression
(�z.z)y, which we thus write

(�x.xy)(�z.z)! (�z.z)y.

The latter expression itself reduces to y, so in total we write

(�x.xy)(�z.z)!2
y or (�x.xy)(�z.z)!⇤ y,

to indicate that the former expression reduces to y in 2 or in any number
of steps (including 0), respectively.

An element x 2 X is reducible if there is a y 2 X such that x! y, and
irreducible otherwise. An irreducible element is also called a normal
form, and if y is irreducible and x!

⇤
y, then y is also said to be a normal

form of x, and we conversely say that x has the (not necessarily unique)
normal form y.

We say that x is weakly normalising or simply normalising if x!⇤ y
for some irreducible y; i.e., if x has a normal form. Furthermore, x
is strongly normalising or terminating if there is no infinite chain
x! x1 ! x2 ! · · · of reductions. We call the recuction! strongly or
weakly normalising if every element of X is. The untyped �-calculus
is clearly not normalising, as witnessed by the divergent combinator
(�x.xx)(�x.xx), but it is an important result that the simply typed �-
calculus is strongly normalising (cf. Pierce 2002, Theorem 12.1.6). We
will not be concerned with normalisation as such, though the fact that
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the simply typed �-calculus is strongly normalising will influence cer-
tain definitions in Chapters 4 and 5.

A binary relation ! on X is said to be deterministic if whenever
x! y1 and x! y2 we have y1 = y2. Furthermore,! is said to have the
diamond property if whenever x! y1 and x! y2, there is a z 2 X such
that y1! z and y2! z, cf. Figure 1.1. Finally! is called Church–Rosser
if the reflexive and transitive closure !⇤ has the diamond property.
Clearly deterministic relations are Church–Rosser8.8The converse does not hold. For in-

stance, it is a classic theorem, known
as the Church–Rosser theorem (cf.
Barendregt 1984, Theorem 3.2.8),
that the untyped �-calculus with so-
called full �-reduction is Church–
Rosser, but this is not deterministic.

x

y1

y2

z

9

9

Figure 1.1. The diamond property.

1.4.1 • Lemma. If the relation! on X is Church–Rosser, then any element
of X has at most one normal form. If ! is also weakly normalising, then
every element has a unique normal form.

Proof. Let x 2 X, and let y1 and y2 be normal forms of x. Since!⇤ has
the diamond property there is a z 2 X such that y1 !⇤ z and y

⇤2!⇤ z.
But since y1 and y2 are irreducible, we must then have y1 = z = y2. The
second claim is obvious. ⌅

1.4.2. Reduction in ASTs

Abstract reduction systems are very general. In the context of program-
ming languages (or formal systems such as the �-calculus), reductions
are induced by the structure of the language in the following way.

Given variables V and operators O, a context is an AST from A[V ,O]
in which one sub-AST has been replaced by a ‘hole’, denoted ‘�’. More
precisely, the set of contexts is defined recursively by the rules

�

C

'(~x1.a1; . . . ;~xi�1.ai�1;~xi .C;~xi+1.ai+1; . . . ;~xn.an)

using the same notation for variables and ASTs as in the definition of
A[V ,O]. If C is a context and a is an AST, then we write C[a] for the
AST obtained by replacing the hole in C by a. We leave it to the reader
to provide a recursive definition of the function C 7! C[a]. Contrary
to substitutions which are capture-avoiding, replacement of the hole
in a context is supposed to be capturing. Hence we do not identify
↵-equivalent contexts, nor the AST replacing the hole therein.

Any context C gives rise to a map A[V ,O]! A[V ,O] given by a 7!

C[a]. This in turn induces a composition on contexts such that C 0 �C
maps a to C

0[C[a]].
Let C be a collection of contexts. A binary relation R on A[V ,O] is C-In the classical theory of the �-

calculus we usually only consider
the case where C is the set of all
contexts. In the study of program-
ming languages we will need to con-
sider di↵erent classes of contexts, see
§2.1.3(c) and §5.2.3.

compatible if (a,a0) 2 R implies (C[a],C[a0]) 2 R for all a,a0 2A[V ,O] and
all C 2 C. The C-compatible closure of R is the smallest C-compatible
relation extending R. The set C will usually be clear from context, and
in this case we just talk of ‘compatibility’.

A notion of reduction is simply a binary relation R on A[V ,O]. This
induces various other relations on A[V ,O]:
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I The compatible closure of R is denoted!R and is called the one-
step R-reduction.

I The reflexive and transitive closure of!R is denoted⇣R and is
simply called the R-reduction.

I The equivalence relation generated by⇣R is denoted =R and is
called R-convertibility or R-equivalence.

Notice that any of these relations give rise to an abstract reduction
system on A[V ,O].

In this context, an R-redex is an AST a such that (a,b) 2 R for some
AST b. In this case b is called an R-contractum of a. An AST a is called
an R-normal form if it is irreducible with respect to !R. If a ⇣R b

where b is an R-normal form, then we also say that b is an R-normal
form of a. We finally say that a notion of reduction R is Church–Rosser
if the one-step R-reduction!R is.

1.5 ⇧ Partitions and coinduction

1.5.1. Partitions
Recall that a partition of a set X is a collection P of pairwise disjoint
subsets of X such that X =

S
P . Every partition induces an equivalence

relation ⇠P on X such that x ⇠P y if and only if x and y belong to the
same set in P . Conversely, every equivalence relation ⇠ on X induces a
partition P⇠ whose sets are the ⇠-equivalence classes. Note that depending on which kinds

of families of sets one is consider-
ing, di↵erent definitions of fineness
or coarseness are appropriate. For in-
stance, one topology is finer than an-
other if the latter is a subset of the
former.

If ⇠ and ⇡ are equivalence relations, then we say that ⇠ is finer than
⇡ (and that ⇡ is coarser than ⇠) if P⇠ is finer than P⇡, i.e., if for every
A 2 P⇠ there is a B 2 P⇡ with A ✓ B. This equivalent to the property
that x ⇠ y implies x ⇡ y for all x,y 2 X. On the other hand, this is
equivalent to the inclusion ⇠ ✓ ⇡, so coarseness and size are synonyms:
One equivalence relation is coarser than another if and only if it is larger
(as a set).

1.5.2. Coinduction
Now notice that Theorem A.4.9 (the Knaster–Tarski fixed-point theorem)
has the following immediate consequence:

1.5.1 • Corollary: Principle of coinduction.
Let L be a complete lattice and let f : L ! L be monotone. If y 2 P is f -
consistent, then y  ⌫(f ). ⌅

In the important special case where L is a power set P (X) and F : P (X)!
P (X) is monotone, recall that the principle of induction (cf. Corol-
lary 1.2.1) allows us to prove that the set µ(F) has a certain property P,
if only we can show that the characteristic set of P is F-closed. On the
other hand, the above principle of coinduction says that to prove that
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some element x 2 X belongs to ⌫(F), it su�ces to find an F-consistent
set containing x.

Returning to relations, while these are not always defined using
a generating function, we can sometimes show that some relation of
interest R is the largest or coarsest with some property P. To show that
xRy, it thus su�ces to find another relation S with property P such that
xSy. We will take this approach in Chapter 5.
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In this chapter we define the languages we will study for the remainder
of this report. We begin with the language F9,µ,ref, defining its syntax,
type system and operational semantics. Then we briefly consider a
fragment of this language, which we simply call F, that we will return
to in Chapters 4 and 5. Next we consider the type system in more detail
and describe how to derive new types, as well as how a type system can
aid in programming tasks. Finally we prove various properties of the
languages’ type systems and operational semantics.

2.1 ⇧ The language F9,µ,ref

The language F9,µ,ref is named after Girard’s System F, which is the
simply typed �-calculus extended with universal types. In addition, our
language has existential types ‘9’, recursive functions and types ‘µ’, as
well as references ‘ref’. The language also has products and sums, but
we do not display these in the name of the language to avoid clutter.

2.1.1. Syntax
We begin by defining the syntax of F9,µ,ref and describe how the usual
representation of such syntax can be understood as defining abstract
syntax trees.

As mentioned, F9,µ,ref have ASTs of two sorts: expressions and types,
denoted Exp and Type respectively. The set of closed expressions (i.e., We denote by Exp both the expres-

sion sort and the set of ASTs of this
sort, and similarly for Type.

expressions with no free variables) is denoted ClExp. Furthermore, we
divide the set of variables into two infinite sets, one set Var which con-
tains variables of sort Exp, and another set TypeVar containing variables
of sort Type. Among the operators we have a countably infinite collection
Loc of nullary operators, which we think of as locations in memory.

The full specification of F9,µ,ref is found in §B.1. For now let us con-
sider only a subset in order to understand how to read this specification:

x, f 2 Var
l 2 Loc
↵ 2 TypeVar

Exp e F 1 | x | he, ei | rec f (x)B e | · · ·

Type ⌧ F 1 | ↵ | ⌧ ⇥ ⌧ | ⌧! ⌧ | · · ·

The first three lines only serve to introduce notation. The next line
defines the operators whose return sort is Exp, with the letter e serving
the same role as nonterminal symbols do in formal grammars: For
instance, the ‘production’ eF he, ei says that there is an operator h�,�i
with arity (Exp;Exp) ! Exp. The production e F x simply says that

13
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elements of Var are expressions1, and e F l says that locations have1Strictly speaking this production is
redundant, and so is the production
⌧F ↵, but we include them to make
the specification self-contained.

return sort Exp. Finally, in the production eF rec f (x)B e it is implicit
that the variables f and x are bound by the operator in the expression e.

Similarly, the next line says, among other things, that there is a
nullary operator 1 of sort Type, and that there is an operator � ⇥ � of
arity (Type;Type)! Type.

Notice that operators such as rec and Ref are written in a sans-serif
font, and that the first letter is capitalised when it is an operator whose
return sort is Type.

2.1.2. Static semantics

(a) Type contexts. Consider some expression e of F9,µ,ref. If e contains
free variables, then in order to decide the type of e we must, at least in
the general case, specify types for those variables. We capture this using
a type context which is a finite partial map � : Var*! Type. If �(x) = ⌧

then we also write (x : ⌧) 2 � or just x : ⌧ when � is understood. In thisIt is common to define a type context
as a finite list of pairs x : ⌧. Nothing
of significance hangs on this for us,
but not having to worry about order-
ing simplifies some proofs.

way, x : ⌧ also becomes the assertion that x has type ⌧.
If � is another type context such that dom� \ dom� = ;, then we

denote by �,� the type context given by

That is, �,� is the join � _ � of the
two type contexts in the poset (Var*
Type).

(�,�)(x) =

8>><>>:
�(x), x 2 dom�,

�(x), x 2 dom�.

Furthermore, if dom� = {x1, . . . ,xn} and �(xi ) = ⌧i for distinct xi , then
we write �,x1 : ⌧1, . . . ,xn : ⌧n.

We extend the definition of substitution to type contexts: If ↵ is a
type variable and ⌧ a type, then we define

�[⌧/↵](x)B �(x)[⌧/↵]

for all x 2 dom�, taking care to rename bound variables as needed.
Notice that since dom� is finite, only finitely many such renamings are
necessary.

Similarly, we extend the definition of free type variables to type
contexts by letting

FVType(�)B
[

x2dom�

FVType(�(x)).

(b) Store typings. Similarly, the expression e may contain references
to locations in memory. A store typing is a finite partial map ⌃ : Loc*!

Type that assigns types to locations. We use the same notation for ex-
tending store typings as we did above for type contexts, and substitution
and FVType(⌃) is defined analogously.

(c) Free type variables. Notice that using type contexts we can simul-
taneously keep track of which variables are (potentially) free in a given
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expression. In order to get something similar for free type variables we
may collect the free type variables in a (finite) set ⌅ and also keep track
of this set. If � is another such set that is disjoint from ⌅, then we write Of course, ⌅,� is the join of ⌅ and �

in P!(TypeVar).⌅,� for the union ⌅[�. If � = {↵1, . . . ,↵n} for distinct ↵i , then we also
write ⌅,↵1, . . . ,↵n.

We say that a type ⌧ is well-formed with respect to ⌅ if all free type
variables in ⌧ lie in ⌅, in which case we write ⌅ ` ⌧. If � is a type context,
then we similarly say that � is well-formed with respect to ⌅ if ⌅ ` ⌧ for
all ⌧ 2 ran�, and we also write ⌅ ` �. Well-formedness of store typings
with respect to ⌅ is defined and denoted analogously.

(d) Syntactic typing. We are now in a position to define the type
system for F9,µ,ref. This is formalised as a 5-ary relation on the set

P!(TypeVar)⇥ (Var*! Type)⇥ (Loc*! Type)⇥Exp⇥Type

called the syntactic typing relation. Instead of (⌅,�,⌃, e,⌧), elements of
this relation are denoted The order in which ⌅, � and ⌃ occur

is not massively significant. We have
chosen this order since it seems the
most convenient when we omit one
or more of them as noted below.

⌅ | � | ⌃ ` e : ⌧

and are called typing judgments. We also use this notation to assert
that this tuple lies in the typing relation. In this case we say that e is
well-typed with respect to ⌅, � and ⌃, with type ⌧. If ⌅ = ;, then we
simply denote the above element by � | ⌃ ` e : ⌧, and we furthermore
write ⌃ ` e : ⌧ if also � =?. We finally write ` e : ⌧ if also ⌃ =?, in which
case we simply say that e is well-typed.

We define the typing relation using inference rules. As an example,
consider the rule Compare the notation

f : ⌧1! ⌧2,

which says that f is an expression of
type ⌧1! ⌧2, to the notation

f : ⌧1! ⌧2,

which says that f is an arrow
between objects ⌧1 and ⌧2 of some
category. Notice in particular the spa-
cing around the colon ‘:’.

T-rec
⌅ | �, f : ⌧1! ⌧2,x : ⌧1 | ⌃ ` e : ⌧2
⌅ | � | ⌃ ` rec f (x)B e : ⌧1! ⌧2

.

This says that given an expression e having (potentially) free variables f
and x of appropriate types, we may construct an expression rec f (x)B e

of function type, whose parameter type is that of x, and whose return
type is the return type of f . Note that the store typing ⌃ and the set ⌅
of free type variables are unchanged when moving from the premise to
the conclusion, while the variables f and x are no longer assigned types
by the type context in the conclusion.

Consider instead the rule

T-var
⌅ ` � ⌅ ` ⌃ �(x) = ⌧

⌅ | � | ⌃ ` x : ⌧

which assigns types to variables. This rule is not quite on the correct
form, since its hypotheses are not elements of the typing relation. The
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intended interpretation is that given the assumptions ⌅ ` �, ⌅ ` ⌃ and
�(x) = ⌧ we have the rule (in fact the axiom)

⌅ | � | ⌃ ` x : ⌧
.

2.1.3. Dynamic semantics

The last piece of the definition of F9,µ,ref is its dynamic semantics. We
specify an operational (transition) semantics in several steps.

The resulting dynamics consists of performing reductions at three
di↵erent levels:

I The first level consists of pure head reductions. These are reductions
that can be performed on expressions that have no subexpressions
that can be evaluated, and without reading or modifying the store2.2We describe what wemean by ‘store’

in more detail below.
I The next level are the impure head reductions. Here we again

reduce simple expressions, but these may read from or write to
the store.

I The final level allows us to perform reductions on complex expres-
sions by reducing subexpressions.

At each level we define a transition system on machine states using
inference rules.

(a) Pure head reductions. As mentioned, we do not yet wish to reduce
complex expressions, so we need to make precise what we mean by
a ‘simple’ expression. We call an expression a value if it is to be con-
sidered the final result of a computation. We define the set Val of values
recursively:

vF 1 | l | hv,vi | · · ·

We use the letter ‘v’, often with various decorations, to denote values.
The set of closed values (i.e., values with no free variables) will be de-
noted ClVal. Furthermore, as the end result of computations, values are
naturally supposed to be irreducible, and indeed they turn out to be (cf.
Proposition 2.4.9). We denote the set of irreducible expressions by Irr.

Furthermore, when performing pure reductions we do not need to
take into account memory, so we simply model the machine state by a
single expression. The pure head reduction, which we denote by!p , is
thus a binary relation on Exp.

As an example of a pure reduction rule, consider the rule

E-proj1

⇡1 hv1, v2i !p v1
.

Since both v1 and v2 are values, these are not supposed to be reduced
further, so the expression ⇡1 hv1, v2i has no reducible subexpressions.
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(b) Impure head reductions. Next we must take into account mutable
state. We model memory access using a store, which is a finite partial Some authors use the word heap in-

stead of store, which is not to be con-
fused with the heap data structure.

map � : Loc *! Exp. Denote by Sto the set of stores. We thus model
machine states as elements of the product Sto ⇥ Exp, and the impure
head reduction, denoted!h, becomes a binary relation on this product.

All pure head reductions give rise to impure head reductions: We
formalise this by adding a rule

E-pure
e!p e

0

(� , e)!h (� , e0)

for every store � . To take an example of a rule that modifies the store,
consider

E-alloc
l < dom�

(� , ref v)!h (�[l 7! v], l)
.

This rule allows us to place the value v in the store by wrapping it in a
ref expression and evaluating it. Note that this rule is non-deterministic,
since the location l is not uniquely specified by the hypothesis: Indeed,
since the domain of a store is finite but the set Loc of locations is infinite,
the value v could be saved at an infinite number of locations. For our
purposes we could have modified the rule E-alloc to be deterministic,
for instance by enumerating the locations and always allocating the
location that is smallest with respect to this enumeration. However,
in practice memory allocation is (partially) handled by the operating
system and is not deterministic3, so we prefer the the non-deterministic 3At least from the point of view of

the programmer.version.

(c) Evaluation contexts. In order to reduce a complex expression e,
we must somehow locate a simple subexpression of e that can be reduced
directly. Furthermore, there may be multiple such subexpressions, so
we must also decide in which order these should be reduced. We do this
by introducing evaluation contexts: Recall that we in §1.4.2 introduced
contexts which are, roughly speaking, expressions in which one subex-
pression has been replaced by the hole �. A subset of these will serve
as evaluation contexts, namely those given by the following recursive
definition: Again the complete specification can

be found in §B.1.EF � | hE,ei | hv,Ei | · · ·

As before, e denotes an expression and v a value. We collect the evalu-
ation contexts in a set ECtx.

Recall also that contexts are in general capturing, in that the expres-
sion e may contain free variables that are captured by bindings in a
context C when inserting e into C. But notice that this is not the case for
evaluation contexts. This for instance means that the body of a function
is not evaluated before the function has been applied to an argument.
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This also means that there is another way to define evaluation con-
texts: We could backtrack and add the hole to our initial specification of
F9,µ,ref. In this case the hole cannot be an expression, since this would
allow undesirable expressions such as h�,�i. We could instead let ECtx
be its own sort, but then for hE,ei to be an evaluation context the pair-
ing operator must have three di↵erent arities, namely (Exp;Exp)! Exp,
(ECtx;Exp)! ECtx and (Exp;ECtx)! ECtx. If we assign each operator
multiple di↵erent arities, and if we furthermore let the hole be a variable,
then one can show that substituting an expression into the hole does
indeed yield an expression. Furthermore, one can show that we have
E[e/�] = E[e]. No matter which definition we use, each E gives rise to a
map Exp! Exp given by e 7! E[e].

We can now define the final transition system that formalises the
operational semantics of F9,µ,ref. The reduction ! is defined by the
single rule schema

E-head
(� , e)!h (� 0 , e0)

(� ,E[e])! (� 0 ,E[e0])
.

Notice that this is almost the consistent closure of!h, except that we
also need to keep track of stores.

2.2 ⇧ The language fragment F

In addition to the ‘full’ language F9,µ,ref we will also have reason to
study a fragment that has neither recursive types nor references, which
we call F. To further simplify we also omit existential types.

Since F does not have references, we have no need to keep track of
a store. Hence we agree that when studying this language, we model
the machine state using only an expression, and we thus omit the store
from our notation.

We return to this language in Corollary 2.4.11, and in Chapters 4
and 5 it will be our main focus, but until then all references are to F9,µ,ref
unless otherwise specified.

2.3 ⇧ Programming with types

In this section we consider each of the types of F9,µ,ref and discuss in
greater or lesser detail what each type can be used for in practice.

2.3.1. Base types
The only base type in F9,µ,ref is the unit type 1 whose only value is4 1.4This fact will follow from

Lemma 2.4.4(i). This is used for various purposes: to indicate the absense of a value, as
a ‘sentinel value’, or as the value of expressions that are only used for
their side e↵ects.
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Since the unit type categorically is an empty product, hence a ter-
minal object, we denote the type by 1. We could have denoted the unit
value by hi to represent an empty tuple, but we prefer 1 for purely
aesthetic reasons. No confusion is likely to result from this choice.

Other common base types are booleans, numbers and strings. We
construct booleans in §2.3.3 below, and in §2.3.6(b) we will also consider
a base type Nat of natural numbers for expository purposes.

Sometimes uninterpreted base types—i.e., base types that have no
constructors or eliminators—are also used. Type variables can be con-
sidered to be of this sort5. 5See Pierce (2002, §22.1). Though

note that for us variables are by defin-
ition di↵erent from operators with
the same sort.2.3.2. Products and sums

The product ⌧1⇥⌧2 of types ⌧1 and ⌧2 should be well-known: It is simply
the type of pairs he1, e2i of expressions, where ei has type ⌧i .

The sum ⌧1 + ⌧2 is perhaps less familiar. Its values are either of type
⌧1 or of type ⌧2, and each value of type ⌧1 + ⌧2 is decorated to indicate
which type it belongs to. Thus the sum is e↵ectively the disjoint union6 6Indeed, it is possible to construct a

category of types in which products
are categorical products and sums
are categorical coproducts, i.e., ana-
logous to disjoint unions in the cat-
egory of sets. For a brief description
of such a category see Awodey (2010,
§2.5).

of ⌧1 and ⌧2. If e1 and e2 are expressions of types ⌧1 and ⌧2, then we
denote by ◆1 e1 and ◆2 e2 their injections into the type ⌧1 + ⌧2.

We will see applications of both products and sums below.

2.3.3. Booleans
A boolean type is nothing but a type with two values. Instead of ‘hard-

Our definition of false and true re-
quire us to change the ordering of the
expressions e1 and e2 in the match
expression below. This slightly in-
convenient choice arises from inter-
preting the type 1 as the singleton
{1} with the trivial ordering and the
sum 1 + 1 as the linear sum of its
summands, meaning as the disjoint
union equipped with the ordering
◆1 1 < ◆2 1. Interpreting the smaller
of these as false corresponds to in-
terpreting the ordering as logical im-
plication.

This is consistent with the conven-
tion that 0 represents false and 1 true
given the ordering 0 < 1.

coding’ booleans into F9,µ,ref, we may construct such a type using sum
types: We can simply use 1+ 1 whose values are of course ◆11 and ◆21.
We use Bool as an alias for this sum type, and false and true as aliases
for its values, respectively.

To implement an if-expression we define the expression

if e then e1 else e2

as syntactic sugar for match(e,x, e2, e1), where x is a variable that is not
free in either e1 or e2. In particular we have, by E-match-inj1,

if false then e1 else e2 =match(◆11,x, e2, e1)

!p e2[1/x]

= e2,

and E-match-inj2 similarly implies that if true then e1 else e2!p e1.
We furthermore obtain the evaluation contexts

EF · · · | ifE then e else e,

showing that we may evaluate the condition but neither of the branches,
as expected.
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2.3.4. Options

Sum types also allow us to implement option types. Given a type ⌧ we‘Option’ is the name given to these
types in languages such as ML or
Coq, while e.g. Haskell or Agda call
them ‘maybe’ types.

construct a type that can contain either ‘nothing’ or an expression of
type ⌧. We use the type 1 to model the first case, and we collect the types
in the sum 1+ ⌧. Let Opt ⌧ be an alias for this type.

As ‘value constructors’ we define none = ◆1 1 and just e = ◆2 e. We can
also introduce syntactic sugar for pattern matching on options:

which(e,x, e1, e2) =match(e,x, e1, e2).

If e is none this reduces to e1[1/x], and it reduces to e2[e0/x] otherwise
where e = just e0 . Notice that this allows x to also be free in e1, which is
probably not the intended behaviour. Notice also that if we implement
options and booleans simultaneously, then false and none are aliases for
the same value, which is also probably undesirable.

Option types can also be implemented using labeled sums, so-called
variants (cf. Pierce 2002, §11.10), in which option types and Bool can be
made disjoint, though a programmer can of course still unintentionally
construct values of option type.

2.3.5. An empty type

If no expressions has a type ⌧, then ⌧ is an empty or void type. We canIn fact, universal types are so express-
ive that we can even use them to
implement products and sums, cf.
Harper (2016, §16.2).

implement such a type as 8↵.↵.
Note that the terminology surrounding empty and unit types is not

exactly standardised. For instance, the type Void in Java is in fact a unit
type, since its only value is null. On the other hand, the type void in C
seems to occupy a role somewhere in between: While no object has type
void, functions whose return type is void can in fact terminate.

2.3.6. Polymorphic types

(a) Universal types. Universal types should be familiar to anyone ex-
perienced with functional programming, though perhaps in a di↵erent
guise. We attempt to motivate universal types using a simplified version
of a classic example.

Let id = �x.x be the identity function. The expressionThis example is based on Pierce
(2002, §22.7). Notice that the lan-
guage studied by Pierce has type
annotations and let-expressions; we
emulate the latter using lambdas
(and products), and the former turns
out not to make a di↵erence for our
purposes.

hid true, id 1i

is then completely unproblematic: Even though the expression id ap-
pears in both entries in the pair applied to expressions of di↵erent types,
the two occurrences of id are simply assigned di↵erent types. But a
problem arises when we factor id out as follows:

(�f .hf true, f 1i) id. (2.1)

The inversion lemma (which we will meet in Lemma 2.4.3) implies that
if id has type ⇢, then

f : ⇢ ` hf true, f 1i : ⌧
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for some type ⌧, which must be on the form ⌧1 ⇥ ⌧2. Further application
of the inversion lemma then shows that

f : ⇢ ` f : Bool! ⌧1

and
f : ⇢ ` f : 1! ⌧2

simultaneously. But then we must have7 7Notice that this argument does not
appeal to uniqueness of types, but
simply uses the inversion lemma. We
return to the question of uniqueness
in §2.4.1(c).

Bool! ⌧1 = ⇢ = 1! ⌧2,

which is impossible since Bool and 1 are distinct types.
However, it seems like we morally should be able to write something

like (2.1). Clearly the function id does not care about the type of its
argument, and in many languages without static type checking we could
easily get away with such an expression.

We solve this problem as follows: Instead of requiring that the types
of expressions be closed, we allow them to contain type variables. Just
as with expression variables, we then introduce abstractions on type
variables, lambda expressions that take types instead of expressions
as arguments. To distinguish these from ordinary lambda expressions,
we use a capital ⇤. If e is an expression whose type ⌧ may contain
type variables, among these ↵, we can then write8 ⇤↵.e to denote an 8This is not our o�cial syntax since

this does not contain explicit type
variables. We return to this below.

expression which takes a type ⌧0 as argument and yields an expression
with type ⌧[⌧0/↵]. The expression ⇤↵.e then becomes polymorphic in
the sense that we may instantiate ↵ in ⌧ as any type, though note that if
⌧ has no other free type variables than ↵, then the type of ⇤↵.e is closed.
We denote the type of ⇤↵.e by 8↵.⌧.

For instance, we can define a polymorphic version of the identity
function as follows: The expression �x.x has type (↵! ↵), where ↵ is a
type variable, so the expression

id =⇤↵.�x.x

then has type 8↵.(↵! ↵). To instantiate ↵ as a concrete type, say Bool,
we write9 id [Bool]. Returning to the untypable expression in (2.1), by 9Again our o�cial syntax does not

use explicit types in expressions.using the polymorphic version of id we can write

(�f .hf [Bool] true, f [1] 1i) id,

which is then well-typed.
The above example is fairly artificial, but parametric polymorph-

ism is of course ubiquitous in functional programming: For a simple
example, lists are usually polymorphic in the sense that to each type
⌧ there is a type of ⌧-lists where expressions of such a type are lists
whose elements all are of type ⌧. Using the recursive list type ⌧-List =
µ↵.1+ (⌧ ⇥↵) we will construct in §2.3.7, we obtain a polymorphic list
type by

ListB 8�.µ↵.1+ (� ⇥↵).
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Finally we note that F9,µ,ref does not have explicit types. Instead of
⇤↵.e we replace the type variable with a wildcard and write ⇤_.e, and
instead of e [⌧] we similarly write e _. This of course makes the type
checker’s job more di�cult, but this is not a concern for us in this report.

(b) Existential types. Since we can universally quantify over typeIn fact, existential types can be
encoded using universal types, cf.
Pierce (2002, §24.3).

variables, it seems reasonable to assume that we can also existentially
quantify over them.

If an expression has the existential type 9↵.⌧, then this supposedly
means that there is some type ⌧

0 such that the expression has type
⌧[⌧0/↵]. Notice that there might be multiple di↵erent types ⌧0 such that
e has type ⌧[⌧0/↵]: For instance, if e is the expression �x.1, then this has
type ⌧

0
! 1 for any type ⌧

0. When we abstract away this type ⌧
0, it is

therefore useful to keep track of it. If an expression e has type ⌧[⌧0/↵],
then we therefore (tentatively) introduce an expression of existential
type 9↵.⌧ by10 pack (e,⌧0). We keep track of the witness type ⌧

0, but10The name ‘pack’ will make sense
shortly. As for universal types this
notation is temporary, and we intro-
duce our o�cial notation below.

notice that this does not appear in the existential type itself, meaning
that it cannot be used to typecheck. We therefore also call it the hidden
representation type.

Furthermore, the expression pack (�x.1,⌧0) itself also has multiple
types, for instance 9↵.1! 1 and even 9↵.↵! ↵. Hence it is also useful
when introducing an expression of either type to specify which type it
should be introduced as, and so we might write something likeNotice that the ‘as’-clause is a kind of

ascription, cf. Pierce (2002, §11.4).
pack (�x.1,⌧0) as9↵.↵! ↵.

Existential types can be used as a sort of primitive module system
by allowing us to implement abstract data types. Under this interpret-
ation we also think of expressions of existential type as packages. As
an example, we implement an abstract counter type11. Assuming that11This example is adapted from

Pierce (2002, §24.2). we have a natural number type Nat, a constructor 0 and a successor
operation succ, we use Nat as the hidden representation type. Since this
is not available to the user, this allows us as ‘maintainers’ of this package
to change the internal representation without issue.

The counter type should be able to create new counters, increment
counters, and return the value of a counter. Creating a new counter is
simple, we just use the constructor 0. To increment a counter we can
use the function �n.succn, and to return its value we simply return the
natural number used internally, so we use the identity function �n.n. In
total the internal representation of the type becomesWe here use a tuple with three ele-

ments to simplify notation, but this
can of course be implemented as two
nested pairs.

h0,�n.succn,�n.ni,

and when packed with representation type Nat it receives the existential
type

9↵.(↵ ⇥ (↵! ↵)⇥ (↵! Nat)).

That is, we obtain the expression

pack (h0,�n.succn,�n.ni,Nat) as9↵.(↵ ⇥ (↵! ↵)⇥ (↵! Nat)).
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This is the expression that is available to users of the package, and notice
again that while the hidden representation type Nat does appear in the
expression, it is not part of the type and so does not a↵ect type checking.

We also need a way to ‘unpack’ packages. Given a package p of type
9↵.⌧, we need some way of ‘importing’ p and extracting its components.
Say that e is the program in which we wish to use p, and that we wish
to bind the contents of p to a variable x. Then x must have the correct
type, namely ⌧ (perhaps containing the type variable ↵). The hidden
representation type of p will also become bound to ↵ in e if it occurs
free. We may write this as follows:

unpack p as (x,↵) in e.

More explicitly, say that p is the expression pack (v,⌧0) as9↵.⌧, where v
is a value. We then reduce the above expression as

unpack (pack (v,⌧0) as9↵.⌧) as (x,↵) in e!p e[v/x][⌧0/↵].

Note that F9,µ,ref does not have explicit types, so we simplify the pack-
unpack notation and instead simply write pack v and unpack(p,x,e).

2.3.7. Recursive types
A recursive type is, roughly speaking, a type that is defined in terms of
itself, or properly contains itself syntactically12. In a sense a recursive 12That is, it is a proper ‘subtype’ of

itself in the sense of sub-ASTs, not in
the usual sense of subtyping.

type is thus somehow infinite, so to properly understand recursive types,
we begin by considering how types can be represented as various kinds
of objects that can be either finite or infinite.

Types can of course be represented using potentially infinite strings,
but they are more naturally represented by rooted trees; almost obvi-
ously, since we have even defined them as abstract syntax trees. This
representation is of course very natural: The leaves are either base types
or type variables, and the inner vertices are operators whose children
are their arguments. An example is given in Figure 2.1.

+

1 ⇥

1 ↵

Figure 2.1. Tree representing the
type 1+ (1⇥↵).

!

1 !

1 !

1

Figure 2.2. An infinite tree
representing the ‘infinite type’
1! (1! (1! · · ·)).

In the other direction we can imagine infinite trees that have the same
general structure: Leaves are still base types or type variables, inner
vertices are operators with the correct number of children, but the tree
is infinite. For instance, consider the tree in Figure 2.2. The outermost
operator (i.e., the root of the tree) is !, so if this tree is supposed to
represent a type, then it must be a function type. The argument type
is 1, but notice that the right child of the root is just another copy of
the whole tree. Apparently, an expression of this type is a function that
takes 1 as an argument and returns a function of the same type as itself.
If ⌧ denotes (the type represented by) the whole tree, we thus have
⌧ = 1! ⌧. We denote ⌧ by µ↵.1! ↵, motivated by the fact that ⌧ is a
fixed-point of the map ↵ 7! 1! ↵.

For a more immediately useful example, we show how to construct
a recursive list type: Recall that in order to construct a linked list, we
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need a ‘nil’ object to represent the empty list and a ‘cons’‘nil’ operation
that pairs two objects. If we use 1 to represent the empty list and the
built-in pairs h�,�i for pairing, then an informal specification of a type
⌧-List of lists of elements of type ⌧ could look like

⌧-ListF 1 | h⌧,⌧-Listi.

More precisely, we would have ⌧-List = µ↵.1+ (⌧ ⇥↵).
What we have outlined is the equi-recursive approach to recursive

types, in which the recursive type ⌧ is by definition equal to its ‘unfol-
ded’ counterpart 1! ⌧. More generally, a recursive type µ↵.⌧ is equal
to the type ⌧[µ↵.⌧/↵]. An alternative is the iso-recursive approach, in
which the types µ↵.⌧ and ⌧[µ↵.⌧/↵] are seen as di↵erent but somehow
isomorphic. The isomorphism is witnessed by maps unfold and fold that
yield a correspondence between expressions of the two types, as schem-
atically presented in Figure 2.3.

µ↵.⌧ ⌧[µ↵.⌧/↵]

unfold

fold

Figure 2.3. Correspondence
between a recursive type µ↵.⌧ and
its ‘unfolded’ version ⌧[µ↵.⌧/↵].

We construct a recursive list type. Let ⌧ be the type of the elements
of the list, and assume that ↵ is not free in ⌧. The expression ◆11 has
type 1+ (⌧ ⇥ ⌧-List), so we fold it and obtain the expression nilB fold ◆1 1
with type ⌧-List = µ↵.1+ (⌧ ⇥↵). We similarly want a cons operator, and
this should take an expression of type ⌧ and prepend this to a ⌧-list, so it
should be of type ⌧! ⌧-List! ⌧-List. Given expressions x and l of type
⌧ and ⌧-List respectively, the expression ◆2 hx, li has type 1+ (⌧ ⇥ ⌧-List),
so folding this and abstracting out x and l we obtain

consB �x.�l.fold ◆2 hx, li

with the correct type.
In order to use expressions with recursive types we first reduce

the argument to fold to a value and apply unfold to extract this value.
In practice, if a programming language supports recursive types and
takes the iso-recursive approach, folding and unfolding often happens
automatically. For instance, in ML a fold is automatically added to each
constructor of a recursive type, while an unfold is added during pattern
matching13.13Cf. Pierce (2002, §20.2).

2.3.8. Mutable state

Side e↵ects in programming languages should be nothing new to the
reader, but what may be unfamiliar is side e↵ects being reflected by the
type system14: Notice that the only way side e↵ects can occur is if an14Users of languages like Haskell

will of course be familiar with this
concept.

expression of reference type Ref ⌧ is present somewhere.

2.4 ⇧ Language properties

2.4.1. Type system
(a) Well-formedness. In §2.1.2(c) we defined what it means for a type
context, store typing or just a type to be well-formed with respect to a
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set of type variables. It is of course desirable that the typing relation is
such that if ⌅ | � | ⌃ ` e : ⌧ holds, then �, ⌃ and ⌧ are all well-formed
with respect to ⌅. By adding appropriate assumptions to the axioms of
the typing relation (i.e., to T-var, T-unit and T-loc) we ensure that this
is the case:

2.4.1 • Proposition. If ⌅ | � | ⌃ ` e : ⌧, then �, ⌃ and ⌧ are well-formed
with respect to ⌅.

Proof. Proof by rule induction on the typing relation. We only consider
some representative cases since many of them are nearly identical. As a
general comment, notice that if for instance � ✓ � and ⌅ ` �, then also
⌅ ` �, and similarly for store typings. Furthermore, if ⌧ is a structurally
smaller15 type than ⌧

0 , then ⌅ ` ⌧0 implies ⌅ ` ⌧. 15We have not defined what it means
for one type (or more generally one
AST) to be structurally smaller or lar-
ger than another, but we assume that
the reader is familiar with this notion.
Regardless, this comment is only sup-
posed to motivate the proof below.

T-var: By assumption we have both ⌅ ` �, ⌅ ` ⌃, and ⌅ ` ⌧ follows
since (x : ⌧) 2 � so that ⌧ 2 ran�.

T-unit: Again ⌅ ` � and ⌅ ` ⌃ follow by assumption, and obviously
⌅ ` 1 since 1 has no free type variables.

T-pair: This follows since FVType(⌧1 ⇥⌧2) = FVType(⌧1)[FVType(⌧2) by
definition of free (type) variables.

T-Tlam: By induction we have both ⌅,↵ ` � and ⌅,↵ ` ⌃, and since
↵ is not free in either � or ⌃, it follows that indeed ⌅ ` � and ⌅ ` ⌃.
Furthermore,

FVType(8↵.⌧) = FVType(⌧) \ {↵} ✓ (⌅,↵) \ {↵} = ⌅,

as desired.

T-Tapp: Notice first that FVType(8↵.⌧) = FVType(⌧) \ {↵} by definition
of free (type) variables. Furthermore, the type variables that are free in
the type ⌧[⌧0/↵] are at most those that are free in ⌧ except ↵, along with
those that are free in ⌧

0 .16 Hence 16A proof of this fact would require
us to precisely define substitution in
ASTs, which we have not done. Thus
we settle for an appeal to intuition.

FVType(⌧[⌧0/↵]) ✓ (FVType(⌧) \ {↵})[FVType(⌧0)

= FVType(8↵.⌧)[FVType(⌧0)

✓ ⌅,

where we have used both the induction hypothesis and the assumption
⌅ ` ⌧0 .

T-loc: We already have ⌅ ` � and ⌅ ` ⌃ by assumption, and further-
more

FVType(Ref⌃(l)) = FVType(⌃(l)) ✓ FVType(⌃) ✓ ⌅,

as desired. ⌅
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(b) Inversion. As we proved in Theorem 1.2.4, every set that is defined
using inference rules gives rise to a notion of inversion. We specialise
this result to the typing relation, but we first note an important property
of the type system:

2.4.2 • Remark. We collect the infinite collection of inference rules
that define the typing relation into finitely many sets, each of which is
represented by a rule schema, namely those listed in §B.2.Recall the distinction between rules

and rule schemas. We have not given
a precise definition of a ‘schema’,
but its meaning is hopefully well-
known from logic where we meet the
distinction between axioms and ax-
iom schemas (for instance, consider
the distinction between the induc-
tion axiom of second-order Peano
arithmetic and the induction axiom
schema of first-order Peano arith-
metic). For our purposes we can
simply think of a rule schema as a set
of rules. An ‘instance’ of a schema is
then just an element of such a set.

Notice then that the conclusions of the schemas are distinct, in the
sense that if H1 �) y1 and H2 �) y2 are instances of di↵erent schemas,
then y1 , y2. To see this, simply consider every pair of di↵erent schemas
in §B.2 and check that their conclusions are distinct in this sense. y

2.4.3 • Lemma: Inversion on typing.
Assume that ⌅ | � | ⌃ ` e : ⌧.

(i) If e = x is a variable, then (x : ⌧) 2 �.

(ii) If e = 1, then ⌧ = 1.

(iii) If e = he1, e2i, then ⌧ = ⌧1 ⇥ ⌧2 and ⌅ | � | ⌃ ` ei : ⌧i .

(iv) If e = ⇡1 e
0, then ⌅ | � | ⌃ ` e0 : ⌧ ⇥ ⌧2. If instead e = ⇡2 e

0, then
⌅ | � | ⌃ ` e0 : ⌧1 ⇥ ⌧.

(v) If e = ◆1 e
0 , then ⌧ = ⌧1+⌧2 and ⌅ | � | ⌃ ` e0 : ⌧1. If instead e = ◆2 e

0 ,
then ⌧ = ⌧1 + ⌧2 and ⌅ | � | ⌃ ` e0 : ⌧2.

(vi) If e = match(e0 ,x, e1, e2), then ⌅ | � | ⌃ ` e0 : ⌧1 + ⌧2 and ⌅ | �,x :
⌧1 | ⌃ ` e1 : ⌧ and ⌅ | �,x : ⌧2 | ⌃ ` e2 : ⌧.

(vii) If e = rec f (x) B e
0, then ⌧ = ⌧1! ⌧2 and ⌅ | �, f : ⌧1! ⌧2,x :

⌧1 | ⌃ ` e
0 : ⌧2.

(viii) If e = e2 e1, then ⌅ | � | ⌃ ` e1 : ⌧1 and ⌅ | � | ⌃ ` e2 : ⌧1! ⌧.

(ix) If e =⇤_.e0, then ⌧ = 8↵.⌧0 and ⌅,↵ | � | ⌃ ` e0 : ⌧0. In particular,
↵ < ⌅.

(x) If e = e
0 _, then ⌧ = ⌧

0[⌧00/↵] and ⌅ | � | ⌃ ` e0 : 8↵.⌧0 .

(xi) If e = pack e0 , then ⌧ = 9↵.⌧0 and ⌅ | � | ⌃ ` e0 : ⌧0[⌧00/↵].

(xii) If e = unpack(e1,x, e2), then ⌅ | � | ⌃ ` e1 : 9↵.⌧0 and ⌅,↵ | �,x :
⌧
0
| ⌃ ` e2 : ⌧.

(xiii) If e = fold e0 , then ⌧ = µ↵.⌧
0 and ⌅ | � | ⌃ ` e0 : ⌧0[µ↵.⌧0/↵].

(xiv) If e = unfold e0 , then ⌧ = ⌧
0[µ↵.⌧0/↵] and ⌅ | � | ⌃ ` e0 : µ↵.⌧0 .

(xv) If e = l is a location, then l 2 dom⌃ and ⌧ = Ref⌃(l).

(xvi) If e = ref e0 , then ⌧ = Ref ⌧0 and ⌅ | � | ⌃ ` e0 : ⌧0 .

(xvii) If e = e1 B e2, then ⌧ = 1 and ⌅ | � | ⌃ ` e1 : Ref ⌧0 and ⌅ | � | ⌃ `
e2 : ⌧0 .

(xviii) If e = ! e0 , then ⌅ | � | ⌃ ` e0 : Ref ⌧.
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Proof. All the above claims are proved in precisely the same way, so we
prove one of them, say (iii). Assume that e = he1, e2i. Then Theorem 1.2.4
implies that there is a typing rule R whose conclusion is ⌅ | � | ⌃ `
he1, e2i : ⌧, and whose premises also hold. But Remark 2.4.2 says that
there is a unique rule schema that has an instance with this conclusion,
and considering all the rules (cf. §B.2) we see that this schema must be
T-pair. Hence R is the rule

⌅ | � | ⌃ ` e1 : ⌧1 ⌅ | � | ⌃ ` e2 : ⌧2
⌅ | � | ⌃ ` he1, e2i : ⌧1 ⇥ ⌧2

where ⌧1 and ⌧2 are appropriate types. Comparing the two forms of the
conlusion of R, we must have ⌧ = ⌧1⇥⌧2. As mentioned its premises also
hold, yielding the second part of (iii). ⌅

(c) Uniqueness of types. It would obviously be nice if well-typed
expressions of F9,µ,ref had unique types. However, this is clearly not the
case, since expressions on the form e _ can have many di↵erent types
depending on the type ⌧0 in T-Tapp. As a consequence, not even values
have unique types, since a value can have non-values as subexpressions,
for instance the expression e in either rec f (x)B e or ⇤_.e.

Had we made di↵erent choices when designing F9,µ,ref, we could
have had uniqueness of types, for instance if the language had explicit
type annotations as we briefly explored in §2.3.6. Notice however that
this requires expressions to have types as sub-ASTs, something which
F9,µ,ref does not allow.

On the other hand, notice that the inversion lemma puts some re-
strictions on the form the types of an expression can take. For instance,
(iii) says that even though a pair expression he1, e2i might have many
di↵erent types, all of them must be on the form ⌧1 ⇥ ⌧2.

This observation leads to a partial converse of the inversion lemma.
While the inversion lemma assigns types to expressions, the following
result assigns expressions to types:

2.4.4 • Lemma: Canonical forms.
Assume that ⌅ | � | ⌃ ` v : ⌧ where v is a value.

(i) If ⌧ = 1, then v = 1.

(ii) If ⌧ = ⌧1 ⇥ ⌧2, then v = hv1, v2i.

(iii) If ⌧ = ⌧1 + ⌧2, then either v = ◆1 v
0 or v = ◆2 v

0 .

(iv) If ⌧ = ⌧1! ⌧2, then v = rec f (x)B e.

(v) If ⌧ = 8↵.⌧0 , then v =⇤_.e.

(vi) If ⌧ = 9↵.⌧0 , then v = pack v0 .

(vii) If ⌧ = µ↵.⌧
0 , then v = fold v0 .

(viii) If ⌧ = Ref ⌧0 , then v is a location.
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Proof. The proof of each claim is identical, so we only prove one, say
(v). The proof consists of going through each form a value can have (cf.
§B.1), and seeing that only a value on the form ⇤_.e can have a type on
the form 8↵.⌧0. For instance, we claim that this is the case for a value
v
0 = rec f (x)B e. By Lemma 2.4.3(vii) the type of v0 must be on the form

⌧1! ⌧2, which is di↵erent from ⇤_.e. Hence v , v0 . ⌅

(d) Weakening. We begin with a couple of easy results, the first of
which is sometimes known as weakening, and the second of which we
conversely might call strengthening.

2.4.5 • Lemma:Weakening.
If

(i) ⌅ and ⌅0 are finite sets of type variables with ⌅ ✓ ⌅0 ,

(ii) � and �0 are type contexts with � ✓ �0 and ⌅ ` �0 , and

(iii) ⌃ and ⌃0 are store typings with ⌃ ✓ ⌃0 and ⌅ ` ⌃0 ,

then
⌅ | � | ⌃ ` e : ⌧ implies ⌅0 | �0 | ⌃0 ` e : ⌧

Proof. This is a fairly straightforward induction on type derivations.
Notice that whenever a type variable ↵ or a pair x : ⌧ appears in a
hypothesis but not in the conclusion of a rule, then the (type) variable
in question is bound in the conclusion. To perform the corresponding
inductive step we can thus change the bound variables in the conclusion
so that ↵ < ⌅0 and x < dom�0 . For the store typing there is no such issue
since the store typings in the hypotheses and the conclusion are always
the same. ⌅

2.4.6 • Lemma: Strengthening.
Assume that ⌅ | � | ⌃ ` e : ⌧. If �, ⌃ and ⌧ are well-formed with respect to
� ✓ ⌅, then also � | � | ⌃ ` e : ⌧.

Proof. This is an easy proof by rule induction on the typing relation.
It also follows from Lemma 2.4.8 below: Since ⌅ \� is finite we may
assume that ⌅ =�,↵, and since ↵ is not free in either �, ⌃ or ⌧, we may
choose any type ⌧0 with � ` ⌧0 (for instance 1) and substitute it into ↵.⌅

(e) Substitution. Next a couple of results on how the type relation
interacts with substitution.

2.4.7 • Lemma. If ⌅ | �, z : ⇢ | ⌃ ` e : ⌧ and ⌅ | � | ⌃ ` d : ⇢, then ⌅ | � | ⌃ `
e[d/z] : ⌧.

Proof. The proof is by rule induction in ⌅ | �, z : ⇢ | ⌃ ` e : ⌧. More
precisely, we prove the following claim:

For all ⌅ | � | ⌃ ` e : ⌧ the following holds: If ⌅ | � | ⌃ ` d : ⇢,
then either �(z) , ⇢ or else ⌅ | � \ (z : ⇢) | ⌃ ` e[d/z] : ⌧.
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This is then a claim about a general judgment ⌅ | � | ⌃ ` e : ⌧, and the
proof is by rule induction on the typing relation. But if (z : ⇢) is not
present in the type context in the conclusion of a rule, then the induction
step for that rule is trivial. Hence we may assume that said type context
always contains (z : ⇢), and we thus write �, z : ⇢.

The proof for many of the inductive steps are identical, so we only
present a few representative cases.

T-var: Assume that �(x) = ⌧ and that ⌅ | � | ⌃ ` d : ⇢. If x = z then In the axioms T-var, T-unit and T-
loc we should also assume that the
type contexts and store typings are
well-formed with respect to the set ⌅
of type variables, but nothing in the
proof rests on this assumption.

x[d/z] = d, so the claim holds in this case. If instead x , z, then x[d/z] = x.
But since �(x) = ⌧, we have ⌅ | � | ⌃ ` x : ⌧ without (z : ⇢) as required.

T-unit: This is clear since ⌅ | � | ⌃ ` 1 : 1 always holds.

T-pair: Assume that the claim holds for ⌅ | �, z : ⇢ | ⌃ ` ei : ⌧i for
i 2 {1,2}, and assume that ⌅ | � | ⌃ ` d : ⇢. By induction we have ⌅ |
� | ⌃ ` ei [d/z] : ⌧i , so an application of T-pair implies that ⌅ | � | ⌃ `
he1[d/z], e2[d/z]i : ⌧1 ⇥ ⌧2. But since he1[d/z], e2[d/z]i = he1, e2i[d/z], the
claim follows.

T-match: Assume that the claim holds for ⌅ | �, z : ⇢ | ⌃ ` e : ⌧1 + ⌧2
and ⌅ | �,x : ⌧i , z : ⇢ | ⌃ ` ei : ⌧ for i 2 {1,2}, and assume that ⌅ | � |
⌃ ` d : ⇢. By Lemma 2.4.5 also ⌅ | �,x : ⌧i | ⌃ ` d : ⇢, so by induction
we have ⌅ | � | ⌃ ` e[d/z] : ⌧1 + ⌧2 and ⌅ | �,x : ⌧i | ⌃ ` ei [d/z] : ⌧, so by
applying T-match we get ⌅ | � | ⌃ ` match(e[d/z],x, e1[d/z], e2[d/z]) : ⌧.
But since17 match(e[d/z],x, e1[d/z], e2[d/z]) = match(e,x, e1, e2)[d/z], the 17Here we use that x , z and that

x < dom�, so that z is not bound by
the match-expression, and so that x
is not free in d.

claim follows.

T-loc: This is clear since a location l contains no free variables. ⌅

2.4.8 • Lemma. If ⌅,↵ | � | ⌃ ` e : ⌧ and ⌧
0 is a type with ⌅ ` ⌧0, then

⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` e : ⌧[⌧0/↵].

Proof. The proof is by rule induction in the typing relation. However,
we prove the following claim:

For all ⌅ | � | ⌃ ` e : ⌧ the following holds: If ⌅ \ {↵} ` ⌧0, then
either ↵ < ⌅ or else ⌅ \ {↵} | �[⌧0/↵] | ⌃[⌧0/↵] ` e : ⌧[⌧0/↵].

If ↵ < ⌅ in the conclusion of a rule, then the induction step for that
rule is trivial. Hence we may assume that ↵ does lie in the set of type
variables in the conclusion, and we write ⌅,↵. The assumption of well-
formedness of ⌧0 then becomes ⌅ ` ⌧0 as in the statement of the lemma.

Since many of the inductive steps are basically identical, we only
prove some of them.

T-var: Assume that ⌅,↵ ` � and ⌅,↵ ` ⌃ and �(x) = ⌧. Since ⌅ ` ⌧0,
the variable ↵ is not free in ⌧

0, and so ⌅ ` �[⌧0/↵] and ⌅ ` ⌃[⌧0/↵].
Furthermore, �[⌧0/↵](x) = �(x)[⌧0/↵] = ⌧[⌧0/↵], so an application of T-
var implies that ⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` x : ⌧[⌧0/↵].
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T-pair: Assume that ⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` ei : ⌧i [⌧0/↵] for i 2 {1,2}.
An application of T-pair then yields

⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` he1, e2i : ⌧1[⌧0/↵]⇥ ⌧2[⌧0/↵],

and since ⌧1[⌧0/↵]⇥ ⌧2[⌧0/↵] = (⌧1 ⇥ ⌧2)[⌧0/↵], we are done.

T-rec: Assume that ⌅ | (�, f : ⌧1! ⌧2,x : ⌧1)[⌧0/↵] | ⌃[⌧0/↵] ` e :
⌧2[⌧0/↵]. This means that

⌅ | �[⌧0/↵], f : ⌧1[⌧0/↵]! ⌧2[⌧0/↵],x : ⌧1[⌧0/↵] | ⌃[⌧0/↵] ` e : ⌧2[⌧0/↵],

so applying T-rec we get

⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` rec f (x)B e : ⌧1[⌧0/↵]! ⌧2[⌧0/↵].

Since ⌧1[⌧0/↵]! ⌧2[⌧0/↵] = (⌧1! ⌧2)[⌧0/↵], the claim follows.

T-Tlam: Let � < ⌅ be a type variable. Since ⌅ ` ⌧0 we also haveWe use � instead of ↵ to denote the
type variable appearing in the rule
schema T-Tlam. Since we have as-
sumed that ↵ lies in the set of type
variables in the conclusion of each
rule, ↵ , �.

⌅,� ` ⌧0 , so by induction we have

⌅,� | �[⌧0/↵] | ⌃[⌧0/↵] ` e : ⌧[⌧0/↵].

An application of T-Tlam then yields

⌅ | �[⌧0/↵] | ⌃[⌧0/↵] `⇤_.e : 8�.⌧[⌧0/↵].

Since � < ⌅ and ⌅ ` ⌧0, the variable � is not free in ⌧
0, and since also

↵ , �, we have 8�.⌧[⌧0/↵] = (8�.⌧)[⌧0/↵]. The claim follows.

T-Tapp: Assume that ⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` e : (8�.⌧)[⌧0/↵], and let
⌧
00 be a type with ⌅,↵ ` ⌧00 . Since � only occurs bound and we identify

ASTs up to ↵-equivalence, we may rename it and assume that ↵ , �

and that � < ⌅. Hence (8�.⌧)[⌧0/↵] = 8�.⌧[⌧0/↵]. We furthermore have
⌅ ` ⌧00[⌧0/↵], so by applying T-Tapp we get1818It is easy to forget that we cannot

simply commute the substitutions
[⌧00 /�] and [⌧0 /↵] since ↵ might oc-
cur free in ⌧

00 . If we could, then we
would not have to perform the sub-
stitution [⌧0 /↵] on ⌧

00 .

⌅ | �[⌧0/↵] | ⌃[⌧0/↵] ` e _ : ⌧[⌧0/↵][⌧00[⌧0/↵]/�].

Since ↵ , � and � is not free in ⌧
0, we have19 ⌧[⌧0/↵][⌧00[⌧0/↵]/�] =

19This follows by what in the con-
text of the �-calculus is some-
times called the substitution lemma,
see for instance Barendregt (1984,
Lemma 2.1.16).

⌧[⌧00/�][⌧0/↵], which proves the claim. ⌅

2.4.2. Operational semantics

Let us temporarily call an expression e a ‘redex’ if there is an expression
e
0 and stores � and �

0 such that (� , e)!h (� 0 , e0).
First we note that, as advertised, values are indeed irreducible:

2.4.9 • Proposition. Every value is irreducible.

Proof. Proof by induction on values. Let v be a value. If v is on one of
the forms 1, rec f (x) B e, ⇤_.e or is a location, then this is clear since
neither of these are redexes, and none of them are on the form E[e0] for
an evaluation context E and an expression e

0 .
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The inductive step is similar in all cases, so we only consider the case
v = hv1, v2i. This is not a redex, so assume that there is an evaluation
context E and an expression d such that v = E[d] and d!h d

0 for some d 0 .
Then E must be on the form hE0 , e0i or hv0 ,E00i: In the first case it follows
that v1 = E

0[d], and in the second that v2 = E
00[d]. Both are impossible

since by induction both v1 and v2 are irreducible. Hence v is not on the
form E[d] and hence is not reducible. ⌅

Next recall that we in §2.1.3(b) noted that the presence of references
in F9,µ,ref means that it is not deterministic. Furthermore, it is also
clearly not even weakly normalising since it has recursive functions,
hence e↵ectively infinite loops. But considering instead the fragment F
we have the following result:

2.4.10 • Theorem: Determinism.
In F, the reduction! is deterministic.

Proof. Assume that e! e1 and e! e2. We must then show that e1 = e2.
First notice that for redexes d,d1,d2, if d!h d1 and d!h d2 then d1 = d2:
This follows by noticing that exactly one head reduction rule applies to
d.

Next let E1 and E2 be evaluation contexts and d1 and d2 redexes such
that E1[d1] = E2[d2]. We claim that E1 = E2 and d1 = d2. The proof is by
induction in E1.

E1 = �: Assume towards a contradiction that E2 , �. We consider
only a few of the other possibilities since the rest are similar. If E2 = hE,ei,
then it follows that d1 = hE[d2], ei. But this is impossible since the right-
hand side is not a redex.

If instead E2 = ⇡1E then d1 = ⇡1E[d2], and then d1 must be on the
form ⇡1 hv1, v2i. Hence v1 = E[d2], but this is impossible since v1 is
irreducible by Proposition 2.4.9.

E1 = hE,ei: Most possibilities for E2 are clearly impossible since it
must be a pair. If E2 = hE0 , e0i then it follows that E[d1] = E

0[d2] and
e = e

0 , so by induction we have E = E
0 and d1 = d2.

The other possibility is E2 = hv,E0i. In this case E[d1] = v, which is
impossible since v is irreducible by Proposition 2.4.9.

E1 = hv,Ei: This is the opposite of the above case.

E1 = E e or E1 = v E: These are similar to the above two cases.

Remaining cases: The remaining possibilities for E1 are identical, so
we give a single example. If E1 = ⇡1E, then E2 must also be on the form
⇡1E

0 . It follows that E[d1] = E
0[d2], so by induction E = E

0 and d1 = d2.

Returning to the claim to be proved, since e! e1 and e! e2 there are
evaluation contexts E1 and E2 as well as redexes d1,d2,d 01,d

0

2 such that
e = E1[d1], e1 = E1[d 01] and d1!h d

0

1, and such that e = E2[d2], e = E2[d 02]
and d2!h d

0

2. The above first implies that E1 = E2 and d1 = d2, and next
that d 01 = d

0

2. ⌅
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2.4.11 • Corollary. In F, if e!⇤ e1 and e!
⇤
e2 with e1 and e2 irredu-

cible, then e1 = e2. ⌅

We could now go ahead and study whether F is also weakly or even
strongly normalising. And indeed it turns out to be, but the presence
of polymorphism makes the proof rather di�cult20. In Chapter 5 the20See Pierce (2002, §23.5) and the

references therein. fact that F is normalising will a↵ect how we choose to define certain
concepts, but we will not use this fact in any proofs.



Type Safety I:

Progress and Preservation 3
Having become acquainted with F9,µ,ref we being our study of type
safety. In this chapter we take a classical approach to type safety, by
proving the properties progress and preservation.

3.1 ⇧ Safety and well-typedness

3.1.1. Safety defined

It is important to consider what kinds of safety a type system is supposed
to give us. For instance, we are not so ambitious as to require of the type
system that it is able to catch algorithmic errors, or errors in logic.

On the other hand, well-typedness of programs is supposed to tell
us something about how its subexpressions are combined to form a com-
plete program. For instance, in a language with numbers and strings we
would hope that if a program is well-typed, then that program does not
attempt to e.g. perform arithmetic with strings or index into numbers.
In other words, the program does not attempt to perform ‘illegal’ opera-
tions. Conversely, the operational semantics of the language is supposed
to capture the legal operations.

Furthermore, we analyse well-formed programs into two categories:
Those in which there is computation still to be done, and those in which
there is not. While we cannot hope that all programs will eventually
reach the latter state, it turns out well-typed programs do not get ‘stuck’.
Either they do indeed terminate in a ‘finished’ state, or else they run
forever. More precisely we have the following:

3.1.1 • Definition: Safety.
An expression e is safe if for all expressions e1 and stores �1, if (?, e)!⇤

(�1, e1), then either e1 is a value, or else there is an expression e2 and a
store �2 such that (�1, e1)! (�2, e2). N

As mentioned in §2.1.3(a), the expressions that we have singled out as
values are those corresponding to programs that are ‘finished’.

3.1.2. Type safety
We thus wish to show that if an expression is well-typed, then it is safe.
This is indeed the case, and we thus also talk about type safety. There
are various ways of proving this result, and the classical proof is in two
steps:

I We first show that if an expression is well-typed, then it is either a
value, or else it can reduce in one step to another expression. That
is, it can make progress. For reasons that will become clear, we
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34 3. type safety i: progress and preservation

will not assume that the store is empty, so we also need to assume
that the contents of the store is well-typed.

I Next we show that if a well-typed expression reduces in one step to
another expression, then that expression is also well-typed, so that
well-typedness is preserved by the operational semantics. Again
we need to take care that well-typedness of the store is well-typed.

Taken together, these will imply the main theorem:

3.1.2 • Theorem: Type safety.
If an expression e is well-typed, i.e. if ` e : ⌧, then e is safe. ⌅

More precisely, this will follow immediately from Theorem 3.2.1 and
Theorem 3.3.1 below.

3.2 ⇧ Progress

As mentioned above, it is not enough that an expression is well-typed for
it to make progress, the store must also be well-typed. A store � : Loc*!

Exp is well-typed with respect to ⌅, � and ⌃ if dom� = dom⌃ and
⌅ | � | ⌃ ` �(l) : ⌃(l) for all l 2 dom� . In this case we write ⌅ | � | ⌃ ` � ,
and just as for the typing relation we omit ⌅ and � if they are empty.

There are at least a couple of ways to approach proving the progress
theorem. Most naturally the proof goes by induction on the typing rela-
tion, since the claim concerns well-typed expressions (or more precisely
typing judgments, i.e., elements of the typing relation). Since our typing
rules are syntax-directed in the sense that there is a single typing rule
(schema) for each type of expression, we could also prove the theorem
by induction on the structure of expressions, but this does not generalise
as readily and the proof is no simpler—indeed, quite the contrary.

We are now ready to prove the progress theorem. The reader may
wish to read in parallel the proof and the remark immediately following
it.

3.2.1 • Theorem: Progress.
If ⌃ ` e : ⌧, then either e is a value or else, for any store � with ⌃ ` � , there
exists an expression e

0 and a store � 0 such that (� , e)! (� 0 , e0).

Proof. The proof is by rule induction on the typing relation ⌅ | � | ⌃ `Augmenting the claim in this way
ensures that we can perform the in-
duction on the entire 5-ary relation,
which is important since this relation
is the one that is defined by the in-
ference rules, not the corresponding
ternary relation obtained by restrict-
ing the 5-ary relation to the subset
where ⌅ = ; and � =?.

e : ⌧, but the claim to be proved is augmented by ‘or either ⌅ , ; or
� , ?’. Hence we only need to prove each case when ⌅ = ; and � = ?,
since otherwise the claim trivially holds for the conclusion of each rule.
Furthermore, since the store is relevant for only a few reductions, we
suppress it from the notation in most of the cases below, simply taking
about expressions reducing to other expressions and not distinguishing
between the reductions!p and!h.1

1We are essentially restricting to the
pure subset of the language so the
subscript p is redundant, and we
thus use!h to denote the one-step
reduction.

T-var: Since we may assume that � =?, this is vacuously true.

Lars Birkedal
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T-unit: Since 1 is a value, this follows.

T-pair: Assume that the claim holds for ⌃ ` e1 : ⌧1 and ⌃ ` e2 : ⌧2. If
both e1 and e2 are values, then he1, e2i is also a value, so assume that only
e1 = v1 is a value and that e2 ! e

0

2. Since the only rule that generates
the reduction! is E-head, it follows that e2 is on the form E[d2] and
e
0

2 is on the form E[d 02], where E is an evaluation context and d2 and d
0

2
are expressions such that d2!h d

0

2. Letting E
0 = hv1,Ei it follows that

hv1, e2i = E
0[d2] and hv1, e02i = E

0[d 02], and so

hv1, e2i = E
0[d2]! E

0[d 02] = hv1, e
0

2i

by E-head. If instead e1 is not a value, then the same argument (using
the evaluation context hE,e2i) yields the same result.

T-proj1 and T-proj2: Assume that the claim holds for ⌃ ` e : ⌧1 ⇥ ⌧2.
If e is a value, then it is on the form hv1, v2i by Lemma 2.4.4(ii), where
v1 and v2 are values. Hence ⇡1 e = ⇡1 hv1, v2i, and this reduces to v1 via
!h by E-proj1. Choosing the evaluation context E = �, E-head implies
that ⇡1 hv1, v2i ! v1. If instead e is not a value, then by induction there
is some e0 such that e! e

0 . Hence there are expressions d and d
0 and an

evaluation context E such that e = E[d], e0 = E[d 0] and d!h d
0. Letting

E
0 = ⇡1E we have

⇡1 e = E
0[d]! E

0[d 0] = ⇡1 e
0
,

as desired. The case T-proj2 is analogous.

T-inj1 and T-inj2: Assume that the claim holds for ⌃ ` e : ⌧1. If e is a
value v, then so is ◆1 v. If instead e! e

0 , then as before e = E[d], e0 = E[d 0]
and d !h d

0. Letting E
0 = ◆1E we get ◆1 e = E

0[d] and ◆1 e
0 = E

0[d 0], so
◆1 e! ◆1 e

0 . The case T-inj2 is similar.

T-match: Assume that the claim holds for2 ⌃ ` e : ⌧1 + ⌧2. If e is 2Notice that while the typing rule
T-match has multiple hypotheses,
only the first one is relevant for
progress, since the only evaluation
contexts whose outermost operators
are match operators are on the form
match(E,x,e1, e2). Hence the other
two hypotheses cannot a↵ect the one-
step reduction of a match expression.

a value, then by Lemma 2.4.4(iii) it must be on the form ◆1 v or ◆2 v

for a value v. Hence the expression match(e,x, e1, e2) can reduce by
either E-match-inj1 or E-match-inj2, so it reduces by E-head (using
the evaluation context E = �). If instead e ! e

0, then by the same ar-
gument as in previous cases with E

0 =match(E,x,e1, e2), it follows that
match(e,x, e1, e2) reduces.

T-rec: This is obvious since rec f (x)B e is a value.

T-app: Assume that the claim holds for⌃ ` e1 : ⌧1 and⌃ ` e2 : ⌧1! ⌧2.
If e2 is a value, then by Lemma 2.4.4(iv) it must be on the form recf (x)B
e. If also e1 is a value, then the claim follows by E-rec-app. If e2 = v is
a value but e1 is not, then e1! e

0

1. The same argument as in previous
cases with E

0 = v E shows that v e1 reduces. Finally, if e2 is not a value,
then e2! e

0

2, and choosing E
0 = E e1 proves the claim.

T-Tlam: This is obvious since ⇤_.e is a value.

T-Tapp: Assume that the claim holds for ⌃ ` e : 8↵.⌧. If e is a value,
then by Lemma 2.4.4(v) it must be on the form⇤_.e0 , so the claim follows
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from E-tapp-tlam (via E-head using the evaluation context E = �). If e
is not a value, then e! e

0 for some expression e
0 by induction. Hence

there are expressions d and d
0 such that d!h d

0 , and such that e = E[d]
and e

0 = E[d 0] for some evaluation context E. Letting E
0 = E _ we thus

have e _ = E
0[d] and e

0 _ = E
0[d 0], proving the claim.

T-pack: Assume that the claim holds for ⌃ ` e : ⌧[⌧0/↵]. If e is a value,
then so is pack e. Otherwise e! e

0 for some expression e
0 by induction.

The same argument as before using the evaluation context packE for an
appropriate E yields the claim.

T-unpack: Assume that the claim holds for3 ⌃ ` e1 : 9↵.⌧. If e1 is3As in the case T-match mentioned
above, only the first hypothesis is rel-
evant.

a value, then it must be on the form pack v by Lemma 2.4.4(vi), so
an application of E-unpack-pack yields the claim. Otherwise e ! e

0

for some e
0, and we use the evaluation context unpack(E,x,e2) for an

appropriate E.

T-fold: Assume that the claim holds for ⌃ ` e : ⌧[µ↵.⌧/↵]. If e is a
value then so is fold e; otherwise e! e

0 for some e0 by induction, and it
follows that fold e! fold e.

T-unfold: Assume that the claim holds for ⌃ ` e : µ↵.⌧. If e is a value
then Lemma 2.4.4(vii) implies that e = fold v, and the claim follows by
E-unfold-fold. Otherwise e! e

0 , and so also unfold e! unfold e0 .

T-loc: Locations are values, so this is obvious.

T-alloc: Assume that the claim holds for⌃ ` e : ⌧. If e is a value, then
the claim follows by applying E-alloc, noting that there always exists
a location l < dom� . Otherwise there is an expression e

0 and a store � 0

such that (� , e)! (� 0 , e0) by induction. But then there is an evaluation
context E and expressions d and d

0 such that e = E[d], e0 = E[d 0] and
(� ,d)!h (� 0 ,d 0). Letting E0 = refE we have refe = E

0[d] and refe0 = E
0[d 0],

so E-head implies that (� , ref e)! (� 0 , ref e0).

T-store: Assume that the claim holds for ⌃ ` e1 : Ref ⌧ and ⌃ ` e2 : ⌧,
and let � be a store with ⌃ ` � . If e1 is a value, then by Lemma 2.4.4(viii)
it is a location l, and by Lemma 2.4.3(xv) we have l 2 dom⌃ = dom� . If
e2 is also a value, then the claim follows from E-store. If e1 = l is a value
but e2 is not, then there are some e

0

2 and �
0 such that (� , e2)! (� 0 , e02).

Again writing e2 = E[d2] and e
0

2 = E[d 02] with (� ,d)!h (� 0 ,d 0), we use
the evaluation context l B E. Finally, if e1 is not a value, then the same
argument using instead E B e2 yields the claim.

T-load: Assume that the claim holds for ⌃ ` e : Ref ⌧, and let �
be a store with ⌃ ` � . If e is a value, then as before it is a location l,
and l 2 dom� . It then follows from E-load that (� , ! l)!h (� , v), where
v = �(l). If instead (� , e)! (� 0 , e0) for an expression e

0 and a store �
0,

then we simply use the evaluation context !E for an appropriate E. ⌅

Let us pause to consider how each case in the progress theorem was
proved.
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I Some cases (T-pair, T-inj1, T-inj2, T-pack, T-fold and T-alloc) are
proved directly by induction. That is, the claim for the conclusion
of a rule follows directly from the induction hypothesis.

The former five cases have the property that if the hypotheses
contain values, then so does the conclusion. In fact, notice that
these are precisely the rules whose conclusions contain expres-
sions that may be values but are not necessarily. Hence we only
need to consider when the hypotheses do not contain values, but
since the (expression in the) conclusion is structurally larger4 than 4We again remind the reader that

we have not defined what ‘structur-
ally larger’ means, which is nomatter
since the present discussion is purely
expository.

the hypotheses, we may hope that there is an evaluation context
that allows us to transfer reducibility of the hypotheses to the
conclusion. And indeed this is the case.

For the case T-alloc, notice that even if v is a value, refv is not.
However, we may also quickly dispense with this case by noting
that E-alloc allows us to reduce ref v immediately.

I Other cases (T-proj1, T-proj2, T-match, T-app, T-Tapp, T-unpack,
T-unfold, T-store and T-load) require an appeal to the canonical
forms lemma (cf. Lemma 2.4.4). Notice that these are precisely
the rules (except for T-alloc discussed above) whose conclusions
contain expressions that can never be values.When the expressions
in the hypotheses are reducible, then so are the conclusions by an
appropriate choice of evaluation context.

However, when all the hypotheses contain values, this argu-
ment of course does not work. Still, the conclusions are not values
so there must be some other reason for why they are reducible.
Considering the reduction rules, this requires the subexpressions
(i.e., the hypotheses of the typing rules) to have particular forms:
For instance, for ⇡1 v to be reducible by E-proj1, v must be on
the form hv1, v2i. And this is precisely what the canonical forms
lemma allows us to conclude.

Notice also that T-store is special in that the proof in this
case requires an explicit5 application of the inversion lemma (cf. 5As opposed to implicit through the

canonical forms lemmaLemma 2.4.3): For note that to apply E-store we must know that
l 2 dom� which the canonical forms lemma doesn’t say anything
about6. 6Indeed it cannot, since it says noth-

ing about stores at all, but is only
concerned with statics.I Still other cases (T-unit, T-rec, T-Tlam and T-loc) are fairly trivial

since their conclusions are always values.

I The final case is T-var, which is also trivial since � =?.

3.3 ⇧ Preservation

Having proved that if an expression is well-typed then it is reducible (un-
less it is a value), we now show that reductions preserve well-typedness.

In our statement of the progress theorem we had to take into ac-
count whether the store was well-typed or not, but we did not have
reason to consider what actually happens to the store when performing
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a reduction. Recall from Definition 3.1.1 that safety is a property of ex-
pressions and not of machine states (i.e., of store-expression pairs), since
we assume that the store is initially empty. But the store can of course
change during evaluation, so we need to ensure that not only is well-
typedness of expressions preserved by reduction, so is well-typedness of
stores. The typing rule T-store ensures than types are preserved when
we modify already allocated locations in the store.

However, the store can also grow, and we must take this into account
whenwe try tomake precise the formulation of the preservation theorem.
Just because the initial store � is well-typed with respect to some store
typing ⌃, it does not follow that the resulting store � 0 is also well-typed
with respect to ⌃. But as mentioned we only need to ensure that the
newly allocated locations—i.e., those in dom�

0
\dom�—have the correct

types. Hence it su�ces to find a store typing ⌃0 that agrees with ⌃ on
dom⌃, and with respect to which �

0 is well-typed.
Furthermore, notice that to prove that well-typed expressions are

safe it su�ces to show that reduction preserves well-typedness, and not
types themselves. We may indeed consider whether it is even true that
types are preserved, i.e., that if e reduces to e

0 and e has some type
⌧, then e

0 also has type ⌧. For some type systems, notably those with
subtyping, this is not the case, but for ours it will turn out to be.

While the proof of the progress theorem was by induction on the
typing relation, the proof of preservation is somewhat di↵erent. Pierce
(2002, Theorem 8.3.3) proves preservation for a simple language by
induction on derivations of typing judgments, but this of course requires
one to have a notion of derivations (and subderivations) of judgments,
which is unnecessary and overly complicates the proof7.7In the author’s opinion, though

Harper (2016, §6.1) seems to share
this sentiment.

Another approach is proof by induction on the reduction relation,
which is the approach taken by Harper (2016, Theorem 6.2). The oper-
ational semantics of the language studied by Harper is formalised as
an ordinary structural dynamics, in which the reduction relation is in
fact defined recursively. However, since the dynamics of our language is
contextual (in that it is described using evaluation contexts), a variation
of this approach is more appropriate.

We prove the preservation theorem in three steps as follows:

I Evaluation contexts ‘reflect’8 well-typedness Lemma 3.3.2: If E[e]8Compare reflection of limits by
functors. is well-typed, then so is e. This is a straightforward corollary of

the inversion lemma.

I Evaluation contexts preserve types (Lemma 3.3.3): If e and e
0 have

the same type, then so do E[e] and E[e0]. This follows directly by
rule induction in E. Combined with the above result, this allows
us to reduce the proof to the case where e reduces to e

0 in a single
head reduction step.

I Head reduction preserve types (Lemma 3.3.4.): If e!h e
0 and e has

type ⌧, then so does e0 . The proof of this step consists of judicious
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application of the inversion lemma along with various technical
results on the interplay between typing and substitution.

We delay the proofs of these results and first show more precisely how
they imply preservation:

3.3.1 • Theorem: Preservation.
If

⌅ | � | ⌃ ` e : ⌧, ⌅ | � | ⌃ ` � and (� , e)! (� 0 , e0),

then there exists some store typing ⌃0 with ⌃ ✓ ⌃0 such that

⌅ | � | ⌃0 ` e0 : ⌧ and ⌅ | � | ⌃0 ` � 0 .

Proof. By definition of the reduction relation, there exist an evaluation
context E and expressions d and d

0 such that e = E[d], e0 = E[d 0], and
(� ,d)!h (� 0 ,d 0). By Lemma 3.3.2 there is some type ⌧0 such that ⌅ | � |
⌃ ` d : ⌧0. Next it follows from Lemma 3.3.4 that ⌅ | � | ⌃0 ` d 0 : ⌧0 for
some store typing ⌃0 with ⌃ ✓ ⌃0 and ⌅ | � | ⌃0 ` � 0. By Lemma 2.4.5
we also have ⌅ | � | ⌃0 ` d : ⌧0, so it follows from Lemma 3.3.3 that
⌅ | � | ⌃0 ` E[d 0] : ⌧ as desired. ⌅

3.3.2 • Lemma. If E is an evaluation context, e is an expression and ⌅ | � |
⌃ ` E[e] : ⌧, then ⌅ | � | ⌃ ` e : ⌧0 for some type ⌧0 .

Proof. The proof is by rule induction on E. If E = �, then the claim is
obvious, since then E[e] = e. Hence we assume that E is obtained from an
evaluation context E0 by some application of an inference rule, so that
the induction hypothesis holds for E0 . The inductive step is identical in
all cases, so we illustrate the argument in the case E = hE0 , e0i.

In this case E[e] = hE0[e], e0i, and Lemma 2.4.3(iii) implies that ⌅ | � |
⌃ ` E0[e] : ⌧00 for some type ⌧00 . By induction we thus have ⌅ | � | ⌃ ` e : ⌧0

for some ⌧0 . ⌅

3.3.3 • Lemma. If ⌅ | � | ⌃ ` e : ⌧ and ⌅ | � | ⌃ ` e0 : ⌧ for the same type ⌧,
then ⌅ | � | ⌃ ` E[e] : ⌧0 and ⌅ | � | ⌃ ` E[e0] : ⌧0 for the same type ⌧0 .

Proof. The proof is a straightforward rule induction in E: Simply apply
the typing rules corresponding to each evaluation context. ⌅

3.3.4 • Lemma: Preservation for head reduction.
If

⌅ | � | ⌃ ` e : ⌧, ⌅ | � | ⌃ ` � and (� , e)!h (� 0 , e0),

then there exists some store typing ⌃0 with ⌃ ✓ ⌃0 such that

⌅ | � | ⌃0 ` e0 : ⌧ and ⌅ | � | ⌃0 ` � 0 .

Proof. We simply check all cases.
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E-proj1 and E-proj2: Assume that e = ⇡1 hv1, v2i and e
0 = v1 for val-

ues v1 and v2. Then Lemma 2.4.3(iv) implies first that ⌅ | � | ⌃ `
hv1, v2i : ⌧ ⇥ ⌧2 for some type ⌧2, and then Lemma 2.4.3(iii) implies99That is, Lemma 2.4.3(iii) implies

that ⌧ ⇥ ⌧2 = ⌧3 ⇥ ⌧4 and ⌅ | � | ⌃ `
v1 : ⌧3 for some types ⌧3 and ⌧4. But
we of course have ⌧ = ⌧3.

that ⌅ | � | ⌃ ` v1 : ⌧. Similarly if e = ⇡2 hv1, v2i and e
0 = v2

E-match-inj1 and E-match-inj2: Assume that e =match(◆1 v,x,e1, e2)
and e

0 = e1[v/x]. Then Lemma 2.4.3(vi) implies that ⌅ | � | ⌃ ` ◆1 v : ⌧1+⌧2
and ⌅ | �,x : ⌧1 | ⌃ ` e1 : ⌧. Next Lemma 2.4.3(v) yields ⌅ | � | ⌃ `
v : ⌧1, so Lemma 2.4.7 implies that ⌅ | � | ⌃ ` e1[v/x] : ⌧. Similarly if
match(◆2 v,x,e1, e2) and e

0 = e2[v/x].

E-rec-app: Assume that

e = (rec f (x)B e
00) v and e

0 = e
00[(rec f (x)B e

00)/f ][v/x].

Then Lemma 2.4.3(viii) first implies that ⌅ | � | ⌃ ` v : ⌧1 and ⌅ | � |
⌃ ` rec f (x) B e

00 : ⌧1! ⌧, and Lemma 2.4.3(vii) applied to the latter
judgment implies that ⌅ | �, f : ⌧1! ⌧,x : ⌧1 | ⌃ ` e00 : ⌧. But then two
applications of Lemma 2.4.7 imply that10 ⌅ | � | ⌃ ` e00[(rec f (x) B10Strictly speaking, the first applica-

tion of Lemma 2.4.7 requires that ⌅ |
�,x : ⌧1 | ⌃ ` rec f (x) B e

00 : ⌧1! ⌧,
but this follows by Lemma 2.4.5. No-
tice that there is no issue of well-
formedness of ⌧1, since ⌧1! ⌧ is
already well-formed with respect to
⌅.

e
00)/f ][v/x] : ⌧ as desired.

E-tapp-tlam: Assume that e = (⇤_.e0) _. Then Lemma 2.4.3(x) first
implies that ⌧ = ⌧

0[⌧00/↵] and ⌅ | � | ⌃ `⇤_.e0 : 8↵.⌧0 , and an application
of Lemma 2.4.3(ix) then yields ⌅,↵ | � | ⌃ ` e0 : ⌧0 and ↵ < ⌅. Next,
Proposition 2.4.1 implies that ⌅ ` � and ⌅ ` ⌃, and also that ⌅ ` ⌧.

Assume that ↵ is free in ⌧. Then also ⌅ ` ⌧00 , so Lemma 2.4.8 implies
that ⌅ | �[⌧00/↵] | ⌃[⌧00/↵] ` e0 : ⌧0[⌧00/↵]. But ↵ is not free in either � or
⌃, and ⌧ = ⌧

0[⌧00/↵], so this implies that ⌅ | � | ⌃ ` e0 : ⌧ as desired.
If instead ↵ is not free in ⌧, then ⌧ = ⌧

0. Since �, ⌃ and ⌧ are well-
formed with respect to ⌅, the claim follows from Lemma 2.4.6.

E-unpack-pack: Assume that

e = unpack(pack v,x,e2) and e
0 = e2[v/x].

Then Lemma 2.4.3(xii) implies that ⌅ | � | ⌃ ` pack v : 9↵.⌧0 and that
⌅,↵ | �,x : ⌧0 | ⌃ ` e2 : ⌧. Next Lemma 2.4.3(xi) applied to the first
judgment yields11 ⌅ | � | ⌃ ` v : ⌧0[⌧00/↵].11Strictly speaking, the inversion

lemma first says that pack v has type
9�.⇢ for some type ⇢, and then that
v has type ⇢[⇢0 /�] for some ⇢

0 . But
since we already know that pack v
has type 9↵.⌧0 , this implies that v

has type ⌧0[⌧00 /↵].

We then claim that ⌅ | �,x : ⌧0[⌧00/↵] | ⌃ ` e2 : ⌧. If ↵ is not free in ⌧
0,

then ⌧
0[⌧00/↵] = ⌧

0 so this follows from Lemma 2.4.6, and if ↵ is free in
⌧
0 , then since ⌅ ` ⌧0[⌧00/↵] we also have ⌅ ` ⌧00 , so the claim follows from

Lemma 2.4.8. Finally, since v and x have the same type Lemma 2.4.7
implies that ⌅ | � | ⌃ ` e2[v/x] : ⌧ as desired.

E-unfold-fold: Assume that

e = unfold fold v and e
0 = v.

Then Lemma 2.4.3(xiv) implies that unfold fold v and fold v have types
⌧
0[µ↵.⌧0/↵] and µ↵.⌧

0 respectively, and Lemma 2.4.3(xiii) in turn implies
that v has type12 ⌧0[µ↵.⌧0/↵], as desired.12As in the case E-unpack-pack this

is not strictly true.

Lars Birkedal

Lars Birkedal
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E-alloc: In this case e = ref v, e0 = l, � 0 = �[l 7! v], and l < dom� .
By Lemma 2.4.3(xvi) we have ⌅ | � | ⌃ ` ref v : Ref ⌧0 for some ⌧

0, and
we further have ⌅ | � | ⌃ ` v : ⌧0. Now letting ⌃0 = ⌃[l 7! ⌧

0], it follows
from T-loc that ⌅ | � | ⌃0 ` l : Ref⌃0(l), so we have both ⌅ | � | ⌃0 ` � 0 and
⌅ | � | ⌃0 ` l : Ref ⌧0 .

E-store: Here e = l B v, e0 = 1 and �
0 = �[l 7! v] with l 2 dom� .

Notice first that l B v and 1 both have type 1 by Lemma 2.4.3(xvii) and
(ii), so that ⌅ | � | ⌃ ` 1 : 1 as required.

By inversion we also have ⌅ | � | ⌃ ` l : Ref ⌧0 and ⌅ | � | ⌃ ` v : ⌧0 for
some type ⌧0 , and Lemma 2.4.3(xv) implies that ⌧0 = ⌃(l). Furthermore,
since ⌅ | � | ⌃ ` � , we have ⌅ | � | ⌃ ` �(l) : ⌃(l). Since v = �

0(l) it thus
follows that ⌅ | � | ⌃ ` � 0(l) : ⌃(l), so ⌅ | � | ⌃ ` � 0 .

E-load: Here e = ! l, e0 = v and � = �
0 with �(l) = v. It follows from

Lemma 2.4.3(xviii) that ⌅ | � | ⌃ ` l : Ref ⌧, and Lemma 2.4.3(xv) implies
that Ref ⌧ = Ref⌃(l), which in turn yields ⌧ = ⌃(l). But since ⌅ | � | ⌃ ` �
we have ⌅ | � | ⌃ ` �(l) : ⌃(l), or in other words, ⌅ | � | ⌃ ` v : ⌧. ⌅

Lars Birkedal





Type Safety II:

Logical Predicates 4
In this chapter we use the method of logical relations, or more property
logical predicates, to prove type safety for the language F we presented
in §2.2.

The logical predicates allow us to define an alternative ‘semantic’
notion of type safety, which turns out to be stronger than the ‘syntactic’
notion of type safety we studied in the previous chapter. The goal is
then to prove that well-typed closed expressions are semantically type
safe, which as it turns out is quite simple.

4.1 ⇧ A logical predicate

A logical predicate is more properly a type-indexed predicate on expres-
sions: Roughly speaking, for each type ⌧ there is a predicate, or property,
P⌧ whose extension is somehow determined by ⌧. For us the predicate
will also strictly speaking depend on a set of type variables and a type
context.

In some applications an expression e having the property P⌧ requires
e to be well-typed with type ⌧. One such application is the proof of
strong normalisation of the simply typed �-calculus (cf. Pierce 2002,
§12.1), in which the predicate P⌧ is defined recursively on ⌧ in a fairly
straightforward way. Since our goal is precisely to study type safety, we
will not be making any assumptions about well-typedness.

4.1.1. Interpretations of syntax
We first define a type-indexed expression interpretation, which will
somehow capture those expressions that have a given type. As we will
see, this definition will depend on a value interpretation, and this
will be defined recursively on types, sometimes also depending on the
expression interpretations of smaller types.

The definition of the expression interpretation is ‘uniform’, in the
sense that it is defined in the exact same way for all types. On the other
hand, the value interpretations are constructed to capture the values
of each type individually. For closed types this is straightforward, but
since our language includes polymorphic types, we first of all need a
way to interpret type variables, and second of all a way to keep track
of the interpretations of type variables inside the expression and value
interpretations.

Furthermore, it will turn out that value interpretations must include
only closed values, so we need a way to ‘close’ values. Since all free
variables are assigned types in the type context, we do this by defining a
context interpretation.

43
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We will see how to do this below. For now, since the expression and
value interpretations are defined by mutual recursion, we fix notation:The symbol ‘.’ only serves as a delim-

iter between the set of type variables
and the type itself. Another natural
choice would be ‘`’, but we follow
Gunter (1992) in preferring a di↵er-
ent symbol, not to confuse it with the
‘`’ from various typing relations.

Let ⌅ be a finite set of type variables, ⌧ a type, and � a type context.
We write D~⌅� for the interpretation of the type variables in ⌅, and
for ⇢ 2 D~⌅� we write E~⌅ . ⌧�⇢ and V~⌅ . ⌧�⇢ for the expression and
value interpretations respectively of ⌧ with respect to ⇢. Finally, the
interpretation of � is denoted G~⌅ . ��⇢. If ⌅ is empty, and thus ⇢ = ?,
we also write E~⌧� and similarly for the other interpretations.

(a) Interpretation of type variables. We begin by defining the in-
terpretation of type variables, since its definition will turn out to not
depend on the definition of the other interpretations.

Since a type variable ↵ is supposed to represent any type whatsoever,
if ↵ is not bound then wemust choose its interpretation, just as we choose
the type of variables in a type context �. We might hope that we could
define the interpretation of ↵ in terms of value interpretations1: Simply1Or in terms of expression interpreta-

tions. But the idea is that a type is de-
termined by its values, so we might
as well use the value interpretation.

choose a type ⌧ and let the interpretation of ↵ be the value interpretation
of ⌧, i.e., the set of value of type ⌧.

This is however not a possibility. For recall that we need the in-
terpretation of type variables in order to even define the expression
interpretation of universal types. For the recursion to be well-founded,
we thus cannot choose ⌧ to be a universal type, which of course contra-
dicts the idea that ↵ should represent an arbitrary type.

Instead we ‘model’ the interpretation of ↵ on value interpretations.
The value interpretation of a type is (as it will turn out) just a set of
closed values, so we just let ↵ be an arbitrary set of closed values, called a
semantic type. We let SemTypeB P (ClVal) be the set of all such semantic
types.

The interpretation of a type variable is thus just a semantic type.
More generally, if ⌅ is a (usually finite) set of type variables, then we let

D~⌅� B {⇢ : TypeVar* SemType | dom⇢ = ⌅}.

That is, an element ⇢ of D~⌅� is a map that assigns to each variable
in ⌅ a semantic type, so that ⇢ is a simultaneous interpretation of all
variables in ⌅.

(b) Expression interpretation. Let ⌅ be a set of type variables, and let
⇢ 2D~⌅�. We assume below that all types are well-formed with respect
to ⌅ (cf. §2.1.2(c)). The expression interpretation of ⌧ is the set E~⌅.⌧�⇢
of closed2 expressions e with the property that if e0 is an irreducible2We make sense of this assumption

in §4.1.1(c) below. expression and e!
⇤
e
0 , then e

0
2 V~⌅ . ⌧�⇢. That is,

E~⌅ . ⌧�⇢ B {e 2 ClExp | 8e0 2 Irr : e!⇤ e0 ) e
0
2 V~⌅ . ⌧�⇢}.

An alternative definition of the expression interpretation isThe original definition is taken from
Skorstengaard (2019, §3.2), while
this alternative is adapted from Skor-
stengaard (2019, §4.4).

E~⌅ . ⌧�⇢ B {e 2 ClExp | 9v 2 V~⌅ . ⌧�⇢ : e!⇤ v}.
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Compared to the original definition above, this on the one hand postu-
lates the existence of a value (belonging to the correct value interpret-
ation) to which e reduces, and on the other it only talks about a single
such value.

We return to the di↵erences between these two definitions in §5.5.

(c) Value interpretation. The value interpretation of ⌧ will be a set
of closed3 values of our language of type ⌧. For most types this is simply 3In the proof of Lemma 4.2.2 we will

see why the assumption of closedness
is necessary.

a case of looking at the syntax in §B.1 and collecting all values of that
type.

It is easy to define the value interpretation for the unit type, and for
products and sums: Notice that V~⌅ .⌧1 ⇥⌧2�⇢ is just the

Cartesian product

V~⌅ . ⌧1�⇢ ⇥V~⌅ . ⌧2�⇢ ,

where we use the pair operator
h�,�i as a pairing scheme instead of
the usual Kuratowski pairs (a,b) =
{{a}, {a,b}}.

Similarly, V~⌅.⌧1+⌧2�⇢ is the dis-
joint union

V~⌅ . ⌧1�⇢ tV~⌅ . ⌧2�⇢ ,

where the ‘tags’ are provided by the
injections ◆1 and ◆2.

V~⌅ . 1�⇢ B {1},

V~⌅ . ⌧1 ⇥ ⌧2�⇢ B {hv1, v2i | v1 2 V~⌅ . ⌧1�⇢, v2 2 V~⌅ . ⌧2�⇢},

V~⌅ . ⌧1 + ⌧2�⇢ B {◆1 v | v 2 V~⌅ . ⌧1�⇢}[ {◆2 v | v 2 V~⌅ . ⌧2�⇢}.

Notice that each value interpretation is well-defined, since they are
defined in terms of the value interpretations of strictly smaller types.

For function types things are slightly more complicated: A value of
type ⌧1! ⌧2 is an expression �x.e, where e is an expression in which the
variable x may be free, and which has type ⌧2 if x : ⌧1. This means that
we may substitute x for expressions of type ⌧1, but since our language
is call-by-value we only need to consider values of type ⌧1. That is, e
should be such that e[v/x] is an expression of type ⌧2 whenever v is a
value of type of ⌧1:4 4We see here why the expression

interpretation had to contain only
closed expressions: For notice that
then the expression ⇡1 h1, yi would
lie in E~1� since it reduces to 1.
Hence the open value �x.⇡1 h1, yi
would be an element of V~⌧! 1�,
which is not allowed.

V~⌅ . ⌧1! ⌧2�⇢ B {�x.e | 8v 2 V~⌅ . ⌧1�⇢ : e[v/x] 2 E~⌅ . ⌧2�⇢}.

This is again well-defined, since E~⌅ . ⌧2�⇢ is defined directly in terms
of V~⌅ . ⌧2�⇢, and ⌧2 is a strictly smaller type than ⌧1! ⌧2.

We finally consider type variables and universal types. Recall that
we already have an interpretation of type variables as semantic types, so
we simply let5 5Recalling that ↵ is assumed to be

well-formed with respect to ⌅, which
in this case just means that ↵ 2 ⌅.

V~⌅ . ↵�⇢ B ⇢(↵).

Thus we finally see the reason for indexing value (and hence expression)
interpretations by ⇢. Next, if ↵ is not an element of ⌅, then we define

V~⌅ .8↵.⌧�⇢ B {⇤_.e | 8T 2 SemType : e 2 E~⌅,↵ . ⌧�⇢[↵ 7!T ]}.

Recall that the set ⌅,↵ is only well-defined if ↵ < ⌅. Of course we can
always ↵-convert 8↵.⌧ so that this is the case (since ⌅ is finite), in which
case ↵ may be free in ⌧.

Let us pause to consider the definition of V~⌅ . 8↵.⌧�⇢: A value
of type 8↵.⌧ is of course on the form ⇤_.e for some expression e of
the proper type. Notice that the only type variable that can be free
in the type of e but not in the type of ⇤_.e is ↵, so assuming that we



46 4. type safety ii: logical predicates

already know how to deal with the free type variables in 8↵.⌧—i.e., the
variables in ⌅—it su�ces to consider how to extend this with an extra
type variable. That is, we must consider how to extend an interpretation
of ⌅ to an interpretation of ⌅,↵. But this is easy: If ⇢ is an interpretation
of ⌅, just choose any semantic type T and extend this interpretation to
⇢[↵ 7! T ].

Notice also that since expressions of our language do not contain
types as subexpressions (that is, they do not contain explicit type annota-
tions), they in particular cannot contain type variables. When choosing
an interpretation of a type variable we thus do not need to consider how
this should a↵ect expressions containing that type variable.

(d) Context interpretation. In order to close an expression we use
a value substitution, which is a finite partial map � : Var *! ClVal.
Given a type context �, the collection of all such � with dom� = dom�
interprets �, and we call this collection the context interpretation of �. If
⌅ is a set of type variables, ⇢ 2D~⌅�, and � is well-formed with respect
to ⌅, then we define

G~⌅ . ��⇢ B {� : dom�! ClVal | 8x 2 dom� : �(x) 2 V~⌅ . �(x)�⇢}.

Given a value substitution � 2 G~⌅ . ��⇢, we extend this to a map
Exp! Exp as follows:We could also use Theorem 1.2.5 to

define the extension of � , but this
would not yield the explicit charac-
terisation of � that we will need.

4.1.1 • Definition. Let � 2 G~⌅ . ��⇢. If dom� = {x1, . . . ,xn} and e 2

Exp, then we define

�(e)B e[�(x1)/x1] · · · [�(xn)/xn],

yielding a map � : Exp! Exp. N

That is, we apply � to e by substituting each variable xi in the domain
of � with the closed value �(xi ). Notice that this is well-defined since
each �(xi ) is closed6, so the order of the substitutions does not matter.6Again we rely on an appeal to intu-

ition in lieu of a precise definition of
substitution.

Furthermore, this is indeed an extension of � since xi [�(xi )/xi ] = �(xi )
by the definition of substitution.

4.1.2. Semantic typing

We are finally in a position to define the logical predicate we will study:

4.1.2 • Definition: Semantic typing.
Let ⌅ be a finite set of type variables, � a type context with ⌅ ` �, and
let e 2 Exp and ⌧ 2 Type. Then we write

⌅ | � ✏ e : ⌧

if and only if

8⇢ 2D~⌅�,� 2 G~⌅ . ��⇢ : �(e) 2 E~⌅ . ⌧�⇢. N
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In case ⌅ = ; or � =? we simply write � ✏ e : ⌧ or ✏ e : ⌧ as appropriate.
The significance of this definition is captured by the following result:

4.1.3 • Proposition. If ✏ e : ⌧, then e is safe.

Proof. Assuming that e!⇤ e0 we must show that e0 is either reducible
or a value. If e0 is irreducible, then since e 2 E~⌧� we have e0 2 V~⌧� by
the definition of the expression interpretation. In particular, e0 is a value
as desired. ⌅

Hence to prove that the syntactic notion of well-typedness implies safety,
it su�ces to show that syntactic well-typedness implies semantic well-
typedness. This is called the fundamental property of the semantic
typing relation, and it is the goal of the rest of this chapter. The proof
method is obviously rule induction, and the induction itself it phrased
in terms of a series of compatibility lemmas.

4.1.3. Properties of interpretations
Before moving on we note some technical properties of the objects we
have defined so far.

4.1.4 • Lemma. (i) V~⌅ . ⌧�⇢ ✓ e 2 E~⌅ . ⌧�⇢.
(ii) If e 2 E~⌅ . ⌧�⇢ is irreducible, then e 2 V~⌅ . ⌧�⇢.

Proof. Both parts follow from the definition of the expression interpret-
ation since values are irreducible (Proposition 2.4.9). ⌅

4.1.5 • Lemma. Let ⌅ ✓� be finite sets of type variables, and let ⇢ 2D~⌅�
and ⇢

0
2D~�� with ⇢  ⇢

0 . Furthermore let ⌧ be a type and � a type context
that are well-formed with respect to ⌅. Then we have the inclusions

V~⌅ . ⌧�⇢ ✓ V~� . ⌧�⇢0 ,

E~⌅ . ⌧�⇢ ✓ E~� . ⌧�⇢0 ,

G~⌅ . ��⇢ ✓ G~� . ��⇢0

Proof. The first two inclusions are proved by induction in ⌧. This is
clear if ⌧ is either 1 or a type variable, and the induction step is obvious
for product and sum types. It is also easy to see that the induction step
for function types holds by considering their value interpretation.

Next consider the type 8↵.⌧ with ↵ <�. The second inclusion follows
easily. Furthermore, ⌅,↵ ✓ �,↵ and ⇢[↵ 7! T ]  ⇢

0[↵ 7! T ] for all T 2
SemType, so the first inclusion also follows.

The third inclusion follows directly from the first. ⌅

4.1.6 • Lemma: Compositionality.
Let T = V~⌅ . ⌧

0�⇢, and assume that ⌅ ` ⌧0 . Then

V~⌅ . ⌧[⌧0/↵]�⇢ = V~⌅,↵ . ⌧�⇢[↵ 7!T ],

E~⌅ . ⌧[⌧0/↵]�⇢ = E~⌅,↵ . ⌧�⇢[↵ 7!T ].
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Proof. The proof is by induction in ⌧. The only case that is nontrivial is
the case 8�.⌧ with � , ↵ and � < ⌅. Since ⌧0 is well-formed with respect
to ⌅, � is not free in ⌧

0 . Hence (8�.⌧)[⌧0/↵] = 8�.⌧[⌧0/↵], and so

V~⌅ . (8�.⌧)[⌧0/↵]�⇢ = V~⌅ .8�.⌧[⌧0/↵]�⇢

=

8>><>>:⇤_.e

������
8S 2 SemType :
e 2 E~⌅,� . ⌧[⌧0/↵]�⇢[� 7!S]

9>>=>>;

=

8>><>>:⇤_.e

������
8S 2 SemType :
e 2 E~⌅,�,↵ . ⌧�⇢[� 7!S,↵ 7!T ]

9>>=>>;

= V~⌅,↵ .8�.⌧�⇢[↵ 7!T ]. ⌅

4.2 ⇧ Compatibility

The reader that is less interested in details or is prepared to take things
purely on intuition may feel free to skip the following lemma and
only consider the cases T-var, T-match, T-lam, T-Tlam and T-Tapp of
Lemma 4.2.2.

4.2.1 • Lemma. (i) If he1, e2i !⇤ e0 , then there are expressions e01 and e
0

2
such that e0 = he01, e

0

2i, and such that ei !⇤ e0i .

(ii) If ⇡1 e!
⇤
e
0, then either e0 = v1 is a value and e!

⇤
hv1, v2i, or else

e
0 = ⇡1 e

00 such that e!⇤ e00 .

(iii) If e1 e2 !⇤ e0, then either e1 e2 !⇤ e00[v/x]!⇤ e0 where e1 !⇤ �x.e00

and e2!
⇤
v, or else e0 = e

0

1 e
0

2 where ei !
⇤
e
0

i
.

Proof. Proof of (i): The proof is by induction on the length of the reduc-
tion he1, e2i !⇤ e0, it su�ces to prove the claim when this is a one-step
reduction. There exists an evaluation context E and expressions d and
d
0 such that he1, e2i = E[d] and e

0 = E[d 0], and such that d!h d
0 . Notice

that E must either be on the form hE0 , e00i or hv,E0i for an evaluation
context E0, an expression e

00 and a value v. In the former case we have
E[d] = hE0[d], e00i, so we must have e

0

1 = E
0[d] and e

0

2 = e
00. We similarly

have e
0 = hE0[d 0], e00i, and we notice that E0[d] !⇤ E0[d 0] (indeed this

happens in one step) and e
00
!
⇤
e
00 as desired. If instead E = hv,E0i, then

the argument is similar.

Proof of (ii): The proof is by induction on the length n of the reduc-
tion ⇡1 e!

⇤
e
0 . For n = 0 we have e0 = ⇡1 e and e!

⇤
e, so the claim holds.

Assuming that it holds for some n, suppose that ⇡1 e!
n
e
0

1! e
0

2. Then
e
0

1 cannot be a value since values are irreducible by Proposition 2.4.9,
so e

0

1 = ⇡1 e
00

1 with e!
⇤
e
00

1 by induction. Now, e01 = E[d1] and e
0

2 = E[d2]
with d1!h d2, where E is either the hole or on the form ⇡1E

0 . If E is the
hole, then ⇡1 e

00

1 !h e
0

2, which is only possible if e001 = hv1, v2i and e
0

2 = v1.
In this case we thus indeed have e !

⇤
hv1, v2i. If instead E = ⇡1E

0,
then e

0

1 = ⇡1E
0[d1] and e

0

2 = ⇡1E
0[d2], the first of which implies that
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e
00

1 = E
0[d] by the induction hypothesis. But since d1!h d2 we also have

E
0[d1]! E

0[d2], and so e!
⇤
e
00

1 = E
0[d1]! E

0[d2] as desired.

Proof of (iii): By induction on the length n of the reduction e1e2!
⇤
e
0 .

If n = 0 then the claim is obvious, so assume that is holds for some n

and that e1 e2!n
e
0
! e

000. We consider each disjunct in the induction
hypothesis: First assume that e1 e2!⇤ e00[v/x]!⇤ e0 ! e

000 , where e1!⇤

�x.e
00 and e2!

⇤
v. Then we have e00[v/x]!⇤ e000 , proving the claim.

Instead assume that e0 = e
0

1 e
0

2 and ei !
⇤
e
0

i
. Then e

0

1 e
0

2 ! e
000, so

e
0

1 e
0

2 = E[d] and e
000 = E[d 0] with d!h d

0, and E is either the hole or on
one of the forms E

0
e
00

2 and v1 E
0. If E is the hole, then we must have

e
0

1 = �x.e
00 and e

0

2 = v2, in which case e000 = e
00[v2/x]. If instead E = E

0
e
00

2 ,
then e

0

1 e
0

2 = E
0[d]e002 and e

000 = E
0[d 0]e002 , implying that e01 = E

0[d]! E
0[d 0]

and e
0

2 = e
00

2 as desired. The final case is similar. ⌅

4.2.2 • Lemma: Compatibility.
The semantic typing relation ✏ satisfies all inference rules in §B.2 pertaining
to the language F.7 7We trust that the reader is able to

discern which inference rules are rel-
evant.Proof. T-var: Assume that ⌅ ` � and that �(x) = ⌧. Let ⇢ 2 D~⌅� and

� 2 G~⌅ . ��⇢. By definition of the context interpretation we have
�(x) 2 V~⌅ . �(x)�⇢ = V~⌅ . ⌧�⇢, which implies that �(x) 2 E~⌅ . ⌧�⇢
by Lemma 4.1.4(i).

T-unit: Since 1 is a closed value, this follows immediately from
Lemma 4.1.4(i).

T-pair: Let � 2 G~⌅.��⇢, and let e0 be an irreducible expression such
that h�(e1),�(e2)i = �(he1, e2i)!⇤ e0 . By Lemma 4.2.1(i) this implies that
e
0 = he01, e

0

2i for appropriate expressions e
0

1 and e
0

2, and furthermore
that �(e1) !⇤ e01 and �(e2) !⇤ e02. By induction we then have �(ei ) 2
E~⌅ . ⌧i�⇢. Notice that e01 and e

0

2 are both irreducible since e
0 is,8 so 8Some irreducible expressions have

reducible subexpressions, but in this
case, if either e01 or e02 were reducible
then e

0 would clearly also be.

e
0

i
2 V~⌅ . ⌧i�⇢ by definition of expression interpretations. But then

e
0 = he01, e

0

2i 2 V~⌅.⌧1⇥⌧2�⇢, which implies that �(he1, e2i) 2 E~⌅.⌧1⇥⌧2�⇢
as desired.

T-proj1 and T-proj2: Both cases are proved in the same way, so we
only prove the case T-proj1.

Assume that ⌅ | � ✏ e : ⌧1 ⇥ ⌧2, let � 2 G~⌅ . ��⇢, and let e0 be ir-
reducible such that ⇡1�(e) = �(⇡1 e) !⇤ e0. We consider each case of
Lemma 4.2.1(ii): First assume that e0 = v1 is a value and �(e)!⇤ hv1, v2i.
Since hv1, v2i is a value, and hence irreducible by Proposition 2.4.9,
the hypothesis implies that9 hv1, v2i 2 V~⌅ . ⌧1 ⇥ ⌧2�⇢. It follows that 9Note that we cannot conclude dir-

ectly that hv1, v2i 2 V~⌅.⌧1⇥⌧2�⇢ by
using that the vi are values of type ⌧i ,
since this requires that types are pre-
served under reductions. Of course
we know this from Theorem 3.3.1,
but we do not want to assume this
result here.

v1 2 V~⌅ . ⌧1�⇢, so �(⇡1 e) 2 E~⌅ . ⌧1�⇢ as desired.
Next assume that e0 = ⇡1 e

00 and that �(e)!⇤ e00. If e00 is reducible
then so is ⇡1 e

00, so assume that e00 is irreducible. The hypothesis then
implies that e00 2 V~⌅ . ⌧1 ⇥ ⌧2�⇢, which means that e00 is on the form
hv1, v2i with vi 2 V~⌅ .⌧i�⇢. But then e

0 = ⇡1 hv1, v2i reduces to v1, which
is a contradiction.
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T-inj1 and T-inj2: These cases are almost identical to T-pair, so we
omit it.

T-match: This case is similar to T-proj1 and T-proj2, so we only
sketch the proof. Assume that ⌅ | � ✏ e : ⌧1+⌧2 and that ⌅ | �,x : ⌧i ✏ ei : ⌧
for i 2 {1,2}. Choosing x < dom� we have

�

⇣
match(e,x, e1, e2)

⌘
=match(�(e),x,�(e1),�(e2)).

When this reduces10 we first reduce �(e), and by induction this reduces10Here we appeal to the reader’s in-
tuition instead of proving an appro-
priate version of Lemma 4.2.1.

to an element of V~⌅ . ⌧1 + ⌧2�⇢, i.e., an expression on the form ◆1 v or
◆2 v for a closed value v. Applying E-match-inj1 or E-match-inj2 we
obtain either �(e1)[v/x] or �(e2)[v/x], and these reduce11 to an element11Here we use that v is a closed value

so that we may commute the substi-
tution x 7! v with the substitutions
defining �(ei ). Notice that the same
assumption is needed in the case T-
lam below.

of V~⌅ . ⌧�⇢ by induction, as desired.

T-lam: Let � 2 G~⌅.��⇢, and let e0 be an irreducible expression such
that �(�x.e)!⇤ e0 . Notice that by choosing x < dom� we have �(�x.e) =
�x.�(e). Since �x.�(e) is a value it is irreducible by Proposition 2.4.9, so
e
0 = �x.�(e). To show that this lies in V~⌅ . ⌧1! ⌧2�⇢, let v 2 V~⌅ . ⌧1�⇢
and notice that

�(e)[v/x] = �[x 7! v](e) 2 E~⌅ . ⌧2�⇢

by the induction hypothesis, since �[x 7! v] 2 G~⌅ . �,x : ⌧1�⇢. Thus
�(�x.e) 2 E~⌅ . ⌧1! ⌧2�⇢ as desired.

T-app: Let � 2 G~⌅ . ��⇢, and let e0 be an irreducible expression
such that �(e1) �(e2) = �(e1 e2)!⇤ e0. We consider in turn each case of
Lemma 4.2.1(iii): First assume that �(e1) �(e2)!⇤ e00[v/x]!⇤ e0 where
�(e1) !⇤ �x.e00 and �(e2) !⇤ v. Each of the expressions on the right-
hand sides are values and hence irreducible by Proposition 2.4.9, so
the hypothesis implies that they lie in V~⌅ . ⌧1! ⌧2�⇢ and V~⌅ . ⌧1�⇢
respectively. But then e

00[v/x] 2 E~⌅ . ⌧2�⇢, so since e
0 is irreducible it

lies in V~⌅ . ⌧2�⇢ as desired.
Instead assume that e0 = e

0

1e
0

2 where �(ei )!⇤ e0i . Since e
0 is irreducible,

then so are the e
0

i
, so the hypothesis implies that e01 2 V~⌅ . ⌧1! ⌧2�⇢

and e
0

2 2 V~⌅ . ⌧1�⇢. Hence e01 is on the form �x.e
00

1 and e
0

2 is a value. But
then e

0

1 e
0

2 is reducible, which is a contradiction.

T-Tlam: Assume that ⌅,↵ | � ✏ e : ⌧ holds, and consider ⇢ 2 D~⌅�
and a � 2 G~⌅ . ��⇢. Assume that e0 is an irreducible expression with
�(⇤_.e)!⇤ e0. Since �(⇤_.e) = ⇤_.�(e) is a value it is irreducible, so it
must equal e0 .

Now let T 2 SemType. By Lemma 4.1.5 we also have � 2 G~⌅,↵ .

��⇢[↵ 7!T ], so the hypothesis implies that �(e) 2 E~⌅,↵ . ⌧�⇢[↵ 7!T ], as
desired.

T-Tapp: Assume that ⌅ | � ✏ e : 8↵.⌧ holds. Consider a ⇢ 2 D~⌅�
and a � 2 G~⌅ . ��⇢. We then have �(e _) = �(e) _, and by induction1212Again we are only sketching the

proof to avoid proving another case
of Lemma 4.2.1.

�(e) reduces to an element ⇤_.e0 2 V~⌅ .8↵.⌧�⇢. Hence �(e) _ reduces
to e

0
2 E~⌅,↵ . ⌧�⇢[↵ 7!T ] for any T 2 SemType. This in turn reduces to

an element of V~⌅,↵ . ⌧�⇢[↵ 7!T ], which then lies in V~⌅ . ⌧[⌧0/↵]�⇢ by
Lemma 4.1.6. Hence it follows that �(e _) 2 V~⌅ .⌧[⌧0/↵]�⇢ as desired. ⌅
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We finally arrive at the promised result:

4.2.3 • Theorem: Fundamental property.
If ⌅ | � ` e : ⌧, then ⌅ | � ✏ e : ⌧. ⌅





Logical Relations 5
Having studied logical predicates we now move on to binary logical
relations. While the construction of such a relation is very similar to the
construction of its unary counterpart, it will be used very di↵erently. In
particular we will discuss how to tell whether two programs are in some
sense equivalent, and how to use logical relations to prove that they are.

5.1 ⇧ Equational reasoning

In the study of programming languages we are obviously interested in
the evaluation or reduction of programs, as we have been in previous
chapters. But there are other questions one might ask about languages,
and in this chapter we are concerned with the question of when two
programs are ‘equivalent’ in some sense.

There are various ways of defining equivalence, or equality, of pro-
grams, and to take some examples:

The (untyped) �-calculus is an equa-
tional theory usually defined by ax-
ioms and rules, namely by the axiom
schemas

(�x.M)N ⇠M[N/x], (�)

�x.Mx ⇠M, (⌘)

along with the axioms for compatible
equivalence relations. The axiom (⌘)
is sometimes omitted.

Compatible equivalence relations
are also induced by �- and ⌘-
reduction, which are given by

⇣
(�x.M)N,M[N/x]

⌘
2 �,

(�x.Mx,M) 2 ⌘.

Letting �⌘ B �[⌘, these induce com-
patible equivalence relations =� and
=�⌘ . One can then show that the
equivalence ⇠ is precisely =� or =�⌘ ,
depending on the inclusion of the
axiom (⌘) in ⇠ (cf. Barendregt 1984,
Propositions 3.2.1 and 3.3.2).

I Most directly one might postulate axioms and inference rules for
equivalence. For instance, one axiom might be the equivalence of
⇡1 he1, e2i and e1, since these expressions are clearly supposed to
be identical. A rule might then be, using our usual notation for
inference rules,

e1 ⇠ e2

�x.e1 ⇠ �x.e2
,

saying that two lambda expressions are equivalent if their bodies
are.

The desire is then for the additional structure of the language
(i.e., its operational semantics and type system if it has one) to
respect these equivalences somehow.

I If a language has a notion of reduction R, then we can simply let
this induce a compatible equivalence relation =R (as described
in §1.4.2) and take this to describe equivalence of programs. Of
course, =R depends on which set of contexts we use to induce
the compatible one-step reduction!R: We could consider only
evaluation contexts, some other restricted set of contexts, or (as is
standard in the untyped �-calculus) use all contexts.

I Below we consider contextual equivalence, by which expressions
are considered equivalent if they ‘behave’ the same in all contexts
with respect to the operational semantics.

I We finally define a logical relation, which is reminiscent of the
logical predicate we defined in Chapter 4, except that the inter-
pretation of e.g. a type will be a set of pairs of expressions. This
then also yields a notion of equivalence of programs.

53
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The definition of an equational theory is obviously complicated by the
presence of a type system, and this will concern us below.

5.2 ⇧ Contextual equivalence

Before defining contextual equivalence we discuss some desirable prop-
erties that such a notion of equivalence should have.

5.2.1. Adequate congruences
Let us first be more precise about what kinds of relations we are study-
ing:Our treatment of congruences is ad-

apted from Birkedal et al. (2013).
5.2.1 • Definition: Type-indexed relation.
A type-indexed relation is a set of tuples (⌅,�, e, e0 ,⌧), where e1 and e2
are expressions such that ⌅ | � ` e : ⌧ and ⌅ | � ` e0 : ⌧. If R is such a
relation, then we write ⌅ | � ` e R e

0 : ⌧ if (⌅,�, e, e0 ,⌧) 2R. N

If ⌅ = ; or � =?, then we omit these from the notation as usual.
Put another way, each set ⌅ of type variables, type context �, and

type ⌧ gives rise to a relation R⌅,�,⌧ on the set

Exp⌅,�,⌧ B {e 2 Exp | ⌅ | � ` e : ⌧}

such that (e, e0) 2 R⌅,�,⌧ if and only if ⌅ | � ` e R e
0 : ⌧. Thus we may

transfer properties and constructions pertaining to binary relations on a
set to type-indexed relations: We say that R has property P if all R⌅,�,⌧

have property P. For instance, R is an equivalence relation just when all
R⌅,�,⌧ are equivalence relations on their respective sets.

Similarly, if S is another type-indexed relation then we may form
the composition S �R by letting

(S �R)⌅,�,⌧ B S⌅,�,⌧ �R⌅,�,⌧ .

We can in particular form powers Rn, and in the case n = 0 we get
the identity I with the property that I⌅,�,⌧ is just equality on Exp⌅,�,⌧ .
Furthermore, the inverse of R is given by (R�1)⌅,�,⌧ B (R⌅,�,⌧)�1.

The type-indexed relations of interest should of course respect the
structure of the language somehow, and in particular respect the type
system. We formalise this by requiring that a relation satisfy rules de-
rived from the typing rules. For instance, in the rule

T-pair
⌅ | � ` e1 : ⌧1 ⌅ | � ` e2 : ⌧2

⌅ | � ` he1, e2i : ⌧1 ⇥ ⌧2

we replace occurrences of ei with ei R e
0

i
to obtain the rule

R-pair
⌅ | � ` e1 R e

0

1 : ⌧1 ⌅ | � ` e2 R e
0

2 : ⌧2
⌅ | � ` he1, e2iR he

0

1, e
0

2i : ⌧1 ⇥ ⌧2
.
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That is, R should be ‘compositional’ in the sense that two expressions
of the same form are equivalence whenever their corresponding subex-
pressions are equivalent. We collect all these so-called compatibility
rules in §B.4.

5.2.2 • Definition. Let R be a type-indexed relation. Then R is com-
patible if it satisfies the rules in §B.4, and a congruence if it is a compat-
ible equivalence relation. N

A congruence thus gives rise to an equational theory that respects types.
Finally, we also want a congruence to say something reasonable

about which programs are equivalent. As described above, we desire a
notion of equivalence based on the execution of programs, motivating
the following definitions. First we say that a complete program is a
closed expression of type Bool. Then we define:

5.2.3 • Definition: Kleene equality.
Two complete programs e1 and e2 are Kleene equal if for all values v of
type Bool, e1!⇤ v if and only if e2!⇤ v. In this case we write e1 ' e2. N

Kleene equality is clearly an equivalence relation. Depending on the
language under consideration, di↵erent definitions of Kleene equality
are useful. We return to this point in §5.5.

5.2.4 • Definition. A type-indexed relation R is adequate if ` e1 R e2 :
Bool implies e1 ' e2. N

This list of properties and the proof
of Proposition 5.2.5 are based on
Pitts (2005, Theorem 7.5.3).

Let us note some (mostly) easy to verify properties of type-indexed
relations:

I The identity relation I is an adequate congruence. Conversely,
every compatible relation contains I , i.e., is reflexive (this is an
easy proof by induction on the compatibility rules in §B.4).

I A composition of adequate relations is adequate, and the inverse of
an adequate relation is adequate. The same is true for compatible
relations.

I A union of adequate relations is adequate. A nonempty union of
compatible relations is also compatible if it is transitive (this is
less obvious, see the proof of Proposition 5.2.5).

Below we will explicitly construct the adequate congruence of in- Note that though we are working
in a power set, we cannot appeal
to Knaster–Tarski’s fixed-point the-
orem (cf. Theorem A.4.9) to establish
the existence of a largest adequate
congruence. For note that while the
rules in §B.4 that define compatibil-
ity do—when taken alone—give rise
to a generating function, neither the
definition of a type-indexed relation
nor of adequacy do.

terest, and it will turn out that this is the coarsest, or largest, adequate
congruence. However, it is fairly easy to prove that this exists without
constructing it explicitly:

5.2.5 • Proposition. There exists a coarsest adequate and compatible type-
indexed relation. Furthermore, this is a congruence.
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Proof. Consider the relation

S B
[
{R | R is adequate and compatible}.

Then S contains I and is thus reflexive, and it is also symmetric and
transitive since the set above is closed under composition and taking
inverses. Furthermore, S is adequate.

It remains to be shown that a nonempty union of compatible re-
lations is compatible if it is transitive. This is proved by induction
on the rules in §B.4. For rules with a single hypothesis this is im-
mediate, and for rules with multiple hypothesis it follows by using
transitivity. As an example, consider the rule R-pair and assume that
⌅ | � ` ei S e

0

i
: ⌧i for i 2 {1,2}. There then exist compatible R1,R2 ✓ S

such that ⌅ | � ` ei Ri e
0

i
: ⌧i , and since each Ri is compatible (and in

particular reflexive) we have

⌅ | � ` he1, e2iR1 he
0

1, e2i : ⌧1 ⇥ ⌧2

and
⌅ | � ` he01, e2iR2 he

0

1, e
0

2i : ⌧1 ⇥ ⌧2.

These judgments then also hold with each Ri replaced with S , so the
claim follows from transitivity of S . ⌅

5.2.2. Typed contexts

Recall from §1.4.2 that a context, roughly speaking, is an expression
in which a subexpression is replaced by the hole �. In order to define
contextual equivalence we first need to consider which contexts we
may apply to which expressions. Of course the argument to a context
will always be well-typed (in some type context), and the resulting
expression should also be well-typed.It is also possible to define context

types using typing rules, just as we
have done for types of expressions.
One can then show that typed con-
texts preserve properties so that they
obey our definition of typed contexts
(see e.g. Harper 2016, §46.1).

We extend the typing of expressions to contexts as follows: If C is
a context with the property that ⌅ | � ` e : ⌧ implies ⌅0 | �0 ` C[e] : ⌧0,
then we say that the type of C is (⌅ | � . ⌧) ( (⌅0 | �0 . ⌧0) and write
C : (⌅ | � . ⌧)( (⌅0 | �0 . ⌧0). If any of ⌅, ⌅0, � or �0 are empty then we
omit them from the notation, for instance writing ⌧( ⌧

0 .
Composition of typed contexts is naturally well-defined:

5.2.6 • Lemma. If C : (⌅ | � . ⌧)( (⌅0 | �0 . ⌧0) and C
0 : (⌅0 | �0 . ⌧0)(

(⌅00 | �00 . ⌧00) are typed contexts, then C
0
�C : (⌅ | � . ⌧)( (⌅00 | �00 . ⌧00).

Proof. This is obvious from the definition of composition of contexts
(cf. §1.4.2) and the definition of context types. ⌅

Some authors define compatibility
using contexts directly, e.g. Harper
(2016, §46.1) (though note that
Harper only considers compatibility
of equivalence relations, and thus
jumps straight to congruences).

Typed contexts also gives us an alternative definition of compatibility
of type-indexed relations which is more closely related to the notion of
contextual equivalence which we define below.
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5.2.7 • Lemma. A type-indexed relation R is compatible if and only if

⌅ | � ` e R e
0 : ⌧ implies ⌅0 | �0 ` C[e]R C[e0] : ⌧0

for all contexts C : (⌅ | � . ⌧)( (⌅0 | �0 . ⌧0).

Proof. Since R is automatically reflexive, each direction follows by
induction: The ‘only if’ direction follows by induction on the structure
on C, and the ‘if’ direction follows by induction on the compatibility
rules in §B.4. ⌅

5.2.3. Contextual equivalence
A program context is a context of type (⌅ | � . ⌧)( Bool.

5.2.8 • Definition: Contextual equivalence.
If ⌅ | � ` e1 : ⌧ and ⌅ | � ` e2 : ⌧, then e1 and e2 are contextually equival-
ent if C[e1] ' C[e2] for all program contexts C : (⌅ | � . ⌧)( Bool. In this
case we write ⌅ | � ` e1 �ctx e2 : ⌧. N

Contextual equivalence is indeed an equivalence relation since Kleene
equality is; see also §5.5.

5.2.9 • Theorem. Contextual equivalence is the coarsest adequate congru-
ence.

Proof. Contextual equivalence is clearly adequate since the hole is a
context of type Bool ( Bool. We show compatibility using the char-
acterisation in Lemma 5.2.7, so assume that ⌅ | � ` e1 �ctx e2 : ⌧ and
let C : (⌅ | � . ⌧) ( (⌅0 | �0 . ⌧0). Given a program context C 0 : (⌅0 |
�0 . ⌧0)( Bool we have C

0
� C : (⌅ | � . ⌧)( Bool by Lemma 5.2.6, so

(C 0 �C)[e1] ' (C 0 �C)[e2] since e1 and e2 are contextually equivalence.
But this means that C 0[C[e1]] ' C

0[C[e2]], so since C 0 was arbitrary C[e1]
and C[e2] are also contextually equivalent.

Conversely let R be an adequate congruence. If ⌅ | � ` e1 R e2 : ⌧
then ` C[e1]R C[e2] : Bool for any program context C by compatibility,
and adequacy implies that C[e1] ' C[e2]. ⌅

5.3 ⇧ A logical relation

It is usually di�cult to prove the contextual equivalence of two expres-
sions directly. However, due to the characterisation in Theorem 5.2.9 of
contextual equivalence as the coarsest adequate congruence—and even
the coarsest adequate and compatible relation by Proposition 5.2.5—we
can instead use coinduction (cf. §1.5.2): In order to prove the judgment
⌅ | � ` e1 �ctx e2 : ⌧, we instead show that⌅ | � ` e1 R e2 : ⌧ for some other
adequate and compatible relation R. We next define such a relation.

The approach is roughly the same as in Chapter 4 when we defined
a logical predicate in order to study type safety, except that the interpret-
ations of values, expressions and so on are now sets of pairs.

Lars Birkedal



58 5. logical relations

5.3.1. Interpretations of syntax
We define the same kinds of interpretations as we did in Chapter 4, and
we use the same notation.

(a) Interpretation of type variables. As was the case in §4.1.1, we
begin by defining the interpretation of type variables. Previously we
interpreted a type variable ↵ as a semantic type, i.e., as a set of closed
values. Our approach in the second case is similar, in that an interpret-
ation of ↵ will be an arbitrary binary relation on closed values, i.e., a
subset of ClVal⇥ClVal. We let RelB P (ClVal2) be the collection of such
relations, and we can thus define

D~⌅� B {⇢ : TypeVar* Rel | dom⇢ = ⌅}

for any finite set ⌅ of type variables.

(b) Expression interpretation. Let us first try to adapt our definition
of the expression interpretation for logical predicates in §4.1.1(b): Given
a type ⌧, the expression interpretation E~⌅ . ⌧�⇢ should now be a set of
pairs (e1, e2) of expressions with the property that if somehow (e1, e2)!⇤

(e01, e
0

2) with (e01, e
0

2) irreducible, then (e01, e
0

2) lies in V~⌅ . ⌧�⇢. Of course
we interpret the relation ‘!’ as acting elementwise on the pair (e1, e2), so
the assumption means that e1!⇤ e01 and e2!

⇤
e
0

2. Similarly we interpret
‘irreducible’ to mean that both e

0

1 and e
0

2 are irreducible.
Rephrasing, (e1, e2) lies in E~⌅ . ⌧�⇢ if whenever e01 and e

0

2 are irredu-
cible and ei !

⇤
e
0

i
, then (e01, e

0

2) lies in V~⌅ . ⌧�⇢. This indeed works as a
definition.

However, we could also define the expression interpretation as fol-
lows: Recall that we in §4.1.1(b) discussed an alternative definition of
the expression interpretation in the case of logical predicates. Namely,
instead of requiring that whenever e1 and e2 reduce to irreducible expres-
sions e01 and e

0

2 these should lie in the correct value interpretation, we
require that there exists an element of the correct value interpretation to
which e1 and e2 reduce.

We adopt the second approach here. That is, we define the expression
interpretation by

E~⌅ . ⌧�⇢ B

8>><>>:(e1, e2) 2 ClExp
2

������
9(v1, v2) 2 V~⌅ . ⌧�⇢ :

e1!
⇤
v1 and e2!

⇤
v2

9>>=>>;.

In §5.5 we discuss the nuances between the two definitions in more
detail.

(c) Value interpretation. We finally define the value interpretation.
As in the case of logical predicates we define the value interpretation of
each sort of type individually. In the case of the unit type this is trivial:

V~⌅ . 1�⇢ B {(1,1)}.
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For product types we have in mind that two pairs hv1, v2i and hv01, v
0

2i

are equivalent if the entries are pairwise equivalent, i.e., if v1 and v
0

1 are
equivalent, and if v2 and v

0

2 are equivalent. Hence we obtain

V~⌅ . ⌧1 ⇥ ⌧2�⇢ B

8>><>>:
⇣
hv1, v2i,hv

0

1, v
0

2i
⌘ ������

(v1, v01) 2 V~⌅ . ⌧1�⇢,

(v2, v02) 2 V~⌅ . ⌧2�⇢

9>>=>>;.

Sum types are perhaps slightly less intuitive. A value of a sum type
⌧1 + ⌧2 is either on the form ◆1 v or ◆2 v, and while such two values are
of course not equal, they are also not supposed to be equivalent: For
recall that a sum type is supposed to be a sort of disjoint union1 whose 1More properly a coproduct, but in

the analogy with disjoint unions it
is more apparent that ◆1 v and ◆2 v
should not be equivalent.

‘tags’ are the injections ◆1 and ◆2 , we require that ◆1 v and ◆2 v are not
equivalent. Thus we define

V~⌅ . ⌧1 + ⌧2�⇢ B {(◆1 v, ◆1 v0) | (v,v0) 2 V~⌅ . ⌧1�⇢}

[{(◆2 v, ◆2 v0) | (v,v0) 2 V~⌅ . ⌧2�⇢}.

Notice that the union is indeed disjoint.
In the case of function types we seemingly have more freedom to

choose when two values of the same function type are equivalent. Con-
sider for instance the expressions

�x.1 and �x.⇡1 h1,1i.

Clearly these are extensionally equal since whenever they are applied
to the same value they both eventually reduce to 1. But they are not
obviously intensionally equal, in that they describe functions that have
di↵erent meanings or ‘senses’. To see this distinction more clearly, note
that the predicates ‘n > 2’ and ‘the equation a

n + b
n = c

n has no posit-
ive integer solution’ have the same extension (i.e., truth value) when
considered as funtions on N, but that this is highly nontrivial.

Furthermore, if we think of function expressions as representing al-
gorithms, then extensional equality of two such expressions corresponds
to the two represented algorithms being equivalent in the sense that they
solve the same algorithmic problem. But notice that extensional equality
cannot capture the computational complexity of these algorithms.

If we agree to only consider the result of computations, then we may
adopt an extensional view of equality of function expressions2. For two 2This is of course the standard ap-

proach in mathematics. But consider
for instance the following: The poly-
nomials 0 and x

2
� x in F2[x] (where

F2 is the field with two elements) are
distinct polynomials, but the corres-
ponding polynomial functions x 7! 0
and x 7! x

2
� x are equal, since they

are both identically zero on F2. Since
functions in mathematics by defini-
tion are extensional (up to a choice of
codomain), we thus cannot with no
further considerations model poly-
nomials using functions. Since func-
tions in our language are not defined
extensionally but instead by expres-
sions, we get a legitimate choice of
how to interpret them

function expressions �x.e1 and �x.e2 of type ⌧1! ⌧2 to be equivalent,
they thus must assume the same value on each input. That is, if v is a
(closed) value of type ⌧1, the expressions e1[v/x] and e2[v/x] must be
equal. In other words:

V~⌅ . ⌧1! ⌧2�⇢ B

8>><>>:(�x.e1,�x.e2)
������
8(v1, v2) 2 V~⌅ . ⌧1�⇢ :

(e1[v1/x], e2[v2/x]) 2 E~⌅ . ⌧2�⇢

9>>=>>;.

Lastly consider universal types. Since an expression on the form⇤_.e
is just a function whose argument is a type, the above considerations
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say that two such expressions ⇤_.e1 and ⇤_.e2 should be considered
equivalent whenever e1 and e2 are when applied to the same type. Of
course, in our language we do not apply such expressions to types, so
we model this application of e1 and e2 to the ‘same type’ in a di↵erent
way. If these are of type 8↵.⌧, then we simply require that e1 and e2 are
equivalent when ↵ is interpreted as some element of Rel. We thus arrive
that the interpretation

V~⌅ .8↵.⌧�⇢ B

8>><>>:(⇤_.e1,⇤_.e2)

������
8R 2 Rel :
(e1, e2) 2 E~⌅,↵ . ⌧�⇢[↵ 7!R]

9>>=>>;.

(d) Context interpretation. Before defining logical equivalence we
must first consider how to interpret type contexts. Here we simply copy
the definition from §4.1.1(d), extended to pairs of values:

G~⌅ . ��⇢ B {� : dom�! ClVal2 | 8x 2 dom� : �(x) 2 V~⌅ . �(x)�⇢}.

For � 2 G~⌅ . ��⇢ we write �1 and �2 for the coordinate functions of � ,
so that �(x) = (�1(x),�2(x)) for x 2 dom�.

5.3.2. Logical equivalence
We are now in a position to define the logical relation.

5.3.1 • Definition: Logical equivalence.
Let ⌅ be a finite set of type variables, � a type context, and ⌧ a type.
Then two expressions e1 and e2 are logically equivalent with type ⌧

with respect to ⌅ and �, written

⌅ | � ` e1 �log e2 : ⌧,

if ⌅ | � ` e1 : ⌧ and ⌅ | � ` e2 : ⌧ and

8⇢ 2D~⌅�,� 2 G~⌅ . ��⇢ : (�1(e1),�2(e2)) 2 E~⌅ . ⌧�⇢. N

Logical equivalence is indeed an equivalence relation, but we postpone
the argument to §5.5. We now intend to show that logical equivalence
implies contextual equivalence, and by Theorem 5.2.9 it su�ces to show
that logical equivalence is compatible and adequate.

5.4 ⇧ Compatibility and adequacy

5.4.1 • Lemma: Compatibility.
Logical equivalence �log satisfies the compatibility rules in §B.4.

Proof. The proof of this claim is very similar to that of the correspond-
ing claim Lemma 4.2.2 for the logical predicate of Chapter 4, with the
minor complication that our definition of the expression interpretation
is slightly di↵erent. This only turns out to make the proofs of each
case easiler. We give some representative examples to illustrate how to
modify the arguments to apply in the binary case.
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R-var: Assume that ⌅ ` � and that �(x) = ⌧. It then follows that
⌅ | � ` x : ⌧ by T-var. For ⇢ 2D~⌅� and � 2 G~⌅ .��⇢ we must show that
(�1(x),�2(x)) 2 E~⌅ . ⌧�⇢. But notice that (�1(x),�2(x)) = �(x), which lies
in V~⌅ .�(x)�⇢ by definition of the context interpretation. Since �(x) = ⌧,
it also lies in3 E~⌅ . ⌧�⇢. 3By a version of Lemma 4.1.4(i) for

binary logical relations.
R-pair: Assume that ⌅ | � ` ei �log e0i : ⌧i for i 2 {1,2}. Then T-pair

implies that ⌅ | � ` he1, e2i : ⌧1⇥⌧2 and ⌅ | � ` he01, e
0

2i : ⌧1⇥⌧2. Next notice
that

⇣
�1(he1, e2i),�2(he01, e

0

2i)
⌘
=

⇣
h�1(e1),�1(e2)i,h�2(e01),�2(e

0

2)i
⌘
,

and that we by induction have

(�1(e1),�2(e01)) 2 E~⌅ . ⌧1�⇢ and (�1(e2),�2(e02)) 2 E~⌅ . ⌧1�⇢.

Hence there are pairs (v1, v01) 2 V~⌅ . ⌧1�⇢ and (v2, v02) 2 V~⌅ . ⌧2�⇢ such
that

�1(e1)!⇤ v1, �2(e01)!
⇤
v
0

1, �1(e2)!⇤ v2 and �2(e02)!
⇤
v
0

2.

But then it follows that4 4This is where our new definition of
the expression interpretation is use-
ful, since we avoid technical results
like those of Lemma 4.2.1. Strictly
speaking this conclusion follows by
induction on the lengths of each re-
duction, but it should be obvious
how to make this precise.

h�1(e1),�1(e2)i !⇤ hv1, v2i and h�2(e01),�2(e
0

2)i !
⇤
hv
0

1, v
0

2i

by several applications of E-head. But these pairs of values are also
values and hence (hv1, v2i,hv01, v

0

2i) lies in V~⌅ . ⌧1 ⇥ ⌧2�⇢ as required.

R-proj1: Assume that ⌅ | � ` e �log e0 : ⌧1⇥⌧2, and consider ⇢ 2D~⌅�
and � 2 G~⌅ . ��⇢. By induction there is an element (hv1, v2i,hv01, v

0

2i) of
V~⌅ . ⌧1 ⇥ ⌧2�⇢ such that �1(e)!⇤ hv1, v2i and �2(e0)!⇤ hv01, v

0

2i. By E-
proj1 it follows that ⇡1�1(e)!⇤ v1 and ⇡1�1(e)!⇤ v01, and since (v1, v01)
lies in V~⌅ . ⌧1�⇢, the claim follows.

R-Tlam: Assume that ⌅,↵ | � ` e �log e
0 : ⌧ and that ↵ < FVType(�),

and consider ⇢ 2D~⌅� and � 2 G~⌅ . ��⇢. We then must show that

(⇤_.�1(e),⇤_.�2(e0)) = (�1(⇤_.e),�2(⇤_.e0)) 2 E~⌅ .8↵.⌧�⇢.

Let R 2 Rel and note that � also lies in5 G~⌅,↵ . ��⇢[↵ 7!R]. By induction 5By a version of Lemma 4.1.5 for bin-
ary relations.(�1(e),�2(e0)) thus lies in E~⌅,↵ . 8↵.⌧�⇢[↵ 7!R], so by definition of the

value interpretation of universal types (⇤_.�1(e),⇤_.�2(e0)) lies in V~⌅ .

8↵.⌧�⇢, and hence also in6 E~⌅ .8↵.⌧�⇢ as required. 6By a version of Lemma 4.1.4(i) for
binary relations.

R-Tapp: Assume that ⌅ | � ` e �log e0 : 8↵.⌧ and that ⌅ ` ⌧0. Consid-
erin ⇢ 2D~⌅� and � 2 G~⌅ . ��⇢ we show that

(�1(e) _,�2(e0) _) = (�1(e _),�2(e0 _)) 2 E~⌅ . ⌧[⌧0/↵]�⇢.

By induction �1(e) and �2(e0) reduce to values v =⇤_.e1 and v
0 =⇤_.e01

such that (v,v0) 2 V~⌅.8↵.⌧�⇢. It follows by E-tapp-tlam that �1(e)_!⇤

e1 and �2(e0)_!⇤ e01, where (e1, e01) lies in E~⌅,↵ .��⇢[↵ 7!T ]. Next, e1 and
e
0

1 reduce to values v1 and v
0

1 such that (v1, v01) lies in V~⌅,↵ . ⌧�⇢[↵ 7!T ]
and hence in7 V~⌅ . ��⇢. ⌅ 7By a version of Lemma 4.1.6 for bin-

ary relations.
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5.4.2 • Lemma: Adequacy.
Logical equivalence �log is adequate.

Proof. Assume that ` e1 �log e2 : Bool. Since e1 and e2 are then closed,
it follows that (e1, e2) 2 E~Bool�. Hence there exists a pair (v1, v2) 2
V~Bool� such that e1 !⇤ v1 and e2 !

⇤
v2. But since V~Bool� is the set

{(false, false), (true, true)}, this implies that v1 = v2.
To show that e1 ' e2, assume that v is a value with e1 !

⇤
v. By

Corollary 2.4.11 it follows that v = v1 = v2. The above then implies that
also e1!

⇤
v as desired. Hence e1!⇤ v implies e2!⇤ v, and the converse

follows similarly (or by symmetry). ⌅

Hence we arrive at the main theorem of this section:

5.4.3 • Theorem: Adequate congruence.
Logical equivalence �log is an adequate congruence. In particular,

⌅ | � ` e1 �log e2 : ⌧ implies ⌅ | � ` e1 �ctx e2 : ⌧. ⌅

5.5 ⇧ 8 vs. 9
We have already mentioned that there are (at least) two di↵erent ways of
defining the expression interpretation: Our o�cial definition for binary
logical relations is, as we recall,

E~⌅ . ⌧�⇢ =

8>><>>:(e1, e2) 2 ClExp
2

������
9(v1, v2) 2 V~⌅ . ⌧�⇢ :

e1!
⇤
v1 and e2!

⇤
v2

9>>=>>;.

We could also have adapted the definition from §4.1.1(b) directly and
let

E~⌅ . ⌧�⇢ =

8>><>>:(e1, e2) 2 ClExp
2

������
8e
0

1, e
0

2 2 Irr :
ei !

⇤
e
0

i
) (e01, e

0

2) 2 V~⌅ . ⌧�⇢

9>>=>>;.

Each of these definitions give rise to a di↵erent version of logical equi-
valence. Let us denote these by �9 and �8, respectively. Now notice the
following:

I The relation �9 is reflexive since it is compatible8. We can also8Cf. the discussion immediately fol-
lowing Definition 5.2.4. give a more direct argument if the reduction is normalising: For

then if e is a complete program, there is a boolean value v such
that e!⇤ v, and hence (v,v) 2 V~Bool�.

If instead the reduction is Church–Rosser, then �9 is transitive.
For then if ` e1 �9 e2 : Bool and ` e2 �9 e3 : Bool, then e1 !

⇤
v1

and e2!
⇤
v2, and also e2!

⇤
v
0

2 and e3!
⇤
v
0

3, and by the Church–
Rosser property we have v2 = v

0

2.
Finally, �9 is always symmetric.
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I The relation �8 is always transitive and symmetric, and again it
is automatically reflexive. If the reduction is Church–Rosser, then
reflexivity is immediate: If e!⇤ e1 and e!

⇤
e2 with ei irreducible,

we have e1 = e2 and so (e1, e2) 2 V~Bool�.

Similarly we have two di↵erent definitions of Kleene equality. For
complete programs e1 and e2, say that these are 8-Kleene equivalent,
denoted e1 '8 e2, if they satisfy Definition 5.2.3, i.e., if for all values v
of type Bool, e1!⇤ v if and only if e2!⇤ v. Furthermore say that e1 and
e2 are 9-Kleene equivalent, denoted e1 '9 e2, if there exists a value v of
type Bool such that e1!⇤ v and e2!

⇤
v.

I 8-Kleene equality is always an equivalence relation.

I 9-Kleene equality is always symmetric. If the reduction is normal-
ising then '9 is reflexive, and if the reduction is Church–Rosser
'9 is transitive.

We next consider the relationship between the di↵erent variations of
logical equivalence and Kleene equality:

I Assuming that the reduction is normalising, if ` e1 �8 e2 : Bool then
e1 '8 e2. For assume that e1!⇤ v. By normalisation e2 reduces to
an irreducible e02, so (v,e02) 2 V~Bool�, implying that v = e

0

2.
Notice that if the reduction is not normalising, then there is no

reason to expect that e2 has a normal form.

I Assuming that the reduction is normalising, if ` e1 �8 e2 : Bool
then e1 '9 e2. For then e1!

⇤
e
0

1 and e2!
⇤
e
0

2, and similar to above
we have e01 = e

0

2.

I Assuming that the reduction is Church–Rosser, if ` e1 �9 e2 : Bool
then e1 '8 e2. This is the content of Lemma 5.4.2.

I If ` e1 �9 e2 : Bool then e1 '9 e2. This is also clear since e1 and e2
have a common normal form as above.

In short, since we have proved that the reduction is deterministic
and hence Church–Rosser (cf. Theorem 2.4.10), we know that �8, �9
and '8 are equivalence relations, that '8 is symmetric and transitive,
and that �9 implies '8 and '9.





Order Theory A
Inthis appendix we give an overview of the order theory necessary to
study fixed-points of monotone maps.

A.1 ⇧ Objects: Partial orders and lattices

We begin by recalling the definitions and basic properties of various
kinds of ordered sets.

A.1.1. Ordered sets

A.1.1 • Definition:Orders.
A binary relation  on a set P is called a preorder if  is

(a) reflexive, x  x for all x 2 P, and

(b) transitive, x  y and y  z implies x  z for all x,y,z 2 P.

If furthermore  is

(c) antisymmetric, x  y and y  x implies x = y for all x,y 2 P,

then  is called a partial order, and the pair (P,) is also called a poset.
If  is also

(d) strongly connected, x  y or y  x for all x,y 2 P,

then  is a total order. N

Notice that any subset of a preordered set is also preordered with the
inherited order. As usual we intentionally conflate a preordered set
(P,) and the underlying set P when this does not lead to confusion. We
define the dual order op on P by letting x 

op
y if and only if y  x. The

resulting preordered set (P,op) is also simply denoted P
op and is called

the dual of (P,).
If both x  y and y  x then x and y are equivalent and we write

x ⌘ y. By quotienting out by ⌘ any preordered set becomes a poset.

a b

c

Figure A.1. A so-called Hasse dia-
gram for the poset {a,b,c} in which
a < c and b < c, and no other relations
hold. This poset has a maximum c

and two distinct minimal elements a
and b, and hence no minimum.

The subset a" = {a,c} is upward
closed but not downward closed.

If x 2 P and A ✓ P, then x is an upper bound of A if a  x for all
a 2 A. In this case A is said to be bounded above. If also x 2 A then x

is a greatest element of A. If A has a single greatest element, then this
element is the maximum of A. Furthermore, if x 2 A has the property
that x  a implies a  x for all a 2 A, then x is amaximal element of A.
Every greatest element is thus maximal. In case  is a partial order, A
has at most one greatest element which is its maximum.

For A ✓ P we write

A
" B {y 2 P | 9x 2 A : x  y},

65
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and we let x" B {x}" for x 2 P, so that A" =
S

x2A x
". A subset A of P

is said to be upward closed or an upper set if A = A
". An upper set is

principal if it is on the form x
" for some x 2 P.

The above notions have obvious dual counterparts. Clearly A is
upward closed if and only if P \A is downward closed, and vice versa.
There is no such correspondence between principal upper and lower
sets.

Suppose now that  is a partial order. If P itself has a maximum,
then this is denoted > or >P and called the top element of P, and P is
said to be topped. If P has a minimum, then this is denoted ? or ?P

and called the bottom element of P, and P is called pointed. If P is both
topped and pointed it is said to be bounded.

The following result is easy to prove but shows that the collection of
downward (or upward) closed subsets of a poset characterise the order:

A.1.2 • Lemma. Let P be a poset, and let x,y 2 P. The following are equi-
valent:

(i) x  y.

(ii) x
"
✓ y
".

(iii) For all upward closed A ✓ P, x 2 A implies y 2 A. ⌅

A.1.2. Lattices

;

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

Figure A.2. Hasse diagram for
the power set P ({a,b,c}). Power sets
are the most important class of
(complete) lattices. In fact, they are
Boolean algebras since every ele-
ment has a complement.

If a set A ✓ P has a least upper bound x, then x is called a supremum or
join of A. A join of A is determined up to equivalence if it exists, and we
denote any such join by

W
A. We similarly define an infimum or meet of

A, denoted
V

A, to be a greatest lower bound of A, if it exists. A join of a
one- or two-element subset {x,y} of P is denoted x_ y, and we similarly
write x^ y for one of its meet.

Clearly two elements x and y has a join (resp. meet) in P just when
they have a meet (resp. join) in the dual Pop.

A.1.3 • Definition: Lattices.
Let L be a poset. If x_ y and x^ y exist for all x,y 2 L, then L is called a
lattice.

There is also an algebraic theory of lattices in which the operationsIn standard first-order logic and uni-
versal algebra we usually require the
underlying set of a structure or al-
gebra to be nonempty (relaxing this
assumption gets us into free logic ter-
ritory, cf. Priest 2008, Chapter 13).
However, in algebra it is sometimes
useful, or at least more natural, to al-
low domains to be empty: Otherwise
the corresponding algebraic categor-
ies often have no initial object, and
parallel morphisms with disjoint im-
ages have no equaliser.

_ and ^ are primary, and in which the order is defined using these
operations (cf. Davey and Priestley 2002, Chapter 2). Both approaches
are equivalent.

Note also that authors di↵er on whether lattices must be nonempty,
and even whether they must be bounded (in which case they cannot be
empty): Schröder (2016, Definition 8.1) allows empty lattices, Davey
and Priestley (2002, Definition 2.4) do not, and Johnstone (1982, §1.4)
requires lattices to be bounded.
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A.1.3. Completeness in posets

A preordered set P is complete if every subset of P has a meet. If on the Let C be a preorder category, i.e.,
a category with at most one arrow
between a pair of objects. Then any
pair of parallel arrows in C have an
equaliser, so for C to be complete it
su�ces for it to have all products (cf.
Leinster 2014, Proposition 5.1.26(a)
or any book on category theory). But
products are precisely meets, so our
terminology for posets is in agree-
ment with the terminology from cat-
egory theory.

other hand P has all joins, then we might have called P ‘cocomplete’,
if not for the fact that these properties are equivalent, as a standard
argument shows.

Instead we are interested in preordered sets that do not have all joins,
but that have ‘enough’ joins, and specifically joins of particular kinds of
subsets:

A.1.4 • Definition. Let P be a poset, let C ✓ P, and let  be a cardinal
number. We say that

(a) C is a chain if it is totally ordered.

(b) C is a -chain if it is a chain and |C |  .

(c) C is consistent if every finite subset of C has an upper bound in P.

(d) C is directed if every finite subset of C has an upper bound in C.

If C has a join in P, then C is called convergent. N
By induction directedness of D is
equivalent to the property that, for
every pair of elements x,y 2D, there
exists a z 2 D with x  z and y  z,
as long as D is nonempty. This is
the usual definition of directedness,
but we prefer the ‘unbiased’ version
(cf. nLab authors 2024). Interestingly,
some authors explicitly require both
the existence of upper bound of finite
subsets and nonemptyness (cf. Gierz
et al. 2003, Definition O-1.1), which
of course is redundant.

A directed set is thus clearly consistent. Furthermore, if P is topped then
every subset is consistent, so this notion is only interesting if P is not
topped. If a set {x1, . . . ,xn} is consistent then we also say that the xi are
consistent.

Notice that a directed set D is automatically nonempty, since the
empty set is a finite subset of D. If D is a directed set whose join exists,
we often write

F
D B

W
D instead. Another common notation is

W
"
D.

We further note that the image of a chain, -chain, consistent or directed
set under a monotone map also has this property.

For each type of subset of a poset, we may study special kinds of
posets in which every such subset has a join. In the case of directed sets
we in particular get the following: In this setting what we call ‘cocom-

pleteness’ is often simply called
‘completeness’, but we follow Crole
(1993) and prefer the category
theory-friendly nomenclature.

A.1.5 • Definition. Let F be a property of subsets of posets. A poset P
is F -cocomplete if every subset of P with the property F is convergent.N

For the most important choices of F we use slightly altered terminology:

I If F is ‘bounded above’, then P is bounded cocomplete. If P is
nonempty then the empty set has an upper bound, and P is
automatically pointed. Some authors (e.g. Goubault-Larrecq 2013,
Definition 5.7.3) build pointedness into their definition of bounded
cocompleteness, while others (e.g. Gierz et al. 2003, Definition O-
2.1(v)) do not but instead build nonemptyness into their defini-
tion of posets (cf. Gierz et al. 2003, Definition O-1.6). In Defini-
tion A.1.9 we define the class of posets of interest to us, and these
posets will in either case be nonempty.
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I Similarly, if F is ‘consistent’ then P is consistent cocomplete. Some
authors also use the term coherent for P in this case (e.g. Baren-
dregt 1984, Definition 1.2.28).

I Most importantly, if F is ‘directed’, then P is directed cocomplete
and is called a dcpo. We obtain analogous properties if instead F is
‘!-chain’ or ‘chain’, in which case we respectively call P an !-cpo
or a ccpo. We will focus on dcpo’s in the sequel, but many results
have analogous statements for the other types of complete posets.
If any of the above are pointed, then we add an extra ‘p’ to their
abbreviations, so that we get !-cppo, ccppo and dcppo.

A.1.6 • Lemma. Let P be a poset, and consider the following properties:

(i) P is consistent cocomplete.

(ii) P is bounded cocomplete.

(iii)
V

A exists for all nonempty A ✓ P.

Then the following implications hold:

(i)) (ii), (iii).

If P is a dcpo then the implication (ii)) (i) also holds.

Proof. The equivalence of (ii) and (iii) is standard. Assuming (i), if A ✓ P

is bounded above then it is automatically consistent. Finally, if P is a
dcpo and (ii) holds, let A ✓ P be consistent and let D B {

W
F | F ✓! A}.

Then D is directed and it is easy to show that
W

A =
F

D. ⌅

A.1.4. Algebraic posets and Scott domains
Finiteness also arises from the ‘way-
below’ relation: Given x,y 2 P, if
y 

F
D implies that x  d for some

d 2D, then x is way below y, written
x⌧ y. Then x is finite if and only if
x⌧ x. This notion leads to the theory
of continuous posets, cf. Goubault-
Larrecq (2013, §5.1), a generalisation
of algebraic posets.

A.1.7 • Definition: Finiteness.
Let P be a poset. An element x 2 P is finite if for all convergent directed
D ✓ P, if x 

F
D then there is a d 2 D with x  d. The set of finite

elements of P is denoted F(P). N

Note that if x and y are finite, then x _ y is also finite if it exists. Fur-
thermore, if x,y 2 P with x finite, then we write x ! y. Since the finite
elements of a power set are precisely those that are finite as sets, this
notation is consistent with our notation ‘✓!’ for finite subsets.

A.1.8 • Definition: Algebraic posets.
A poset P is algebraic if

x =
G
{y 2 F(P) | y  x}

for all x 2 P. N

Implicit in this definition is that the sets {y 2 F(P) | y  x} are directed.
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A.1.9 • Definition: Scott domains.
If P is a dcppo that is algebraic and bounded cocomplete, then P is
called a Scott domain. N

By Lemma A.1.6 a Scott domain is automatically consistent complete.

1

2 3 · · ·

4 6 9 · · ·

0

Figure A.3. Hasse diagram for the
lattice of subgroups of Z, where a
node d represents the subgroup dZ.
Note that 1Z =Z and 0Z = {0}.

A.1.10 • Examples.
(A) The lattice of subalgebras of an algebra (in the sense of universal

algebra) is a complete algebraic lattice. For a concrete example,
consider the group (Z,+): Its subgroups are dZ for d 2N (cf. Alu�
2009, Proposition 6.9), and its lattice of subgroups is isomorphic
to the dual (N, |)op of the naturals ordered by divisibility. This is
depicted in Figure A.3.

(B) Any power set is also a complete algebraic lattice.

(C) If X and Y are sets, then the set (X * Y ) is a Scott domain: The
finite elements in (X * Y ) are those partial maps with finite do-
main1, and it is thus clear that (X * Y ) is algebraic. It is pointed 1If f 2 (X * Y ) is a finite element, let

D be the set of the finite partial maps
d with d  f . Then D is directed and
f =

F
D. The converse follows by in-

duction on |dom f |.

with minimum ?, and it is easy to see that it is a dcpo. Finally,
if F ✓ (X * Y ) is bounded above, then taking the union of the
graphs of the functions in F yields the graph of partial map. y

A.1.5. Topology
There are several di↵erent ways to equip an ordered set P with a topo-
logy that somehow respect the ordering. Before surveying the options,
consider the opposite problem, that of equipping a topological space
with an ordering.

If X is a topological space, define the specialisation preorder � on
X by the condition that x � y if and only if every neighbourhood of x is
also a neighbourhood of y, or equivalently if x 2 {y}. The preordered set
(X,�) is sometimes denoted ⌦X.

This is a very natural ordering: For instance, X is T0 if and only if � is
a partial order, and X is T1 is if and only if � is equality. More pertinent
for us, every open set is upward closed in the specialisation preorder,
and similarly every closed set is downward closed.

An obvious question is how the original order  and the specialisa-
tion preorder � relate to each other. We have a useful criterion which
the reader can readily check:

A.1.11 • Lemma. Let (P,) be a preordered set equipped with a topology,
and let � be the specialisation preorder.

(i) If every open set is upward closed with respect to , then  ✓ �.

(ii) If every principal lower set with respect to  is closed, then � ✓ . ⌅
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Given the set S = {0,1} of truth val-
ues ordered by 0 < 1, the space AS is
called the Sierpifiski space. It is well
known that the functor O : Topop!
Set sending a space to its topology is
represented by S , so the restriction
of O to the category of ordered sets
is also represented by S .

(a) Alexandro↵ topology. Given the above, an obvious way in which
to equip a preordered set (P,) with a topology is just to let the open
sets be the upward closed subsets of P. This is called the Alexandro↵
topology (also called the specialisation topology) on P, and is denoted
↵(P), and the topological space (P,↵(P)) is denoted AP (note that the ‘A’
is a capital ‘↵’).

The specialisation preorder on AP is precisely the original ordering
on P (i.e.,⌦AP = P)2, and it is easy to see that ↵(P) is the finest topology2In fact, one can show that there is

an adjunction

Pre Top?

A

⌦

where Pre is the category of pre-
ordered sets and monotone maps (cf.
§A.2.1). Note that ⌦ does not have
a right adjoint since it does not pre-
serve coequalisers: In both categories
coequalisers are quotients, but while
a quotient of a T1-space is not ne-
cessarily T1, a quotient of a discrete
preordered set is still discrete.

on P with this property (cf. Goubault-Larrecq 2013, Proposition 4.2.11).
Furthermore, since the upward closed subsets of P characterise its

order by Lemma A.1.2, we may recover the order from the topology.

(b) Upper topology. There is also a coarsest topology on P that has
the ordering on P as its specialisation preorder. This is called the upper
topology on P and is denoted ⌫(P). The space (P,⌫(P)) is denoted NP. It
is easy to check that ⌫(P) is indeed the coarsest such topology, once one
has realised that {y} = y

# with respect to the specialisation preorder.
More concretely, ⌫(P) has a subbasis consisting the sets P \ x# for

x 2 P, or equivalently a basis consisting of the sets P\A# for finite subsets
A ✓ P (cf. Goubault-Larrecq 2013, Proposition 4.2.12).

(c) Scott topology. Neither the Alexandro↵ nor the upper topology
is of much interest to us, but they help motivate the Scott topology:
We have already seen that directed subsets of posets have important
properties, so we attempt to modify the Alexandro↵ topology to conform
better to the directed subsets of P.

Equip P with a topology. Following Goubault-Larrecq (2013), let us
think of open sets of P as ‘tests’, such that an open set U corresponds to
the test ‘given x 2 P, does x 2U?’. We further think of the ordering on
P as an information ordering, in the sense that if x  y, then y contains
more information than x. This then implies that U is upward closed,
since if it is possible to determine that x passes the test U , then it is also
possible to determine that y does because it contains all the information
in x.

We next (informally) say that U is ‘computable’ if there is a comput-
able partial function f : P * {0,1} with the property that f (x) = 1 if and
only if x 2U . Thinking of f as a program ⇡, it proceeds by considering
‘finite’ parts x0,x1,x2, . . . of x such that the sequence (xn)n2N ‘approxim-
ates’ x. Since xn is supposed to be a better approximation of x than xm if
m  n, we suppose that the sequence (xn)n2N is increasing. We interpret
the idea that it approximates x as x =

W
n2N xn.

Given a test U and the corresponding program ⇡, if ⇡ gets x as input
and outputs 1, then it must have concluded that x 2 U on the basis of
some approximation xn. But then xn must itself pass the test U since xn
is precisely the part of x that ⇡ has used to conclude that x 2U . In other
words, xn 2U .
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This implies that U should have the property that if (xn)n2N is an
increasing sequence whose join x lies in U , then there is an n 2N such
that xn already lies inU . Or put another way, if C is a nonempty !-chain
with

W
C 2U , then C \U , ;.

However, it turns out that using !-chains leads to a theory that has
some bizarre properties (cf. Abramsky and Jung 1994, §2.2.4). Hence
it is customary to instead use directed sets, even though these do not
exactly model the way in which a program executes. Thus we arrive at
the following definition:

A.1.12 • Definition. Let P be a poset. A subset U ✓ P is said to be
inaccessible if

F
D 2 U implies D \U , ; for all convergent directed

sets D ✓ P. N

The Scott topology on P then consists of all the inaccesible upper sets.
We denote it �(P), and the space (P,�(P)) is denoted ⌃P. This also has
the property that the specialisation preorder on ⌃P is precisely the
original ordering on P, implying that �(P) lies (usually strictly) between
↵(P) and ⌫(P): simply notice that every principal lower set is Scott closed
(cf. Goubault-Larrecq 2013, Proposition 4.2.18).

In the complete lattice [0,1] with the
usual order, only 0 is finite. On the
other hand, it is easy to see that x" is
accessible for all x 2 (0,1].

Or a less trivial example: In the
complete lattice C of closed subsets
of R, where meet is intersection and
join is union followed by closure, in-
finite closed sets are not finite in C.
For instance,

G

n2N+

[ 1
n
,1] = [0,1],

so [0,1] is not finite. Hence [0,1]" is
accessible.

(d) Pointwise convergence. If x 2 P is finite, then we easily check that
x
" is inaccessible and hence Scott open. Hence the principal upper sets

in P constitute subcollection of the Scott topology. Letting these induce
a topology we get the following:

A.1.13 • Definition: Topology of pointwise convergence.
Let P be a poset. The topology on P generated by

{x
"
| x 2 F(P)}

is called the topology of pointwise convergence. N

That is, {x" | x 2 F(P)} is a subbasis for the topology. It gets its name from
its main application in domains of partial maps, as we return to in §A.3.

The topology of pointwise convergence is generally strictly coarser
than the Scott topology3, but in many important posets the two coincide: 3In [0,1] the only finite element is 0,

so the topology of pointwise conver-
gence is trivial. On the other hand,
any subset (x,1] is inaccessible. In
general, sets on the form x

"
\ {x}

provide counterexamples in many
dcpo’s.

A.1.14 • Proposition. If P is an algebraic poset, then the Scott topology
and the topology of pointwise convergence on P coincide.

Proof. Let U be a Scott open subset of P, and let x 2 U . Since P is
algebraic we have x =

F
{y 2 F(P) | y  x}, and since U is inaccessible

there is a y ! x in U . Finally, since U is upward closed we have y" ✓U ,
so in total

U =
[

y2U\F(P)

y
"
.

Thus U is also open in the topology of pointwise convergence. ⌅
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A.2 ⇧ Arrows

A.2.1. Maps between ordered sets

A.2.1 • Definition. Let P and Q be preordered sets. A map f : P!Q

is said to be monotone if x  y implies f (x)  f (y) for all x,y 2 P. N

Clearly the composition of two monotone maps is monotone, and the
identity map is monotone, so this yields a category Pre of preordered
sets and monotone maps.

We have the following characterisation of monotonicity which the
reader can readily check:

A.2.2 • Proposition. Let P and Q be preordered sets and let f : P!Q be
a function. Then the following are equivalent:

(i) f is monotone.

(ii) If B ✓Q is upward closed, then f
�1[B] is also upward closed.

(iii) If B ✓Q is downward closed, then f
�1[B] is also downward closed. ⌅

A.2.2. Continuity
If P and Q are preordered sets, then it follows directly from Proposi-
tion A.2.2 that a map f : P!Q is monotone if and only if it is continu-
ous with respect to the Alexandro↵ topology. If f instead is continuous
with respect to the Scott topology, then f is called Scott continuous.

A.2.3 • Lemma. If f : P!Q is Scott continuous, then f is monotone and
hence continuous with respect to the Alexandro↵ topology.

Proof. Let x,y 2 P with x  y. The set f (y)# is closed in Q, so its preim-
age f �1[f (y)#] is closed in P and is in particular downward closed. Hence
it contains x, and so f (x) 2 f (y)#, which means that f (x)  f (y). ⌅

There is a di↵erent characterisation of continuous maps between
posets. If f : P!Q is a map between posets, then we say that f preserves
joins if whenever

W
A exists in P for a subset A ✓ P, then

W
f [A] exists in

Q and f (
W

A) ⌘
W

f [A]. We often consider slightly di↵erent properties
where we require f to preserve certain properties of subsets as well
as joins of subsets with these properties. For instance, we say that fA function that preserves directed

joins is also often called continuous,
but we reserve this name for func-
tions that are continuous in the topo-
logical sense.

preserves directed joins if, whenever D ✓ P is directed and
F

D exists
in P, then f [D] is also directed,

F
f [D] exists in Q and f (

F
D) ⌘

F
f [D].

We then have the following:

A.2.4 • Proposition. Let P and Q be preordered sets. A map f : P ! Q

preserves directed joins if and only if it is Scott continuous.
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Proof. First assume that f preserves directed joins, and let F ✓ Q be This result gives another interpreta-
tion of the Scott topology: Namely
the one in which a set U is open
just when the characteristic function
�U : P ! S preserves directed joins.
(Here S = {0,1} is the set of truth val-
ues with 0 < 1, as defined above.)

closed in the Scott topology. Assume that D ✓ f
�1[F] is convergent and

directed. Then f [D] ✓ F, so

f

✓G
D

◆
=

G
f [D] ✓ F,

which implies that
F

D 2 f
�1[F]. We easily see that f is monotone, so

Proposition A.2.2 implies that f �1[F] is also downward closed, hence
closed in the Scott topology.

Conversely assume that f is Scott continuous, and let D ✓ P be
convergent and directed. By Lemma A.2.3 f is monotone, so f (

F
D) is

an upper bound of f [D]. If x is any upper bound of f [D], then f [D] ✓ x
#,

implying that D ✓ f
�1[x#]. But since x# is Scott closed so is f �1[x#], and

hence
F

D 2 f
�1[x#]. This just means that f (

F
D) 2 x#, so f (

F
D)  x as

required. ⌅

A.2.3. Expansive maps

This section is only needed in the proof of Theorem A.4.10. Readers can
on a first pass skip this section and return to it as needed.

A map f : P ! P on a poset P is called expansive if x  f (x) for all
x 2 P. The following lemma describes how we in some cases can restrict
f to a particularly nice subset of P on which P is monotone. A sub-ccpo Q of P is a subset of P

such that if C is a chain in Q with
join

W
C 2 P, then

W
C also lies in Q.

Furthermore, Q is a sub-ccppo of P if
the bottom element of P also lies in
Q.

A.2.5 • Lemma. Let P be a ccppo and f : P ! P be expansive. If P0 is the
smallest f -invariant sub-ccppo of P, then P0 is a chain and f |P0 is monotone.
In particular, P0 is bounded.4

4This result is adapted from Davey
and Priestley (2002, Exercise 8.20).

Proof. We will call an element x 2 P0 a ‘roof’ if y < x implies f (y)  x

for all y 2 P0. For a roof x we consider the set

Zx = {y 2 P0 | y  x or f (x)  y}.

We claim that Zx is an f -invariant ccppo, so let y 2 Zx. If y  x, then
either y = x in which case f (x)  f (y), or else y < x so that f (y)  x

since x is a roof. If instead f (x)  y, then since f is expansive we have
f (x)  f (y). Hence f (y) 2 Zx, so Zx is f -invariant. Next let C ✓ Zx be a
chain. If y  x for all y 2 x, then we also have

W
C ✓ x. If instead there is

some y 2 C with f (x)  y, then we clearly have f (x) 
W

C. Thus Zx is a
ccppo, so by minimality of P0 we have P0 = Zx.

Next we claim that every element in P0 is a roof. Consider the set

Z = {x 2 P0 | x is a roof}.

We show that Z is an f -invariant ccppo. If x is a roof and y 2 P0, then
y 2 Zx and so either y  x or f (x)  y. If y < f (x) then we must have
y  x  f (x), so that f (x) is also a roof, and so Z is f -invariant. If C ✓ Z

is a chain and y <
W

C, then there is some x 2 C with y < x 
W

C, so Z

is also chain cocomplete. Again by minimality we have P0 = Z .
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Now notice that P0 is a chain: If x,y 2 P0, then x is a roof and so
y 2 Zx, which implies that either y  x or x  f (x)  y. If x < y, then
necessarily f (x)  y  f (y), so f is monotone on P0. Finally, since itself
P0 is a chain the join

W
P0 lies in5 P0 and is its maximum. ⌅5This is where we use that P is chain

cocomplete and not just !-chain
cocomplete, since P0 may be un-
countable. The rest of the proof goes
through with this weaker assump-
tion (with ‘ccppo’ replaced with ‘!-
cppo’), but we shall not need this
fact.

A.3 ⇧ Posets of partial maps

Recall from Example A.1.10(C) that a set (X * Y ) of partial maps
is a Scott domain whose finite elements are the finite partial maps.
Unless Y is a singleton (or X is empty), (X * Y ) is not topped: If x 2 X
and y1, y2 2 Y are distinct, then any maps with x 7! y1 and x 7! y2
respectively are inconsistent.

A.3.1. Topology
Recall that on (X * Y ) the Scott topology and topology of pointwiseNote that the name ‘topology of

pointwise convergence’ is usually
given to the product topology on the
set (X ! Y ) of total maps, when Y

is a topological space. In this case
‘pointwise’ means that a sequence
(fn)n2N (or more generally a net) in
(X! Y ) converges to a function f if
and only if the sequences (fn(x))n2N
converge to f (x) for all x 2 X.

convergence coincide by Proposition A.1.14. In this context we can better
explain the meaning of ‘pointwise convergence’: If (fi )i2I is a sequence
in (X * Y ) which converges to some f : X * Y , then this means that for
every g ! f there exists an i0 2 I such that i � i0 implies g  fi . Since
such a map g is uniquely determined by its domain, this just says that
for every A ✓! dom f there is such an i with fi |A = f |A when i � i0. That
is, the functions in the sequence eventually agree with f on arbitrarily
large, but finite, subsets of X.

On the other hand, every partial map f can be approximated by
finite maps, though unless we know more about the structure of X we
cannot necessarily approximate f with a sequence. Let A = P!(dom f )
and let fA = f |A. Then (fA)A2A is a net, and it is clear that it converges to
f .

Let ⇤ be some element disjoint from Y , and let Y⇤ B Y [ {⇤}. Every
f : X * Y gives rise to a total function f⇤ : X! Y⇤ by

f⇤(x) =

8>><>>:
f (x), x 2 dom f ,

⇤, x < dom f .

This map clearly induces a bijection (X * Y ) ⇠�! (X ! Y⇤) given by
f 7! f⇤. Furthermore, for x 2 X define ✏x : (X * Y )! Y⇤ by ✏x(f ) = f⇤(x).
We then have the following result:

A.3.1 • Proposition. Equip Y⇤ with the discrete topology. Then (X * Y )
along with the maps (✏x)x2X is an X-fold product of Y⇤.

Proof. It su�ces to show that if Z is a topological space and (fx)x2X is a
family of continuous maps fx : Z! Y⇤, then there is a unique continuous
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F : Z! (X * Y ) such that the diagram

Y⇤

Z (X * Y )

 

!
fx

 

!
F

 

!

✏x

commutes for all x 2 X. Existence of such a set function F as well as
uniqueness are clear since the diagram forces, for z 2 Z ,

F(z)⇤(x) = (✏x �F)(z) = fx(z),

so F(z) is the partial function with domain {x 2 X | fx(z) , ⇤} given by
F(z)(x) = fx(z).

To see that F is continuous at z, let g ! F(z). For x 2 domg let
Ux ✓ Z be a neighbourhood of z such that fx(w) = fx(z) for w 2 Ux.6 6This neighbourhood exists since fx

is continuous and Y⇤ is discrete.Define U B
T

x2domg
Ux and note that U is a neighbourhood of z since

domg is finite. For w 2U and x 2 domg we thus have

F(w)(x) = fx(w) = fx(z) = F(z)(x),

and hence g  F(w). Thus F is continuous. ⌅

Thus we have shown that the topology of pointwise convergence as
defined above is a special case of ‘the’ topology of pointwise convergence,
i.e., the product topology.

A.3.2. Compactness

There is another characterisation of continuity to which we now turn. It
will turn out that continuity is equivalent to monotonicity along with
the following property:

A.3.2 • Definition: Compactness.
A map F : (X * Y )! (Z *W ) is called compact if it has the following
property: For every f : X * Y and z 2 domF(f ), there is a finite partial
map f0  f such that z 2 domF(f0) and F(f0)(z) = F(f )(z). N

Informally, to compute F(f )(z) we first compute F(f ) and then evaluate
this function at z. But if F is compact, then it su�ces to look at an
appropriately chosen finite partial map f0 instead of f . Or put another
way, each value F(f )(z) depends only on the values of f at finitely many
points.

Using the properties of the topology of pointwise convergence stud-
ied above, it is easy to show that continuity implies compactness: As-
sume that F is continuous, consider f : X * Y and let (fA)A2A be the net
from §A.3.1 that converges to f . For each z 2 Z the composition ✏z �F is
continuous, so

F(fA)(z) = (✏z �F)(fA)! (✏z �F)(f ) = F(f )(z).
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Since W is discrete there is an A such that equality holds.
However, it is just as easy, and more elementary, to prove equivalence

of compactness (plus monotonicity) and continuity using the other
characterisations of continuity:

A.3.3 • Proposition. Let F : (X * Y )! (Z * W ) be a map. Then F is
monotone and compact if and only if it is continuous.

The assumption of monotonicity can be replaced with a sort of ‘converse’
of compactness, see Moschovakis (2006, Proposition 6.23).

Proof. Assume that F is monotone and compact. We prove that F

preserves directed joins.7 Let D ✓ (X * Y ) be directed, and since7The proof of this implication
is based on Moschovakis (2006,
Lemma 6.29).

F
F[D]  F(

F
D) by monotonicity, it su�ces to prove the other inequal-

ity. Letting f B
F

D, it su�ces to show that for z 2 Z there is a d 2 D

with F(f )(z) = F(d)(z). But compactness yields an f0 ! f such that
F(f )(z) = F(f0)(z), and since f0 finite there is a d 2 D with f0  d as
desired.

For the converse, if F preserves directed joins, then it is monotone.
To prove compactness, let f : X * Y and z 2 domF(f ), and let D B
{d : X * Y | d ! f } such that f =

F
D. Furthermore, there is some

d 2D with z 2 domF(d). Hence

F(f )(z) = F

✓G
D

◆
(z) =

✓G
F[D]

◆
(z) = F(d)(z),

so F is compact. ⌅

A.4 ⇧ A survey of fixed-point theorems

A.4.1. Introduction to fixed-points

In this section we prove some of the central fixed-point theorems in
order theory. Let us immediately say what a fixed-point is in the first
place:

A.4.1 • Definition. Let f : P ! P be a map on a poset P. An element
x 2 P is said to be

(a) f -closed if f (x)  x,

(b) f -consistent if x  f (x), and

(c) a fixed-point of f if f (x) = x.

If f has a least (resp. greatest) fixed-point, then we denote this by µ(f )
(resp. ⌫(f )). N

Functions can have closed or consistent elements without having fixed-
points, but we do have the following (which comes from Gunter 1992,
§10.1):



a.4. a survey of fixed-point theorems 77

A.4.2 • Lemma. Let f : P ! P be a monotone map on a poset. If f has a
least closed element, then this is also a fixed-point of f , and indeed the least
fixed-point. The converse of Lemma A.4.2 does

not hold in general. For instance,
define f : Nop

! Nop by f (0) = 0
and f (n) = n�1 for n < 0. Then there
is no minimal f -closed element, but
0 is the least fixed-point of f . It is
also not su�cient to assume that the
poset has a minimum: Just add a
copy of N below Nop (i.e., consider
the linear sum N�Nop) and define
f (k) = k +1 for k 2N.

Proof. Let x⇤ 2 P be the least f -closed element. Then f (f (x⇤))  f (x⇤) so
f (x⇤) is also closed, and hence x⇤  f (x⇤). Thus x⇤ is a fixed-point. ⌅

In this section we prove some of the central fixed-point theorems
in order theory. In practice, the only such theorem we strictly speak-
ing need is an elementary version of Kleene’s fixed-point theorem (cf.
Theorem A.4.12). This ensures the existence of least fixed-points of con-
tinuous functions on ccpo’s. The reader not interested in generalisations
can skip straight to §A.4.3(c).

While we will not need to consider fixed-points of discontinuous
functions in our study of programming languages, Kleene’s theorem
has a very natural extension to discontinuous monotone functions on
dcpo’s. It has various applications in pure mathematics (for instance in
topology and measure theory) and it helps shed some light on what is
significant about the recursive definitions we make in computer science.
Its proof, however, is fairly technical, and we discuss how to circumvent
its usage when needed. We present two di↵erent paths to a proof of this
theorem:

I One goes through the so-called Zermelo’s fixed-point theorem
(cf. Theorem A.4.10) and is fairly elementary but technical. The
proof is also not particularly illuminating (at least in the author’s
opinion), and it yields a weaker statement than the alternative
proof.

I The other avoids Zermelo’s theorem but instead uses some non-
trivial results from set theory. In particular we need the notion of
ordinal numbers, transfinite recursion and induction, and Hartogs’
theorem. The upshot is the ability to perform transfinite iteration,
i.e., compose a function with itself ↵ many times for any ordinal
number ↵.

For completeness we also give a proof of Zermelo’s theorem
using the theory of ordinals we develop below.

We signpost which results and proofs pertain to which path.
While Kleene’s fixed-point theorem is necessary to define functions

recursively8, defining sets by recursion is relatively easy. In this case 8Necessary in our presentation; there
are of course ways of proving recur-
sion theorems that are more element-
ary, but also (in the author’s opinion)
less illuminating.

we only need Knaster–Tarski’s fixed point theorem (cf. Theorem A.4.9)
for monotone functions on complete lattices, which avoids the discus-
sion of continuity altogether. Its proof is also simple, though it has
the disadvantage that it yields a less constructive description of the
fixed-points.

We begin by covering the set-theoretical background necessary to
follow the second path mentioned above. Readers only interested in
taking the first path can skip the next section without loss of continuity.
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A.4.2. Set-theoretical preliminaries

If f : X ! X is a function, then it is easy to define what it means to
compose f by itself a finite number of times: We simply let f 0 = idX and
f
n+1 = f � f

n. If X is a topological space, then we may even ask whether
the limit limn!1 f

n exists in some sense. But it is not clear that this
construction can be extended to an ordinal number of times. Below we
consider two scenarios in which this is possible.

If P is a pointed poset, then we say that a function f : P ! P is
transfinitely iterable if there for each ordinal ↵ exists an element
f
↵(?) 2 P such that

f
0(?) =?,

f
↵(?) = f (f ↵�1(?)) if ↵ is a successor,

f
↵(?) =

_

�<↵

f
�(?) if ↵ is a limit.

The class function given by ↵ 7! f
↵(?) is sometimes called the transfin-

ite orbit of f . If there is an ordinal ↵ such that f ↵(?) = f
�(?) for allThe definition of closure ordinals is

adapted from Terese (2003, Defini-
tion A.3.9) where P is a power set.
The special case P = P (N) is studied
in Aanderaa (1974, Definition 4).

� > ↵, then there is a least such ↵, and this is called the closure ordinal
of f .

A.4.3 • Remark. We prove below that every monotone function f on
a ccppo P is transfinitely iterable, and that if f is continuous then its
closure ordinal is at most ! (cf. Theorems A.4.12 and A.4.13). In the case
P = P (N) one can show that the closure ordinal of f is countable (this is
noted in Aanderaa 1974, Remark 1 without proof), but as we mention
in Example A.4.5 this is not generally the case when the underlying set
is uncountable. y

A.4.4 • Example: Topologies.
Let X be a set, let S be a collection of subsets of X, and consider the
inference rules

�) S for S 2 S ,

U �)
[
U for U ✓ P (X),

U �)
\
U for U ✓ P!(X).

Let F be the represented generating function, and let O be its least fixed-
point, i.e. the topology generated by S . We claim that the closure ordinal
of F is 3: For F1(;) contains S , F2(;) contains all finite intersections of
elements in S , and F

3(;) contains all unions of those intersections. It is
clear that 3 is minimal.

Consider instead the generating function G generated by the same
rules, except that the rules U �)

T
U are replaced by their ‘biased’

versions, namely �) X and U,V �)U \V for all U,V ✓ X. We claim that
the closure ordinal of G is at most ! +1, and that this bound is optimal.
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Notice that intersections of n sets from S lie in G
n(;), and hence

all finite intersections are contained in G
!(;). Applying G a final time

yields the union of these intersections, so O = G
!+1(;).

For optimality we first claim that if n � 1, then every set in G
n(;) is

on the form [

i2I

(Ui,1 \ · · ·\Ui,2n�1 )

for some index set I and some Ui,j 2 S [ {X} (the case I = ; yielding the
empty set). This is clear for n = 1. If n > 1, notice that the class of these
sets is closed under unions, so it su�ces to consider binary intersections.
If [

i2I

(Ui,1 \ · · ·\Ui,2n�1 ) and
[

j2J

(Vj,1 \ · · ·\Vj,2n�1 )

are sets in G
n(;), then their intersection is

[

(i,j)2I⇥J

(Ui,1 \ · · ·\Ui,2n�1 \Vj,1 \ · · ·\Vj,2n�1 ).

And each element of the union is the intersection of 2n sets from S as
claimed.

Consider now the following example: Let p1,p2, . . . be an enumeration
of the primes, equip Z with the topology generated by the sets piZ, and
equip X =

F
n2NZ with the corresponding disjoint union topology. Let

Un =
T

n

i=1 piZ and consider the set U =
F

n2NUn in U . Then U is open
in X, but it does not lie in F

n(;) for any finite n since its summand U2n

is the intersection of too many subbasic sets. y

A.4.5 • Example: �-algebras.
Let X be a set, and let D be a collection of subsets of X. Consider the
inference rules (with potentially infinitely many antecedents)

�) X,

�)D for D 2D,

A �) X \A for A ✓ X,

A �)
[
A for A ✓ P!1(X).

The function F generated by these rules then has at its least fixed-point
the �-algebra �(D) generated by D. Assuming the axiom of countable
choice (ACC), it is not di�cult to show by transfinite induction that the
closure ordinal of F is at most !1 (cf. Folland 2007, Proposition 1.23). In
fact, if X is an uncountable Polish space and D is its topology—so that
�(D) becomes the Borel algebra on X—one can show, again assuming
ACC, that the closure ordinal of F is indeed !1, though this is slightly
technical (cf. Kechris 1995, Theorem 22.4).

When X is a separable metric space and D its topology, we call the
closure ordinal of F the Baire order of X. The above thus means that
under ACC, all uncountable Polish spaces have Baire order !1.
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If some choice axiom is not assumed, then things work out less nicely:
It is both consistent with ZF that the Baire order of the Cantor space is
4, and that it is !2 (cf. Miller 2008). y

The discussion thus progresses in two steps: First we study when
functions are transfinitely iterable, and later in the context of fixed-
points we study when functions have closure ordinals and what they
are.

(a) Monotone functions. We first prove that transfinite composition
is possible for monotone functions on ccppo’s.

A.4.6 • Lemma: Iteration I.
Let P be a ccppo and let f : P ! P be monotone. For each ordinal ↵ there
exists a map f

↵ : P! P such that

f
0(x) = x,

f
↵(x) = f (f ↵�1(x)) if ↵ is a successor,

f
↵(x) =

_

�<↵

f
�(x) if ↵ is a limit,

for all x 2 P. Furthermore, all f ↵ are monotone. In particular, f is transfin-
itely iterable.

Proof. Fix some x 2 P. We define a binary operation � = �x taking as
arguments an ordinal ↵ and a function g : ↵! P: We first let �(g,0) = x.
If ↵ is a successor, then we let �(g,↵) = f (g(↵�1)). If ↵ is a limit ordinal
and g is monotone, then we let�(g,↵) =

W
�<↵

g(�). (Note that we indeed
take the join of a chain since ↵ is a chain and g is assumed monotone.)
Finally, if ↵ is a limit ordinal but g is not monotone, then we let �(g,↵)
be some arbitrary element of P (we will not need to consider such g).
By transfinite recursion there thus exists a unary (definite) operation
⇧ =⇧x such that

⇧(↵) =�(⇧|↵ ,↵)

for all ↵.
We prove by transfinite induction that ⇧|↵ is monotone for all ↵. For

↵ = 0 this is obvious, so assume that ⇧|⇠ is monotone for all ⇠ < ↵ and
let � < � < ↵. We consider three cases:

� and � are successors: Then ⇧|� is monotone, and since f is also
monotone we have

⇧(�) = f (⇧(� � 1))  f (⇧(� � 1)) =⇧(�).

� is a limit, � is a successor: Since � is the union of all successor or-
dinals smaller than it9, it su�ces to show that ⇧(⇠) ⇧(�) if ⇠ < � is a9This follows since if ⇠ < �, then also

⇠ +1 < �. successor ordinal. But since ⇧|� is monotone, we similarly to above find
that

⇧(⇠) = f (⇧(⇠ � 1))  f (⇧(� � 1)) =⇧(�).
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� is a successor, � is a limit: Let ⇠ be a successor ordinal with �  ⇠ <

� . Since ⇧|� is monotone, we again have

⇧(�) = f (⇧(� � 1))  f (⇧(⇠ � 1)) =⇧(⇠),

which implies that
⇧(�) 

_

⇠<�

⇧(⇠) =⇧(�).

Hence ⇧|↵ is monotone, and we thus always have ⇧(↵) =
W

�<↵
⇧(�)

when ↵ is a limit ordinal. Writing f
↵(x)B⇧x(↵) we thus obtain a map

f
↵ : P! P, and we have

f
0(x) = x,

f
↵(x) = f (f ↵�1(x)) if ↵ is a successor,

f
↵(x) =

_

�<↵

f
�(x) if ↵ is a limit,

for all x 2 P and ordinals ↵.
Next we show that the map f

↵ is monotone for all ordinals ↵, i.e. that
if x,y 2 P with x  y, then f

↵(x)  f
↵(y). If ↵ = 0, then this is obvious,

so assume that it holds for all ordinals � < ↵. If ↵ is a successor, then

f
↵(x) = f (f ↵�1(x))  f (f ↵�1(y)) = f

↵(y).

If instead ↵ is a limit, then

f
�(x)  f

�(y) 
_

�<↵

f
�(y) = f

↵(y)

for all � < ↵, and taking the join on the left-hand side we again get
f
↵(x)  f

↵(y) as desired. ⌅

(b) Expansive functions. We obtain the second iteration lemma as
a corollary of the first, but we note that it can also be proved from
first principles by an argument very similar to that in the proof of the
first lemma. We refer to Moschovakis (2006, Lemma 7.25) for such a
proof. This result will only be used in the proof of Zermelo’s fixed-point
theorem (cf. Theorem A.4.10) which is redundant in the presence of the
Kleene’s general fixed-point theorem (cf. Theorem A.4.13), and it can
thus be skipped without loss of continuity.

A.4.7 • Lemma: Iteration II.
Let P be a ccppo and let f : P ! P be expansive. Then f is transfinitely
iterable. Furthermore, if ↵  � then f

↵(?)  f
�(?).

Proof. By Lemma A.2.5 f restricts to a monotone map on some sub-
ccppo P0 of P. And P0 contains ?, so Lemma A.4.6 yields the existence
part of the lemma. The last claim follows easily by induction in �: If � is
a successor, then it follows since f is expansive, and if � is a limit, then
it follows by the definition of f ↵ . ⌅
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(c) Hartogs’ theorem. The final result we need from set theory is the
following. It is a standard result whose proof is less elementary than
that of the above lemmas, so we simply refer to the literature.

A.4.8 • Theorem: Hartogs’ theorem.
For every set X there is an ordinal ↵ such that there is no injection ↵ ,! X.
In particular, there is no greatest ordinal.

Proof. See Moschovakis (2006, Theorem 7.34 and Exercise 12.13) or
Goldrei (1996, Theorem 8.18). ⌅

A.4.3. Fixed-point theorems

(a) Knaster–Tarski. The fixed-point theorem which is most element-
ary is the one by Knaster and Tarski for a monotone map f on a complete
lattice L. Its proof is simple, and while it gives both the existence of
a least and a greatest fixed-point and characterises these among the
f -closed and -consistent elements of L, it provides no computationally
relevant description of these fixed-points. But despite its simplicity, it is
very useful in pure mathematics.The proof of Theorem A.4.9 is based

on Davey and Priestley (2002, The-
orem 2.35). A.4.9 • Theorem: Knaster–Tarski’s fixed-point theorem.

If L is a complete lattice and f : L! L is monotone, then f has a least and a
greatest fixed-point, and these are given by

µ(f ) =
^
{x 2 L | f (x)  x} and ⌫(f ) =

_
{x 2 L | x  f (x)}.

In particular, µ(f ) is the smallest f -closed element and ⌫(f ) is the greatest
f -consistent element in L.

Proof. Denote the meet above by x
⇤. If x is f -closed, then x

⇤
 x, so

f (x⇤)  f (x)  x. Taking the meet of x we get f (x⇤)  x
⇤, so x

⇤ is closed.
It follows that f (f (x⇤))  f (x⇤), so f (x⇤) is also closed, and so x

⇤
 f (x⇤).

Hence x⇤ is a fixed-point. Since every other fixed-point is in particular
closed, x⇤ is the least fixed-point. ⌅

(b) Zermelo. A definition we will need in the proof: The lift of a poset
P is the poset P? with underlying set P [ {?} (where ? < P), and ? < x

for all x 2 P.

A.4.10 • Theorem: Zermelo’s fixed-point theorem.
If P is a ccpo and F : P! P is expansive, then F has a fixed-point.

Proof without ordinals. Consider instead the lift P?, which is a ccppo.
Extend F to P? by letting F(?) be some element of P (that is, F(?) ,
?). Let P0 be the smallest F-invariant sub-ccppo of P?. Lemma A.2.5
then implies that P0 has a greatest element >, and >  F(>) since F is
expansive. But F(>) 2 P0 by invariance, so > is a fixed-point of F. Notice
that since F(?) ,?,? is not a fixed-point of F, and so F has a fixed-point
lying in P, proving the original claim. ⌅
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Proof using ordinals. Again consider P? and extend F similarly. Let ↵
be an ordinal such that there is no injection ↵ ,! P?. Lemma A.4.7 then
implies that there are two distinct ordinals � and � such that F�(?) =
F
� (?). Assuming without loss of generality that � < � , monotonicity

implies that
F
�(?)  F

�+1(?)  F
� (?),

so F
�(?) is a fixed-point of F. Again it cannot equal ?, so it lies in P. ⌅

A.4.11 • Remark. Our proof of Theorem A.4.10 is based on Davey and
Priestley (2002, Exercise 8.20). The authors give this result the name
‘CPO Fixpoint Theorem III’, and they add the hypothesis that P be a
dcppo, but also claim that then F has a minimal fixed-point. But this is
false: Consider for instance the poset P = (! +1)op, i.e., the set ![ {!}
equipped with the ordering � given by

! � · · · � n � n� 1 � · · · � 1 � 0.

This is clearly a dcppo since every nonempty subset even has amaximum.
Define F : P ! P by letting F(!) = 0 and F(n) = n for n 2 !. Then F is
obviously expansive, but every natural number, of which there is no
minimal with respect to �, is a fixed-point. In the context of the proof
below, Davey and Priestley claim that the smallest F-invariant sub-
dcppo of P, here {!,0}, has a greatest element, here 0, and that this
is a minimal fixed-point of F. But this is false, since e.g. 1 is also a
fixed-point.

The above counterexample is taken from Hansen (2023). y

(c) Kleene. We finally arrive at the most (in a sense only) important
fixed-point theorems, namely that due to Kleene as well as a generalisa-
tion. For readers that have skipped to here from §A.4.1 and that are not
interested in generalisations it su�ces to note Theorem A.4.12 below.
Other readers can also study Theorem A.4.13, but note that this is not
a strict generalisation of the former since it assumes that the poset in
question is a ccppo and not just an !-cppo. Theorem A.4.12 is an immediate gen-

eralisation of Davey and Priestley
(2002, Theorem 8.15) from dcppo’s
to !-cppo’s.

A.4.12 • Theorem: Kleene’s fixed-point theorem I.
If P is an !-cppo and f : P ! P is !-continuous

10, then f has a least

10Meaning that f preserves joins of
!-chains.

fixed-point given by
µ(f ) =

_

n2N

f
n(?).

Furthermore, µ(f ) is the least f -closed element in L

Notice that this just means that µ(f ) = f
!(?).

Proof. First notice that, since f is continuous,

f

 _

n2N

f
n(?)

!
=

_

n2N

f
n+1(?) =

_

n2N+

f
n(?) =

_

n2N

f
n(?),

Lars Birkedal
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where we use that f 0(?) =?. Hence
W

n2N f
n(?) is indeed a fixed-point

of f . If x 2 P is f -closed, then ?  x, and hence f n(?)  f
n(x)  x since f

is monotone. Taking the join on the left-hand side yields
W

n2N f
n(?)  x

as desired. ⌅

In the case where f is !-continuous, it is thus easy to show that f has a
fixed-point and even give a fairly explicit formula for it. Furthermore, if
P is a powerset and the elements f n(?) are thus sets, the theorem says
that an element y lies in µ(f ) if and only if it lies in some f n(?).

If f is not continuous, we are not so lucky. However, since ! = (N,)
is an ordinal we may be inspired to consider the transfinite orbit ↵ 7!
f
↵(?) of f and attempt to find a fixed-point among its image. This is

indeed possible, but since we cannot be sure that ↵ is countable, we
must assume that P is chain-complete.

We again present two proofs, one going through Zermelo’s fixed-
point theorem that is based on Moschovakis (2006, Theorem 7.36), and
one using ordinals that is based on Davey and Priestley (2002, Exer-
cise 8.19). Since the statement of the theorem itself mentions ordinals,
the first of the two proofs of course only gives us the existence of a
fixed-point and not the formula for it we display below.There is also a proof of The-

orem A.4.13 that avoids both or-
dinals and Zermelo’s theorem that
is due to Pataraia. This instead
uses Knaster–Tarski’s fixed-point
theorem. However, as far as the au-
thor can tell, it requires P to be dir-
ected cocomplete, and as with the
proof going through Zermelo’s the-
orem it does not express the fixed-
point in terms of transfinite orbits.
(Cf. Davey and Priestley 2002, The-
orem 8.22.)

A.4.13 • Theorem: Kleene’s fixed-point theorem II.
Let P be a ccppo and let f : P! P be monotone. Let

f
0(?) =?,

f
↵(?) = f (f ↵�1(?)) if ↵ is a successor,

f
↵(?) =

_

�<↵

f
�(?) if ↵ is a limit,

for all ordinals ↵. Then µ(f ) = f
↵(?) for some ordinal ↵, and µ(f ) is the

least f -closed element in P.

Proof without ordinals. LetQ be the subset of P consisting of elements
x that are f -consistent, and which satisfy x  y for all f -closed elements
y 2 P. We claim that Q is an f -invariant sub-ccppo of P, so let first
x 2Q. Then x  f (x), so f (x)  f (f (x)) by monotonicity. For closed y we
similarly have f (x)  f (y)  y, so f (x) 2 Q. Next let C ✓ Q be a chain.
For each x 2 C we have

x  f (x)  f

⇣_
C

⌘
,

implying that
W

C  f (
W

C). If y 2 P closed, then it is an upper bound
of C, and so

W
C  y. Hence

W
C 2Q, so Q is indeed chain-complete.

In total, f restricts to an expansive map on the ccppo Q, so The-
orem A.4.10 yields a fixed-point x⇤ 2 Q of f . By definition of Q, x⇤ is
smaller than all f -closed elements in P, so it is also the least fixed-point
of f . ⌅
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Proof using ordinals. By Hartogs’ theorem (cf. Theorem A.4.8) there is
some ordinal ↵ such that there is no injection ↵ ,! P. On the other hand,
� 7! f

�(?) is a function ↵! P, so this cannot be injective. Hence there
are distinct ordinals �,� < ↵ with f

�(?) = f
� (?). Because ↵ is totally

ordered we may assume without loss of generality that � < � . Since the
map � 7! f

�(?) is monotone and � +1  � , this implies that

f
�(?)  f

�+1(?)  f
� (?),

and hence
f (f �(?)) = f

�+1(?) = f
�(?).

Thus f �(?) is a fixed-point of f .
To show that f has a least fixed-point, let x 2 P is f -closed. It is then

clear by induction that f ↵(x)  x for any ↵: If ↵ is a successor, then

f
↵(x) = f (f ↵�1(x))  f (x)  x,

and if ↵ is a limit, then f
�(x)  x for all � < ↵, and taking the join on

the left-hand side yields f ↵(x)  x. Hence if ↵ is such that f ↵(?) is a
fixed-point, then ?  x, and so

f
↵(?)  f

↵(x)  x,

so f
↵(?) is indeed the least fixed-point of f , as well as the least f -closed

element in P. ⌅





Syntax and Semantics B
B.1 ⇧ Syntax

x, f 2 Var
l 2 Loc
↵ 2 TypeVar

Exp e F 1 (unit value)
| x (variables)
| he, ei | ⇡1 e | ⇡2 e (products)
| ◆1 e | ◆2 e |match(e,x, e, e) (sums)
| �x.e | rec f (x)B e | e e (functions)
| ⇤_.e | e _ | pack e | unpack(e,x, e) (polymorphism)
| fold e | unfold e (recursion)
| l | ref e | eB e | ! e (references)

Val v F 1 (unit value)
| hv,vi (value pairs)
| ◆1 v | ◆2 v (sum values)
| �x.e | rec f (x)B e (function values)
| ⇤_.e | pack v (polymorphic values)
| fold v (recursive values)
| l (reference values)

Type ⌧ F 1 (unit type)
| ↵ (type variables)
| ⌧ ⇥ ⌧ (product types)
| ⌧ + ⌧ (sum types)
| ⌧! ⌧ (function types)
| 8↵.⌧ | 9↵.⌧ (polymorphic types)
| µ↵.⌧ (recursive types)
| Ref ⌧ (reference types)

ECtx E F � (hole)
| hE,ei | hv,Ei | ⇡1E | ⇡2E (products)
| ◆1E | ◆2E |match(E,x,e, e) (sums)
| E e | v E (function application)
| E _ | packE | unpack(E,x,e) (polymorphism)
| foldE | unfoldE (recursion)
| l | refE | E B e | v B E | !E (references)

87
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B.2 ⇧ Static semantics

B.2.1. Basic features

T-var
⌅ ` � ⌅ ` ⌃ �(x) = ⌧

⌅ | � | ⌃ ` x : ⌧

T-unit
⌅ ` � ⌅ ` ⌃

⌅ | � | ⌃ ` 1 : 1

T-pair
⌅ | � | ⌃ ` e1 : ⌧1 ⌅ | � | ⌃ ` e2 : ⌧2

⌅ | � | ⌃ ` he1, e2i : ⌧1 ⇥ ⌧2

T-proj1
⌅ | � | ⌃ ` e : ⌧1 ⇥ ⌧2
⌅ | � | ⌃ ` ⇡1 e : ⌧1

T-proj2
⌅ | � | ⌃ ` e : ⌧1 ⇥ ⌧2
⌅ | � | ⌃ ` ⇡2 e : ⌧2

T-inj1
⌅ | � | ⌃ ` e : ⌧1

⌅ | � | ⌃ ` ◆1 e : ⌧1 + ⌧2

T-inj2
⌅ | � | ⌃ ` e : ⌧2

⌅ | � | ⌃ ` ◆2 e : ⌧1 + ⌧2

T-match
⌅ | � | ⌃ ` e : ⌧1 + ⌧2 ⌅ | �,x : ⌧1 | ⌃ ` e1 : ⌧ ⌅ | �,x : ⌧2 | ⌃ ` e2 : ⌧

⌅ | � | ⌃ `match(e,x, e1, e2) : ⌧

T-lam
⌅ | �,x : ⌧1 | ⌃ ` e : ⌧2

⌅ | � | ⌃ ` �x.e : ⌧1! ⌧2

T-app
⌅ | � | ⌃ ` e1 : ⌧1 ⌅ | � | ⌃ ` e2 : ⌧1! ⌧2

⌅ | � | ⌃ ` e2 e1 : ⌧2

B.2.2. Polymorphism

T-Tlam
⌅,↵ | � | ⌃ ` e : ⌧ ↵ < FVType(�) ↵ < FVType(⌃)

⌅ | � | ⌃ `⇤_.e : 8↵.⌧

T-Tapp
⌅ | � | ⌃ ` e : 8↵.⌧ ⌅ ` ⌧0

⌅ | � | ⌃ ` e _ : ⌧[⌧0/↵]

T-pack
⌅ | � | ⌃ ` e : ⌧[⌧0/↵]

⌅ | � | ⌃ ` pack e : 9↵.⌧

T-unpack
⌅ | � | ⌃ ` e1 : 9↵.⌧ ⌅,↵ | �,x : ⌧ | ⌃ ` e2 : ⌧0

⌅ | � | ⌃ ` unpack(e1,x, e2) : ⌧0

B.2.3. Recursive functions and types

T-rec
⌅ | �, f : ⌧1! ⌧2,x : ⌧1 | ⌃ ` e : ⌧2
⌅ | � | ⌃ ` rec f (x)B e : ⌧1! ⌧2

T-fold
⌅ | � | ⌃ ` e : ⌧[µ↵.⌧/↵]

⌅ | � | ⌃ ` fold e : µ↵.⌧

T-unfold
⌅ | � | ⌃ ` e : µ↵.⌧

⌅ | � | ⌃ ` unfold e : ⌧[µ↵.⌧/↵]

B.2.4. References

T-loc
⌅ ` � ⌅ ` ⌃ l 2 dom⌃

⌅ | � | ⌃ ` l : Ref⌃(l)

T-alloc
⌅ | � | ⌃ ` e : ⌧

⌅ | � | ⌃ ` ref e : Ref ⌧

T-store
⌅ | � | ⌃ ` e1 : Ref ⌧ ⌅ | � | ⌃ ` e2 : ⌧

⌅ | � | ⌃ ` e1 B e2 : 1

T-load
⌅ | � | ⌃ ` e : Ref ⌧

⌅ | � | ⌃ ` ! e : ⌧
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B.3 ⇧ Dynamic semantics

B.3.1. Pure head reductions

E-proj1

⇡1 hv1, v2i !p v1

E-proj2

⇡2 hv1, v2i !p v2

E-match-inj1

match(◆1 v,x,e1, e2)!p e1[v/x]

E-match-inj2

match(◆2 v,x,e1, e2)!p e2[v/x]

E-lam-app

(�x.e) v!p e[v/x]

E-rec-app

(rec f (x)B e) v!p e[(rec f (x)B e)/f ][v/x]

E-tapp-tlam

(⇤_.e) _!p e

E-unpack-pack

unpack(pack v,x,e)!p e[v/x]

E-unfold-fold

unfold (fold v)!p v

B.3.2. Impure head reductions

E-pure
e!p e

0

(� , e)!h (� , e0)

E-alloc
l < dom�

(� , ref v)!h (�[l 7! v], l)

E-store
l 2 dom�

(� , l B v)!h (�[l 7! v],1)

E-load
�(l) = v

(� , ! l)!h (� , v)

B.3.3. Evaluation contexts

E-head
(� , e)!h (� 0 , e0)

(� ,E[e])! (� 0 ,E[e0])
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B.4 ⇧ Compatibility rules

R-var
⌅ ` � �(x) = ⌧

⌅ | � ` x R x : ⌧

R-unit

⌅ | � ` 1R 1 : 1

R-pair
⌅ | � ` e1 R e

0

1 : ⌧1 ⌅ | � ` e2 R e
0

2 : ⌧2
⌅ | � ` he1, e2iR he

0

1, e
0

2i : ⌧1 ⇥ ⌧2

R-proj1
⌅ | � ` e R e

0 : ⌧1 ⇥ ⌧2
⌅ | � ` ⇡1 e R ⇡1 e

0 : ⌧1

R-proj2
⌅ | � ` e R e

0 : ⌧1 ⇥ ⌧2
⌅ | � ` ⇡2 e R ⇡2 e

0 : ⌧2

R-inj1
⌅ | � ` e R e

0 : ⌧1
⌅ | � ` ◆1 e R ◆2 e

0 : ⌧1 + ⌧2

R-inj2
⌅ | � ` e R e

0 : ⌧2
⌅ | � ` ◆2 e R ◆2 e

0 : ⌧1 + ⌧2

R-match
⌅ | � ` e R e

0 : ⌧1 + ⌧2 ⌅ | �,x : ⌧1 ` e1 R e
0

1 : ⌧ ⌅ | �,x : ⌧2 ` e2 R e
0

2 : ⌧

⌅ | � `match(e,x, e1, e2)Rmatch(e0 ,x, e01, e
0

2) : ⌧

R-lam
⌅ | �,x : ⌧1 ` e R e

0 : ⌧2
⌅ | � ` �x.e R �x.e

0 : ⌧1! ⌧2

R-app
⌅ | � ` e1 R e

0

1 : ⌧1 ⌅ | � ` e2 R e
0

2 : ⌧1! ⌧2

⌅ | � ` e2 e1 R e
0

2 e
0

1 : ⌧2

R-Tlam
⌅,↵ | � ` e R e

0 : ⌧ ↵ < FVType(�)

⌅ | � `⇤_.e R ⇤_.e0 : 8↵.⌧

R-Tapp
⌅ | � ` e R e

0 : 8↵.⌧ ⌅ ` ⌧0

⌅ | � ` e _R e
0 _ : ⌧[⌧0/↵]
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Index ofNotation

· (composition of relations), 9
� (composition of contexts), 10
� (composition of type-indexed

relations), 54
� (composition of relations), 9
h · , · i, 19
_, 66
^, 66
⇥ (product type), 19
+ (sum type), 19
` (well-formed type context),

15
` (syntactic typing relation), 15
` (well-typed store), 34
` (well-formed store typing), 15
` (well-formed type), 15
=↵ , 8
( (context typing), 56
⇣, 9
�ctx, 57
| (divisibility), 69
⌘, 65
�), 2
' (Kleene equality), 55
!, 68
�log, 60

op, 65
✏ (semantic typing relation), 46
!, 18
!h, 17
!p , 16
✓, 1
✓!, 1
⌧, 68W
, 66V
, 66
?, 66
: (type of), 14F
, 67W
", 67
>, 66
� (hole), 10

0 (zero value), 22
1 (unit type), 18
1 (unit value), 18

a[b/x], 9
a : s, 8
A
#, 65

A
", 65
A[V ,O], 6
AP, 70
↵(P), 70
@↵ , 1

Bool, 19
BV, 7

ClExp, 13
ClVal, 16
cons, 24
C[a], 10

dom, 1
D~⌅�, 44, 58

ECtx, 17
E[e], 10
Exp, 13
E~⌅ . ⌧�⇢, 44, 58

f [A], 1
f
↵ , 78

f
�1[B], 1

f [x0 7! y0], 1
false, 19
F(P), 68
FV, 7
FVs, 8
FVType (of type context), 14
FVType (of store typing), 14

G~⌅ . ��⇢, 46, 60
�,�, 14
�[⌧/↵], 14
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id, 20
if e then e1 else e2, 19
Irr, 16
I , 54
◆1, 19
◆2, 19
i(R), 2

just e, 20

Loc, 13
List, 21

µ(f ), 76
µ(R), 3

nil, 24
none, 20
Nat, 22
N, 1
N+, 1
⌫(f ), 76
NP, 70
⌫(P), 70
⌫(R), 3

Opt ⌧, 20
!, 1
!0, 1
!↵ , 1
⌦X, 69

pack, 22
P?, 82
P
op, 65
P (X), 1
P(X), 1
P!(X), 1
'(~x1.a1; . . . ;~xn.an), 6

ran, 1
Rel, 58
R
�1, 9

R
n, 9

R
⇤, 9
R
�1, 54
R

n, 54
R (type-indexed relation), 54

(~s1.t1; . . . ;~sn.tn)! s, 7
SemType, 44
Sto, 17
succ, 22
⌃P, 71
�(P), 71
⌃[⌧/↵], 14

true, 19
Type, 13
TypeVar, 13

Var, 13
V, 7
V~⌅ . ⌧�⇢, 45
V~⌅ . ⌧�⇢, 58

which, 20

(xi )i2I , 1
x
#, 66

x
", 66

~x, 1
xRy, 9
X
⇤, 1

(X * Y ), 1
(X * Y ), 1
⌅,�, 15

Z, 1



Index

↵-equivalence, 8
abstract binding tree, 5
abstract reduction system, 9
abstract rewriting system, 9
abstract syntax tree, 6

↵-equivalence, 8
closed, 7
open, 7
sort, 7
substitution, 8

adequate type-indexed relation,
55, 62

Alexandro↵ topology, 70
ascription, 7, 22
AST, see abstract syntax tree
axiom, 3

Baire order, see also closure
ordinal, 79

Barendregt convention, 8
Boolean algebra, 66
bottom element, 66
bound variable, 7
bounded above, 65
bounded below, 65

C-compatible, 10
C-compatible closure, 10
canonical forms, 27
category of types, 19
ccpo, 68
ccppo, 68
chain, 67
Church–Rosser, 10, 11
Church–Rosser theorem, 10
closure ordinal, 78
cocomplete

bounded, 67
consistent, 68
directed, 68

coinduction, 11
compact map, 75

compatibility
of logical predicates, 47, 49
of type-indexed relations,
55, 60

complete program, 55
composition

of binary relations, 9
of type-indexed relations,
54

compositionality, 47
congruence relation, 55
cons, 24
consistent set, 67
context, 10

evaluation, 17
program, 57
typing, 56

context interpretation
logical predicate, 46
logical relation, 60

contextual equivalence, 57
convergent set, 67

dcpo, 68
dcppo, 68
de Bruijn indices, 8
determinism of reduction, 31
deterministic relation, 10
diamond property, 10
directed set, 67
downward closed, 66
dual (of preordered set), 65
dual order, 65

equi-recursive, 24
equivalence (in preordered

sets), 65
equivalence relation

coarser, 11
finer, 11

evaluation context, see context,
evaluation
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expansive map, 73
expression

injection, 19
pair, 19
unit, 18

expression interpretation
logical predicate, 44
logical relation, 58

F, 18
f -closed, 76
F-cocomplete, 67
f -consistent, 76
finiteness (in posets), 68
fixed-point, 76
F9,µ,ref, 13
free variable, 7
full �-reduction, 10
function

identity, 20
polymorphic identity, 21

fundamental property
of logical predicates, 47, 51

generating function, 2
greatest element, 65

Hartogs’ theorem, 82
Hasse diagram, 65
heap, see store
hole, 10

inaccessible set, 71
index set, 1
indexed family, 1
induction, 2

rule, 3
inference rule, 2

axiom, 3
conclusion, 2
finitary, 2
hypothesis, 2
represented by, 3

infimum, see also meet, 66
interpretation of type variables

logical predicate, 44
logical relation, 58

inverse

of binary relation, 9
of type-indexed relation,
54

inversion
inference rules, 3
on typing, 26

irreducible, 9
iso-recursive, 24

join, 66

-chain, 67
Kleene equality, 55
Kleene’s fixed-point theorem

for continuous maps, 83
general version, 84

Knaster–Tarski’s fixed-point
theorem, 82

lattice, 66
least element, 65
lift (of poset), 82
logical equivalence, 60
logical predicate, 43
lower bound, 65

greatest, see meet
lower set, 66

principal, 66

machine state, 16, 17
maximal element, 65
maximum, 65
meet, 66
minimal element, 65
minimum, 65
monotone map, 72

nil, 24
notion of reduction, 10

!-continuous map, 83
!-cpo, 68
!-cppo, 68
operator, 6

arity, 6, 7
return sort, 7

partial order, 65
partially ordered set, see poset
partition, 11
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polymorphism, see type,
polymorphic

poset, 65
algebraic, 68
bounded, 66
continuous, 68
pointed, 66
topped, 66

preorder, 65
preordered set, 65

cocomplete, 67
complete, 67

preservation
of directed joins, 72
of joins, 72
of types, 39

progress, 34

R-closed, 3
recursion, 4
reducible, 9
reduction, 9, 11

contractum, 11
equivalence, 11
impure head, 17
normal form, 11
normalising, 9
one-step, 11
pure head, 16
redex, 11
strongly normalising, 9
terminating, 9
weakly normalising, 9

reflexive closure, 9
rule induction, 3

safety, 33
Scott continuous map, 72
Scott domain, 69
Scott topology, 70, 71
semantic type, 44, 46
semantics

dynamic, 16
operational, 16
static, 14
transition, 16

sentinel value, 18

Sierpifiski space, 70
sort, 7
specialisation preorder, 69
specialisation topology, see also

Alexandro↵ topology,
70

store, 17
well-typed, 34

store typing, 14
strengthening, 28
sub-ccpo, 73
sub-ccppo, 73
substitution

value, 46
substitution lemma, 30
supremum, see also join, 66
syntax, 13
System F, 13

top element, 66
topology of pointwise

convergence, 71
total order, 65
totally ordered set, 65
transfinite orbit, 78
transfinitely iterable map, 78
transitive closure, 9
type

base, 18
boolean, 19
counter, 22
empty, see type, void
existential, 22
hidden representation, 22
list, 23
natural numbers, 19, 22
option, 20
polymorphic, 20
polymorphic list, 21
product, 19
safety, 33
semantic, 44
sum, 19
tree, 23
uninterpreted base, 19
uniqueness, 27
unit, 18
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variant, 20
void, 20
well-formed, 15
witness, 22

type annotation, 7
type context, 14
type-indexed predicate, 43
type-indexed relation, 54

identity, 54
typing judgment, 15
typing relation

semantic, 46
syntactic, 15

upper bound, 65
least, see join

upper set, 66
principal, 66

upper topology, 70
upward closed, 66

value interpretation
logical predicate, 45
logical relation, 58

variable
bound, 7
free, 7
in ASTs, 6

variable convention, 8

way below, 68
weakening, 28
well-typed, 15

Zermelo’s fixed-point theorem,
82


