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Abstract. Capability machines provide security guarantees at machine
level which makes them an interesting target for secure compilation
schemes that provably enforce properties such as control-flow correctness
and encapsulation of local state. We provide a formalization of a repre-
sentative capability machine with local capabilities and study a novel
calling convention. We provide a logical relation that semantically cap-
tures the guarantees provided by the hardware (a form of capability
safety) and use it to prove control-flow correctness and encapsulation of
local state. The logical relation is not specific to our calling convention
and can be used to reason about arbitrary programs.

1 Introduction

Compromising software security is often based on attacks that break program-
ming language properties relied upon by software authors, such as control-flow
correctness, local-state encapsulation, etc. Commodity processors offer little sup-
port for defending against such attacks: they offer security primitives with only
coarse-grained memory protection and limited compartmentalization scalability.
As a result, defenses against attacks on control-flow correctness and local-state
encapsulation are either limited to only certain common forms of attacks (lead-
ing to an attack-defense arms race) and/or rely on techniques like machine code
rewriting [1,2], machine code verification [3|, virtual machines with a native
stack [4] or randomization [5]. The latter techniques essentially emulate pro-
tection techniques on existing hardware, at the cost of performance, system
complexity and/or security.

Capability machines are a type of processors that remediate these limita-
tions with a better security model at the hardware level. They are based on
old ideas [6H8], but have recently received renewed interest; in particular, the
CHERI project has proposed new ideas and ways of tackling practical chal-
lenges like backwards compatibility and realistic OS support [9,/10]. Capability
machines tag every word (in the register file and in memory) to enforce a strict
separation between numbers and capabilities (a kind of pointers that carry au-
thority). Memory capabilities carry the authority to read and/or write to a range



of memory locations. There is also a form of object capabilities, which represent
the authority to invoke a piece of code without exposing the code’s encapsu-
lated private state (e.g., the M-Machine’s enter capabilities or CHERI’s sealed
code/data pairs).

Unlike commodity processors, capability machines lend themselves well to
enforcing local-state encapsulation. Potentially, they will enable compilation
schemes that enforce this property in an efficient but also 100% watertight way
(ideally evidenced by a mathematical proof, guaranteeing that we do not end up
in a new attack-defense arms race). However, a lot needs to happen before we get
there. For example, it is far from trivial to devise a compilation scheme adapted
to the details of a specific source language’s notion of encapsulation (e.g., private
member variables in OO languages often behave quite differently than private
state in ML-like languages). And even if such a scheme were defined, a formal
proof depends on a formalization of the encapsulation provided by the capability
machine at hand.

A similar problem is the enforcement of control-flow correctness on capability
machines. An interesting approach is taken in CheriBSD [9]: the standard con-
tiguous C stack is split into a central, trusted stack, managed by trusted call and
return instructions, and disjoint, private, per-compartment stacks. To prevent
illegal use of stack references, the approach relies on local capabilities, a type of
capabilities offered by CHERI to temporarily relinquish authority, namely for
the duration of a function invocation whereafter the capability can be revoked.
However, details are scarce (how does it work precisely? what features are sup-
ported?) and a lot remains to be investigated (e.g., combining disjoint stacks with
cross-domain function pointers seems like it will scale poorly to large numbers
of components?). Finally, there is no argument that the approach is watertight
and it is not even clear what security property is targeted exactly.

In this paper, we make two main contributions: (1) an alternative calling
convention that uses local capabilities to enforce stack frame encapsulation and
well-bracketed control flow, and (2) perhaps more importantly, we adapt and
apply the well-studied techniques of step-indexed Kripke logical relations for
reasoning about code on a representative capability machine with local capabili-
ties in general and correctness and security of the calling convention in particular.
More specifically, we make the following contributions:

— We formalize a simple but representative capability machine featuring local
capabilities and its operational semantics (Section .

— We define a novel calling convention enforcing control-flow correctness and
encapsulation of stack frames (Section . It relies solely on local capabilities
and does not require OS support (like a trusted stack or call/return instruc-
tions). It supports higher-order cross-component calls (e.g., cross-component
function pointers) and can be efficient assuming only one additional piece of
processor support: an efficient instruction for clearing a range of memory.

— We present a novel step-indexed Kripke logical relation for reasoning about
programs on the capability machine. It is an untyped logical relation, in-
spired by previous work on object capabilities |11]. We prove an analogue



of the standard fundamental theorem of logical relations — to the best of
our knowledge, our theorem is the most general and powerful formulation of
the formal guarantees offered by a capability machine (a form of capability
safety [11}12]), including the specific guarantees offered for local capabilities.
It is very general and not tied to our calling convention or a specific way of
using the system’s capabilities. We are the first to apply these techniques for
reasoning about capability machines and we believe they will prove useful
for many other purposes than our calling convention.

— We introduce two novel technical ideas in the unary, step-indexed Kripke
logical relation used to formulate the above theorem: the use of a single
orthogonal closure (rather than the earlier used biorthogonal closure) and
a variant of Dreyer et al. |13]’s public and private future worlds [13] to
express the special nature of local capabilities. The logical relation and the
fundamental theorem expressing capability safety are presented in Section [4

— We demonstrate our results by applying them to challenging examples, specif-
ically constructed to demonstrate local-state encapsulation and control-flow
correctness guarantees in the presence of cross-component function pointers
(Section . The examples demonstrate both the power of our formulation
of capability safety and our calling convention.

For reasons of space, some details and all proofs have been omitted; please
refer to the technical appendix [14] for those.

2 A Capability Machine with Local Capabilities

In this paper, we work with a formal capability machine with all the char-
acteristics of real capability machines, as well as local capabilities much like
CHERI’s. Otherwise, it is kept as simple as possible. It is inspired by both the
M-Machine [6] and CHERI [9]. To avoid uninteresting details, we assume an
infinite address space and unbounded integers.

We define the syntax of our capability machine in
Figure [I] We assume an infinite set of addresses Addr

and define machine words as either integers or ca- RWLX

pabilities of the form ((perm, g), base, end, a). Such a 7N\

capability represents the authority to execute permis- ~ RWL RWX

sions perm on the memory range [base, end], together \RW/ \RX
with a current address a and a locality tag ¢ indicat- NEZEN
ing whether the capability is global or local. There is RO E
no notion of pointers other than capabilities, so we NS
will use the terms interchangeably. The available per- O

missions and their ordering are depicted in Figure [3}
the permissions include null permission (0), readonly
(RO), read/write (RW), read/execute (RX) and read-
/write/execute (RWX) permissions. Additionally, there
are three special permissions: read/write-local (RWL),
read /write-local/execute (RWLX) and enter (E), which we will explain below.

Figure 3: Permission hi-
erarchy



a € Addr
w € Word

perm € Perm

g € Global
Conf
Cap

def
“N
def

= Z+ Cap

== 0| RO | RW | RWL |
RX | E | RWX | RWLX
::= global | local

r € RegName == pclro|ri|...
reg € Reg o RegName — Word
m € Mem « Addr — Word
& € ExecConf o Reg x Mem
ms € MemSeg =  Addr — Word

::= ExecConf + {failed} + {halted} x Mem
== {((perm, g),b,e,a) | b,a € Addr, e € Addr U {oo}}

r € Z+ RegName
tu=jmpr|jnzrr|move rr|load r r|storer r|plusrrr|minusrrr|
ltrrr|learr|restrict rr|subsegr rr|isptrrr|getlrr|

getprr|getbrr|geterr|getarr|fail | halt

Figure 1: The syntax of our capability machine assembly language.

[decode(n)] (D)

if @.reg(pc) = ((perm, g),b,e,a) and b < a <e

b — and perm € {RX, RWX, RWLX} and ®.mem(a) =n
failed otherwise
Preg.pc — newPc] if .reg(pc) = ((perm, g), b, e, a)
updPc(P) = and newPc = ((perm, g),b,e,a+ 1)
failed otherwise
i [] (@) Conditions
fail failed
halt (halted, d.mem)
move r1 2 |updPc(Preg.r1 — w]) |r2 € Reg = w = P.reg(re) and ro € Z = w =ro
load r1 72 |updPc(®@[reg.ri — w]) |P.reg(rz2) = ((perm,g),b,e,a) and w = ¢.mem(a)

and b < a < e and
perm € {RWX, RWLX, RX, RW, RWL, RO}

restrict ry reo

updPc(P[reg.r1 — w))

d.reg(rz) = ((perm, g), b, e, a) and
(perm/, g') = decodePermPair(®.reg(r2)) and
(perm’, g') E (perm, g) and w = ((perm’, g'), b, ¢, a)

getary ra

updPc(P[reg.r1 — al)

d.reg(rz) = ((-,-), -, -, @)

jmp 7

P[reg.pc — newPc]

if d.reg(r) = ((E, g), b, e, a), then
newPc = ((RX, g), b, €, a) otherwise
newPc = P.reg(r)

store ry ro

updPc(P[mem.a — w))

®.reg(r1) = ((perm, g), b, e, a) and
perm € {RWX, RWLX, RW,RWL} and b < a < e and
w = P.reg(re2) and if w = ((-,local), _, -, -), then

perm € {RWLX, RWL}

[ failed

[ otherwise

Figure 2: An excerpt from the operational semantics.




We assume a finite set of register names RegName. We define register files
reg and memories ms as functions mapping register names resp. addresses to
words. The state of the entire machine is represented as a configuration that is
either a running state ¢ € ExecConf containing a memory and a register file, or
a failed or halted state, where the latter keeps hold of the final state of memory.

The machine’s instruction set is rather basic. Instructions ¢ include relatively
standard jump (jmp), conditional jump (jnz) and move (move, copies words
between registers) instructions. Also familiar are load and store instructions for
reading from and writing to memory (load and store) and arithmetic addition
operators (1t (less than), plus and minus, operating only on numbers). There are
three instructions for modifying capabilities: lea (modifies the current address),
restrict (modifies the permission and local/global tag) and subseg (modifies
the range of a capability). Importantly, these instructions take care that the
resulting capability always carries less authority than the original (e.g. restrict
will only weaken a permission). Finally, the instruction isptr tests whether a
word is a capability or a number and instructions getp, getl, getb, gete and
geta provide access to a capability’s permissions, local/global tag, base, end and
current address, respectively.

Figure 2] shows an excerpt of the operational semantics for a few representa-
tive instructions. Essentially, a configuration @ either decodes and executes the
instruction at @.reg(pc) if it is executable and its address is in the valid range
or otherwise fails. The table in the figure shows for instructions ¢ the result of
executing them in configuration @. fail and halt obviously fail and halt re-
spectively. move simply modifies the register file as requested and updates the
pc to the next instruction using the meta-function updPc.

The load instruction loads the contents of the requested memory location
into a register, but only if the capability has appropriate authority (i.e. read
permission and an appropriate range). restrict updates a capability’s permis-
sions and global/local tag in the register file, but only if the new permissions are
weaker than the original. It also never turns local capabilities into global ones.
geta queries the current address of a capability and stores it in a register.

The jmp instruction updates the program counter to a requested location,
but it is complicated by the presence of enter capabilities, modeled after the
M-Machine’s [6]. Enter capabilities cannot be used to read, write or execute and
their address and range cannot be modified. They can only be used to jump
to, but when that happens, their permission changes to RX. They can be used
to represent a kind of closures: an opaque package containing a piece of code
together with local encapsulated state. Such a package can be built as an enter
capability ¢ = ((E, ¢g),b, e,a) where the range [b,a — 1] contains local state
(data or capabilities) and [a, e] contains instructions. The package is opaque
to an adversary holding ¢ but when c is jumped to, the instructions can start
executing and have access to the local data through the updated version of ¢
that is then in pc.

Finally, the store instruction updates the memory to the requested value
if the capability has write authority for the requested location. However, the



instruction is complicated by the presence of local capabilities, modeled after
the ones in the CHERI processor [9]. Basically, local capabilities are special in
that they can only be kept in registers, i.e. they cannot be stored to memory.
This means that local capabilities can be temporarily given to an adversary, for
the duration of an invocation: if we take care to clear the capability from the
register file after control is passed back to us, they will not have been able to
store the capability. However, there is one exception to the rule above: local
capabilities can be stored to memory for which we have a capability with write-
local authority (i.e. permission RWL or RWLX). This is intended to accommodate
a stack, where register contents can be stored, including local capabilities. As
long as all capabilities with write-local authority are themselves local and the
stack is cleared after control is passed back by the adversary, we will see that
this does not break the intended behavior of local capabilities.

We point out that our local capabilities capture only a part of the semantics
of local capabilities in CHERI. Specifically, in addition to the above, CHERI’s
default implementation of the CCall exception handler forbids local capabilities
from being passed across module boundaries. Such a restriction fundamentally
breaks our calling convention, since we pass around local return pointers and
stack capabilities. However, CHERI’s CCall is not implemented in hardware,
but in software, precisely to allow experimenting with alternative models like
ours.

In order to have a reasonably realistic system, we use a simple model of
linking where a program has access to a linking table that contains capabilities
for other programs. We also assume malloc to be part of the trusted computing
base satisfying a certain specification. Malloc and linking tables are described
further in the next section, but we refer to the technical appendix [14] for full
details.

3 Stack and Return Pointer Management Using Local
Capabilities

One of the contributions in this paper is a demonstration that local capabilities
on a capability machine support a calling convention that enforces control-flow
correctness in a way that is provably watertight, potentially efficient, does not
rely on a trusted central stack manager and supports higher-order interfaces to an
adversary, where an adversary is just some unknown piece of code. In this section,
we explain this convention’s high-level approach, the security measures to be
taken in a number of situations (motivating each separately with a summary
table at the end). After that, we define a number of reusable macro-instructions
that can be used to conveniently apply the proposed convention in subsequent
examples.

The basic idea of our approach is simple: we stick to a single, rather stan-
dard, C stack and register-passed stack and return pointers, much like a standard
C calling convention. However, to prevent various ways of misusing this basic
scheme, we put local capabilities to work and take a number of not-always-



obvious safety measures. The safety measures are presented in terms of what we
need to do to protect ourselves against an adversary, but this is only for presen-
tation purposes as our code assumes no special status on the machine. In fact,
an adversary can apply the same safety measures to protect themselves against
us. In the next paragraphs, we will explain the issues to be considered in all the
relevant situations: when (1) starting our program, (2) returning to the adver-
sary, (3) invoking the adversary, (4) returning from the adversary, (5) invoking
an adversary callback and (6) having a callback invoked by the adversary.

Program start-up We assume that the language runtime initializes the
memory as follows: a contiguous array of memory is reserved for the stack, for
which we receive a stack pointer in a special register r4;. We stress that the stack
is not built-in, but merely an abstraction we put on this piece of the memory.
The stack pointer is local and has RWLX permission. Note that this means that
we will be placing and executing instructions on the stack. Crucially, the stack
is the only part of memory for which the runtime (including malloc, loading,
linking) will ever provide RWLX or RWL capabilities. Additionally, our examples
typically also assume some memory to store instructions or static data. Another
part of memory (called the heap) is initially governed by malloc and at program
start-up, no other code has capabilities for this memory. Malloc hands out RWx
capabilities for allocated regions as requested (no RWLX or RWL permissions). For
simplicity, we assume that memory allocated through malloc cannot be freed.

Returning to the adversary Perhaps the simplest situation is returning to
the adversary after they invoked our code. In this case, we have received a return
pointer from them, and we just need to jump to it as usual. An obvious security
measure to take care of is properly clearing the non-return-value registers before
we jump (since they may contain data or capabilities that the adversary should
not get access to). Additionally, we may have used the stack for various purposes
(register spilling, storing local state when invoking other functions etc.), so we
also need to clear that data before returning to the adversary.

However, if we are returning from a function that has itself invoked adversary
code, then clearing the used part of the stack is not enough. The unused part
of the stack may also contain data and capabilities, left there by the adversary,
including local capabilities since the stack is write-local. As we will see later, we
rely on the fact that the adversary cannot keep hold of local capabilities when
they pass control to the trusted code and receive control back. In this case, the
adversary could use the unused part of the stack to store local pointers and load
them from there after they get control back. To prevent this, we need to clear
(i.e. overwrite with zeros) the entire part of the stack that the adversary has
had access to, not just the parts that we have used ourselves. Since we may be
talking about a large part of memory, this requirement is the most problematic
aspect of our calling convention for performance, but see Section [f] for how this
might be mitigated.

Invoking the adversary A slightly more complex case is invoking the ad-
versary. As above, we clear all the non-argument registers, as well as the part
of the stack that we are not using (because, as above, it may contain local ca-



pabilities from previously executed code that the adversary could exploit in the
same way). We leave a copy of the stack pointer in gy, but only after we have
used the subseg instruction to shrink its authority to the part that we are not
using ourselves.

In one of the registers, we also provide a return pointer, which must be a
local capability. If it were global, the adversary would be able to store away the
return pointer in a global data structure (i.e. there exists a global capability for
it), and jump to it later, in circumstances where this should not be possible.
For example, they could store the return pointer, legally jump to it a first time,
wait to be invoked again and then jump to the old return pointer a second time,
instead of the new return pointer received for the second invocation. Similarly,
they could store the return pointer, invoke a function in our code, wait for us
to invoke them again and then jump to the old return pointer rather than the
new one, received for the second invocation. By making the return pointer local,
we prevent such attacks: the adversary can only store local capabilities through
write-local capabilities, which means (because of our assumptions above): on the
stack. Since the stack pointer itself is also local, it can also only be stored on
the stack. Because we clear the part of the stack that the adversary has had
access to before we pass control back, there is no way for them to recover either
of these local capabilities.

Note that storing stack pointers for use during future invocations would also
be dangerous in itself, i.e. not just because it can be used to store return pointers.
Imagine the adversary stores their stack pointer, invokes trusted code that uses
part of the stack to store private data and then invokes the adversary again
with a stack pointer restricted to exclude the part containing the private data.
If the adversary had a way of keeping hold of their old stack pointer, it could
access the private data stored there by the trusted code and break local-state
encapsulation.

Returning from the adversary So return pointers must be passed as local
capabilities. But what should their permissions be, what memory should they
point to and what should that memory (the activation record) contain? Let
us answer the last question first by considering what should happen when the
adversary jumps to a return pointer. In that case, the program counter should
be restored to the instruction after the jump to the adversary, so the activation
record should store this old program counter. Additionally, the stack pointer
should also be restored to its original value. Since the adversary has a more
restricted authority over the stack than the code making the call, we cannot
hope to reconstruct the original stack pointer from the stack pointer owned by
the adversary. Instead, it should be stored as part of the activation record.

Clearly, neither of these capabilities should be accessible by the adversary. In
other words, the return pointer provided to the adversary must be a capability
that they can jump to but not read from, i.e. an enter capability. To make
this work, we construct the activation record as depicted in Figure |4 The E
return pointer has authority over the entire activation record (containing the
previous return and stack pointer), and its current address points to a number



. E
return pointer ——
restore instructions

previous program counter
previous stack pointer

Figure4: Structure of an activation record

of restore instructions in the record, so that upon invocation, these instructions
are executed and can load the old stack pointer and program counter back into
the register file. As the return pointer is an enter pointer, the adversary cannot
get hold of the activation record’s contents, but after invocation, its permission
is updated to RX, so the contents become available to the restore instructions.

The final question that remains is: where should we store this activation
record? The attentive reader may already see that there is only one possibility:
since the activation record contains the old stack pointer, which is local, the
activation record can only be constructed in a part of memory where we have
write-local access, i.e. on the stack. Note that this means we will be placing and
executing instructions on the stack, i.e. it will not just contain code pointers
and data. This means that our calling convention should be combined with
protection against stack smashing attacks (i.e. buffer overflows on the stack
overwriting activation records’ contents). Luckily, the capability machine’s fine-
grained memory protection should make it reasonably easy for a compiler to
implement such protection, by making sure that only appropriately bounded
versions of the stack pointer are made available to source language code.

Invoking an adversary callback If we have a higher-order interface to
the adversary, we may need to invoke an adversary callback. In this case, not
so much changes with respect to the situation where we invoke static adversary
code. The adversary can provide a callback as a capability for us to jump to,
either an E-capability if they want to protect themselves from us or just an RX
capability if they are not worried about that. However, there is one scenario that
we need to prevent: if they construct the callback capability to point into the
stack, it may contain local capabilities that they should not have access to upon
invocation of the callback. As before, this includes return and stack pointers
from previous stack frames that they may be trying to illegally use inside the
callback.

To prevent this, we only accept callbacks from the adversary in the form
of global capabilities, which we dynamically check before invoking them (and
we fail otherwise). This should not be an overly strict requirement: our own
callbacks do not contain local data themselves, so there should be no need for
the adversary to construct callbacks on the stack[]

3 Note that it does prevent a legitimate but non-essential scenario where the adversary
wants to give us temporary access to a callback not allocated on the stack.



Having a callback invoked by the adversary The above leaves us with
perhaps the hardest scenario: how to provide a callback to the adversary. The
basic idea is that we allocate a block of memory using malloc that we fill with the
capabilities and data that the callback needs, as well as some prelude instructions
that load the data into registers and jumps to the right code. Note that this
implies that no local capabilities can be stored as part of a closure. We can
then provide the adversary with an enter-capability covering the allocated block
and pointing to the contained prelude instructions. However, the question that
remains in this setup is: from where do we get a stack pointer when the callback
is invoked?

Our answer is that the adversary should provide it to us, just as we provide
them with a stack pointer when we invoke their code. However, it is important
that we do not just accept any capability as a stack pointer but check that
it is safe to use. Specifically, we check that it is indeed an RWLX capability.
Without this check, an adversary could potentially get control over our local
stack frame during a subsequent callback by passing us a local RWX capability
to a global data structure instead of a proper stack pointer and a global callback
for our callback to invoke. If our local state contains no local capabilities, then,
otherwise following our calling convention, the callback would not fail and the
adversary could use a stored capability for the global data structure to access
our local state. To prevent this from happening, we need to make sure the stack
capability carries RWLX authority, since the system wide assumption then tells
us that the adversary cannot have global capabilities to our local stack.

Calling convention With the security measures introduced and motivated,
let us summarize our proposed calling convention: At program start-up A local
RWLX stack pointer resides in register ry ;. No global write-local capabilities.
Before returning to the adversary Clear non-return-value registers. Clear the
part of the stack we had access to (not just the part we used). Before invoking
the adversary Push activation record to the stack. Create return pointer as local
E-capability to the instructions in the record. Restrict the stack capability to
the unused part and clear it. Clear non-argument registers. Before invoking an
adversary callback Make sure callback is global. When invoked by an adversary
Make sure received stack pointer has permission RWLX.

Reusable macro instructions We define a number of reusable macros
capturing the calling convention and other conveniences. All macros that use the
stack assume a stack pointer in register 4. The macro fetch r name fetches the
capability related to name from the linking table and stores it in register r. The
macros push r and pop r add and remove elements from the stack. The macro
prepstk r is used when a callback is invoked by the adversary and prepares the
received stack pointer by checking that it has permission RWLX. The macro scall
7 (Targs » Tprew) jumps to the capability in register r in the manner described above.
That is, it pushes local state (the contents of registers 7,,) and the activation
record (return code, return pointer, stack pointer) to the stack, creates an E
return pointer, restricts the stack pointer, clears the unused part of the stack,
clears the necessary registers and jumps to r. Upon return, the private state is



restored. The macro mclear r clears all the memory the capability in register
r has authority over. The macro rclear regSet clears all the registers in regSet.
The macro reqglob r checks whether the word in register r is a global capability.
The macro crtcls (z;,7;) r allocates a closure where r points to the closure’s
code and a new environment is allocated (using malloc) where the contents of
7; is stored. In the code referred to by 7, an implicit fetch happens when an
instruction refers to x;.

The technical appendix [14] contains detailed descriptions of all the macros.

4 Logical Relation

In this section, we formalize the guarantees provided by the capability machine,
including the specific guarantees for local capabilities, by means of a step-indexed
Kripke logical relation with recursively defined worlds. We use the logical rela-
tion in the following section to show local-state encapsulation and control-flow
integrity properties for challenging example programs.

4.1 Worlds

Permanent region:
= /] e >

Temporary region:

Local capability:

Global capability:

Figure 5: The relation between local/global capabilities and temporary/perma-
nent regions. The colored fields are regions governing parts of memory. Global
capabilities cannot depend on temporary regions.

A world is a finite map from region names, modeled as natural numbers, to
regions that each correspond to an invariant of part of the memory. We have
three types of regions: permanent, temporary, and revoked. Fach permanent and
temporary region contains a state transition system, with public and private
transitions, to describe how the invariants are allowed to change over time. In
other words, they are protocols for the region’s memory. These are similar to
what has been used in logical relations for high-level languages [11}[13}[15]. Pro-
tocols imposed by permanent regions stay in place indefinitely. Any capability,



local or global, can depend on these protocols. Protocols imposed by temporary
regions can be revoked in private future worlds. Doing this may break the safety
of local capabilities but not global ones. This means that local capabilities can
safely depend on the protocols imposed by temporary regions, but global capa-
bilities cannot, since a global capability may outlive a temporary region that is
revoked. This is illustrated in Figure

For technical reasons, we do not actually remove a revoked temporary region
from the world, but we turn it into a special revoked region that exists for this
purpose. Such a revoked region contains no state transition system and puts no
requirements on the memory. It simply serves as a mask for a revoked temporary
region. Masking a region like this goes back to earlier work of Ahmed [16] and
was also used by Birkedal et al. [17].

Regions are used to define safe memory segments, but this set may itself be
world-dependent. In other words, our worlds are defined recursively. Recursive
worlds are common in Kripke models and the following lemma uses the method
of Birkedal and Bizjak [18]; Birkedal et al. [19] for constructing them. The for-
mulation of the lemma is technical, so we recommend that non-expert readers
ignore the technicalities and accept that there exists a set of worlds Wor and
two relations 27" and JP“ satisfying the (recursive) equations in the theorem
(where the » operator can be safely ignored).

Theorem 1. There exists a c.o.f.e. (complete ordered Jamily of equivalences)
Wor and preorders JP™ and JP"* such that (Wor, JP™) and (Wor, ;p“b) are
preordered c.o.f.e.’s, and there exists an isomorphism & such that

¢ : Wor 2 »(N 2 Region)
Region = {revoked }&
{temp} x State x Rels x (State — (Wor === UPred(MemSeg)))w
=l

{perm} x State x Rels x (State — (Wor — UPred(MemSeg)))

—priv

W/ gpriv W < f(W/) gpriv 5(w)

and for W, W' € Wor. , X
W' 27 W e (W) 27 (W)

In the above theorem, State x Rels corresponds to the aforementioned state tran-
sition system where Rels contains pairs of relations corresponding to the public
and private transitions, and State is an unspecified set that we assume to contain
at least the states we use in this paper. The last part of the temporary and per-
manent regions is a state interpretation function that determines what memory
segments the region permits in each state of the state transition system. The
different monotonicity requirements in the two interpretation functions reflects
how permanent regions rely only on permanent protocols whereas temporary
regions can rely on both temporary and permanent protocols. UPred(MemSeg)
is the set of step-indexed, downwards closed predicates on memory segments:
UPred(MemSeg) = {A C N x MemSeg | V(n,ms) € AVm < n.(m,ms) € A}.



With the recursive domain equation solved, we could take Wor as our no-
tion of worlds, but it is technically more convenient to work with the following
definition instead:

World = N £ Region

Future Worlds The future world relations model how memory may evolve over
time. The public future world W' JP“ W requires that dom(W’) 2 dom(W) and
Vr € dom(W). W' (r) 2P“ W(r). That is, in a public future world, new regions
may have been allocated, and existing regions may have evolved according to the
public future region relation (defined below). The private future world relation
W' JP™ W is defined similarly, using a private future region relation. The public
future region relation is the simplest. It satisfies the following properties:

(5,5') € Gpup (temp, 5, dpus, 6, H) € Region
(’U, SI7 (bpulh (b? H) ;pub (7}7 S, d)pub: (bu H) (temp7 S, ¢pub> ¢7 H) ;pub revoked

revoked 2P revoked

Both temporary and permanent regions are only allowed to transition according
to the public part of their transition system. Additionally, revoked regions must
either remain revoked or be replaced by a temporary region. This means that
the public future world relations allows us to reinstate a region that has been
revoked earlier. The private future region relation satisfies:

(s,8') € ¢ r € Region
(Ua 517 ¢pub7 ¢7 H) gpriv (’U, S, ¢puba ¢a H) r gpﬂu (temp, S, (bpuba ¢7 H)

r € Region

r JP™ revoked

Here, revocation of temporary regions is allowed. In fact, temporary regions can
be replaced by an arbitrary other region, not just the special revoked. Conversely,
revoked regions may also be replaced by any other region. On the other hand,
permanent regions cannot be masked away. They are only allowed to transition
according to the private part of the transition system.

Notice that the public future region relation is a subset of the private future
region relation.

World Satisfaction A memory satisfies a world, written ms :, W, if it can
be partitioned into disjoint parts such that each part is accepted by an active
(permanent or temporary) region. Revoked regions are not taken into account
as their memory protocols are no longer in effect.

3P : active(W) — MemSeg. ms = L.H P(r) and
ms :p, W iff Vr € active(W). reactive(W)
3H,s. W(r) = (., s,-,, H) and (n, P(r)) € H(s)(¢*(W))



O : World =% UPred(Reg x MemSeg)
VYmsy, mem',i < n.(reg, ms W msy) —; (halted, mem') =
OoW) € { (n,(reg,ms)) | IW’ 27 W, ms,, ms' .
mem’ = ms' W ms, W msy and ms’ ip_; W'

mon, ne

R : World —> UPred(Reg)
R(W) :f{(n7 reg) | Vr € RegName \ {pc}. (n, reg(r)) € V(W)}

& : World =% UPred(Word)

) ne vn' <n, (n',reg) € R(W), ms 1y W.
EW) = {( , pe) 77,(7 (reg[pec — pc], ms)) € O(W)}

V : World == UPred(Word)

:,pu

VW)Y {(n,i)|iezyu{(n, ((0,9),b, e a))}U
{ (RW, g), b, ¢, a)) (n, (b, e)) € readCond(g)(W) and }U
{

(n, (b, e)) € writeCond (™", g)(W)

(n, ((E,9),b,e,a)) | (n,(b,e,a)) € enterCond(g)(W)}U

(n, (b, e)) € readCond(g)(W) and

(n, (b, e)) € writeCond (1P, g)(W) and }
(n, ({RWLX, RWX, RX}, b, €)) € execCond(g)(W)
.and so on for permissions RO, RWL, RX, and RWX.

{ (RWLX, g), b, €, a))

Figure 6: The logical relation.

4.2 Logical Relation

The logical relation defines semantically when values, program counters, and
configurations are capability safe. The definition is found in Figures [f] and [7] and
we provide some explanations in the following paragraphs. For space reasons,
we omit some definitions and explain them only verbally, but precise definitions
can be found in the technical appendix [14].

First, the observation relation O defines what configurations we consider
safe. A configuration is safe with respect to a world, when the execution of
said configuration does not break the memory protocols of the world. Roughly
speaking, this means that when the execution of a configuration halts, then there
is a private future world that the resulting memory satisfies. Notice that failing
is considered safe behavior. In fact, the machine often resorts to failing when
an unauthorized access is attempted, such as loading from a capability without
read permission. This is similar to Devriese et al. [11]’s logical relation for an
untyped language, but unlike typical logical relations for typed languages, which
require that programs do not fail.



readCond(g)(W) = Y, '] 2 (b, e]. W(r) C 2

b e’

3r € localityReg(g, W). }

writeCond (¢, g)(W)

(n, (b, e)) | W(r) is address-stratified and
n—1
H[b/, e/] Db, e].W(r) 2 Ly et

~

execCond(g)(W) = 4 (n, (P, b, e))

{ 3r € localityReg(g, W).

vn' <n,W 3 W,a € [b,e], perm € P.
(n', ((perm, g), b, e,a)) € EW')

vn' < n.YW' I W.
(n', (X, g), b, e, a)) € E(W')

where g = local = J = 3 and g = global = J = J7""

enterCond(g)(W) = {(n7 (b,e,a))

Figure 7: Permission-based conditions

The register-file relation R defines safe register-files as those that contain
safe words (i.e. words in V) in all registers but pc. The expression relation &
defines that a word is safe to use as a program counter if it can be plugged into
a safe register file (i.e. a register file in R) and paired with a memory satisfying
the world to become a safe configuration. Note that integers and non-executable
capabilities (e.g. RO and E capabilities) are considered safe program counters
because when they are plugged into a register file and paired with a memory,
the execution will immediately fail, which is safe.

The value relation V defines when words are safe. We make the value relation
as liberal as possible by considering what is the most we can allow an adversary to
use a capability for without breaking the memory protocols. Non-capability data
is always safe because it provides no authority. Capabilities give the authority
to manipulate memory and potentially break memory protocols, so they need to
satisfy certain conditions to be safe. In Figure [7] we define such a condition for
each kind of permission a capability can have.

For capabilities with read permission, the readCond ensures that it can only
be used to read safe words, i.e. words in the value relation. To guarantee this,
we require that the addressed memory is governed by a region W (r) that im-
poses safety as a requirement on the values contained. This safety requirement
is formulated in terms of a standard region Li’j‘;l. The definition of that standard
region is omitted for space reasons, but it simply requires all the words in the

n pwl
-

range [b, e] to be safe, i.e. in the value relation. Requiring that W(r) C ¢},

means that W (r) must accept only safe values like L’Zf‘;l, but can be even more

restrictive if desired. The read condition also takes into account the locality of
the capability because, generally speaking, global capabilities should only de-
pend on permanent regions. Concretely, we use the function localityReg(g, W),
which projects out all active (non-revoked) regions when the locality ¢ is lo-
cal, but only the permanent regions when g is global. The the definition of the



standard region ng’uél can be found in |14]; it makes use of the isomorphism from

Theorem [I

For a capability with write permission, writeCond must be satisfied for the
capability’s range of authority. An adversary can use such a capability to write
any word they can get a hold of, and we can safely assume that they can only
get a hold of safe words, so the region governing the relevant memory must allow
any safe word to be written there. In order to make the logical relation as liberal
as possible, we make this a lower bound of what the region may allow. For write
capabilities, we also have to take into account the two flavours of write permis-
sions: write and write-local. In the case of write-local capabilities, the region
needs to allow (at least) any safe word to be written, but in the case of write ca-
pabilities, the capability cannot be used to write local capabilities, so the region
only needs to allow safe non-local values. In the write condition, this is handled
by parameterizing it with a region. For the write-local capabilities the write

condition is applied with the standard region Lgf’;l that we described previously.

For the write capabilities we use a different standard region L;;}gl which requires

that the words in [b, e] are non-local and safe. As before, we use localityReg to
pick an appropriate region based on the capability’s locality. Finally, there is a
technical requirement that the region must be address-stratified. Intuitively, this
means that if a region accepts two memory segments, then it must also accept
every memory segment “in between”, that is every memory segment where each
address contains a value from one of the two accepted memory segments. An in-
teresting property of the write condition is that they prohibit global write-local
capabilities which, as discussed in Section [3] is necessary for any safe use of local
capabilities.

The conditions enterCond and execCond are very similar. Both require that
the capability can be safely jumped to. However, executable capabilities can be
updated to point anywhere in their range, so they must be safe as a program
counter (in the &-relation) no matter the current address. In contrast, enter
capabilities are opaque and can only be used to jump to the address they point
to. They also change permission when jumped to, so we require them to be
safe as a program counter after the permission is changed to RX. Because the
capabilities are not necessarily invoked immediately, this must be true in any
future world, but it depends on the capability’s locality which future worlds we
consider. If it is global, then we require safety as a program counter in private
future worlds (where temporary regions may be revoked). For local capabilities,
it suffices to be safe in public future worlds, where temporary regions are still
present.

In the technical appendix, we prove that safety of all values is preserved in
public future worlds, and that safety of global values is also preserved in private
future worlds:

Lemma 1 (Double monotonicity of value relation).

— If W 2P W and (n,w) € V(W), then (n,w) € V(W').
— If W' 2P W and (n,w) € V(W) and w = ((perm, global), b, e, a) (i.e. w
is a global capability), then (n,w) € V(W').



4.3 Safety of the Capability Machine

With the logical relation defined, we can now state the fundamental theorem
of our logical relation: a strong theorem that formalizes the guarantees offered
by the capability machine. Essentially, it says a capability that only grants safe
authority is capability safe as a program counter.

Theorem 2 (Fundamental Theorem). If one of the following holds:

e perm = RX and (n, (b, e)) € readCond(g)(W)

e perm = RWX and (n, (b, e)) € readCond(g)(W) and
(n, (b, e)) € writeCond (t™™", g)(W)

e perm = RWLX and (n, (b, e)) € readCond(g)(W) and
(n, (b, e)) € writeCond(:P*, g)(W),

then (n, ((perm,g),b,e,a)) € EW)

The permission based conditions of Theorem [2]make sure that the capability only
provides safe authority in which case the capability must be in the & relation,
i.e. it can safely be used as a program counter in an otherwise safe register-file.

The Fundamental Theorem can be understood as a general expression of the
guarantees offered by the capability machine, an instance of a general property
called capability safety [11}|12]. To understand this, consider that the theorem
says the capability ((perm, g), b, e, a) is safe as a program counter, without any
assumption about what instructions it actually points to (the only assumptions
we have are about the read or write authority that it carries). As such, the
theorem expresses the capability safety of the machine, which guarantees that
any instruction is fine and will not be able to go beyond the authority of the
values it has access to. We demonstrate this in Section Blwhere Theorem Rlis used
to reason about capabilities that point to arbitrary instructions. The relation
between Theorem [2] and local-state encapsulation and control-flow correctness,
will also be shown by example in Section [§] as the examples depend on these
properties for correctness. See the technical appendix [14] for a detailed proof
(by induction over the step-index n) of the theorem.

5 Examples

In this section, we demonstrate how our formalization of capability safety allows
us to prove local-state encapsulation and control-flow correctness properties for
challenging program examples. The security measures of Section [3| are deployed
to ensure these properties. Since we are dealing with assembly language, there
are many details to the formal treatment, and therefore we necessarily omit some
details in the lemma statements. The examples may look deceivingly short, but it
is because they use the macro instructions described in Section [3] The examples
would be unintelligible without the macros, as each macro expands to multiple
basic instructions. The interested reader can find all the technical details in the
technical appendix [14].



f1: push 1 f2: malloc r; 1

fetch 7 adv store r; 1
scall r1([],[] fetch 71 adv
pop T1 call ri([],[r:])
assert r; 1 assert r; 1
halt halt

Figure 8: Two example programs that rely on local-state encapsulation. £1 uses
our stack-based calling convention. £2 does not rely on a stack.

5.1 Encapsulation of Local State

£1 and £2 in Figure[§]demonstrate the capability machine’s encapsulation of local
state. They are very similar: both store some local state, call an untrusted piece
of code (adv), and then test whether the local state is unchanged. They differ
in the way they do this. Program f1 uses our stack-based calling convention
(captured by scall) to call the adversary, so it can use the available stack to
store its local state. On the other hand, £2 uses malloc to allocate memory for
its local state and uses an activation-record based calling convention (described
in the technical appendix) to run the adversarial code.

For both programs, we can prove that if they are linked with an adversary,
adv, that is allowed to allocate memory but has no other capabilities, then the
assertion will never fail during executing (see Lemmas [2 and [3| below). The two
examples also illustrate the versatility of the logical relation. The logical relation
is not specific to any calling convention, so we can use it to reason about both
programs, even though they use different calling conventions.

In order to formulate results about £1 and f£2, we need a way to observe
whether the assertion fails. To this end, we assume they have access to a flag (an
address in memory). If the assertion fails, then the flag is set to 1 and execution
halts. The correctness lemma for £1 then states:

Lemma 2. Let

def

Cado 2 ((E,global),...)  cor = ((RWLX, local),...)
cr1 2 ((RwX, global), . ..) ciink = ((RO, global), . ..)
Comalloe = ((E, global), . ..) reg € Reg
m < ms 1 W msfag § mspnk W msage W mSmaiioc © Mg & MS frame

where each of the capabilities have an appropriate range of authority and pointeﬁ.
Furthermore

— msf1 contains Cink, Cag and the code of f1

4 These assumptions are kept intentionally vague for brevity. Full statements are in
the technical appendix [14].



— MsSfiag(flag) =0
— MSink CONLAINS Cagy ANA Conalloc
— MSqdy CONLAINS Cling, and otherwise only instructions.

If (reg[pc — cpllrsw = co],m) —* (halted,m’), then m/(flag) =0

To prove Lemma [2] it suffices to show that the start configuration is safe
(in the O relation) for a world with a permanent region that requires the as-
sertion flag to be 0. By an anti-reduction lemma, it suffices to show that the
configuration is safe after some reduction steps. We then use a general lemma
for reasoning about scall, by which it suffices to show that (1) the configuration
that scall will jump to is safe and (2) that the configuration just after scall is
done cleaning up is safe. We use the Fundamental Theorem to reason about the
unknown adversarial code, but notice that the adversary capability is an enter
capability, which the Fundamental Theorem says nothing about. Luckily the en-
ter capability becomes RX after the jump and then the Fundamental Theorem
applies.

We have a similar lemma for £2:

Lemma 3. Making similar assumptions about capabilities and linking as in
Lemma@ but assuming no stack pointer, if (reg[pc — cf2],m) —* (halted, m’),
then m/(flag) = 0.

5.2 Well-Bracketed Control-Flow

Using the stack-based calling convention of scall, we get well-bracketed control-
flow. To illustrate this, we look at two example programs £3 and g1 in Figure [0

In £3 there are two calls to an adversary and in order for the assertion in the
middle to succeed, they need to be well-bracketed. If the adversary were able
to store the return pointer from the first call and invoke it in the second call,
then £3 would have 2 on top of its stack and the assertion would fail. However,
the security measures in Section [3] prevent this attack: specifically, the return
pointer is local, so it can only be stored on the stack, but the part of the stack
that is accessible to the adversary is cleared before the second invocation. In fact,
the following lemma shows that there are also no other attacks that can break
well-bracketedness of this example, i.e. the assertion never fails. It is similar to
the two previous lemmas:

Lemma 4. Making similar assumptions about capabilities and linking as in
Lemma[3 if (reglpc — cgs][rsiw = csee], m) —* (halted, m’), then m/(flag) = 0.

The final example, g1 with f£4, is a faithful translation of a tricky example
known from the literature (known as the awkward example) [13}20]. It consists
of two parts, g1 and f4. g1 is a closure generator that generates closures with
one variable z set to 0 in its environment and £4 as the program (note we can
omit some calling convention security measures because the stack is not used
in the closure generator). £4 expects one argument, a callback. It sets x to 0



gl: malloc 72 1 (continued from previous column) £3: push 1

store r2 0 store = 0 fetch r1 adv

move pcC 13 scall r1([],[ro, 71, Tenv]) scall r1([],[r])

lea r3 offset store =z 1 pop T2

crtels [(z,72)] r3 scall r1([],[ro, Tenv]) assert ro 1

rclear RegName \ {pc,ro,m1} load r = push 2

jmp 7o assert 71 1 scall r ([],[])
f4: reqglob 7 mclear 7k halt

prepstk 7y rclear RegName \ {ro,pc}

(continues in newt column) jmp 1o

Figure9: Two programs that rely on well-bracketedness of scalls to function
correctly. offset is the offset to £4.

and calls the callback. When it returns, it sets x to 1 and calls the callback a
second time. When it returns again, it asserts x is 1 and returns. This example
is more complicated than the previous ones because it involves a closure invoked
by the adversary and an adversary callback invoked by us. As explained in
Section [3} this means that we need to check (1) that the stack pointer that the
closure receives from the adversary has write-local permission and (2) that the
adversary callback is global.

To illustrate how subtle this program is, consider how an adversary could try
to make the assertion fail. In the second callback an adversary can get to the
first callback by invoking the closure one more time. If there were any way for
the adversary to transfer the return pointer from the point where it reinvokes
the closure to where the closure reinvokes the callback, then the assertion could
be made to fail. Similarly, if there were any way for the adversary to store a
stack pointer or trick the trusted code into preserving it across an invocation,
the assertion can likely be made to fail too. However, our calling convention
prevents any of this from happening, as we prove in the following lemma.

Lemma 5. Let

Cadv = (RWX, global), ...) c,1 < ((E, global), .. .)
and otherwise make assumptions about capabilities and linking similar to Lemmal[3
Then if (rego[pc = Cadol[rste — Cste)[r1 — cg1],m) —* (halted, m’), then

m/(flag) = 0.

As explained in Section [3] the macro-instruction reqglob 7 checks that the
callback is global, essentially to make sure it is not allocated on the stack where
it might contain old stack pointers or return pointers. Otherwise, the encapsu-
lation of our local stack frame could be broken. In the proof of Lemma [5] this
requirement shows up because we invoke the callback in a world that is only a
private future world of the one where we received the callback, precisely because
we have invalidated the adversary’s local state (particularly their old stack and



return capabilities). The callback is still valid in this private future world, but
only because we know that it is global.

In Lemma[5] the order of control has been inverted compared to the previous
lemmas. In this lemma, the adversary assumes control first with a capability
for the closure creator gi. Consequently, we need to check that all arguments
are safe to use and that we clean up before returning in the end. The inversion
of control poses an interesting challenge when it comes to reasoning about the
adversary’s local state during the execution of £4 and the callbacks where the
adversary should not rely on the local state from before the call of £4. This is
easily done by revoking all the temporary regions of the world given at the start
of f4. However, when f4 returns, the adversary is again allowed to rely on its
old local state so we need to guarantee that the local state is unchanged. This
is important because the return pointer that £4 receives may be local, and the
adversary is allowed to allocate the activation record on the stack (just like we
do) so they can store and recover their old stack pointer after £4 returns. By
utilizing the reinstation mechanism of the future world relation as well as our
knowledge of the future worlds used, we can construct a world in which the
adversary’s invariants are preserved. The details of this and the proofs of the
other lemmas are found in the technical appendix [14].

6 Discussion

Calling convention
Formulating control flow correctness While we claim that our calling convention
enforces control-flow correctness, we do not prove a general theorem that shows
this, because it is not clear what such a theorem should look like. Formulations
in terms of a control-flow graph, like the one by Abadi et al. [2], do not take into
account temporal properties, like the well-bracketedness that Example g1 relies
on. In fact, our examples show that our logical relation imply a stronger form of
control-flow correctness than such formulations, although this is not made very
explicit. As future work, we consider looking at a more explicit and useful way to
formalize control-flow correctness. The idea would be to define a variant of our
capability machine with call and return instructions and well-bracketed control
flow built-in to the operational semantics, and then prove that compiling such
code to our machine using our calling convention is fully abstract [21].
Performance and the requirement for stack clearing The additional security
measures of the calling convention described in Section [3| impose an overhead
compared to a calling convention without security guarantees. However, most of
our security measures require only a few atomic checks or register clearings on
boundary crossings between trusted code and adversary, which should produce
an acceptable performance overhead. The only exception are the requirements for
stack clearing that we have in two situations: when returning to the adversary
and when invoking an adversary callback. As we have explained, we need to
clear all of the stack that we are not using ourselves, not just the part that we
have actually used. In other words, on every boundary cross between trusted



code and adversary code, a potentially large region of memory must be cleared.
We believe this is actually a common requirement for typical usage scenarios of
local capabilities and capability machines like CHERI should consider to provide
special support for this requirement, in the form of a highly-optimized instruction
for erasing a large block of memory. Nevertheless, from a discussion with the
designers of the CHERI capability machine, we gather that it is not immediately
clear whether and how such a primitive could be implemented efficiently in the
CHERI context.

Modularity 1t is important that our calling convention is modular, i.e. we do
not assume that our code is specially privileged w.r.t. the adversary, and they
can apply the same measures to protect themselves from us as we do to protect
ourselves from them. More concretely, the requirements we have on callbacks
and return pointers received from the adversary are also satisfied by callbacks
and return pointers that we pass to them. For example, our return pointers are
local capabilities because they must point to memory where we can store the old
stack pointer, but the adversary’s return pointers are also allowed to be local.
Adversary callbacks are required to be global but the callbacks we construct are
allocated on the heap and also global.

Arguments and local capabilities Local capabilities are a central part of the
calling convention as they are used to construct stack and return pointers. The
use of local capabilities for the calling convention unfortunately limits the extent
to which local capabilities can be used for other things. Say we are using the
calling convention and receive a local capability other than the stack and return
pointer, then we need to be careful if we want to use it because it may be an
alias to the stack pointer. That is, if we first push something to the stack and
then write to the local capability, then we may be (tricked into) overwriting our
own local state. The logical relation helps by telling us what we need to ascertain
or check in such scenarios to guarantee safety and preserve our invariants, but
such checks may be costly and it is not clear to us whether there are practical
scenarios where this might be realistic.

We also need to be careful when we receive a capability from an adversary
that we want to pass on to a different (instance of the) adversary. It turns out that
the logical relation again tells us when this is safe. Namely, the logical relation
says that we can only pass on safe arguments. For instance, when we receive a
stack pointer from an adversary, then we may at some point want to pass on
part of this stack pointer to, say, a callback. In order to do so, we need to make
sure the stack pointer is safe which means that, if we have revoked temporary
invariants, the stack must not directly or indirectly allow access to local values
that we cannot guarantee safety of. When received from an adversary, we have
to consider the contents of the stack unsafe, so before we pass it on, we have to
clear it, or perform a dynamic safety analysis of the stack contents and anything
it points to. Clearing everything is not always desirable and a dynamic safety
analysis is hard to get right and potentially expensive.

In summary, the use of local capabilities for other things than stack and
return pointers is likely only possible in very specific scenarios when using our



calling convention. While this is unfortunate, it is not unheard of that processors
have built-in constructs that are exclusively used for handling control flow, such
as, for example, the call and return instructions that exist in some instruction
sets.

Single stack A single stack is a good choice for the simple capability machine
presented here, because it works well with higher-order functions. An alternative
to a single stack would be to have a separate stack per component. The trouble
with this approach is that, with multiple stacks and local stack pointers, it is
not clear how components would retrieve their stack pointer upon invocation
without compromising safety. A safe approach could be to have stack pointers
stored by a central, trusted stack management component, but it is not clear
how that could scale to large numbers of separate components. Handling large
numbers of components is a requirement if we want to use capability machines
to enforce encapsulation of, for example, every object in an object-oriented pro-
gram or every closure in a functional program.

Logical relation

Single orthogonal closure The definitions of € and V in Figure [6] apply a single
orthogonal closure, a new variant of an existing pattern called biorthogonality.
Biorthogonality is a pattern for defining logical relations [20}/22] in terms of an
observation relation of safe configurations (like we do). The idea is to define
safe evaluation contexts as the set of contexts that produce safe observations
when plugging safe values and define safe terms as the set of terms that can be
plugged into safe evaluation contexts to produce safe observations. This is an
alternative to more direct definitions where safe terms are defined as terms that
evaluate to safe values. An advantage of biorthogonality is that it scales better
to languages with control effects like call/cc. Our definitions can be seen as a
variant of biorthogonality, where we take only a single orthogonal closure: we do
not define safe evaluation contexts but immediately define safe terms as those
that produce safe observations when plugged with safe values. This is natural
because we model arbitrary assembly code that does not necessarily respect a
particular calling convention: return pointers are in principle values like all others
and there is no reason to treat them specially in the logical relation.

Interestingly, Hur and Dreyer [23] also use a step-indexed, Kripke logical rela-
tion for an assembly language (for reasoning about correct compilation from ML
to assembly), but because they only model non-adversarial code that treats re-
turn pointers according to a particular calling convention, they can use standard
biorthogonality rather than a single orthogonal closure like us.

Public/private future worlds A novel aspect of our logical relation is how we
model the temporary, revokable nature of local capabilities using public/private
future worlds. The main insight is that this special nature generalizes that of
the syntactically-enforced unstorable status of evaluation contexts in lambda
calculi without control effects (of which well-bracketed control flow is a con-
sequence). To reason about code that relies on this (particularly, the original



awkward example), Dreyer et al. [13] (DNB) formally capture the special sta-
tus of evaluation contexts using Kripke worlds with public and private future
world relations. Essentially, they allow relatedness of evaluation contexts to be
monotone with respect to a weaker future world relation (public) than related-
ness of values, formalizing the idea that it is safe to make temporary internal
state modifications (private world transitions, which invalidate the continuation,
but not other values) while an expression is performing internal steps, as long
as the code returns to a stable state (i.e. transitions to a public future world
of the original) before returning. We generalize this idea to reason about local
capabilities: validity of local capabilities is allowed to be monotone with respect
to a weaker future-world relation than other values, which we can exploit to
distinguish between state changes that are always safe (public future worlds)
and changes that are only valid if we clear all local capabilities (private future
worlds). Our future world relations are similar to DNB’s (for example, our proof
of the awkward example uses exactly the same state transition system), but they
turn up in an entirely different place in the logical relation: rather than using
public future worlds for the special syntactic category of evaluation contexts,
they are used in the value relation depending on the locality of the capability at
hand. Additionally, our worlds are a bit more complex because, to allow local
memory capabilities and write-local capabilities, they can contain (revokable)
temporary regions that are only monotonous w.r.t. public future worlds, while
DNB’s worlds are entirely permanent.

Local capabilities in high-level languages We point out that local capabilities
are quite similar to a feature proposed for the high-level language Scala: Osvald
et al. [24)’s second-class or local values. They are a kind of values that can be
provided to other code for immediate use without allowing them to be stored in
a closure or reference for later use. We believe reasoning about such values will
require techniques similar to what we provide for local capabilities.

7 Related Work

Finally, we summarize how our work relates to previous work. We do not repeat
the work we discussed in Section [6

Capability machines originate with Dennis and Van Horn |7] and we refer to
Levy [25] and Watson et al. [9] for an overview of previous work. The capability
machine formalized in Section |2]is a simple but representative model, modeled
mainly after the M-Machine [6] (the enter pointers resemble the M-Machine’s)
and CHERI [9,|10] (the memory and local capabilities resemble CHERI’s). The
latter is a recent and relatively mature capability machine, which combines ca-
pabilities with a virtual memory approach, in the interest of backwards com-
patibility and gradual adoption. As discussed, our local capabilities can cross
module boundaries, contrary to what is enforced by CHERI’s default CCall im-
plementation.

Plenty of other papers enforce well-bracketed control flow at a low level, but
most are restricted to preventing particular types of attacks and enforce only



partial correctness of control flow. This includes particularly the line of work
on control-flow integrity [2]. Those use a quite different attacker model than us:
they assume an attacker that is not able to execute code, but can overwrite
arbitrary data at any time during execution (to model buffer overflows). By
checking the address of every indirect jump and using memory access control to
prevent overwriting code, this work enforces what they call control-flow integrity,
formalized as the property that every jump will follow a legal path in the control-
flow graph. As discussed in Section[f] such a property ignores temporal properties
and seems hard to use for reasoning.

More closely related to our work are papers that use a trusted stack manager
and some form of memory isolation to enforce control-flow correctness as part of
a secure compilation result [26},27]. Our work differs from theirs in that we use
a different form of low-level security primitive (a capability machine with local
capabilities rather than a machine with a primitive notion of compartments) and
we do not use a trusted stack manager, but a decentralized calling convention
based on local capabilities. Also, both prove a secure compilation result from a
high-level language, which clearly implies a general form of control-flow correct-
ness, while we define a logical relation that can be used to reason about specific
programs that rely on well-bracketed control flow.

Our logical relation is a unary, step-indexed Kripke logical relation with re-
cursive worlds [16}|18][20,[28], closely related to the one used by Devriese et
al. [11] to formulate capability safety in a high-level JavaScript-like lambda cal-
culus. Our Fundamental Theorem is similar to theirs and expresses capability
safety of the capability machine. Because we are not interested in externally
observable side-effects (like console output or memory access traces), we do not
require their notion of effect parametricity. Our logical relation uses several ideas
from previous work, like Kripke worlds with regions containing state transition
systems [L5], public/private future worlds [L3] (see Section [f] for a discussion),
and biorthogonality [20123}/29].

Swasey et al. [30] have recently developed a logic, OCPL, for verification of
object capability patterns. The logic is based on Iris [31H33], a state of the art
higher-order concurrent separation logic and is formalized in Coq, building on
the Iris Proof Mode for Coq [34]. OCPL gives a more abstract and modular way
of proving capability safety for a lambda-calculus (with concurrency) compared
to the earlier work by Devriese et al. [11].

El-Korashy also defined a formal model of a capability machine, namely
CHERI, and uses it to prove a compartmentalization result [35] (not implying
control-flow correctness). He also adapts control-flow integrity (see above) to the
machine and shows soundness, seemingly without relying on capabilities.
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