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Abstract

When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction

In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that
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Figure 1. A formally verified stack of abstractions.

it is foundational. That means, correctness can be reduced to the
adequacy result of the program logic, putting Iris and IPM outside
of the trusted computing base. Moreover, by developing a reasoning
tool in a proof assistant, we can piggy back on many of its features,
instead of having to implement these features ourselves.

Contributions. We present a method for extending Coq with
proof contexts and tactics for reasoning in embedded logics, and
implement our method on top of the Iris logic. We show that our
method and implementation – called IPM: Iris Proof Mode – are
modular and widely applicable by verifying a stack of abstractions
as shown in Figure 1. During the course of this paper we present the
following contributions:

1. We use IPM to implement general purpose tactics for interactive
proofs in higher-order separation logic. These tactics are partly
implemented using reflection to ensure efficiency.

2. We show how Coq’s type class machinery can be used to make
these tactics modular. In particular, we show how additional
logical connectives can be supported without the need to modify
the implementation of the tactics.

3. We show how IPM can be used to prove the correctness of
fine-grained concurrent algorithms.

4. We show that IPM can be used to prove soundness of a binary
logical relation for a rich language with concurrency, higher-
order store, polymorphism and recursive types. This is the first
formalization of a binary logical relation for such a language in
a proof assistant.

5. We use IPM to prove refinements of coarse- and fine-grained
concurrent algorithms using the aforementioned logical relation.

Outline. We discuss the challenges involved in reasoning in an
embedded logic using a proof assistant and outline the methodology
of this paper in §2. Then, in §3, we give a tutorial-style introduction
to IPM, and discuss the implementation in §4. In §5 we discuss
how IPM is used for reasoning about concurrency, and in §6, we
show how IPM can be used to prove the fundamental theorem and
soundness of unary and binary logical relations for Fµ,ref ,conc . In
§6.4, we show how to use the logical relation to prove contextual
refinement of fine-grained concurrent programs. Finally, we evaluate
IPM in §7, discuss related work in §8, and conclude in §9.

Coq sources. The Coq sources can be found at:

http://iris-project.org

2. Embedding a Logic into a Proof Assistant

The most frequently used way of embedding an object logic into the
meta logic of a proof assistant is through a shallow embedding [44].
That way, one represents the propositions of the object logic as
semantic objects in the meta logic.

This surprisingly simple approach scales well to formalize the
meta-theory of (quite sophisticated) object logics, for example [36,
5, 6, 22, 37, 24, 23, 25]. Unfortunately, as we will show in the
remaining part of this section, this approach does not provide well-
suited reasoning principles for doing proofs in the object logic. We
use traditional separation logic as our running example.

For traditional intuitionistic separation logic, one would define
its propositions iProp as follows:

σ ∈ State , N
fin
−⇀ Val

P,Q ∈ iProp , State
mon
−−→ Prop

The connectives of the object logic are defined via their semantic
interpretation:

�φ , λσ. φ

ℓ 7−→ v , λσ. σ(ℓ) = v

P ∧Q , λσ. Pσ ∧Qσ

P ∗Q , λσ. ∃σ1σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧Qσ2

(∃x : A.P ) , λσ. ∃x : A.Pσ

Note that for some connectives (here ∧ and ∃) the definition is
given simply by lifting those of the meta logic into the object logic,
whereas for others (here ∗), the definition is slightly more involved.

A shallow embedding has a couple of advantages over a deep
embedding, which involves the extra step of defining an explicit
syntax for all the connectives of the object logic:

• One can piggy back on the binders of the meta logic. For
example, the predicate P in the existential quantifier ∃x : A.P
is modeled as a function P : A→ iProp in the meta logic.

• One can piggy back on higher-order quantification of the meta
logic. Using a proof assistant based on higher-order logic, one
thus gets higher-order quantification in the object logic for free.

• One can easily embed propositions of the meta logic into the
object logic, as done above using the � operator.

The entailment relation ⊢ of our simple separation logic can be
defined as follows:

P ⊢ Q , ∀σ. Pσ ⇒ Qσ

The naive approach to proving an entailment is to work directly
with the semantic interpretation of the logic by expanding the defini-
tions of ⊢ and all logical connectives. However, for separating con-
junction, this results in having to reason explicitly about disjointness
⊎ of states, which leads to an excessive number of proof obligations.
Indeed, this approach is in direct opposition to the whole purpose of
separation logic, which is to hide reasoning about disjointness. The
situation becomes worse for logics with a step-indexed model (such
as iCAP [40], CaReSL [42], VST [5] and Iris [24, 23, 26]), because
then one needs to reason explicitly about steps too.

A more viable approach is to prove lemmas that correspond to
the inference rules of the object logic. Examples of inference rules
for separation logic are (where P ⊣⊢ Q iff P ⊢ Q ∧Q ⊢ P ):

P ∗Q ⊣⊢ Q ∗ P (SEP-COMM)

P ∗ (Q ∗R) ⊣⊢ (P ∗Q) ∗R (SEP-ASSOC)

(P1 ⊢ Q1) and (P2 ⊢ Q2) ⇒ P1 ∗ P2 ⊢ Q1 ∗Q2 (SEP-MONO)

P ∗ (∃x.Q) ⊣⊢ ∃x. (P ∗Q) (SEP-EXIST-DISTR)

(∀x. (P ⊢ Q)) ⇒ (∃x. P ) ⊢ Q (EXIST-ELIM)

However, using just those rules, and without supporting infras-
tructure, it is very tedious to reason in the object logic.
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1 Lemma and exist A (P R: Prop) (Ψ: A → Prop) :
2 P ∧ (∃ a, Ψ a) ∧ R → ∃ a, Ψ a ∧ P.
3 Proof.
4 intros [HP [HΨ HR]].
5 destruct HΨ as [x HΨ].
6 exists x.
7 split. assumption. assumption.
8 Qed.

1 Lemma sep exist A (P R: iProp) (Ψ: A → iProp) :
2 P ∗ (∃ a, Ψ a) ∗ R ⊢ ∃ a, Ψ a ∗ P.
3 Proof.
4 iIntros "[HP [HΨ HR]]".
5 iDestruct "HΨ" as (x) "HΨ".
6 iExists x.
7 iSplitL "HΨ". iAssumption. iAssumption.
8 Qed.

Figure 2. An example proof script in the Coq meta logic (left) and separation logic using IPM (right).

2.1 Reasoning in the Meta Logic of a Proof Assistant

Coq follows the model of tactic based goal-directed proofs, which
is also used in many other proof assistants such as HOL [19] and
LCF [20]. In this model, one states the proposition that one wishes
to prove as the initial goal, and in turn, uses tactics to decompose
the goal step by step into simpler subgoals. The initial goal is proven
when all generated subgoals are proven.

Coq goals are sequents (the Coq-level entailment ⊢ should not

be confused with the entailment ⊢ of the object logic):

H1 : φ1, . . . , Hn : φn ⊢ ψ

The left hand side of this sequent is called the context and the
right hand side is called the conclusion.

Examples of basic Coq tactics are:

• The intros H tactic, which turns a goal with conclusion φ→ ψ
intro a goal with conclusion ψ and a new hypothesis H : φ.

• The split tactic, which turns a goal with conclusion ψ1 ∧ ψ2

into two subgoals whose conclusions are ψ1 and ψ2, and whose
contexts are identical to the original goal.

• The assumption tactic, which closes a goal when its conclusion
appears in the context.

An important feature of goal-directed proof assistants is context
management. Using tactics one can manipulate parts of the context
locally while the system keeps track of the rest. For example, when
having H : ψ1 ∧ ψ2, the tactic destruct H as [H1 H2] generates a
new goal in which the hypothesis H is removed and new hypotheses
H1 : ψ1 and H2 : ψ2 are added in its place.

Introduction patterns [10, 8.3.2] are a powerful feature of Coq to
perform basic context management in a concise way. For example,
the tactic intros [HP [HΦ HR]] will introduce hypotheses and
eliminate nested conjunctions on the fly. The left side of Figure 2
shows a proof script with the aforementioned tactics in action.

2.2 Reasoning in an Embedded Logic

When using a proof assistant to reason in an object logic, one’s job
involves manipulating goals of the shape ⊢ (Q ⊢ R). As such,
the premise Q of the entailment in the object logic appear in the
conclusion of the goal on the meta logic, which means that one
can no longer use the proof assistant’s infrastructure for context
management and tactics for introduction and elimination. Consider:

. . . ⊢ (P1 ∗ (∃x. P2) ∗ P3 ⊢ Q)

In order to eliminate the existential, one has to use a combination
of the inference rules SEP-COMM, SEP-EXIST-DISTR and EXIST-ELIM

to first push the existential to the outside before one can actually
eliminate it, whereas this operation would only take a single proof
step when reasoning in the meta logic. This simple example already
shows that the look and feel of reasoning in the object logic is very
different from the look and feel of reasoning in the meta logic.

The main problem is that the left-hand side of the object logic
entailment is an unstructured proposition, and as such, one cannot

easily refer to individual parts of it. Our solution to this problem is
surprisingly simple: represent entailment in the object logic also as
a sequent with a named context:

H1 : P1, . . . , Hn : Pn ⊢ Q , P1 ∗ · · · ∗ Pn ⊢ Q

Turning this simple idea into a usable method for efficiently
proving properties in an expressive object logic using Coq is non-
trivial. In Sections 4 and 5 we present our implementation on top of
the Iris logic, called IPM: Iris Proof Mode, and show that:

• We can visualize the sequents of the object logic in Coq with
the same look and feel as ordinary Coq goals.

• We can implement variants of the basic Coq tactics for introduc-
tion and elimination of all connectives of separation logic.

• In addition, we can implement custom tactics for Iris. Iris has
a quite sophisticated model involving solutions to recursive
domain equations in a category of metric spaces [23], but using
IPM we can hide these internals.

• Coq’s type class machinery can be used to make IPM modular.
We show that additional logical connectives can be supported
without the need to modify the implementation of the tactics.

• Our approach is efficient. Using reflection we make sure that sin-
gle invocations of our basic tactics on the object logic correspond
to a constant number of proof steps in the meta logic.

None of these efforts required us to modify the sources of Coq and
IPM thus works with an off-the-shelf version of Coq.

3. IPM Tutorial

We give an introduction to IPM by proving a basic law of separation
logic and functional correctness of in-place list reversal.

3.1 A Basic Law of Separation Logic

We consider the following law of affine separation logic:1

Lemma sep exist A (P R: iProp) (Ψ: A → iProp) :
P ∗ (∃ a, Ψ a) ∗ R ⊢ ∃ a, Ψ a ∗ P.

Coq is able to recognize that this is a lemma in the object logic (i.e.,
separation logic) since we are using the entailment relation ⊢. The
connectives on the left and right hand side of ⊢ are thus parsed as
those of the object logic instead of those of the Coq logic.

Figure 2 displays the proof script of this lemma, and compares it
to an analogous lemma in the Coq meta logic. The goal outputted
by IPM at the end of line 6 is as follows:

1 Contrary to linear (or classical) separation logic, affine (or intuitionistic)
separation logic enjoys weakening of separating conjunction, i.e. P ∗Q ⊢ P .
IPM uses an affine separation logic because Iris is affine. Nonetheless we
believe that our method could be implemented on top of a linear separation
logic as well, which would require a different implementation of some tactics
because these should not be allowed to weaken the spatial context.
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x : A
(1/1)

"HP" : P
"HΨ" : Ψ x
"HR" : R
--------------------------------------∗
Ψ x ∗ P

IPM displays two proof contexts: the first is the Coq context, which
contains variables and hypotheses at the meta level, whereas the
second is the context of the object logic. So, the Coq goal is actually:

x : A ⊢ (HP : P, HΨ : Ψx, HR : R ⊢ Ψx ∗ P )

In order to make reasoning in the object logic as seamless as
possible, we render the context of the object logic in the same way
as the context of the meta logic. Such aesthetics are important: a
good overview of one’s hypotheses is essential in large proofs.

Continuing the proof, at the end of line 6, we have to prove the
separating conjunction Ψx∗P . Unlike conjunction, the introduction
rule for separating conjunction is not so easy. Since separation logic
is spatial, one has to split the context of the object logic into two
parts: a part for the left conjunct, and a part for the right.

Using the basic rules of separation logic this is a tedious task:
one has to rearrange the hypotheses up to associativity and commu-
tativity in such a way that monotonicity of separating conjunction
(see SEP-MONO) can be used to perform the introduction.

IPM makes introduction of separating conjunction P ∗Q a single

step. The tactic iSplitL ~H transforms the goal into two goals: one

in which the hypotheses ~H are available to prove P , and another in
which the remaining hypotheses are available to prove Q. Running
iSplitL "HΨ" in line 6 of the example gives:

x : A
(1/1)

"HΨ" : Ψ x
------------∗
Ψ x

x : A
(1/1)

"HP" : P
"HR" : R
------------∗
P

Symmetrically, there is, of course, also a tactic iSplitR ~H . So, in
the example we could have written iSplitR "HP HR" too.

As shown in the example, a structured representation of the
context of the object logic facilitates smooth interactive reasoning
because it allows one to refer to hypotheses by name. Throughout
this section, we show various tactics for separation logic for which
it is essential to refer to hypotheses of the object logic by name.

A powerful proof method in separation logic is framing, which
is the process of “canceling” a spatial hypothesis in the conclusion.

Our tactic iFrame ~H automatically cancels the hypotheses ~H in the

conclusion. Since separation logic is spatial, the hypotheses ~H will
disappear in the resulting goal. Consider:

"HP" : P
"HΨ" : ∃ a : A, Ψ a
"HR" : R
--------------------------------------∗
∃ a : A, Ψ a ∗ P

By writing iFrame "HP" the hypothesis HP disappears and the goal
becomes ∃ a : A, Ψ a. The proof of the lemma sep exist in
Figure 2 can thus be shortened to:

iIntros "[HP [HΨ HR]]". iFrame "HP". iAssumption.

As shown in this example, the iFrame tactic is able to cancel hypothe-
ses under quantifiers. This is not hard-coded into the implementation
of the tactic, but instead, the tactic can be extended by declaring
type class instances, as we will show in Section 4.

3.2 In Place List Reversal

We will prove functional correctness of in-place reversal of linked
lists to demonstrate more advanced features of IPM. The algorithm
is written in an ML-like language that is deeply embedded in Coq:

Definition rev : val :=
rec: "rev" "hd" "acc" :=

match: "hd" with
NONE => "acc"

| SOME "l" =>
let: "tmp1" := Fst !"l" in
let: "tmp2" := Snd !"l" in
"l" <- ("tmp1", "acc");;
"rev" "tmp2" "hd"

end.

As the above code shows, we make heavy use of Coq’s expressive
notation mechanism to obtain human readable notations. Variables
are represented using strings.

In order to state functional correctness of this program, we relate
mathematical lists (defined as an inductive data type in Coq) to
linked-lists in our ML-like language:

Fixpoint is list (hd: val) (xs: list val) : iProp :=
match xs with
| [] => hd = NONEV
| x :: xs => ∃ l hd’,

hd = SOMEV #l ∗ l 7→ (x,hd’) ∗ is list hd’ xs
end%I.

The predicate is list hd ~x states that the mathematical list ~x is
represented as a linked-list with root pointer hd in memory. The use
of separating conjunction in the is list predicate is essential: it
ensures that all pointers are disjoint.

Using the is list predicate we can relate in-place reversal to
the mathematical operation of reversing a list (called reverse). The
Hoare logic specification thus looks as follows:

{is list hd ~x ∗ is list acc ~y} rev hd acc

{w. is list w (reverse(~x) ++ ~y)}

As is common for Hoare triples for effectful functional programs,
the postcondition has a binder to refer to the return value. In Coq, a
postcondition is thus modeled using a function type Val → iProp,
and we thus often use functional notation for postconditions.

A common way of doing proofs in separation logic is by
symbolic execution [7]. The key idea of symbolic execution is to
treat the pre- and postconditions as symbolic representations of
the heap, so that one can do proofs by symbolically executing the
program with respect to the precondition.

For example, in order to prove {P } ℓ1 ← ! ℓ2 + 1; e′ {Φ}, one
looks for a maps-to predicate ℓ2 7→ v in P , and continues proving
{P } ℓ1 ← v + 1; e′ {Φ}. Subsequently, one looks for ℓ1 7→ − in P
and continues with {P ′} e′ {Φ} where P ′ is obtained by replacing
ℓ1 7→ − with ℓ1 7→ v + 1 in P .

In order to use IPM to perform (interactive) proofs by symbolic
execution, we wish to leverage its facilities for context management
to organize the precondition of the Hoare triple. To this end, we
will do proofs in weakest precondition style instead of Hoare style,
which intuitively enables us to “decouple” the precondition from
the Hoare triple. This “decoupling” becomes evident from the way
Hoare triples are defined in Iris:

{P } e {Φ} , �(P → wp e {Φ})

Ignoring the � modality for a moment, we can prove {P } e {Φ} by
introducing P into the spatial context. We can then use the tactics of
IPM to manipulate P , and the rules in Figure 3 to prove the weakest
precondition in a goal directed style.
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WP-FRAME

Q ∗ wp e {Φ}

wp e {x.Q ∗ Φx}

WP-VAL

Φv

wp v {Φ}

WP-BIND

wp e {v. wpK[ v ] {Φ} }

wpK[ e ] {Φ}

WP-LAM

⊲wp e[v/x] {Φ}

wp (λx. e)v {Φ}

WP-REC

⊲wp e[rec f(x) = e/f][v/x] {Φ}

wp (rec f(x) = e)v {Φ}

WP-ALLOC

⊲(∀ℓ. ℓ 7→ v −∗ Φ ℓ)

wp ref(v) {Φ}

WP-STORE

⊲ ℓ 7→ v ∗ ⊲(ℓ 7→ w −∗ Φ ())

wp ℓ← w {Φ}

Figure 3. Selected rules of weakest preconditions.

The purpose of the always modality � in the above definition is
to ensure that the Hoare triple itself does not assert ownership of
any resources. In terms of our toy separation logic from Section 2,

one would model this modality as2
�P , λσ. P ∅. Elimination of

� is easy, as we have �P ⊢ P . However, introduction of � is only
possible if any hypothesis H : P in the context is persistent [23].
That means that no hypothesis asserts ownership of any resource, or,
more formally, that all hypotheses satisfy P ⊢ �P .

Persistent propositions play a very important role when reasoning
in Iris, notably because they are duplicable, i.e., P ⊣⊢ P ∗ P , and
can thus be freely shared among threads. This property does not
hold for spatial connectives like ℓ 7→ v.

To make reasoning with persistent propositions easy, IPM also
features a context of persistent hypotheses (apart from the Coq
context and the context for spatial hypotheses):

Hpurei : φi Variables and pure Coq hypotheses

Hpersistenti : Pi Persistent hypotheses in object logic
--------------------------------------�
Hspatiali : Qi Spatial hypotheses in object logic
--------------------------------------∗
R Goal in object logic

The tactics of IPM have extensive support for persistent proposi-
tions. For example:

• The iIntros "!#" tactic introduces the�modality. Introduction
of � is only allowed if the spatial context is empty.

• The iDestruct H as #Hp tactic moves a persistent hypothesis
from the spatial context into the persistent context. Logic pro-
gramming using type classes is used to determine whether the
hypothesis is persistent. Type classes are discussed in Section 4.

• Separating conjunctions P ∗Q with either P or Q persistent can
be introduced using the iSplit tactic without having to split the
context among the conjuncts.

Coming back to the functional correctness of in-place list rever-
sal, the proof in Figure 4 shows many features of IPM in action. Let
us highlight some novel features:

Introduction patterns. The tactics iIntros and iDestruct sup-
port introduction patterns similar to the ones supported by Coq’s
intros and destruct tactics (cf. Section 2.1). The syntax of these
tactics is as follows:

iIntros (x1 . . . xn) "ipat1 . . . ipatn"

iDestruct H as (x1 . . . xn) "ipat"

2 The semantic interpretation of � in Iris [23] is more complicated, but the
precise definition is orthogonal to this paper.

1 Lemma rev acc ht hd acc xs ys :
2 heap ctx ⊢
3 {{ is list hd xs ∗ is list acc ys }} rev hd acc
4 {{ w, is list w (reverse xs ++ ys) }}.
5 Proof.
6 iIntros "#Hh !# [Hxs Hys]".
7 iLöb as "IH" forall (hd acc xs ys). wp rec; wp let.
8 destruct xs as [|x xs]; iSimplifyEq.
9 - (* nil *) by wp match.

10 - (* cons *) iDestruct "Hxs"
11 as (l hd’) "[% [Hx Hxs]]"; iSimplifyEq.
12 wp match. wp load. wp proj. wp let.
13 wp load. wp proj. wp let. wp store.
14 rewrite reverse cons -assoc.
15 iApply ("IH" $! hd’ (InjRV #l) xs (x :: ys)
16 with "Hxs [Hx Hys]").
17 iExists l, acc; by iFrame.
18 Qed.

Figure 4. Functional correctness of in-place list reversal.

The prefix x1 . . . xn can be used to introduce universal quantifiers,

respectively eliminate (nested) existential quantifiers.3 For example,
given the goal ∀x y. P −∗ Q, we may write iIntros (x y) "HP".

In addition to the standard introduction patterns (such as ? for
creating an anonymous hypothesis, [ipat1 ipat2] for eliminat-
ing a (separating) conjunction, [ipat1|ipat2] for eliminating a
disjunction, and [] for false elimination), IPM supports:

• # ipat: move the hypothesis into the persistent context.

• %: move the hypothesis into the pure Coq context.

• !#: introduce a � (this pattern can only appear at the top-level,
and can be used only if the spatial context is empty).

In line 6 of Figure 4, iIntros "#Hh !# [Hxs Hys]" is used
to introduce Hh : heap ctx (an invariant used to encode the 7−→
connective, see [24, 3.6]) into the persistent context, and Hxs :
is list hd xs and Hys : is list acc ys into the spatial context.

The later modality and Löb induction. Iris uses the later modal-
ity ⊲ [30, 3] and Löb induction to prove properties of recursive
functions. We now show how both are supported by IPM.

The later modality states that a property holds only after a step of
computation. The proof principle associated with the later modality
is Löb induction, which allows one to prove any proposition P under
the assumption that it holds later (i.e. after a step of computation):

(⊲P → P ) ⊢ P

The tactic iLöb performs Löb induction and takes care of associ-
ated bookkeeping. Let us demonstrate this by an example, invoking
iLöb as "IH" forall (hd acc xs ys) in line 7 of Figure 4 yields:

"Hh" : heap ctx
"IH" : ⊲ (∀ hd acc xs ys,

is list hd xs -∗ is list acc ys -∗
WP rev hd acc {{ w, is list w (reverse xs ++ ys) }})

--------------------------------------�
"Hxs" : is list hd xs
"Hys" : is list acc ys
--------------------------------------∗
WP rev hd acc {{ w, is list w (reverse xs ++ ys) }}

The tactic generates an induction hypothesis IH, which is general-
ized over the Coq-level variables hd, acc, xs, ys and all spatial

3 Due to limitations of Ltac, these variables always have to appear at the
beginning and cannot be mixed with the IPM introduction pattern.
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hypotheses, allowing us to prove the correctness of the recursive
call. The induction hypothesis is guarded by the later modality ⊲
and can thus only be used after one step of symbolic execution.

As we will see in the subsequent sections, the later modality plays
an even more important role in Iris: it can be used to define guarded
recursive predicates, and it appears in the rules for invariants.

Symbolic execution. A large part of the proof in Figure 4 involves
symbolic execution of the program. IPM provides tactics that apply
the rules for weakest preconditions (see Figure 3) and perform basic

bookkeeping.4 For example, the tactic wp store tries to find a store
construct in evaluation position (using the rule WP-BIND), executes
it (using the rule WP-STORE), and performs the introductions of the
⊲, −∗ and ∗ connectives.

The apply tactic. The typical way of dealing with implications in
Coq is backwards chaining using the apply tactic. Given a goal with
conclusion φ and a hypothesis H : ψ1 → · · · → ψn → φ, one can
write apply H to turn the goal into new goals ψ1, . . . , ψn whose
hypotheses are the same as those of the initial goal.

In separation logic this no longer works that easily since proposi-
tions are spatial. To apply H : ∀x1 . . . xn. Q1 −∗ · · · −∗ Qm −∗ P ,
one has to specify which hypotheses are used for which premise.
The syntax of iApply is thus somewhat different:

iApply (H $! t1 . . . tn with "spat1 . . . spatm" )

The prefix t1 . . . tn tells how to instantiate universal quantifiers,
and the suffix spat1 . . . spatm is a sequence of, what we dub,
specialization patterns, to specify how the spatial hypotheses should
be split among the subgoals for the premises:

• [H1 . . . Hn]: generate a goal with spatial hypothesesH1 . . . Hn.
These hypotheses will disappear in subsequent goals.

• [#]: generate a goal with all hypotheses, provided the premise
is persistent. All spatial hypotheses will remain in subsequent
goals.

Specialization patterns can be used as part of other tactics too,
for example, to eliminate H : �P1 −∗ P2 −∗ Q1 ∗Q2, one can write
iDestruct ("H" with "[#] [H1 H2]") as "[H4 H5]".

4. Implementation

IPM is implemented entirely in Coq and does not involve any OCaml
plugins or modifications of the Coq source code. To achieve that,
the implementation involves an interplay between many advanced
Coq features. In order to ensure efficiency, we have implemented
the primitive tactics performing introduction and elimination of
the logical connectives of our object logic using computational
reflection. Next to that, we have used logic programming using type
classes [38, 39] to make our tactics very modular, and finally, we
have used the Ltac tactic definition language [12] to combine these
parts into high-level tactics for the end-user.

In this section we explain some of the key points of our imple-
mentation. Readers who are only interested in how IPM can be used
may skip this section.

4.1 Embedding of Environments and Core Tactics

In order to implement tactics for introduction and elimination of
nearly all logical connectives of separation logic, it is only needed
to manipulate the shape of the contexts, without the need to “look
into” individual hypotheses. So, in order to implement these tactics

4 Although our tactics perform symbolic execution in small steps, one can
easily define a tactic that performs symbolic execution repeatedly. However,
in concurrent separation logic, small step symbolic execution is often needed
so as to be able to open invariants around atomic expressions, see Section 5.

using computational reflection, it is not necessary to deeply embed
the whole logic, but just the contexts of the object logic.

The contexts of our separation logic are represented as pairs of

association lists env with strings as keys:5

Record envs :=
Envs { env persistent : env iProp;

env spatial : env iProp }.

We can now define the semantic interpretation of contexts:

Coercion of envs (∆ : envs) : iProp :=
(� envs wf ∆ ∗ � [∗] env persistent ∆

∗ [∗] env spatial ∆)%I.

Goals of IPM are Coq goals of the shape of envs ∆ ⊢ Q,
which can be written as ∆ ⊢ Q since we declared of envs as a
coercion. The condition envs wf ∆ ensures that ∆ is well-formed,
i.e., all hypotheses have unique names. The connective [∗] folds a
separating conjunction over a list.

Most IPM tactics are defined as Coq lemmas justifying con-
text manipulations. For example, the lemma corresponding to the
tactics iSplitL and iSplitR (cf. Section 3.1) for introduction of
separating conjunction is as follows:

Lemma tac sep split ∆∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ⊢ Q1) → (∆2 ⊢ Q2) → ∆ ⊢ Q1 ∗ Q2 .

The first premise comprises the function envs split, which
splits the context ∆ into contexts ∆1 and ∆2 for the new goals. The
context ∆1 has the spatial hypotheses named js, while ∆2 has the
remaining spatial hypotheses (or vice versa, depending on the value
of the Boolean lr). This function is written in Coq, which enables
us to prove the first premise by computation. The last two premises
are the new goals for the conjuncts Q1 and Q2.

The end-user tactics iSplitL and iSplitR can now simply be
defined as wrappers that use the lemma tac sep split. Each
individual occurrence of an iSplitL or iSplitR tactic thus results
in a Coq proof term whose size is constant: it consists solely of the
a single lemma whose side conditions are proven by computation
(i.e., by the constructor eq refl of the identity type).

In order to prove tac sep split, we have to prove soundness
of the envs split function:

Lemma envs split sound ∆ lr js ∆1 ∆2 :
envs split lr js ∆= Some (∆1,∆2) →∆ ⊢ ∆1 ∗ ∆2.

The approach of implementing IPM tactics by reflection can be
applied widely and easily. It involves: implementation of a sound
Coq function that performs the needed context manipulation (IPM
provides many such functions), a statement of the tactic in terms of
a Coq lemma, and an Ltac wrapper.

4.2 Tactics Implemented Using Logic Programming

Some tactics do not just manipulate the shape of the context of the
object logic, but also manipulate the propositions in the context or
the conclusion. In this section we discuss the iFrame H tactic (cf.
Section 3.1), which cancels the hypothesis H in the conclusion.

Intuitively, one would implement framing of H : R in ∆ ⊢ Q by
traversal through Q. However, since we use a shallow embedding
to represent the propositions of our object logic, propositions are
semantic objects, so we cannot just write a Coq function to perform

5 The Coq implementation of IPM is very generic: the core data structures
and tactics are not specific to Iris, but can be instantiated with any intu-
itionistic logic that is defined in terms of step-indexed predicates over a
monoid-like structure. For simplicity, we omit these details.
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this traversal. Instead, we use logic programming using type classes
to perform such manipulations on the meta level [38, 39].

We follow the approach introduced in Section 4.1 to represent
tactics as Coq lemmas. The lemma corresponding to iFrame is:

Class Frame R P Q := frame : R ∗ Q ⊢ P.
Lemma tac frame ∆∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ⊢ Q) → ∆ ⊢ P.

The first premise is easy: it states that there is a hypothesis i : R
in ∆, where the Boolean p denotes whether i is in the persistent
part or the spatial part, and ∆′ is the context in which i is removed.
The function envs lookup delete is implemented in Coq, so this
premise can be solved by computation.

The second premise is where the actual work occurs. Instances
of the type class Frame R P Q should be considered as clauses of a
logic program with inputs R (the proposition we wish to frame) and
P (the initial conclusion), and output Q (the conclusion of the new
goal, in which R is canceled). For example:

Class MakeSep P Q PQ := make sep : P ∗ Q ⊣⊢ PQ.
Instance frame here R : Frame R R True.
Instance frame sep l R P1 P2 Q Q’ :

Frame R P1 Q → MakeSep Q P2 Q’ → Frame R (P1 ∗ P2) Q’.
Instance frame sep r R P1 P2 Q Q’ :

Frame R P2 Q → MakeSep P1 Q Q’ → Frame R (P1 ∗ P2) Q’.

The MakeSep class is used to remove superfluous True connec-
tives that were the result of a successful canceling attempt:

Instance make sep true l P : MakeSep True P P.
Instance make sep true r P : MakeSep P True P.
Instance make sep default P Q : MakeSep P Q (P ∗ Q).

Type classes provide a modular way of implementing tactics: to
extend the behavior of a given tactic, one simply declares additional
instances (i.e., clauses in the logic program). For example, the
following instance enables framing under weakest preconditions:

Instance frame wp E e R Φ Ψ :
(∀ v, Frame R (Φ v) (Ψ v)) →
Frame R (WP e @ E {{ Φ }}) (WP e @ E {{ Ψ }}).

The above instance demonstrates that our approach is also
powerful enough to enable framing under binders.

Our approach of using type classes can be used to implement
tactics for many connectives and many purposes. For example, we
have used it to implement a tactic called iNext, which introduces a
later modality ⊲ by stripping a later from each hypothesis.

4.3 End-user Tactics

The end-user tactics of IPM are simply implemented as wrappers
around the basic building blocks described in this section. These
wrappers are written in Ltac and are responsible for:

Input handling. Tactics like iIntros and iDestruct can perform
a sequence of operations as specified by the introduction patterns
that they are invoked with.

In order to handle introduction patterns, we have implemented
a parser for introduction patterns in Coq. This parser takes a Coq
string and yields an abstract syntax tree, which is then processed
using Ltac to invoke various primitive tactics responsible for the
necessary introductions and eliminations.

Error handling. Ltac is used to catch errors of the Coq tactics that
are used in the implementation of the IPM tactics, and then, to turn
these errors into higher-level error messages.

4.4 Rendering of Goals

We use Coq’s notation machinery to render goals of envs∆ ⊢ Q
in the same way as Coq goals, but with an additional context ∆ (cf.
Section 3.1). There is one shortcoming of Coq’s notation machinery
we had to circumvent: all Coq notations should be parsable, whereas
we want the aforementioned notations to only appear in intermediate
proof states. To circumvent this shortcoming, we have made use
of zero width Unicode characters that function as terminals in the
parser, and thereby avoid conflicts with other notations.6

4.5 Modularity

As shown in Section 4.2, Coq’s type classes provide a powerful
mechanism to implement modular tactics. In this section we will
show that we can take this approach even further, so that existing
tactics can be extended to handle new logical connectives.

In this section we will demonstrate how we have implemented
the iDestruct H as [H1H2] tactic, so that it can eliminate all
kinds of “conjunction like” connectives. This tactic is not only able
to handle conjunctions P ∧Q and separating conjunctions P ∗Q, but
also Iris specific connectives. Furthermore, it can distribute laters,
for example, when eliminating ⊲(P ∧Q), it will turn it into ⊲P and
⊲Q, and thereby makes tedious reasoning about steps implicit, as
one would do on paper.

Let us take a look at the Coq lemma corresponding to this tactic:

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into and : P ⊢ if p then Q1 ∧ Q2 else Q1 ∗ Q2.

Instance into and sep p P Q : IntoAnd p (P ∗ Q) P Q.
Instance into and and P Q : IntoAnd true (P ∧ Q) P Q.

Lemma tac and destruct ∆∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p, P) → IntoAnd p P P1 P2 →
envs simple replace i p

(Esnoc (Esnoc Enil j1 P1) j2 P2) ∆ = Some ∆’ →
(∆’ ⊢ Q) → ∆ ⊢ Q.

The type class IntoAnd avoids tying the tactic to (separating)
conjunction. Note that since conjunction elimination is only sound
for persistent hypotheses, the class is parametrized by a Boolean p

that describes whether the hypothesis is persistent or spatial. The
instance into and and requires this Boolean to be true.

By defining an additional type class instance it is easy to instruct
this tactic to distribute laters:

Instance into and later p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (⊲ P) (⊲ Q1) (⊲ Q2).

Notice that type class search is hereditary, which enables the
tactic to distribute nested laters. This approach scales to all kinds of
“conjunction like” connectives, for example:

Instance into and mapsto l q v :
IntoAnd false (l 7→{q} v) (l 7→{q/2} v) (l 7→{q/2} v).

This instance makes it possible to eliminate the maps-to connec-

tive ℓ
q
7−→ v with fractional permission q into two halves ℓ

0.5q
7−−→ v.

5. Proofs of Concurrent Programs in IPM

In this section, we explain how IPM is used to reason about partial

program correctness of concurrent algorithms using Iris.7 During
the course of this section, we will verify the correctness of a fine-
grained implementation of a monotonic counter [33]. The code of
the counter is as follows:

6 Support for printing only notations will be available in future Coq versions,
see https://github.com/coq/coq/pull/194.
7 We use the presentation of Iris as described in [26].
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Definition newcounter : val := λ: <>, ref #0.
Definition incr : val :=

rec: "incr" "l" :=
let: "n" := !"l" in
if: CAS "l" "n" (#1 + "n") then #() else "incr" "l".

Definition read : val := λ: "l", !"l".

The construct # represents the embedding of literals (integers,
locations, and unit values ()) into our ML-like language.

The counter is simply represented by a reference to an integer,
which is initialized to 0. The read operation yields the value of the
counter, and incr increases the counter by one. The counter is called
monotonic because using just these operations, its value can only
be incremented. Notice that incr is made thread safe using a CAS
(compare and swap) loop.

5.1 The Counter Predicate

We will define a predicate C : Loc→ N→ iProp in Iris to capture
that the counter is monotonic. The meaning of C(ℓ, n) is that ℓ is at
least n, which is made formal by the following Hoare triples:

{True} newcounter () {ℓ. C(ℓ, 0)}

{C(ℓ, n)} read ℓ {m.n ≤ m ∧ C(ℓ,m)}

{C(ℓ, n)} incr ℓ {C(ℓ, 1 + n)}

Since we wish to use the counter in a concurrent setting, it is
essential that C is duplicable, i.e., C(ℓ, n) ⊣⊢ C(ℓ, n) ∗ C(ℓ, n),
so that it can be freely shared among threads. As a consequence,
this means that we cannot simply define C(ℓ, n) as l 7→ n. The
connective l 7→ n expresses full ownership of a physical location,
and thus cannot be shared (i.e., is not duplicable).

In order to define the predicate C, we will make use of the two
key features of Iris: invariants, to enable sharing of C(ℓ, n), and
ghost state, to enforce that updates to ℓ are monotone.

Invariants. The core idea is to encode C(ℓ, n) using an invariant
that governs l 7→ n. An invariant is a property I that holds for some
piece of shared state at all times: each thread accessing the state may
assume that the invariant holds before each step of its computation,
but it must also ensure that it continues to hold after each step. In

Iris, invariants are provided by propositions of the form I
N

, for

which there is the following proof rule8:

{I ∗ P } e {v. I ∗Q} atomic(e)

I
N
⊢ {P } e {v.Q}

Here, the proposition I
N

states the knowledge that there exists
an invariant I governing some shared state. Given this knowledge,
the rule tells us that e may gain (exclusive) control of I , so long as
it ensures that I continues to hold when it is finished executing. The
side condition that e should be physically atomic is crucial, if it were
not, then another thread could access the shared state governed by

I during e’s execution. Note that I
N

is persistent since it merely
expresses that there exists some shared state satisfying I , and does
not represent exclusive ownership of I .

Ghost state. We could now define C(ℓ, n) as ∃c. ℓ 7→ c
N

, but
this would not be sufficient. We also have to relate the lower bound n
to the actual value c of the counter ℓ, which is existentially quantified
in the invariant. In order to relate n to c, we will use a ghost variable

8 To identify invariants, each invariant lives in a namespace N . Updates
(explained in the following) and weakest preconditions are annotated with a
mask E to avoid reentrancy, i.e., avoiding “opening” the same invariant twice
in a nested fashion. Unlike this paper, in which we omit these masks, they
are visible in Coq, but all bookkeeping related to them is fully automated.

UPD-INTRO

P ⊢ |⇛P
UPD-TRANS

|⇛|⇛P ⊢ |⇛P
UPD-FRAME

Q ∗ |⇛P ⊢ |⇛(Q ∗ P )

OWN-ALLOC

a 6= ⊥

True ⊢ |⇛∃γ. a
γ

OWN-OP

a · b
γ
⊣⊢ a

γ
∗ b

γ

OWN-VALID

a
γ
⊢ a 6= ⊥

UPD-OWN

a b

a
γ
⊢ |⇛ b

γ

UPD-WP

P ⊢ wp e {Φ}

|⇛P ⊢ wp e {Φ}

INV-ALLOC

⊲P ⊢ |⇛ P
N

INV-OPEN

⊲P ⊢ wp e {v. ⊲ P ∗ Φv} atomic(e)

P
N
⊢ wp e {Φ}

(where a b , ∀af . a · af 6= ⊥ → b · af 6= ⊥)

Figure 5. Selected rules of Iris.

a
γ

that mirrors the value c. Ghost state in Iris differs from physical
state (i.e., the 7→ connective) in two ways. Firstly, it is “logical state”,
i.e., state that exists solely in the proof but not during the execution of
the actual program. Secondly, unlike physical state, we can control
what kind of sharing of ghost state is possible.

In order to specify what kind of sharing is possible, Iris allows

the end-user to define a partial commutative monoid (PCM)9 for
each ghost variable. Sharing of ghost ownership is expressed using
the following proof rule:

a · b
γ
⊣⊢ a

γ
∗ b

γ

The PCM M for the monotone counter is as follows:

M , • (c) | ◦ (n) | ⊥

◦ (n1) · ◦ (n2) , ◦ (n1 maxn2)

◦ (n) · • (c) , • (c) · ◦ (n) ,

{

• (c) if n ≤ c

⊥ otherwise

• (c1) · • (c2) , ⊥

The authoritative element • c will be used to express that the
counter has exactly value c, and will thus be placed in the invariant.
The fragmental element ◦n will be used to express that the counter
has at least value n, and will be used in the definition of C(ℓ, n) to
relate n to the actual value of the counter. Formally, this gives rise
to the following definitions:

I(γ, ℓ) , ∃c. (ℓ 7→ c) ∗ • (c)
γ

C(ℓ, n) , ∃γ. I(γ, ℓ)
N
∗ ◦ (n)

γ

5.2 The Proof in IPM

Proof of read. With the definition of C set up, we will now use
IPM to go through the proof of read. After expanding the Hoare
triple into a weakest precondition and introducing the precondition
C(ℓ, n) into the context, we have:

"Hinv" : inv N (I γ l)
--------------------------------------�
"Hγf" : own γ (Frag n)
--------------------------------------∗
WP ! #l {{ v, ∃ m : nat, � (v = #m ∧ n ≤ m) ∧ C l m }}

9 Ghost state in Iris has a slightly richer structure than that of a PCM, namely
that of a resource algebra (RA) [23]. This richer structure makes it easy to
compose compound RAs using simpler constructions like sums, but that is
orthogonal to this paper.
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Since the dereferencing operator ! is atomic, we are allowed to
open the invariant N using the rule INV-OPEN in Figure 5. This rule is

simply a lemma that can be applied using the iApply tactic.10

After using the lemma corresponding to INV-OPEN, and after
symbolic execution of the dereferencing operator (using the wp

load tactic), we end up with the following goal:

"Hinv" : inv N (I γ l)
--------------------------------------�
"Hγf" : own γ (Frag n)
"Hl" : l 7→ #c
"Hγ" : own γ (Auth c)
--------------------------------------∗
⊲ I γ l ∗ (∃ m : nat, � (#c = #m ∧ n ≤ m) ∧ C l m)

As shown, we now have temporary access to the physical location
ℓ 7→ c (which was needed to execute the dereference), as well as
ownership of • (c). Instead of giving up these resources immediately
for proving the invariant I(γ, ℓ), we will use them to establish n ≤ c.
This property follows from the rule OWN-VALID in Figure 5, which
is again just a lemma. Since the rule is a lemma, we can use the
iDestruct tactic to eliminate this pure fact into the Coq context:

iDestruct (own valid γ (Frag n · Auth c) with "[#]") as %H

The suffix as %H denotes that the pure fact n ≤ c should be put in
the Coq context as a named hypothesis H. We use the specialization
pattern [#] because pure facts – such as n ≤ c – are persistent. We
thus do not have to give up resources for proving their obligations.

The proof obligation of the above tactic is ◦ (n) · • (c)
γ

, and can
be proven using the rule OWN-OP. In IPM, this corresponds to the
application of the lemma own op.

In order to establish C(ℓ, c) in the postcondition, we also need
ownership of ◦ (c), which can be obtained by using the rule OWN-OP

once more. Having established n ≤ c and ◦ (c), we can now close
the invariant, and finish the proof.

Proof of incr. The proof of incr is a bit more involved. Firstly,
since it involves a loop implemented by recursion, we use Löb
induction. However, what is more interesting, is that the value of ℓ
will be changed if the CAS succeeds. The proof state corresponding
to the part of the proof where the CAS succeeds is as follows:

"IH" : C l n -∗ WP incr #l {{ v, v = #() ∧ C l (1+n) }}
"Hinv" : inv N (I γ l)
--------------------------------------�
"Hl" : l 7→ #c
"Hγ" : own γ (Auth c)
--------------------------------------∗
WP CAS #l #c #(1 + c) @ ⊤ \ N {{ v, I γ l ∗ ... }}

What is happening here is that the CAS is going to change the
physical value of ℓ into 1 + c. Therefore, in order to reestablish the
invariant I(γ, ℓ) in the postcondition, we have to update the ghost
variable γ from • (c) into • (1 + c).

Updates to ghost variables are called frame-preserving updates
and can be performed using the rule UPD-OWN. We can perform a
frame-preserving update a b on a ghost variable γ, if the update
ensures that no matter what assumptions the rest of the program is
making about the state of γ, if these assumptions were compatible
with a, they should also be compatible with b. See Figure 5 for the
formal definition of a b.

We only need one frame-preserving update for our example:

Lemma M update n : Auth c ∼∼> Auth (1 + c).

10 The lemma for opening invariants is proved using IPM in terms of more
primitive rules of Iris [26].

This update holds because for any af with • (c) · af 6= ⊥ we
have af = ◦ (n) with n ≤ c, so clearly we also have • (1+c) ·af =
• (1 + c) · ◦ (n) 6= ⊥ because n ≤ 1 + c.

All operations on the ghost state of Iris are performed through
the update modality [26] |⇛. The update |⇛P asserts ownership of
resources that can be updated to resources satisfying P , as witnessed
by the rule UPD-OWN. The rules UPD-INTRO and UPD-TRANS state that
|⇛ is a monad, while UPD-FRAME allows framing below |⇛. The rule
UPD-WP says that we can eliminate an update modality while proving
a weakest precondition.

Since all operations on ghost state are performed through |⇛, it
is fairly easy to support reasoning about ghost state in IPM: we only
need a tactic that corresponds to the rule UPD-WP. The syntax for
the tactic for eliminating an update modality H : ∀x1 . . . xn. Q1 −∗
· · · −∗ Qm −∗ |⇛P is:

iMod (H $! t1 . . . tn with "spat1 . . . spatm" ) as ipat

The specialization patterns spati describe which hypotheses will be
consumed by the preconditions Qi, while the introduction pattern
ipat describes how the postcondition P should be eliminated.

So, to update the ghost variable in our example, we can write
iMod (own update with "Hγ") as "Hγ". This tactic yields the
side condition • (c)  ?a, in which we have to prove that there is
a frame preserving update to some ?a. This side condition can be
solved using the already proven lemma M update. The goal then
becomes (the hypotheses IH, Hinv and Hl are omitted):

"Hγ" : own γ (Auth (1 + c))
--------------------------------------∗
WP CAS #l #c #(1 + c) @ ⊤ \ N {{ v, I γ l ∗ ... }}

At this moment we have finished the difficult part of the proof.
The remaining part involves executing the CAS, reestablishing the
invariant, and finally proving the postcondition.

6. Case Study: Logical Relations

In this section we describe a large case study using IPM: a formaliza-
tion of logical relations for Fµ,ref ,conc : a call-by-value System F-like
language with recursive types, general references, and concurrency.
The logical relations interpretation we formalize is defined in Iris,
enabling us to make use of the expressive built-in features of Iris,
such as guarded recursive predicates and invariants, which would
not have been possible when performing the formalization directly
in the Coq meta logic.

The idea of expressing a relational interpretation of a type system
in a logic goes back to Plotkin and Abadi [34], who showed how to
do it for System F, and Dreyer et al. [15], who showed how to do
it for a language with recursive types. The definition of the logical
relation that we consider is due to Krogh-Jespersen et al. [27], and
their definition is, in turn, based on an earlier interpretation in the
CaReSL logic [42]. The contribution of this case study is thus not a
new logical relation, but rather showing that binary logical relations
for a higher-order concurrent imperative programming language can
be formalized in a proof assistant, which has not been done before.
IPM makes it feasible to formalize this logical relation in Iris and to
do the proofs (Theorem 6.1 and 6.2) in the Iris logic, without having
to reason explicitly about steps, possible worlds, etc.

6.1 The Language Fµ,ref ,conc

Iris, as well as IPM, is not tied to a fixed programming language, but
can be instantiated with different concrete programming languages,
which is crucial in this case study. Instead of the ML-like language
with named variables that we have used before, we now instantiate
Iris with Fµ,ref ,conc . This language is formalized in Coq using the
Autosubst library for De Bruijn terms [35], which takes care of
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e ::= x | ℓ | rec f(x) = e | Λ e | fold e | unfold e | e e

| e | fork {e} | ref(e) | ! e | e← e | CAS(e, e, e)

v ::= n | ℓ | rec f(x) = e | Λ e | fold v

τ ::= X | N | τ → τ | ∀X. τ | µX. τ | ref(τ)

Figure 6. The syntax of Fµ,ref ,conc (sums and products omitted).

Thread-local CBV head-reduction (omitted): (e, σ) →h (e′, σ′)

Thread-pool reduction: (~e, σ) →tp (~e′, σ′)

(e, σ) →h (e′, σ′)

(~e1 K[ e ] ~e2, σ) →tp (~e1 K[ e′ ] ~e2, σ
′)

(~e1 K[ fork {e} ] ~e2, σ) →tp (~e1 K[ () ] ~e2 e, σ)

Figure 7. Operational semantics of Fµ,ref ,conc .

synthesizing the substitution operation and substitution lemmas for
our language. De Bruijn terms make it easier to deal with substitution
on open terms, which is needed for the proofs in this section.

The terms and types of Fµ,ref ,conc can be found in Figure 6.
Terms are untyped, so type-level abstraction is written as Λ e and
type application as e , as in [2]. The operational semantics is split
into two parts: thread-local head reduction →h and thread-pool
reduction→tp, see Figure 7. Both are defined using standard call-
by-value evaluation contextsK, whose definition is omitted. Thread-
pool reduction is defined on configurations ρ = (~e, σ) consisting
of a state σ (a finite partial map from locations to values) and a
thread-pool ~e (a list of expressions corresponding to the threads).
The thread-pool reduction is defined by interleaving, i.e., by picking
a thread and executing it, thread-locally, for one step. The only
special case is fork {e}, which spawns a new thread e, and reduces
itself to the unit value ().

Typing judgments take the form Ξ | Γ ⊢ e : τ , where Ξ is
a context of type variables, and Γ is a context assigning types to
program variables. The inference rules for the typing judgment are
mostly standard and hence omitted.

6.2 Unary Logical Relation

The unary logical relation for Fµ,ref ,conc is presented in Figure 8.
The logical relation is defined by two relations for each type τ ,
a value interpretation JτK∆ : Val → iProp and an expression

interpretation JτKE∆ : Expr → iProp. Note that these relations
are Iris relations! Formally, they are defined on types τ in context
Ξ, but we omit the Ξ here for notational simplicity. We furthermore
omit product, sum and base types, but these are present in the Coq
formalization. The ∆ is a mapping from type variables to value
interpretations, i.e., ∆ : Tvar→ Val→ iProp.

Experts on logical relations will recognize that this definition
is extremely compact; this is because we express the relations in
Iris. The case for function types expresses the usual requirement
that a value is in the interpretation if it maps a value in the argument
type to an expression in the result type. The � modality (here and
elsewhere) is used to ensure that the relation is persistent, which
it must be since typing is intuitionistic (consider for example that
the context Γ is copied in the usual typing rule for products). The
definition for recursive types is given using a recursively defined
predicate; this is well-defined in Iris since the recursion variable
occurs under the later ⊲ modality.

We use the Iris invariant ∃w. ℓ 7→ w ∗ JτK∆(w)
N .ℓ

to express

that a value is in the interpretation of a reference type ref(τ). That

JXK∆(v) , ∆(X)(v)

Jτ1 → τ2K∆(v) , �(∀w. Jτ1K∆(w)→ Jτ2K
E
∆(v w))

J∀X. τK∆(v) , ∀f. �JτKE∆[X 7→f ](v )

JµX. τK∆(v) , µ f. ∃w. v = foldw ∧ ⊲JτK∆[X 7→f ](w)

Jref(τ)K∆(v) , ∃ℓ. v = ℓ ∧ ∃w. ℓ 7→ w ∗ JτK∆(w)
N .ℓ

JτKE∆(e) , wp e {v. JτK∆(v)}

Figure 8. The unary logical relation for Fµ,ref ,conc .

is, the value is a location ℓ and, invariantly, the location ℓ contains a
value w in memory that is in the interpretation of τ . This use of Iris
invariants dispels the need for explicit possible worlds and explicit
treatment of the type-world circularity, which is otherwise typical
for logical relations for reference types [1, 8].

Finally, the expression relation JτKE∆ says that e is in the semantic
interpretation of τ , if it is a computation whose possibly resulting
value v is in the semantic interpretation of τ . Using the expression

relation, we can define the semantic interpretation of types as:11

Ξ | Γ � e : τ , ∀∆~v.
(

∧

i
JσiK∆(vi)

)

⊢ JτKE∆(e[~v/~x]) (1)

where Γ = x1 : σ1, . . . , xn : σn and the environments ∆ : Tvar→
Val→ iProp map into persistent interpretations.

For this logical relation, we can now prove:

Theorem 6.1 (Fundamental theorem of logical relations).

Theorem fundamental Γ e τ :Γ ⊢t e : τ → Γ � e : τ.

Theorem 6.2 (Type soundness). Reduction of any well-typed ex-
pression can never get stuck:

Corollary type soundness e τ e’ thp σ σ’ :
[] ⊢t e : τ → rtc step ([e], σ) (e’ :: thp, σ’) →
is Some (to val e’) ∨ reducible e’ σ’.

Theorem 6.1 is proven in Iris using IPM. Theorem 6.2 is
formalized in plain Coq and relies on the fundamental theorem
and the adequacy result for Iris, which formalizes that the weakest
precondition predicate of Iris really is connected to the operational
semantics of Fµ,ref ,conc in the way you would expect.

Note that the corollary type soundness shows the true power of
using a proof assistant instead of a standalone tool: we can compose
a proof in Iris with the adequacy result of Iris into a corollary that
only mentions the typing judgment and the operational semantics.
So, one no longer has to trust Iris or IPM!

We now demonstrate how IPM is used to prove a case of the
fundamental lemma. Below we display the proof goal for showing
that a recursive function rec f(x) = e is in the expression interpre-

tation Jτ1 → τ2K
E
∆ for the arrow type. The HΓ hypothesis contains

the assumptions from the semantic interpretation of types (1).

"HΓ" : [[ Γ ]]* ∆ vs
--------------------------------------�
[[ TArrow τ1 τ2 ]]e ∆ (Rec e.[upn 2 (env subst vs)])

Here the upn 2 comes from the fact that we are using De Bruijn
indices and the recursive function definition binds two variables. We
proceed by Löb induction (since we have to prove that a recursive

function is in logical relation), expand the definition of Jτ1 → τ2K
E
∆,

11 Contexts Ξ do not appear in the Coq code since we use De Bruijn indices.
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and symbolically execute the rec f(x) = e construct. The proof goal
then becomes:

"HΓ" : [[ Γ ]]* ∆ vs
"IH" : ∀ v, [[ τ1 ]] ∆ v →

WP App (Rec e.[upn 2 (env subst vs)]) (of val v)
{{ v, [[ τ2 ]] ∆ v }}

"Hw" : [[ τ1 ]] ∆ w
--------------------------------------�
WP e.[env subst (RecV e.[upn 2 (env subst vs)] :: w :: vs)]
{{ v, [[ τ2 ]] ∆ v }}

Here IH is the Löb induction hypothesis and Hw is the assumption
that an argument w is in the interpretation of the domain type. We
then have to show that the body of the function, with the recursive
function substituted for f and w substituted for the argument x, is in
the interpretation of the codomain type.

This example illustrates that the formal reasoning mirrors the
argument that one would do on paper. The total length of the proof
for this case is 7 lines of IPM tactics.

6.3 Binary Logical Relation

We have also defined a binary logical relation for Fµ,ref ,conc and
proven that logical relatedness implies contextual approximation.
We defer a detailed treatment to our IPM formalization, and just
give a quick overview here. It is not too hard to generalize the unary
logical value interpretation to a binary relation, but to generalize the
expression interpretation from the unary logical relation to the binary
logical relation, one needs to find some way of expressing a relation
between two expressions e and e′ using weakest precondition
predicates, which are unary. This can be done as follows:

JτKE∆(e, e′) , ∀jK. j Z⇒ K[ e′ ]→
wp e {v. ∃w. j Z⇒ K[w ] ∗ JτK∆(v, w)}

Here j Z⇒ K[ e′ ] is a predicate on ghost state, which expresses
that the specification side e′ is in some evaluation context K for
some thread j before we run e. In the post-condition, we have
j Z⇒ K[w ]. Together with an appropriate invariant on ghost state,
these predicates ensure that we really are relating the execution of e,
which results in a value v to an execution of e′, which results in a
value w, and that those values are in the binary value interpretation
of the type τ .

The ghost state and the appropriate predicates on ghost states
can be defined in Iris, by combining various monoid constructions.

Logical relatedness of e and e′ is then defined as:

Ξ | Γ ⊢ e ≤log e
′ : τ , ∀~v ~v′ ∆ ρ.

Ψ(ρ)
N

′

∗
(

∧

i
JσiK∆(vi, v

′
i)
)

⊢ JτKE∆(e[~v/~x], e′[~v′/~x])

where Γ = x1 : σ1, . . . , xn : σn and the environments ∆ : Tvar→

Val → iProp map into persistent interpretations. Here Ψ(ρ)
N

′

is the invariant on ghost states mentioned above. Note again that
logical relatedness is an Iris predicate.

The fact that logical relatedness implies contextual approxima-
tion is shown by a series of congruence lemmas, corresponding to
each of the typing rules (each on average about 10 lines of code).
These lemmas are proved in Iris using IPM.

6.4 Proving Logical Refinements

We have used the binary logical relation to prove that two fine-
grained concurrent implementations of modules contextually refines
their coarse-grained counterparts. The first example is a counter
module and the second is a stack module. The fine-grained imple-
mentations use optimistic concurrency and no locks, whereas the
coarse-grained implementations use a spin lock (implemented using

a CAS loop) to lock the data structure of the module before and after
an operation is performed on the data structure.

For the counter, we use an Iris invariant relating the reference
cells in the two implementations and the lock used in the coarse-
grained implementation. The stack example comes from [42], where
it was proved on paper using an invariant formulated using state tran-
sition system. State transition systems can be encoded in Iris [24],
but in our experience, it is often easier to use direct monoid con-
structions when working in Coq.

7. Evaluation

The IPM implementation on top of Iris consists of only 3.086 lines
of code, but it relies on the formalization of the Iris logic, which is
12.373 lines of code [23, 26], and a support library for basic data
structures (e.g., lists, sets, maps) by Krebbers [25].

In Figure 9 we present some data for a variety of examples.12 The
first table shows data for the spin lock and the counter, discussed
earlier in the paper, and three examples (the spawn/join primitives,
the parallel composition operator, and a barrier synchronization
primitive), which were originally formalized by Jung et al. [23],
and which we reproved using IPM. The second table shows data
for the unary and binary logical relations, and the third table data
for the refinement proofs. In these tables, the ‘Monoids’ column
shows the number of lines for monoid definitions (in addition to
those provided by the Iris formalization), the ‘Program and proof’
column shows the number of lines in Coq for program and proof, the
‘Build’ column shows the Coq build time, and the ‘Build∗’ shows
the Coq build time with a new universe cycle detection algorithm

implemented by Jourdan.13

As shown in Figure 9, the program correctness proofs are rather
small, as are the proofs for the logical relations. We have not put
effort into optimizing the proofs for the program refinements. In
particular, they contain lots of boilerplate code to avoid performance

issues of the Autosubst library.14

It turns out that the majority of our compilation time is spent
on universe checking, which is probably due to the way that Iris is
parametrized by the user chosen monoids, an issue orthogonal to
IPM. Using a version of Coq with the new universe cycle detection
algorithm by Jourdan reduces times drastically! Out of the remaining
70s for the stack refinement proof, 28s is spent on Autosubst.

8. Related Work

Proofs in the model. Doing proofs by expanding the connectives
of a shallowly embedded separation logic into their interpretation is
troublesome. This is due to the fact that separating conjunction is
only defined when states are disjoint. By working in the model, one
thus has to reason explicitly about disjointness of states. When done
naively, this results in an excessive number of proof obligations. In
order to circumvent this issue, Nanevski et al. [32] have shown that
by defining states and disjoint union of states in a different way, one
can get rid of most proof obligations related to disjointness.

In more recent work, Sergey et al. have shown that this approach
scales to concurrent separation logic [36]. Using their Coq formaliza-
tion of the FCSL logic [31], they have verified several fine-grained
concurrent algorithms, including lock implementations, a concurrent
spanning tree algorithm and Treiber stack.

One drawback of this approach is that it is limited to particular
kinds of object logics. Most importantly, in order to use the encoding

12 Machine used: Intel Core i7, 3.40GHz, 16GB ram, running Debian.
13 Available at https://github.com/coq/coq/pull/178.
14 We contacted the authors of Autosubst and learnt that it is primarily meant
for meta theory, and that its performance is known to be insufficient for
verification of concrete programs.
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Program correctness Monoids Program and proof Build Build∗

Spin lock 0 90 6.4s 4.0s

Monotone counter 0 84 8.5s 5.3

Spawn/join 0 81 7.5s 4.5s

Par 0 47 6.4s 4.8s

Barrier 0 325 30.2s 24.0s

Program refinements Monoids Program and proof Build Build∗

Counter 0 370 45s 21s

Stack 273 1.284 4m23s 1m10s

Unary Binary

Monoids 0 340

Logical relation 192 255

Fundamental 143 416

Soundness 27 354

Total 362 1.365

Total build 1m4s 2m48s

Total build∗ 23s 1m11s

Figure 9. Line counts and compilation times of the Coq formalization.

of Nanevski et al., it is crucial to have a procedure that decides
whether states are disjoint. However, for many logics, for example
VST [5] and Iris [23], this is not the case. These logics have an
expressive notion of ghost state, that allows one to store arbitrary
propositions in the (ghost) state. The monoidal composition on states
is only defined (i.e. disjoint) if both propositions are the same, which
is undecidable. Also, it is unclear if their approach is able to handle
logics with a step-indexed model, e.g. iCAP [40], CaReSL [42],
VST [5] or Iris [24, 23]. These logics use step-indexing to model
higher-order storable procedures, which cannot be handled by FCSL.

Interactive proofs. Some of the earliest work in this area is by
Appel [4], who created a family of tactics that help out with the
basic bookkeeping that is involved while reasoning in a separation
logic. This work has later been extended by McCreight [29], who
managed to cut down proof sizes drastically. In later work, Bengtson
et al. have continued this line of work by implementing similar
tactics in a more language independent fashion [6]. Although the
philosophy of these implementations is the same as ours – namely,
being able to reason in the logic, instead of the model – there are a
couple of essential differences.

Firstly, these implementations do not have a structured context
for the hypotheses in the object logic. Hence, one cannot refer to
individual hypotheses, which makes it impossible to implement
tactics for introduction and elimination of all logical connectives.
Instead, these implementations provide ad-hoc tactics to support
bookkeeping during symbolic execution, like pulling out pure
propositions and existential quantifiers into the Coq context, framing,
and rearranging the goal up to commutativity and associativity.

Furthermore, most of these implementations consider a restricted
fragment of separation logic that primarily consists of: the embed-
ding of Coq level assertions �φ, separating conjunction ∗, existen-
tial quantification ∃, and the maps-to predicate ℓ 7→ v. IPM supports
all connectives of higher-order separation logic, including magic
wand−∗ and higher-order quantification, but also the entire Iris logic.
Iris contains many connectives that would be non-trivial to handle in
these previous implementations: the always � and later ⊲ modality,

ghost ownership a
γ

, the update |⇛modality, and invariants P
N

.
The Verifast tool by Jacobs et al. [21] is a standalone tool for

interactive program verification in separation logic. The style of
reasoning in Verifast is quite different from ours. In Verifast one
instructs the system by writing assertions throughout the program,
whereas reasoning in IPM is done through tactics. Since there are
no tactics, there is no need to refer to hypotheses by name, and as
such, Verifast displays the spatial context as a multiset. Furthermore,
like all other implementations that we have discussed, Verifast is
meant for proving Hoare triples, so it is not suited for formalization
of a logical relation and using that logical relation for proving
refinements (cf. Section 6).

Automated proofs. In order to avoid the need for the end-user to
deal with the logic altogether, there has been a lot of work on tools
for automated proofs in separation logic. However, all the tools that

we are aware of are primarily focused on program verification, and
are limited to restricted fragments of separation logic so as to make
effective automation possible.

In future work we would like to integrate support for better proof
automation into IPM, for which the work in this area will be useful.
We are especially interested in Chlipala’s Bedrock [9] and Malecha
and Bengtson’s RTac [28].

9. Conclusions

We have introduced a method to make interactive reasoning using
Coq in embedded logics – like separation logic – easy. The key idea
of our method is to use a named context to represent the hypotheses
of the object logic. This has the following advantages:

• It makes it possible to render the proof state of the object logic
in the same way as the proof state of the meta logic. This gives
users the impression that they are reasoning in the object logic,
instead of manipulating the object via the meta logic.

• It makes it possible to do proofs at the right level of abstractions.
Unlike most previous work, there is no longer a need to reason up
to associativity and commutativity, but instead we provide high-
level tactics for introductions and eliminations of all connectives
of higher-order separation logic.

• It enables us to deeply embed the contexts of the object logic,
while using a shallow embedding of the logic. This gives the
best of two worlds: we can borrow many features of the meta
logic (like its support for binding and higher-order quantification
to model ∀ and ∃) while being able to implement the aforemen-
tioned tactics efficiently using computational reflection.

We have successfully implemented our method on top of Iris to
show its effectiveness. We have formalizing functional correctness
of fine-grained concurrent algorithms, some of the meta theory of
Iris, a unary and binary logical relation for a higher-order concurrent
imperative programming language, and logical refinements of a fine-
and coarse-grained counter and stack using this logical relation.

The aforementioned applications show that we are really using
the object logic (in our case Iris) as a logic, and not just as a program
logic for verifying Hoare triples, which emphasizes the need for
interactive reasoning as provided by our method.
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