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Abstract. We present the guarded lambda-calculus, an extension of
the simply typed lambda-calculus with guarded recursive and coinduc-
tive types. The use of guarded recursive types ensures the productivity
of well-typed programs. Guarded recursive types may be transformed
into coinductive types by a type-former inspired by modal logic and
Atkey-McBride clock quantification, allowing the typing of acausal func-
tions. We give a call-by-name operational semantics for the calculus, and
define adequate denotational semantics in the topos of trees. The ade-
quacy proof entails that the evaluation of a program always terminates.
We demonstrate the expressiveness of the calculus by showing the de-
finability of solutions to Rutten’s behavioural differential equations. We
introduce a program logic with Löb induction for reasoning about the
contextual equivalence of programs.

1 Introduction

The problem of ensuring that functions on coinductive types are well-defined has
prompted a wide variety of work into productivity checking, and rule formats for
coalgebra. Guarded recursion [10] guarantees productivity and unique solutions
by requiring that recursive calls be nested under a constructor, such as cons
(written ::) for streams. This can sometimes be established by a simple syntactic
check, as for the stream toggle and binary stream function interleave below:

toggle = 1 :: 0 :: toggle
interleave (x :: xs) ys = x :: interleave ys xs

Such syntactic checks, however, are often too blunt and exclude many valid
definitions. For example the regular paperfolding sequence, the sequence of left
and right turns (encoded as 1 and 0) generated by repeatedly folding a piece of
paper in half, can be defined via the function interleave as follows [11]:

paperfolds = interleave toggle paperfolds

This definition is productive, but the putative definition below, which also applies
interleave to two streams and so apparently is just as well-typed, is not:

paperfolds’ = interleave paperfolds’ toggle
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This equation is satisfied by any stream whose tail is the regular paperfolding
sequence, so lacks a unique solution. Unfortunately the syntactic productivity
checker of the proof assistant Coq [12] will reject both definitions.

A more flexible approach, first suggested by Nakano [18], is to guarantee
productivity via types. A new modality, for which we follow Appel et al. [3] by
writing I and using the name ‘later’, allows us to distinguish between data we
have access to now, and data which we have only later. This I must be used
to guard self-reference in type definitions, so for example guarded streams of
natural numbers are defined by the guarded recursive equation

Strg , N×IStrg

asserting that stream heads are available now, but tails only later. The type of
interleave will be Strg → IStrg → Strg, capturing the fact the (head of the) first
argument is needed immediately, but the second argument is needed only later.
In term definitions the types of self-references will then be guarded by I also.
For example interleave paperfolds′ toggle becomes ill-formed, as the paperfolds′

self-reference has type IStrg, rather than Strg, but interleave toggle paperfolds
will be well-formed.

Adding I alone to the simply typed λ-calculus enforces a discipline more
rigid than productivity. For example the obviously productive stream function

every2nd (x :: x’ :: xs) = x :: every2nd xs

cannot be typed because it violates causality [14]: elements of the result stream
depend on deeper elements of the argument stream. In some settings, such as
reactive programming, this is a desirable property, but for productivity guaran-
tees alone it is too restrictive. We need the ability to remove I in a controlled
way. This is provided by the clock quantifiers of Atkey and McBride [4], which
assert that all data is available now. This does not trivialise the guardedness
requirements because there are side-conditions controlling when clock quanti-
fiers may be introduced. Moreover clock quantifiers transform guarded recursive
types into first-class coinductive types, with guarded recursion defining the rule
format for their manipulation.

Our presentation departs from Atkey and McBride’s [4] by regarding the ‘ev-
erything now’ operator as a unary type-former, written � and called ‘constant’,
rather than a quantifier. Observing that the types �A → A and �A → ��A
are always inhabited allows us to see the type-former, via the Curry-Howard iso-
morphism, as an S4 modality, and hence base our operational semantics on the
established typed calculi for intuitionistic S4 (IS4) of Bierman and de Paiva [5].
This is sufficient to capture all examples in the literature, which use only one
clock; for examples that require multiple clocks we suggest extending our calculus
to a multimodal logic.

In this paper we present the guarded λ-calculus, gλ, extending the simply typed
λ-calculus with coinductive and guarded recursive types. We define call-by-name
operational semantics, which blocks non-termination via recursive definitions
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unfolding indefinitely. We define adequate denotational semantics in the topos
of trees [6] and as a consequence prove normalisation. We introduce a program
logic Lgλ for reasoning about the denotations of gλ-programs; given adequacy
this permits proofs about the operational behaviour of terms. The logic is based
on the internal logic of the topos of trees, with modalities .,� on predicates,
and Löb induction for reasoning about functions on both guarded recursive and
coinductive types. We demonstrate the expressiveness of the calculus by showing
the definability of solutions to Rutten’s behavioural differential equations [20],
and show that Lgλ can be used to reason about them, as an alternative to
standard bisimulation-based arguments.

We have implemented the gλ-calculus in Agda, a process we found helpful
when fine-tuning the design of our calculus. The implementation, with many
examples, is available at http://cs.au.dk/~hbugge/gl-agda.zip.

2 Guarded λ-calculus

This section presents the guarded λ-calculus, written gλ, its call-by-name oper-
ational semantics, and its types, then gives some examples.

Definition 2.1. gλ-terms are given by the grammar

t ::= x | 〈〉 | zero | succ t | 〈t, t〉 | πdt | λx.t | tt | fold t | unfold t
| next t | prev σ.t | boxσ.t | unbox t | t~ t

where d ∈ {1, 2}, x is a variable and σ = [x1 ← t1, . . . , xn ← tn], usually
abbreviated [~x← ~t], is a list of variables paired with terms.

prev[~x ← ~t].t and box[~x ← ~t].t bind all variables of ~x in t, but not in ~t.
We write prev ι.t for prev[~x ← ~x].t where ~x is a list of all free variables of t. If
furthermore t is closed we simply write prev t. We will similarly write box ι.t and
box t. We adopt the convention that prev and box have highest precedence.

We may extend gλ with sums; for space reasons we leave these to App. C.

Definition 2.2. The reduction rules on closed gλ-terms are

πd〈t1, t2〉 7→ td (d ∈ {1, 2})
(λx.t1)t2 7→ t1[t2/x]

unfold fold t 7→ t

prev[~x← ~t].t 7→ prev t[~t/~x] (~x non-empty)
prev next t 7→ t

unbox(box[~x← ~t].t) 7→ t[~t/~x]
next t1 ~ next t2 7→ next(t1t2)

The rules above look like standard β-reduction, removing ‘roundabouts’ of
introduction then elimination, with the exception of those regarding prev and
next. An apparently more conventional β-rule for these term-formers would be

prev[~x← ~t].(next t) 7→ t[~t/~x]
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but where ~x is non-empty this would require us to reduce an open term to derive
next t. We take the view that reduction of open terms is undesirable within a
call-by-name discipline, so first apply the substitution without eliminating prev.

The final rule is not a true β-rule, as ~ is neither introduction nor elimi-
nation, but is necessary to enable function application under a next and hence
allow, for example, manipulation of the tail of a stream. It corresponds to the
‘homomorphism’ equality for applicative functors [15].

We next impose our call-by-name strategy on these reductions.

Definition 2.3. Values are terms of the form

〈〉 | succn zero | 〈t, t〉 | λx.t | fold t | boxσ.t | next t

where succn is a list of zero or more succ operators, and t is any term.

Definition 2.4. Evaluation contexts are defined by the grammar

E ::= · | succE | πdE | Et | unfoldE | prevE | unboxE | E ~ t | v ~ E

If we regard ~ as a variant of function application, it is surprising in a
call-by-name setting to reduce on both its sides. However both sides must be
reduced until they have main connective next before the reduction rule for ~
may be applied. Thus the order of reductions of gλ-terms cannot be identified
with the call-by-name reductions of the corresponding λ-calculus term with the
novel connectives erased.

Definition 2.5. Call-by-name reduction has format E[t] 7→ E[u], where t 7→ u
is a reduction rule. From now the symbol 7→ will be reserved to refer to call-by-
name reduction. We use  for the reflexive transitive closure of 7→.

Lemma 2.6. The call-by-name reduction relation 7→ is deterministic.

Definition 2.7. gλ-types are defined inductively by the rules of Fig. 1. ∇ is a
finite set of type variables. A variable α is guarded in a type A if all occurrences
of α are beneath an occurrence of I in the syntax tree. We adopt the convention
that unary type-formers bind closer than binary type-formers.

∇, α ` α ∇ ` 1 ∇ ` N

∇ ` A1 ∇ ` A2

∇ ` A1 ×A2

∇ ` A1 ∇ ` A2

∇ ` A1 → A2

∇, α ` A
∇ ` µα.A

α guarded inA
∇ ` A
∇ ` IA

· ` A
∇ ` �A

Fig. 1. Type formation for the gλ-calculus
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Note the side condition on the µ type-former, and the prohibition on �A for
open A, which can also be understood as a prohibition on applying µα to any α
with � above it. The intuition for these restrictions is that unique fixed points
exist only where the variable is displaced in time by a I, but � cancels out this
displacement by giving ‘everything now’.

Definition 2.8. The typing judgments are given in Fig. 2. There d ∈ {1, 2},
and the typing contexts Γ are finite sets of pairs x : A where x is a variable and
A a closed type. Closed types are constant if all occurrences of I are beneath an
occurrence of � in their syntax tree.

Γ, x : A ` x : A Γ ` 〈〉 : 1 Γ ` zero : N

Γ ` t : N

Γ ` succ t : N

Γ ` t1 : A Γ ` t2 : B

Γ ` 〈t1, t2〉 : A×B
Γ ` t : A1 ×A2

Γ ` πdt : Ad

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t1 : A→ B Γ ` t2 : A

Γ ` t1t2 : B

Γ ` t : A[µα.A/α]

Γ ` fold t : µα.A

Γ ` t : µα.A

Γ ` unfold t : A[µα.A/α]

Γ ` t : A

Γ ` next t : IA

x1 : A1, . . . , xn : An ` t : IA
Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` prev[x1 ← t1, . . . , xn ← tn].t : A
A1, . . . , An constant

x1 : A1, . . . , xn : An ` t : A
Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` box[x1 ← t1, . . . , xn ← tn].t : �A
A1, . . . , An constant

Γ ` t : �A

Γ ` unbox t : A

Γ ` t1 : I(A→ B) Γ ` t2 : IA

Γ ` t1 ~ t2 : IB

Fig. 2. Typing rules for the gλ-calculus

The constant types exist ‘all at once’, due to the absence of I or presence
of �; this condition corresponds to the freeness of the clock variable in Atkey
and McBride [4] (recalling that we use only one clock in this work). Its use as
a side-condition to �-introduction in Fig. 2 recalls (but is more general than)
the ‘essentially modal’ condition for natural deduction for IS4 of Prawitz [19].
The term calculus for IS4 of Bierman and de Paiva [5], on which this calculus
is most closely based, uses the still more restrictive requirement that � be the
main connective. This would preclude some functions that seem desirable, such
as the isomorphism λn. box ι.n : N→ �N.
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In examples prev usually appears in its syntactic sugar forms

x1 : A1, . . . , xn : An ` t : IA

Γ, x1 : A1, . . . , xn : An ` prev ι.t : A
A1, . . . , An constant

` t : IA

Γ ` prev t : A

and similarly for box; the more general form is nonetheless necessary because
(prev ι.t)[~u/~x] = prev[~x ← ~u].t. Getting substitution right in this setting is
somewhat delicate. For example our reduction rule prev[~x ← ~t].t 7→ prev t[~t/~x]
breaches subject reduction on open terms (but not for closed terms). See Bier-
man and de Paiva [5] for more discussion of substitution with respect to IS4.

Lemma 2.9 (Subject Reduction). ` t : A and t u implies ` u : A.

Example 2.10. (i) The type of guarded recursive streams of natural numbers,
Strg, is defined as µα.N×Iα. These provide the setting for all examples
below, but other definable types include infinite binary trees, as µα.N×Iα×
Iα, and potentially infinite lists, as µα.1 +(N×Iα).

(ii) We define guarded versions of the standard stream functions cons (written
infix as ::), head, and tail as obvious:

:: , λn.λs. fold〈n, s〉 : N→ IStrg → Strg

hdg , λs.π1 unfold s : Strg → N tlg , λs.π2 unfold s :: Strg → IStrg

then use the ~ term-former for observations deeper into the stream:

2ndg , λs.(next hdg)~ (tlg s) : Strg → IN

3rdg , λs.(next 2ndg)~ (tlg s) : Strg → IIN · · ·

(iii) Following Abel and Vezzosi [2, Sec. 3.4] we may define a fixed point combi-
nator fix with type (IA→ A)→ A for any A. We use this to define a stream
by iteration of a function: iterate takes as arguments a natural number and
a function, but the function is not used until the ‘next’ step of computation,
so we may reflect this with our typing:

iterate , λf. fixλg.λn.n :: (g ~ (f ~ nextn)) : I(N→ N)→ N→ Strg

We may hence define the guarded stream of natural numbers

nats , iterate (nextλn. succn) zero .

(iv) With interleave, following our discussion in the introduction, we again may
reflect in our type that one of our arguments is not required until the next
step, defining the term interleave as:

fixλg.λs.λt.(hdg s) :: (g ~ t~ next(tlg s)) : Strg → IStrg → Strg

This typing decision is essential to define the paper folding stream:

toggle , fixλs.(succ zero) :: (next(zero ::s))

paperfolds , fixλs. interleave toggle s
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Note that the unproductive definition with interleave s toggle cannot be made
to type check: informally, s : IStrg cannot be converted into a Strg by prev,
as it is in the scope of a variable s whose type Strg is not constant. To see
a less articifial non-example, try to define a filter function on streams which
eliminates elements that fail some boolean test.

(v) µ-types are in fact unique fixed points, so carry both final coalgebra and
initial algebra structure. To see the latter, observe that we can define

foldr , fixλgλf.λs.f〈hdg s, g ~ next f ~ tlg s〉 : ((N×IA)→ A)→ Strg → A

and hence for example mapg h : Strg → Strg is foldr λx.(hπ1x) :: (π2x).
(vi) The � type-former lifts guarded recursive streams to coinductive streams, as

we will make precise in Ex. 3.4. Let Str , �Strg. We define hd : Str→ N and
tl : Str → Str by hd = λs. hdg(unbox s) and tl = λs. box ι. prev ι. tlg(unbox s),
and hence define observations deep into streams whose results bear no trace
of I, for example 2nd , λs. hd(tl s) : Str→ N.
In general boxed functions lift to functions on boxed types by

lim , λf.λx. box ι.(unbox f)(unboxx) : �(A→ B)→ �A→ �B

(vii) The more sophisticated acausal function every2nd : Str→ Strg is

fixλg.λs.(hd s) :: (g ~ (next(tl(tl s)))).

Note that it must take a coinductive stream Str as argument. The function
with coinductive result type is then λs. box ι. every2nd s : Str→ Str.

3 Denotational Semantics and Normalisation

This section gives denotational semantics for gλ-types and terms, as objects and
arrows in the topos of trees [6], the presheaf category over the first infinite ordinal
ω (we give a concrete definition below). These semantics are shown to be sound
and, by a logical relations argument, adequate with respect to the operational
semantics. Normalisation follows as a corollary of this argument. Note that for
space reasons many proofs, and some lemmas, appear in App. A.

Definition 3.1. The topos of trees S has, as objects X, families of sets X1, X2,
. . . indexed by the positive integers, equipped with families of restriction functions
rXi : Xi+1 → Xi indexed similarly. Arrows f : X → Y are families of functions
fi : Xi → Yi indexed similarly obeying the naturality condition fi◦rXi = rYi ◦fi+1.

S is a cartesian closed category with products defined pointwise. Its expo-
nential AB has, as its component sets (AB)i, the set of i-tuples (f1 : A1 →
B1, . . . , fi : Ai → Bi) obeying the naturality condition, and projections as re-
striction functions.

Definition 3.2. – The category of sets Set is a full subcategory of S via the
functor ∆ : Set → S with (∆Z)i = Z, r∆Zi = idZ , and (∆f)i = f . Objects
in this subcategory are called constant objects. In particular the terminal
object 1 of S is ∆{∗} and the natural numbers object is ∆N;
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– ∆ is left adjoint to homS(1, –); write � for ∆ ◦ homS(1, -) : S → S. unbox :
� →̇ idS is the counit of the resulting comonad. Concretely unboxi(x) = xi,
i.e. the i’th component of x : 1→ X applied to ∗;

– I : S → S is defined by (IX)1 = {∗} and (IX)i+1 = Xi, with rIX1 defined
uniquely and rIXi+1 = rXi . Its action on arrows f : X → Y is (If)1 = id{∗}
and (If)i+1 = fi. The natural transformation next : idS →̇ I has next1
unique and nexti+1 = rXi for any X.

Definition 3.3. We interpet types in context ∇ ` A, where ∇ contains n free
variables, as functors J∇ ` AK : (Sop×S)n → S, usually written JAK. This mixed
variance definition is necessary as variables may appear negatively or positively.

– J∇, α ` αK is the projection of the objects or arrows corresponding to positive

occurrences of α, e.g. JαK( ~W,X, Y ) = Y ;
– J1K and JNK are the constant functors ∆{∗} and ∆N respectively;

– JA1 ×A2K( ~W ) = JA1K( ~W )× JA2K( ~W ) and likewise for S-arrows;

– JA1 → A2K( ~W ) = JA2K( ~W )JA2K( ~W ′) where ~W ′ is ~W with odd and even ele-
ments switched to reflect change in polarity, i.e. (X1, Y1, . . .)

′ = (Y1, X1, . . .);
– JIAK, J�AK are defined by composition with the functors I,� (Def. 3.2).

– Jµα.AK( ~W ) = Fix(F ), where F : (Sop × S) → S is the functor given by

F (X,Y ) = JAK( ~W,X, Y ) and Fix(F ) is the unique (up to isomorphism) X
such that F (X,X) ∼= X. The existence of such X relies on F being a suitably
locally contractive functor, which follows by Birkedal et al [6, Sec. 4.5] and
the fact that � is only ever applied to closed types. This restriction on � is
necessary because the functor � is not strong.

Example 3.4. JStrgKi = Ni, with projections as restriction functions, so is an
object of approximations of streams – first the head, then the first two elements,
and so forth. JStrKi = Nω at all levels, so is the constant object of streams. More
generally, any polynomial functor F on Set can be assigned a gλ-type AF with
a free type variable α that occurs guarded. The denotation of �µα.AF is the
constant object of the carrier of the final coalgebra for F [17, Thm. 2].

Lemma 3.5. The interpretation of a recursive type is isomorphic to the inter-
pretation of its unfolding: Jµα.AK( ~W ) ∼= JA[µα.A/α]K( ~W ).

Lemma 3.6. Closed constant types denote constant objects in S.

Note that the converse does not apply; for example JI1K is a constant object.

Definition 3.7. We interpret typing contexts Γ = x1 : A1, . . . , xn : An as
S-objects JΓ K , JA1K × · · · × JAnK and hence interpret typed terms-in-context
Γ ` t : A as S-arrows JΓ ` t : AK : JΓ K→ JAK (usually written JtK) as follows.

JxK is the projection JΓ K × JAK → JAK. JzeroK and Jsucc tK are as obvious.
Term-formers for products and function spaces are interpreted via the cartesian
closed structure of S. Exponentials are not pointwise, so we give explicitly:

– Jλx.tKi(γ)j maps a 7→ JΓ, x : A ` t : BKj(γ�j , a), where γ�j is the result of
applying restriction functions to γ ∈ JΓ Ki to get an element of JΓ Kj;
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– Jt1t2Ki(γ) = (Jt1Ki(γ)i) ◦ Jt2Ki(γ);

Jfold tK and Junfold tK are defined via composition with the isomorphisms of Lem.
3.5. Jnext tK and Junbox tK are defined by composition with the natural transfor-
mations introduced in Def. 3.2. The final three cases are

– Jprev[x1 ← t1, . . .].tKi(γ) , JtKi+1(Jt1Ki(γ), . . .), where Jt1Ki(γ) ∈ JA1Ki is
also in JA1Ki+1 by Lem. 3.6;

– Jbox[x1 ← t1, . . .].tKi(γ)j = JtKj(Jt1Ki(γ), . . .), again using Lem. 3.6;

– Jt1 ~ t2K1 is defined uniquely; Jt1 ~ t2Ki+1(γ) , (Jt1Ki+1(γ)i) ◦ Jt2Ki+1(γ).

Lemma 3.8. Given typed terms in context x1 : A1, . . . , xm : Am ` t : A and
Γ ` tk : Ak for 1 ≤ k ≤ m, Jt[~t/~x]Ki(γ) = JtKi(Jt1Ki(γ), . . . , JtmKi(γ)).

Theorem 3.9 (Soundness). If t u then JtK = JuK.

We now define a logical relation between our denotational semantics and
terms, from which both normalisation and adequacy will follow. Doing this
inductively proves rather delicate, because induction on size will not support
reasoning about our values, as fold refers to a larger type in its premise. This
motivates a notion of unguarded size under which A[µα.A/α] is ‘smaller’ than
µα.A. But under this metric IA is smaller than A, so next now poses a problem.
But the meaning of IA at index i+1 is determined by A at index i, and so, as in
Birkedal et al [7], our relation will also induct on index. This in turn creates prob-
lems with box, whose meaning refers to all indexes simultaneously, motivating a
notion of box depth, allowing us finally to attain well-defined induction.

Definition 3.10. The unguarded size us of an open type follows the obvious
definition for type size, except that us(IA) = 0.

The box depth bd of an open type is

– bd(A) = 0 for A ∈ {α,0,1,N};
– bd(A×B) = min(bd(A), bd(B)), and similarly for bd(A→ B);
– bd(µα.A) = bd(A), and similarly for bd(IA);
– bd(�A) = bd(A) + 1.

Lemma 3.11. (i) α guarded in A implies us(A[B/α]) ≤ us(A).
(ii) bd(B) ≤ bd(A) implies bd(A[B/α]) ≤ bd(A)

Definition 3.12. The family of relations RAi , indexed by closed types A and
positive integers i, relates elements of the semantics a ∈ JAKi and closed typed
terms t : A and is defined as

– ∗R1
i t iff t 〈〉;

– nRN
i t iff t succn zero;

– (a1, a2)RA1×A2
i t iff t 〈t1, t2〉 and adR

Ad
i td for d ∈ {1, 2};

– fRA→Bi t iff t λx.s and for all j ≤ i, aRAj u implies fj(a)RBj s[u/x];

– aRµα.Ai t iff t  foldu and hi(a)R
A[µα.A/α]
i u, where h is the “unfold” iso-

morphism for the recursive type (ref. Lem. 3.5);
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– aRIAi t iff t nextu and, where i > 1, aRAi−1u.

– aR�Ai t iff t boxu and for all j, ajR
A
j u;

This is well-defined by induction on the lexicographic ordering on box depth, then
index, then unguarded size. First the � case strictly decreases box depth, and no
other case increases it (ref. Lem. 3.11.(ii) for µ-types). Second the I case strictly
decreases index, and no other case increases it (disregarding �). Finally all other
cases strictly decrease unguarded size, as seen via Lem. 3.11.(i) for µ-types.

Lemma 3.13 (Fundamental Lemma). Take Γ = (x1 : A1, . . . , xm : Am),
Γ ` t : A, and ` tk : Ak for 1 ≤ k ≤ m. Then for all i, if akR

Ak
i tk for all k,

then

JΓ ` t : AKi(~a)RAi t[~t/~x].

Theorem 3.14 (Adequacy and Normalisation).

(i) For all closed terms ` t : A it holds that JtKiRAi t;
(ii) J` t : NKi = n implies t succn zero;

(iii) All closed typed terms evaluate to a value.

Proof. (i) specialises Lem. 3.13 to closed types. (ii), (iii) hold by (i) and inspec-
tion of Def. 3.12.

Definition 3.15. Typed contexts with typed holes are defined as obvious. Two
terms Γ ` t : A,Γ ` u : A are contextually equivalent, written t 'ctx u, if for all
closing contexts C of type N, the terms C[t] and C[u] reduce to the same value.

Corollary 3.16. JtK = JuK implies t 'ctx u.

Proof. JC[t]K = JC[u]K by compositionality of the denotational semantics . Then
by Thm. 3.14.(ii) they reduce to the same value.

4 Logic for Guarded Lambda Calculus

This section presents our program logic Lgλ for the guarded λ-calculus. The
logic is an extension of the internal language of S [6, 9]. Thus it extends multi-
sorted intuitionistic higher-order logic with two propositional modalities . and
�, pronounced later and always respectively. The term language of Lgλ includes
the terms of gλ, and the types of Lgλ include types definable in gλ. We write Ω
for the type of propositions, and also for the subobject classifier of S.

The rules for definitional equality extend the usual βη-laws for functions and
products with new equations for the new gλ constructs, listed in Fig. 3.

Definition 4.1. A type X is total and inhabited if the formula Total (X) ≡
∀x : IX,∃x′ : X,next(x′) =IX x is valid.
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Γ ` t : A [µα.A/α]

Γ ` unfold(fold t) = t

Γ ` t : µα.A

Γ ` fold(unfold t) = t

Γ ` t1 : A→ B Γ ` t2 : A

Γ ` next t1 ~ next t2 = next(t1t2)

Γ� ` t : A Γ ` ~t : Γ�

Γ ` prev[~x← ~t].(next t) = t
[
~t/~x

] Γ� ` t : IA Γ ` ~t : Γ�

Γ ` next
(
prev[~x← ~t].t

)
= t

[
~t/~x

]
Γ� ` t : A Γ ` ~t : Γ�

Γ ` unbox(box[~x← ~t].t) = t
[
~t/~x

] Γ� ` t : �A Γ ` ~t : Γ�

Γ ` box[~x← ~t]. unbox t = t
[
~t/~x

]
Fig. 3. Additional equations. The context Γ� is assumed constant.

All of the gλ-types defined in Sec. 2 are total and inhabited (see App. E for a
proof using the semantics of the logic), but that is not the case when we include
sum types as the empty type is not inhabited.

Corresponding to the modalities I and � on types, we have modalities .
and � on formulas. The modality . is used to express that a formula holds only
“later”, that is, after a time step. It is given by a function symbol . : Ω → Ω.
The � modality is used to express that a formula holds for all time steps. Unlike
the . modality, � on formulas does not arise from a function on Ω [8]. As with
box, it is only well-behaved in constant contexts, so we will only allow � in such
contexts. The rules for . and � are listed in Fig. 4.

Γ | Ξ, (. φ⇒ φ) ` φ
Löb

Γ, x : X | ∃y : Y, . φ(x, y) ` . (∃y : Y, φ(x, y))
∃ .

Γ, x : X | .(∀y : Y, φ(x, y)) ` ∀y : Y, . φ(x, y)
∀ .

Γ | Ξ, φ ` . φ

? ∈ {∧,∨,⇒}
Γ | .(φ ? ψ) a` . φ ? .ψ

Γ | ¬¬φ ` ψ
Γ | φ ` �ψ

Γ | φ ` �ψ
Γ | ¬¬φ ` ψ

Γ | φ ` ψ
Γ | �φ ` �ψ

Γ | �φ ` φ Γ | �φ ` ��φ ∀x, y : X. .(x =X y)⇔ nextx =IX next y
eq.

next

Fig. 4. Rules for . and �. The judgement Γ | Ξ ` φ expresses that in typing context
Γ , hypotheses in Ξ prove φ. The converse entailment in ∀ . and ∃ . rules holds if Y is
total and inhabited. In all rules involving the � the context Γ is assumed constant.

The . modality can in fact be defined in terms of lift : IΩ → Ω (called succ
by Birkedal et al [6]) as . = lift ◦ next. The lift function will be useful since it
allows us to define predicates over guarded types, such as predicates on Strg.

The semantics of the logic is given in S; terms are interpreted as morphisms
of S and formulas are interpreted via the subobject classifier. We do not present
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the semantics here; except for the new terms of gλ, whose semantics are defined
in Sec. 3, the semantics are as in [6, 8].

Later we will come to the problem of proving x =�A y from unboxx =A

unbox y, where x, y have type �A. This in general does not hold, but using the
semantics of Lgλ we can prove the proposition below.

Proposition 4.2. The formula �(unboxx =A unbox y)⇒ x =�A y is valid.

There exists a fixed-point combinator of type (IA → A) → A for all types
A in the logic (not only those of in gλ) [6, Thm. 2.4]; we also write fix for it.

Proposition 4.3. For any term f : IA → A we have fix f =A f (next(fix f))
and, if u is any other term such that f(nextu) =A u, then u =A fix f .

In particular this can be used for recursive definitions of predicates. For instance
if P : N→ Ω is a predicate on natural numbers we can define a predicate PStrg

on Strg expressing that P holds for all elements of the stream:

PStrg , fixλr.λxs.P (hdg xs) ∧ lift (r ~ (tlg xs)) : Strg → Ω.

The logic may be used to prove contextual equivalence of programs:

Theorem 4.4. Let t1 and t2 be two gλ terms of type A in context Γ . If the
sequent Γ | ∅ ` t1 =A t2 is provable then t1 and t2 are contextually equivalent.

Proof. Recall that equality in the internal logic of a topos is just equality of
morphisms. Hence t1 and t2 denote same morphism from Γ to A. Adequacy
(Cor. 3.16) then implies that t1 and t2 are contextually equivalent.

Example 4.5. We list some properties provable using the logic. Except for the
first property all proof details are in App. B.

(i) For any f : A→ B and g : B → C we have

(mapg f) ◦ (mapg g) =Strg→Strg mapg(f ◦ g).

Unfolding the definition of mapg from Ex. 2.10(vi) and using β-rules and
Prop. 4.3 we have mapg f xs = f (hdg xs) :: (next(mapg f)~(tlg xs)). Equality
of functions is extensional so we have to prove

Φ , ∀xs : Strg,mapg f (mapg g xs) =Strg mapg(f ◦ g)xs.

The proof is by Löb induction, so we assume .Φ and take xs : Strg. Using
the above property of mapg we unfold mapg f (mapg g xs) to

f (g (hdg xs)) :: (next(mapg f)~ ((next(mapg g))~ tlg xs))

and we unfold mapg(f ◦ g)xs to f (g (hdg xs)) :: (next(mapg(f ◦ g))~ tlg xs).
Since Strg is a total type there is a xs′ : Strg such that nextxs′ = tlg xs.
Using this and the rule for ~ we have

next(mapg f)~ ((next(mapg g))~ tlg xs) =IStrg next(mapg f(mapg g xs′))

and next(mapg(f◦g))~tlg xs =IStrg next(mapg(f◦g)xs′). From the induction
hypothesis .Φ we have .(mapg(f ◦ g)xs′ =Strg mapg f (mapg g xs′)) and so
rule eq.next concludes the proof.
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(ii) We can also reason about acausal functions. For any n : N, f : N→ N,

every2nd(box ι. iterate (next f)n) =Strg iterate (next f2)n,

where f2 is λm.f (f m). The proof again uses Löb induction.
(iii) Since our logic is higher-order we can state and prove very general properties,

for instance the following general property of map

∀P,Q : (N→ Ω),∀f : N→ N, (∀x : N, P (x)⇒ Q(f(x)))

⇒ ∀xs : Strg, PStrg(xs)⇒ QStrg(mapg f xs).

The proof illustrates the use of the property lift ◦ next = ..
(iv) Given a closed term (we can generalise to terms in constant contexts) f of

type A → B we have box f of type �(A → B). Define L(f) = lim(box f)
of type �A → �B. For any closed term f : A → B and x : �A we can
then prove unbox(L(f)x) =B f (unboxx). Then using Prop. 4.2 we can, for
instance, prove L(f ◦ g) = L(f) ◦ L(g).
For functions of arity k we define Lk using L, and analogous properties
hold, e.g. we have unbox(L2(f)x y) = f (unboxx) (unbox y), which allows us
to transfer equalities proved for functions on guarded types to functions on
�’d types; see Sec. 5 for an example.

5 Behavioural Differential Equations in gλ

In this section we demonstrate the expressivity of our approach by showing how
to construct solutions to behavioural differential equations [20] in gλ, and how
to reason about such functions in Lgλ, rather than with bisimulation as is more
traditional. These ideas are best explained via a simple example.

Supposing addition + : N → N → N is given, then pointwise addition of
streams, plus, can be defined by the following behavioural differential equation

hd(plusσ1 σ2) = hdσ1 + hdσ2 tl(plusσ1 σ2) = plus(tlσ1) (tlσ2).

To define the solution to this behavioural differential equation in gλ, we first
translate it to a function on guarded streams plusg : Strg → Strg → Strg, as

plusg , fixλf.λs1.λs2.(hdg s1 + hdg s2) :: (f ~ (tlg s1)~ (tlg s2))

then define plus : Str→ Str→ Str by plus = L2(plusg). By Prop. 4.3 we have

plusg = λs1.λs2.(hdg s1 + hdg s2) :: ((next plusg)~ (tlg s1)~ (tlg s2)). (1)

This definition of plus satisfies the specification given by the behavioural dif-
ferential equation above. Let σ1, σ2 : Str and recall that hd = hdg ◦λs. unbox s.
Then use Ex. 4.5.(iv) and equality (1) to get hd(plusσ1σ2) = hdσ1 + hdσ2.

For tl we proceed similarly, also using that tlg(unboxσ) = next(unbox(tlσ))
which can be proved using the β-rule for box and the η-rule for next.
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Since plusg is defined via guarded recursion we can reason about it with Löb
induction, for example to prove that it is commutative. Ex. 4.5.(iv) and Prop. 4.2
then immediately give that plus on coinductive streams Str is commutative.

Once we have defined plusg we can use it when defining other functions on
streams, for instance stream multiplication ⊗ which is specified by equations

hd(σ1 ⊗ σ2) = (hdσ1) · (hdσ2) tl(σ1 ⊗ σ2) = (ρ(hdσ1)⊗ (tlσ2))⊕ ((tlσ1)⊗ σ2)

where ρ(n) is a stream with head n and tail a stream of zeros, and · is multipli-
cation of natural numbers, and using ⊕ as infix notation for plus. We can define
⊗g : Strg → Strg → Strg by ⊗g ,

fixλf.λs1.λs2. ((hdg s1) · (hdg s2)) ::

(next plusg~(f ~ next ιg(hdg s1)~ tlg s2)~ (f ~ tlg s1 ~ next s2))

then define ⊗ = L2 (⊗g). It can be shown that the function ⊗ so defined satisfies
the two defining equations above. Note that the guarded plusg is used to define
⊗g, so our approach is modular in the sense of [16].

The example above generalises, as we can show that any solution to a be-
havioural differential equation in Set can be obtained via guarded recursion
together with Lk. The formal statement is somewhat technical and can be found
in App. D.

6 Discussion

Following Nakano [18], theImodality has been used as type-former for a number
of λ-calculi for guarded recursion. Nakano’s calculus and some successors [14, 21,
2] permit only causal functions. The closest such work to ours is that of Abel
and Vezzosi [2], but due to a lack of destructor for I their (strong) normalisation
result relies on a somewhat artificial operational semantics where the number of
nexts that can be reduced under is bounded by some fixed natural number.

Atkey and McBride’s extension of such calculi to acausal functions [4] forms
the basis of this paper. We build on their work by (aside from various minor
changes such as eliminating the need to work modulo first-class type isomor-
phisms) introducing normalising operational semantics, an adequacy proof with
respect to the topos of trees, and a program logic.

An alterative approach to type-based productivity guarantees are sized types,
introduced by Hughes et al [13] and now extensively developed, for example
integrated into a variant of System Fω [1]. Our approach offers some advantages,
such as adequate denotational semantics, and a notion of program proof without
appeal to dependent types, but extensions with realistic language features (e.g.
following Møgelberg [17]) clearly need to be investigated.
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A Proofs for Section 3

Proof (of Lem. 3.6). By induction on type formation, with IA case omitted,
�A a base case, and µα.A considered only where α is not free in A.

Proof (of Lem. 3.8). By induction on the typing of t. We present the cases
particular to our calculus.

next t: case i = 1 is trivial. Jnext t[~t/~x]Ki+1(γ) = r
JAK
i ◦ Jt[~t/~x]Ki+1(γ) = r

JAK
i ◦

JtKi+1(Jt1Ki+1(γ), . . .) by induction, which is Jnext tKi+1(Jt1Ki+1(γ), . . .).
J(prev[~y ← ~u].t)[~t/~x]Ki(γ) = Jprev[~y ← ~u[~t/~x]].tKi(γ), which by definition is

JtKi+1(Ju1[~t/~x]Ki(γ), . . .) = JtKi+1(Ju1Ki(Jt1Ki(γ), . . .), . . .) by induction, which is
Jprev[~y ← ~u].tKi(Jt1Ki(γ), . . .).

Jbox[~y ← ~u[~t/~x]].tKi(γ)j = JtKj(Ju1[~t/~x]Ki(γ), . . .), which by induction equals
JtKj(Ju1Ki(Jt1Ki(γ), . . .), . . .) = Jbox[~y ← ~u].tKi(Jt1Ki(γ), . . .)j .

Junbox t[~t/~x]Ki(γ) = Jt[~t/~x]Ki(γ)i = JtKi(Jt1Ki(γ), . . .)i by induction, which is
Junbox tKi(Jt1Ki(γ), . . .).

u1 ~ u2: case i = 1 is trivial. J(u1 ~ u2)[~t/~x]Ki+1(γ) = (Ju1[~t/~x]Ki+1(γ)i) ◦
Ju2[~t/~x]Ki+1(γ) = (Ju1Ki+1(Jt1Ki+1(γ), . . .)i) ◦ Ju2Ki+1(Jt1Ki+1(γ), . . .), which is
Ju1 ~ u2Ki+1(Jt1Ki+1(γ), . . .).

Proof (of Soundness Thm. 3.9). We verify the reduction rules of Def. 2.2; extend-
ing this to any evaluation context, and to , is easy. The product reduction case
is standard, and function case requires Lem. 3.8. unfold fold is the application of
mutually inverse arrows.

Jprev[~x ← ~t].tKi = JtKi+1(Jt1Ki, . . .). Each tk is closed, so is denoted by an
arrow from 1 to the constant S-object JAkK, so by naturality JtkKi = JtkKi+1.
But JtKi+1(Jt1Ki+1, . . .) = Jt[~t/~x]Ki+1 by Lem. 3.8, which is Jprev t[~t/~x]Ki.

Jprev next tKi = Jnext tKi+1 = JtKi.
Junbox(box[~x← ~t].t)Ki = (Jbox[~x← ~t].tKi)i = JtKi(Jt1Ki, . . .) = Jt[~t/~x]Ki.
With ~-reduction, index 1 is trivial. Jnext t1 ~ next t2Ki+1 = (Jnext t1Ki+1)i ◦

Jnext t2Ki+1 = (r
JA→BK
i ◦ Jt1Ki+1)i ◦ rJAK

i ◦ Jt2Ki+1 = (Jt1Ki ◦ r1i )i ◦ Jt2Ki ◦ r1i by

naturality, which is (Jt1Ki)i ◦ Jt2Ki = Jt1t2Ki = Jt1t2Ki ◦ r1i = r
JBK
i ◦ Jt1t2Ki+1 =

Jnext(t1t2)Ki+1.

Proof (of Lem. 3.11). By induction on the construction of the type A.
(i) follows with only interesting case the variable case –A cannot be α because

of the requirement that α be guarded in A.
(ii) follows with interesting cases: variable case enforces bd(B) = 0; binary

type-formers ×,→ have for example bd(Ad) ≥ bd(A1 ×A2), so bd(Ad) ≥ bd(B)
and the induction follows; �A by construction has no free variables.

Lemma A.1. If t u and aRAi u then aRAi t.

Proof. All cases follow similarly; consider A1×A2. (a1, a2)RA1×A2
i u implies u 

〈t1, t2〉, where this value obeys some property. But then t 〈t1, t2〉 similarly.

Lemma A.2. aRAi+1t implies r
JAK
i (a)RAi t.
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Proof. Cases 1,N are trivial. Case × follows by induction because restrictions
are defined pointwise. Case µ follows by induction and the naturality of the

isomorphism h. Case �A follows because r
J�AK
i (a) = a.

For A→ B take j ≤ i and a′RAj u. By the downwards closure in the definition

of RA→Bi+1 we have fj(a
′)RBj s[u/x]. But fj = (r

JA→BK
i (f))j .

With IA, case i = 1 is trivial, so take i = j + 1. aRIAj+2t means t  nextu

and aRAj+1u, so by induction r
JAK
j (a)RAj u, so r

JIAK
j+1 (a)RAj u as required.

Lemma A.3. If aRAi t and A is constant, then aRAj t for all j.

Proof. Easy induction on types, ignoring IA and treating �A as a base case.

We finally turn to the proof of the Fundamental Lemma.

Proof (of Lem. 3.13). By induction on the typing Γ ` t : A. 〈〉, zero cases are
trivial, and 〈u1, u2〉, fold t cases follow by easy induction.

succ: If t[~t/~x] reduces to succl zero for some l then succ t[~t/~x] reduces to
succl+1 zero, as we may reduce under the succ.

πdt: If JtKi(~a)RA1×A2
i t[~t/~x] then t[~t/~x]  〈u1, u2〉 and ud is related to the

d’th projection of JtKi(~a). But then πdt[~t/~x]  πd〈u1, u2〉 7→ ud, so Lem. A.1
completes the case.

λx.t: Taking j ≤ i and aRAj u, we must show that Jλx.tKi(~a)j(a)RBj t[~t/~x][u/x].

The left hand side is JtKj(~a �j , a). For each k, ak �j R
Ak
j tk by Lem. A.2, and

induction completes the case.
u1u2: By induction u1[~t/~x]  λx.s and Ju1Kk(~a)k(Ju2Kk(~a))RBi s[u2[~t/~x]/x].

Now (u1u2) (λx.s)(u2[~t/~x]) 7→ s[u2[~t/~x]/x], and Lem. A.1 completes.
unfold t: we reduce under unfold, then reduce unfold fold, then use Lem. A.1.
next t: Trivial for index 1. For i = j + 1, if each akR

Ak
j+1tk then by Lem. A.2

r
JAkK
j (ak)RAk

j tk. Then by induction JtKj ◦ rJA1K×···JAmK
j (~a)RAj t[~t/~x], whose left

side is by naturality r
JAK
j ◦ JtKj+1(~a) = Jnext tKj+1(~a).

prev[~y ← ~u].t: JukKi(~a)RAk
i uk[~t/~x] by induction, so JukKi(~a)RAk

i+1uk[~t/~x] by

Lem. A.3. Then JtKi+1(Ju1Ki(~a), . . .)RIAi+1t[u1[~t/~x]/y1, . . .] by induction, so we

have t[u1[~t/~x]/y1, . . .]  next s with JtKi+1(Ju1Kk(~a), . . .)RAi s. The left hand
side is Jprev[~y ← ~u].tKi(~a), while prev[~y ← ~u[~t/~x]].t 7→ prev t[u1[~t/~x]/y1, . . .]  
prev next s 7→ s, so Lem. A.1 completes.

box[~y ← ~u].t: To show Jbox[~y ← ~u].tKi(~a)R�Ai box[~y ← ~u].t)[~t/~x], we observe
that the right hand side reduces in one step to box t[u1[~t/~x]/y1, . . .]. The j’th
element of the left hand side is JtKj(Ju1Kk(~a), . . .). We need to show this is related
by RAj to t[u1[~t/~x]/y1, . . .]; this follows by Lem. A.3 and induction.

unbox t: By induction t[~t/~x] boxu, so unbox t[~t/~x] unbox boxu 7→ u. By
induction JtKi(~a)iR

A
i u, so Junbox tKi(~a)RAi u, and Lem. A.1 completes.

u1 ~ u2: Index 1 is trivial so set i = j + 1. Ju2Kj+1(~a)RIAj+1u2[~t/~x] implies

u2[~t/~x]  next s2 with Ju2Kj+1(~a)RAj s2. Similarly u1  next s1 and s1  λx.s

with (Ju1Kj+1(~a)j) ◦ Ju2Kj+1(~a)RBj s[s2/x]. The left hand side is exactly Ju1 ~
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u2Kj+1(~a). Now u1 ~ u2  next s1 ~ u2  next s1 ~ next s2 7→ next(s1s2), and
s1s2  (λx.s)s2 7→ s[s2/x], completing the proof.

B Example Proofs in Lgλ

We first record a substitution property of box and prev for later use.

Lemma B.1. Let A1, . . . , Ak and B be constant types and C any type. If we
have x : B ` t : C and y1 : Ak, . . . , yk : Ak ` t′ : B then

box [x← t′].t =�C box ι.t[t′/x].

If C = ID then we also have

prev [x← t′].t =D prev ι.t[t′/x]

We can prove the first part of the lemma in the logic, using Prop. 4.2 and the
β-rule for box. We can also prove the second part of the lemma for total and
inhabited types D with the rules we have stated so far using the β-rule for next.
For arbitrary D we can prove the lemma using the semantics.

B.1 Acausal Example

To see that Löb induction can be used to prove properties of recursively defined
acausal functions we show that for any n : N and any f : N→ N we have

every2nd (box ι. iterate (next f)n) =Strg iterate (next f2)n,

where we write f2 for λn.f(fn). We first derive the intermediate result

∀m : N, tl (box ι. iterate (next f)m) =Str box ι. iterate (next f) (f m), (2)

by unfolding and applying Prop. 4.3:

tl (box ι. iterate (next f)m) = box [s← box ι. iterate (next f)m]. prev ι. tlg(unbox s)

= box ι. prev ι. tlg(iterate (next f)m) (by Lem. B.1)

= box ι. prev ι. next (iterate (next f) (f m))

= box ι. iterate (next f) (f m).

Now assume

.
(
∀n : N, every2nd(box ι. iterate (next f)n) =Strg iterate (next f2)n

)
, (3)

then by Löb induction we can derive

every2nd (box ι. iterate (next f)n)

= n :: next (every2nd (tl (tl (box ι. iterate (next f)n))))

= n :: next (every2nd (box ι. iterate (next f) (f (f n)))) (by 2)

= n :: next (iterate (next f2) (f (f n))) (by 3 and eq.next)

= iterate (next f2)n.
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B.2 Higher-Order Logic Example

We now prove

∀P,Q : (N→ Ω),∀f : N→ N, (∀x : N, P (x)⇒ Q(f(x)))

⇒ ∀xs : Str, PStrg(xs)⇒ QStrg(mapg f xs).

This is a simple property of mapg, but the proof shows how the pieces fit together.
Recall that mapg satisfies mapg f xs = f (hdg xs) :: (next(mapg f)~ (tlg xs)). We
prove the property by Löb induction. So let P and Q be predicates on N and
f a function on N that satisfies ∀x : N, P (x)⇒ Q(f(x)). To use Löb induction
assume

.(∀xs : Str, PStrg(xs)⇒ QStrg(mapg f xs)) (4)

and let xs be a stream satisfying PStrg . Unfolding PStrg(xs) we get P (hdg xs)
and lift(nextPStrg ~ (tlg xs)) and we need to prove Q(hdg(mapg f xs)) and also
lift(nextQStrg ~ (tlg(mapg f xs))). The first is easy since Q(hdg(mapg f xs)) =
Q(f (hdg xs)). For the second we have tlg(mapg f xs) = next(mapg f) ~ (tlg xs).
Since Str is a total and inhabited type there is a stream xs′ such that nextxs′ =
tlg xs. This gives tlg(mapg f xs) = next(mapg fxs′) and so our desired result
reduces to lift(next(QStrg(mapg f xs′))) and lift(nextPStrg ~ (tlg xs)) is equivalent
to lift(next(PStrg(xs

′))). Now lift ◦ next = . and so what we have to prove is
.(QStrg(mapg f xs′)) from .(PStrg(xs

′)), which follows directly from the induction
hypothesis (4).

C Sums

This appendix extends Secs. 2, 3 and 4 to add sum types to the gλ-calculus. and
to logic Lgλ.

Binary sums in Atkey and McBride [4] come with the type isomorphism
�A + �B ∼= �(A + B), but there are not in general terms witnessing this
isomorphism. Likewise if binary sums are added to our calculus as obvious we
may define the term

λx. box ι. casex of x1. in1 unboxx1;x2. in2 unboxx2 : �A+�B → �(A+B)

but no inverse is definable in general. We believe such a map may be useful
when working with guarded recursive types involving sum, such as the type of
potentially infinite lists, and in any case the isomorphism is valid in the topos
of trees and so it is harmless for us to reflect this in our calculus. We do this via
a new term-former box+ allowing us to define

λx. box+ ι. unboxx : �(A+B)→ �A+�B

This construct may be omitted without effecting the results of this section.
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Definition C.1 (ref. Defs. 2.1,2.2,2.3,2.4,2.7,2.8). gλ-terms are given by
the grammar

t ::= · · · | abort t | ind t | case t of x1.t;x2.t | box+ σ.t

where d ∈ {1, 2}, and x1, x2 are variables. We abbreviate terms with box+ as for
prev and box.

The reduction rules on closed gλ-terms with sums are

case ind t of x1.t1;x2.t2 7→ td[t/xd] (d ∈ {1, 2})
box+[~x← ~t].t 7→ box+ t[~t/~x] (~x non-empty)

box+ ini t 7→ ini box t

Values are terms of the form

· · · | in1 t | in2 t

Evaluation contexts are defined by the grammar

E ::= · · · | abortE | caseE of x1.t1;x2.t2 | box+E

gλ-types for sums are defined inductively by the rules of Fig. 5, and the new
typing judgments are given in Fig. 6, where d ∈ {1, 2}.

∇ ` 0

∇ ` A1 ∇ ` A2

∇ ` A1 +A2

Fig. 5. Type formation for sums in the gλ-calculus

Γ ` t : 0

Γ ` abort t : A

Γ ` t : Ad

Γ ` ind t : A1 +A2

Γ ` t : A1 +A2 Γ, x1 : A1 ` t1 : A Γ, x2 : A2 ` t2 : A

Γ ` case t of x1.t1;x2.t2 : A

x1 : A1, . . . , xn : An ` t : B1 +B2

Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` box+[x1 ← t1, . . . , xn ← tn].t : �B1 +�B2

A1, . . . , An constant

Fig. 6. Typing rules for sums in the gλ-calculus
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We now consider denotational semantics. Note that the initial object of S
is ∆∅ (ref. Def. 3.2), while binary coproducts in S are defined pointwise. By
naturality it holds that for any arrow f : X → Y +Z and x ∈ X, fi(x) must be
an element of the same side of the sum for all i.

Definition C.2 (ref. Defs. 3.3,3.7).

– J0K is the constant functor ∆∅;
– JA1 +A2K( ~W ) = JA1K( ~W ) + JA2K( ~W ) and likewise for S-arrows.

Term-formers for sums are intepreted via S-coproducts, with abort, ind and
case defined as usual, and box+ defined as follows.

– Let JtKj(Jt1Ki(γ), . . . , JtnKi(γ)) (which is well-defined by Lem. 3.6) be [aj , d]
as j ranges, recalling that d ∈ {1, 2} is the same for all i. Define a : 1→ JAdK
to have j’th element aj. Then Jbox+[~x← ~t].tKi(γ) , [a, d].

We now proceed to the sum cases of our proofs.

Proof (box+[~y ← ~u].t case of Lem. 3.8). By induction we have Juk[~t/~x]Ki(γ) =
JukKi(Jt1Ki(γ), . . .). Hence JtKj(Ju1[~t/~x]Ki(γ), . . .) = JtKj(Ju1Ki(Jt1Ki(γ), . . .), . . .)
as required.

Proof (box+ cases of Soundness Thm. 3.9). Because each JAkK is a constant
object (Lem. 3.6), JtkKi = JtkKj for all i, j. Hence Jbox+[~x← ~t].tKi is defined via
components JtKj(Jt1Kj , . . .) and Jbox+ t[~t/~x]K is defined via components Jt[~t/~x]Kj .
These are equal by Lem 3.8.

Jbox+ ind tKi is the d’th injection into the function with j’th component JtKj ,
and likewise for Jind box tKi.

Definition C.3 (ref. Def. 3.12).

– [a, d]RA1+A2
i t iff t ind u for d = 1 or 2, and aRAd

i u.

Note that R0
i is (necessarily) everywhere empty.

Proof (for Lems. A.1 and A.2). For 0 cases the premise fails so the the lemmas
are vacuous. + cases follow as for ×.

Proof (ref. Fundamental Lemma 3.13). abort: The induction hypothesis states
that JtKk(~a)R0

kt[~t/~x ], but this is not possible, so the theorem holds vacuously.
ind t case follows by easy induction.
case t of y1.u1; y2.u2: If JtKi(~a)RA1+A2

i t[~t/~x] then t[~t/~x ]  ind u for some

d ∈ {1, 2}, with JtKi(~a) = [a, d] and aRAd
i u. Then JudKi(~a, a)RAk ud[~t/~x, u/yd].

Now (case t of y1.u1; y2.u2)[~t/~x]  case ind u of y1.(u1[~t/~x]); y2.(u2[~t/~x]), which
reduces to ud[~t/~x, u/yi], and Lem. A.1 completes.

box+[~y ← ~u].t: JukKi(~a)RAk
i uk[~t/~x] by induction, so JukKi(~a)RAk

j uk[~t/~x] for

any j by Lem. A.3. By induction JtKj(Ju1Kk(~a), . . .)RB1+B2
j t[u1[~t/~x ]/y1, . . .]. If

JtKj(Ju1Kk(~a), . . .) is some [bj , d] we have t[u1[~t/~x]/y1, . . .]  ind s with bjR
Bd
j s.

Now (box+[~y ← ~u].t)[~t/~x ] 7→ box+ t[u1[~t/~x ]/y1, . . .]  box+ ind s, which finally
reduces to ind box s, which yields the result.
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The logic Lgλ may be extended to sums via the usual βη-laws and commuting
conversions for binary sums and the equational version of the box+ rule (ref.
Fig. 3):

Γ� ` t : Bd Γ ` ~t : Γ�

Γ ` box+[~x← ~t].(ind t) = ind(box[~x← ~t].t)

D Proof of Definability of Solutions of Behavioural
Differential Equations in gλ

An equivalent presentation of the topos of trees is as sheaves over ω (with Alexan-
drov topology) Sh (ω). In this section it is more convenient to work with sheaves
than with presheaves because the global sections functor Γ 1 in the sequence of
adjoints

Π1 a ∆ a Γ
where

Π1 : S → Set

Π1(X) = X(1)

∆ : Set→ S

∆(a)(α) =

{
1 if α = 0

a otherwise

Γ : S → Set

Γ (X) = X(ω)

is just evaluation at ω, i.e. the limit is already present. This simplifies notation.
Another advantage is that I : S → S is given as

(IX)(ν + 1) = X(ν)

(IX)(α) = X(α)

where α is a limit ordinal (either 0 or ω) which means that IX(ω) = X(ω) and
as a consequence, nextω = idX(ω) and Γ (IX) = Γ (X) for any X ∈ S and so
�(IX) = �X for any X so we don’t have to deal with mediating isomorphisms.

First we have a simple statement, but useful later, since it gives us a precise
goal to prove later when considering the interpretation.

Lemma D.1. Let X,Y be objects of S. Let F : I
(
Y X
)
→ Y X be a morphism

in S and F a function in Set from Y (ω)X(ω) to Y (ω)X(ω). Suppose that the
diagram

Γ
(
I
(
Y X
))

Γ (Y X)

Y (ω)X(ω) Y (ω)X(ω)

Γ (F )

lim lim

F

1 This standard notation for this functor should not to be confused with our notation
for typing contexts.
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where lim ({gν}ων=0) = gω commutes. By Banach’s fixed point theorem F has a
unique fixed point, say u : 1→ Y X .

Then lim(Γ (u)(∗)) = lim(Γ (next ◦ u)(∗)) = Γ (next ◦ u)(∗)ω = uω(∗)ω is a
fixed point of F .

Proof. The proof is trivial.

F (lim(Γ (u)(∗))) = lim(Γ (F )(Γ (next ◦ u)(∗)))
= lim(Γ (F ◦ next ◦ u)(∗)) = lim(Γ (u)(∗)).

Note that lim is not an isomorphism. There are (in general) many more
functions from X(ω) to Y (ω) than those that arise from natural transformations.
The ones that arise from natural transformations are the non-expansive ones.

D.1 Behavioural Differential Equations

Let ΣA be a signature of function symbols with two types, A and Str. Suppose
we wish to define a new k-ary operation given the signature ΣA. We need to
provide two terms hf and tf (standing for head and tail). hf has to be a term
using function symbols in signature ΣA and have type

x1 : A, x2 : A, · · · , xk : A ` hf : A

and tf has to be a term in the signature extended with a new function symbol

f of type (Str)k → Str and have type

x1 : A, · · · , xk : A, y1 : Str, · · · , yk : Str, z1 : Str, · · · , zk : Str ` tf : Str

In the second term the variables x (intuitively) denote the head elements of the
streams, the variables y denote the streams, and the variables z denote the tails
of the streams.

We now define two interpretations of hf and tf . First in the topos of trees
and then in Set.

We choose a set a ∈ Set and define JAKS = ∆(a) and JStrKS = µX.∆(a) ×
I(X). To each function symbol g ∈ Σ of type τ1, . . . , τn → τn+1 we assign a
morphism

JgKS : Jτ1KS × Jτ2KS × · · · × JτnKS → Jτn+1KS .

Then we define the interpretation of hf by induction as a morphism of type

JAKkS → JAKS by

JxiKS = πi

Jg(t1, t2, . . . , tn)KS = JgKS ◦ 〈Jt1KS , Jt2KS , · · · , JtnKS〉 .

For tf we interpret the types and function symbols in ΣA in the same way. But
recall that tf also contains a function symbol f . So the denotation of tf will be
a morphism with the following type

Jtf KS : I
(
JStrKJStrKkS

S

)
× JAKkS × JStrKkS × (I (JStrKS))

k → I(JStrKS)
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and is defined as follows

JxiKS = next ◦ ι ◦ πxi

JyiKS = next ◦ πyi
JziKS = πzi

Jg(t1, t2, . . . , tn)KS = I(JgKS) ◦ can ◦ 〈Jt1KS , Jt2KS , · · · , JtnKS〉 if g 6= f

Jf(t1, t2, . . . , tk)KS = eval ◦ 〈J ◦ πf , can ◦ 〈Jt1KS , Jt2KS , · · · , JtkKS〉〉

where can is the canonical isomorphism witnessing that I preserves products,
eval is the evaluation map and ι is the suitably encoded morphism that when
given a constructs the stream with head a and tail all zeros. This exists and is
easy to construct.

Next we define the denotation of hf and tf in Set. We set JAKSet = a
and JStrKSet = JStrKS (ω). For each function symbol in ΣA we define JgKSet =
Γ JgKS = (JgKS)

ω
.

We then define Jhf KSet as a function

JAKkSet → JAKSet

exactly the same as we defined Jhf KS .

JxiKSet = πi

Jg(t1, t2, . . . , tn)KSet = JgKSet ◦ 〈Jt1KSet , Jt2KSet , · · · , JtnKSet〉 .

The denotation of tf is somewhat different in the way that we do not guard
the tail and the function being defined with a I. We define

Jtf KSet : JStrKJStrKkSet

Set × JAKkSet × JStrKkSet × (JStrKSet)
k → JStrKSet

as follows

JxiKSet = ι ◦ πxi

JyiKSet = πyi

JziKSet = πzi

Jg(t1, t2, . . . , tn)KSet = JgKSet ◦ 〈Jt1KSet , Jt2KSet , · · · , JtnKSet〉 if g 6= f

Jf(t1, t2, . . . , tk)KSet = eval ◦ 〈πf , 〈Jt1KSet , Jt2KSet , · · · , JtkKSet〉〉

where ι is again the same operation, this time on actual streams in Set.
We then define

F : JStrKJStrKkSet

Set → JStrKJStrKkSet

Set

as

F (φ) (~σ) = Γ (fold)
((

Jhf KSet (hd(~σ)) , Jtf KSet (φ,hd(~σ), ~σ, tl(~σ))
))
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where hd and tl are head and tail functions (extended in the obvious way to
tuples). Here fold is the isomorphism witnessing that guarded streams are indeed
the fixed point of the defining functor.

Similarly we define

F : I
(
JStrKJStrKkS

S

)
→ JStrKJStrKkS

S

as the exponential transpose Λ of

F ′ = fold ◦

〈
Jhf K ◦ ~hd ◦ π2, Jtf KS ◦

(
id
I
(

JStrK
JStrKkS
S

) × 〈 ~hd, idJStrKkS
, ~tail

〉)〉

Proposition D.2. For the above defined F and F we have

lim ◦Γ (F ) = F ◦ lim

Proof. Let φ ∈ Γ
(
I
(
JStrKJStrKkS

S

))
= Γ

(
JStrKJStrKkS

S

)
. We have

lim(Γ (F )(φ)) = lim (Fω(φ)) = Fω(φ)ω

and

F (lim(φ)) = F (φω)

Now both of these are elements of JStrKJStrKkSet

Set , meaning genuine functions in

Set, so to show they are equal we use elements. Let ~σ ∈ JStrKkSet.
We are then required to show

F (φω) (~σ) = Fω(φ)ω(~σ)

Recall that F = Λ(F ′) (exponential transpose) so Fω(φ)ω(~σ) = F ′ω(φ, ~σ). Now
recall that composition in S is just composition of functions at each stage and
products in S are defined pointwise and that nextω is the identity function.

Moreover, the morphism hd gets mapped by Γ to hd in Set and the same
holds for tl. For the latter it is important that Γ (I(X)) = Γ (X) for any X.

We thus get

F ′ω(φ, ~σ) = foldω
(
(Jhf KS)ω (hd(~σ)) ,

(
Jtf KS

)
ω

(φ,hd(~σ), ~σ, tl(~σ))
)

And for F (φω) (~σ) we have

F (φω) (~σ) = foldω
(
Jhf KSet (hd (~σ)) ,

(
Jtf KSet

)
(φω,hd(~σ), ~σ, tl(~σ))

)
It is now easy to see that these two are equal. The proof is by induction on the
structure of hf and tf . The variable cases are trivial, but crucially use the fact
that nextω is the identity. The cases for function symbols in ΣA are trivial since
their denotations in Set are defined to be the correct ones. The case for f goes
through similarly since application at ω only uses φ at ω.
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Theorem D.3. Let (Σ1, Σ2) be a signature and I its interpretation. Let (hf , tf )
be a behavioural differential equation defining a k-ary function f using function
symbols in Σ. The right-hand sides of hf and tf define a term Φg

f of type

Φg
f : I(Strg → Strg → · · ·Strg︸ ︷︷ ︸

k+1

)→ (Strg → Strg → · · ·Strg︸ ︷︷ ︸
k+1

).

and a term Φf of type

Φf : (Str→ Str→ · · · Str︸ ︷︷ ︸
k+1

)→ (Str→ Str→ · · ·Str︸ ︷︷ ︸
k+1

).

by using Lagj (I(gj)) for interpretations of function symbols gj.

Let fg = fixΦg
f be the fixed point of Φg

f . Then f = Lk(box fg) is a fixed point
of Φf which in turn implies that it satisfies equations hf and tf .

Proof. Use Prop. D.2 together with Lemma D.1 together with the observation
that Set is a full subcategory of S with ∆ being the inclusion.

We also use the fact that for a closed term u : A → B (which is interpreted
as a morphism from 1 to BA) the denotation of L(u) at stage ν and argument
∗ is lim(Γ (u)(∗)).

D.2 Discussion

What we have shown is that for each behavioural differential equation that
defines a function on streams and can be specified as a standalone function de-
pending only on previously defined functions, i.e. it is not defined mutually with
some other function, there is a fixed point. It is straightforward to extend to
mutually recursive definitions by defining a product of functions in the same
way as we did for a single function, but notationally this gets quite heavy.

More importantly, suppose we start by defining an operation f on streams
first, and the only function symbols inΣA operate on A, i.e. all have type Ak → A
for some k. Assume that these function symbols are given denotations in S as
∆(g) for some function g in Set. Then the denotation in Set is just g.

The fixed point f in S is then a morphism from 1 to the suitable exponential.
Let f be the uncurrying of f . Then lim(Γ (f)(∗)) = Γ (f).

Thus if we continue defining new functions which use f , we then choose f as
the denotation of the function symbol f . The property lim(Γ (u)(∗)) = Γ (f) then
says that the f that is used in the definition is the f that was defined previously.

E About Total and Inhabited Types

An object in S is total and inhabited if all components are non-empty and all
restriction functions are surjective. We have the following easy proposition.
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Proposition E.1. Let P : S → S be a functor such that if X is a total and
inhabited object, so is P (X), i.e. P restricts to the full subcategory of total and
inhabited objects.

If P is locally contractive then its fixed point is total and inhabited.

Proof. We use the equivalence between the full subcategory tiS of S of total and
inhabited objects and the category of complete bisected non-empty ultrametric
spacesM. We know that the categoryM is an M -category2 and thus so is tiS.
It is easy to see that locally contractive functors in S are locally contractive in
the M -category sense. Hence if P is locally contractive and restricts to tiS its
fixed point is in tiS.

Corollary E.2. Let P be a non-zero polynomial functor whose coefficients and
exponents are total and inhabited. The functor P ◦ I is locally contractive and
its unique fixed point is total and inhabited.

Proof. Products and non-empty coproducts of total and inhabited objects are
total and inhabited. Similarly, if X and Y are total and inhabited, so is XY . So
any non-zero polynomial functor P whose coefficients are all total and inhabited
restricts to tiS. The functor I restricts to tiS as well (but note that it does not
restrict to the subcategory of total objects tS). Polynomial functors on S are
also strong and so the functor P ◦ I is locally contractive. Hence by Prop. E.1
its unique fixed point is a total and inhabited object.

In particular guarded streams of any total inhabited type themselves form a
total and inhabited type.

2 Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recur-
sive metric-space equations. Theor. Comput. Sci. 411(47), 4102–4122 (2010)


