
Guarded cubical type theory

Lars Birkedal1, Aleš Bizjak1, Ranald Clouston1, Hans Bugge Grathwohl1,
Bas Spitters1, and Andrea Vezzosi2

1 Department of Computer Science, Aarhus University
2 Department of Computer Science and Engineering, Chalmers University of Technology

Guarded dependent type theory [?] is a dependent type theory with guarded recursive types,
which are useful for building models of program logics, and as a tool for programming and
reasoning with coinductive types. This is done via a modality ., pronounced ‘later’, with a
constructor next, and a guarded fixed-point combinator fix : (.A → A) → A. This combinator
is used both to define guarded recursive types as fixed-points of functions on universes, as well
as to define functions on these types.

Cubical type theory [?] is an extension of Martin-Löf type theory with the goal of obtaining
a computational interpretation of the univalence axiom. The important novel idea in cubical
type theory is that the identity type is not inductively defined. Instead the identity type1

IdA (x, y) is defined to be the type of paths starting from x to y. These paths are defined via
an abstract interval I with endpoints 0, 1. Elements of the identity type are then introduced
using path abstraction: if t is a term of type A in context Γ, i : I, then 〈i〉 t is a term of type
IdA (t[0/i], t[1/i]) in context Γ. The elimination rule for the identity type is application: given
an element i of I and a proof p : IdA (x, y) the term p i is of type A, with two judgemental
equalities: p 0 ≡ x and p 1 ≡ y. Several extensionality properties are derivable in this type
theory. In particular, function extensionality is provable with the term

funext = λfgp. 〈i〉λa.(pa) i :
∏

fg:A→B

∏
x:A

(IdB (fx, gx)→ IdA→B (f, g)) . (1)

It is hoped that this type theory has decidable type-checking and satisfies canonicity.
We propose guarded cubical type theory, a combination of the two type theories with the goal

of obtaining a type theory with a later modality and guarded fixed-point combinator that has
decidable type-checking and satisfies canonicity. In previous work on guarded dependent type
theory the focus was on designing the rules of the type theory so that it is possible to work with
guarded recursive types. In particular, the type theory in [?] is an extensional type theory, i.e.,
there is the equality reflection rule for the identity type, and there is the judgemental equality

fix f ≡ f(next(fix f)). (2)

Both of these prevent decidable type-checking. Moreover, the type theory in [?] also includes

com : . IdA (x, y)→ Id.A (nextx, next y)

which is the inverse to the canonical term of type Id.A (nextx, next y)→ . IdA (x, y). We found
that com is crucial for proving properties of guarded recursive types. Such a term com is not
definable in Martin-Löf type theory when the identity type is defined in the usual way and so
we need to introduce it axiomatically, which leads to the loss of canonicity. Note the formal
resemblance of the type of com to the type of the axiom of function extensionality in (1).

1We do not distinguish between the types Id and Path in the interest of presentation.



Guarded cubical type theory Using the constructs from cubical type theory we can address
both of these difficulties. First, because the identity type has a much more flexible introduction
rule, the term com becomes definable as

com = λ (p : . IdA (x, y)) . 〈i〉 next [p′ ← p] .p′i,

which should be compared to the term funext in (1). Here [p′ ← p] is a delayed substitution.
Delayed substitutions, introduced in [?], are a generalisation of the applicative functor structure
of . to dependent types.

Interestingly, and rather surprisingly, we can utilise the face lattice F of cubical type theory
to control fixed-point unfolding. We omit the fixed-point unfolding rule (2) from the type theory
and instead decorate the fixed-point with a face which specifies when the fixed-point should be
unfolded. The typing rule for fix becomes (omitting some details for this abstract):

Γ ` t : .A→ A Γ ` φ : F
Γ ` fixφ t

with the only judgemental equality rule being fix1F t ≡ f
(
next

(
fix0F t

))
, where 1F and 0F are

the top and bottom elements of F. This judgemental equality rule allows us to unfold the
fixed-point on demand. The face φ associated to the fixed-point can then be used to prove

〈i〉 fixi=1 f : IdA
(
fix0F f, f

(
next

(
fix0F f

)))
.

Prototype implementation Our prototype implementation of the type theory2 extends the
cubical type checker3 with . modality and guarded fixed-points. One of the motivations behind
cubical type theory is to have some extensionality, while preserving the strong metatheoretic
properties of intensional type theory. Our experiments with the prototype implementation show
that the examples described in [?] can indeed be expressed in guarded cubical type theory,
albeit with some more manual rewriting, since fixed-point unfolding is no longer a judgemental
equality, but only a propositional one. This is a confirmation that the cubical type theory is
relevant not only for mathematical applications, but also in areas of computer science.

Semantics We are working on a semantics of guarded cubical type theory based on an ax-
iomatic version of the cubical model in the internal logic of cubical sets [?, ?]. Our axioms
include a presheaf topos with an internal De Morgan algebra having the disjunction property
and an internal operator ∀. The verification that these axioms actually suffice is nearly done.

The concrete model we use is based on presheaves over the product of the category of cubes
(as used in the model of cubical type theory) and the preorder ω (as used in the model of
guarded dependent type theory), and this presheaf topos satisfies our axioms.

2https://github.com/hansbugge/cubicaltt/tree/gcubical
3https://github.com/mortberg/cubicaltt

2

https://github.com/hansbugge/cubicaltt/tree/gcubical
https://github.com/mortberg/cubicaltt

