
Information and Computation 249 (2016) 160–189
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

A Kripke logical relation for effect-based program

transformations ✩

Lars Birkedal a,∗, Guilhem Jaber b,1, Filip Sieczkowski a,2,∗, Jacob Thamsborg c

a Aarhus University, Denmark
b Ecole des Mines de Nantes, France
c IT University of Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2013
Received in revised form 22 October 2014
Available online 3 May 2016

Keywords:
Effect type system
Kripke logical relation
Program transformation

We present a Kripke logical relation for showing the correctness of program transformations
based on a region-polymorphic type-and-effect system for an ML-like programming
language with higher-order store and dynamic allocation. We also show how to use
our model to verify a number of interesting program transformations that rely on effect
annotations.
In building the model, we extend earlier work by Benton et al. that treated, respectively
dynamically allocated first-order references, and higher-order store for global variables. We
utilize ideas from region-based memory management, and on Kripke logical relations for
higher-order store.
One of the key challenges that we overcome in the construction of the model is treatment
of masking of regions (conceptually similar to deallocation). Our approach bears similarities
to the one used in Ahmed’s unary model of a region calculus in her Ph.D. thesis.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A type system for a programming language classifies programs according to properties that the programs satisfy. An
effect system is a type system that, in particular, classifies programs according to which side effects the programs may have.
A variety of effect systems have been proposed for higher-order programming languages, e.g., [2–4], see [5] for a recent
overview. Effect systems can often be understood as specifying the results of a static analysis, in the sense that it is possible
to automatically infer types and effects. Effect systems can be used for different purposes: they were originally proposed by
Gifford and Lucassen in [2] as a means of combining functional and imperative features of a language, and for parallelization
purposes, but since then they have also been used as the basis for implementing ML using a stack of regions for memory
management [4,6] and for region-based memory management in Cyclone, a safe dialect of C [7]. Lately, they have also
been used for termination analysis for higher-order concurrent programs [8,9], and for ensuring determinism of parallel

✩ An earlier version of this paper was presented at the ICFP 2011 conference [1]. In addition to including more proofs and examples, the present paper
also includes a treatment of an extension of the type system with region polymorphism, which was not covered in [1].

* Corresponding authors. Postal address: Dept. of Comp. Science, Aarhus University, Aabogade 34, DK-8200 Aarhus N, Denmark.
E-mail addresses: birkedal@cs.au.dk (L. Birkedal), guilhem.jaber@mines-nantes.fr (G. Jaber), filips@cs.au.dk (F. Sieczkowski), thamsborg@itu.dk

(J. Thamsborg).
1 Current affiliation: Université Paris 7, France.
2 Current affiliation: INRIA Paris, France.
http://dx.doi.org/10.1016/j.ic.2016.04.003
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:birkedal@cs.au.dk
mailto:guilhem.jaber@mines-nantes.fr
mailto:filips@cs.au.dk
mailto:thamsborg@itu.dk
http://dx.doi.org/10.1016/j.ic.2016.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.04.003&domain=pdf

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 161
programs [10,11]. In a recent series of papers, Benton et al. have argued that another important point of effect systems is
that they can be used as the basis for effect-based program transformations, in particular compiler optimizations [12–15].
The idea is that certain program transformations are only sound under additional assumptions about which effects program
phrases may, or rather may not, have. For example, in a higher-order language with references it is only sound to hoist
an expression out of a lambda abstraction if it is known that the expression neither allocates new references, nor reads or
writes references.

While it is intuitively clear that effect information is important for validating program transformations, it is surprisingly
challenging to develop semantic models that can be used to rigorously justify effect-based transformations. In earlier work,
Benton et al. developed semantic relational models of effect systems for a higher-order language with dynamically allocated
first-order references (ground store) [14] and for a higher-order language with global variables for higher-order store (but
no dynamic allocation) [15].

In this paper we present a Kripke logical relations model of a region-based effect system for a higher-order language
with higher-order store and dynamic allocation, i.e., with general ML-like references. As pointed out in [15], this is a par-
ticularly challenging extension and one that is important for soundness of effect-based transformations for realistic ML-like
languages. We now explain what the main challenges are; in Section 3 we give an intuitive overview of how we address
these challenges.

The main challenge arises from effect masking: Our region-based effect system includes an effect masking rule that
enables hiding local uses of effects. This makes it possible to view a computation as pure even if it uses effects locally
and makes the effect system stronger (it can justify more program transformations). To model effect masking we need to
model references that, conceptually speaking, become dangling because they point into a region that is masked away. We
say “conceptually speaking” because in the operational semantics there is no deallocation of references (the operational
semantics is completely standard). However, in our model we have to reason as if regions could actually be allocated and
deallocated.

Here is a simple concrete example: Consider the following expression e, typed as indicated3 (where 1 denotes the unit
type):

let x= refρ 7 in let y= refσ x in

λz.y := x : 1 →{wrσ } 1, {alσ }
The program allocates two references, binds them to x and y, and then returns a trivial function from unit to unit that
assigns x to y. The types indicate that x will be bound to a location in region ρ , say location 0, and that y will be bound
to a location in region σ , say location 1. At location 0 the value 7 is stored and at location 1 the location 0 is stored. The
so-called latent effect {wrσ } of the function type of the whole expression describes which effects the function may have
when called. Finally the entire expression has the effect {alσ } as it allocates a location in region σ . It performs allocation
in region ρ as well, but this effect has been masked out: since no ρ appears in the return type, the expression cannot leak
location 0, and we can, conceptually, deallocate all locations in region ρ once the computation has run; this is what the
masking rule captures. This particular example, however, was chosen to stress test the masking rule, as location 0 is in fact
leaked: it is in the function closure that the expression returns. The function neither reads not writes location 0, but it does
write it to the heap; our model must be able to cope with such conceptually dangling pointers. On the level of types, the
meaning of the type refρ int of x changes: after the allocation of values for x and y, it contains location 0, but what should it
contain after region ρ has been masked out? If, e.g., refρ int is taken to be empty, then the function is most likely no longer
well-typed. We explain our answer to this question in Section 3. Since we have to reason as if regions are deallocated, it
is, in hindsight, not so surprising that our approach is closely related to the one used by Ahmed in her unary model of a
region calculus with region deallocation [16].

One could argue that the program above should in fact be treated as semantically pure, even if the type system cannot
infer this fact, since the location bound to y is never made accessible to the context. Thus, one might want to provide a
stronger masking principle on the semantic side. We do not pursue that goal in the current paper and hence our semantic
treatment of masking mimics the syntactic masking rule. In future work, it will be interesting to investigate a more liberal
notion of semantic masking.

Note that the effect annotations in the types are just annotations; the operational semantics is completely standard
and regions only exist in our semantic model, not in the operational semantics. Further note that the issues in the above
example do not arise for a language with only ground store.

Another challenge arises from the fact that since our language includes dynamically allocated general references, the
existence of the logical relation is non-trivial; in particular, the set of worlds must be recursively defined. Here we define
the worlds as a solution to a recursive metric-space equation, building on our earlier work [17], which gives a unified
account of models based on step-indexing [16] and on domain theory.

Yet another challenge arises from the fact that our language includes a new form of region polymorphism, inspired by [3],
but not covered before in semantic models for validating effect-based program equivalences. Region polymorphism makes

3 Note that conceptually the whole expression could be considered pure: none of its effects can actually be observed by any context. However, our model
and type-and-effect system are not fine-grained enough to express this.

162 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
the type system significantly more expressive (fewer regions are collapsed, so more program transformations will hold).
However, combining region polymorphism and program equivalence is not straightforward. Indeed, consider the following
example:

λx.λy. x := 0; y := 1 ≈ λx.λy. y := 1; x := 0 : refρ int → refσ int →wrρ ,wrσ 1

Both sides take two references as arguments, one in region ρ and one in region σ , and assigns to them. The
order of assignments is different though, but as the references belong to different regions, they cannot be identical
and so the two sides are indeed equivalent. We would like this equivalence also to hold at region-polymorphic type
∀ρ, σ .refρ int → refσ int →wrρ ,wrσ 1. But this would be true only if ρ and σ cannot be instantiated to the same re-
gion. To express this, we use a restricted form of region polymorphism, ∀ρ /∈ �. τ ε , for which region variable ρ can
only be instantiated by regions not in �. For the example above, the equivalence will then hold at the type ∀ρ.∀σ /∈
{ρ}.refρ int → refσ int →wrρ ,wrσ 1.

We should stress the practical importance of region polymorphism for typing the impure library functions. Consider the
function

swap≡ λ x.λ y.let v =! xin x := ! y; y := v,

and the application swap r1 r2; swap r3 r4. Without the region polymorphism, we can type the function as swap : refρ int →
refρ int →rdρ ,wrρ 1. However, this requires the references r1 and r3, which appear at different call sites to the library function,
to be in the same region ρ . In fact, this treatment leads to an unnecessary collapsing of many regions together, which can
lead to program transformations being inapplicable. If, however, we can give the library functions types that are polymorphic
in the memory regions they access, the different call sites can use different instantiations and the regions can be much more
fine-grained, allowing more program transformations.

One may worry whether our resulting model now becomes much more complicated than the earlier, already non-trivial,
models of Benton et al. [14,15]. As we shall explain in Section 8, that is not the case. Indeed, our model is arguably a bit
simpler even though it applies to a richer language. Moreover, it also becomes simpler to verify equivalences using the
model.

Our relational model is built directly over the operational semantics, using our metric approach to step-indexing. We
could also have defined the model using a denotational model of the programming language; see the discussion in Section 8
— here we preferred the operational approach because it is perhaps more widely accessible.

We use our model to validate a number of interesting effect-based program transformations that, to the best of our
knowledge, have not been proved correct before, see Section 7.

To focus the presentation on the core challenges, we here consider a monomorphically typed higher-order programming
language with general references, but leave out universal and existential types as well as recursive types. However, we
want to stress that since our semantic techniques (step-indexed Kripke logical relations over recursively defined worlds) do
indeed scale well to universal, existential, and recursive types, e.g. [16,18,17], it is straightforward to extend our model to a
language with such types.4

2. Language and effect system

2.1. Syntax

The expressions and values of our model language are defined in the grammar below. We use e to range over the set of
expressions E , v to range over the set of values V , l to range over a countably infinite set of locations L, and n to range
over integers.

e ::= x | l |n | () | 〈e1, e2〉 |proj1 e |proj2 e | fix f (x).e | e1 e2

| susp e | force e | ref e | e1 := e2 | ! e

v ::= l |n | () | 〈v1, v2〉 | fix f (x).e | susp e

E ::= [] | 〈E, e〉 | 〈v, E〉 |proj1 E |proj2 E | E e | v E | force E

| ref E | E := e | v := E | ! E

The only non-standard constructs are susp e and force e. Intuitively, susp e suspends the computation e, and force e forces
the suspension that e evaluates to. These constructs are used in connection with region abstraction and instantiation, as
explained in Section 2.3.

4 With type abstractions as values, we would have a latent effect on a polymorphic type, which would thus be of the form ∀α.τ ε .

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 163
2.2. Dynamic semantics

〈E[proj1 〈v1, v2〉] |h〉 → 〈E[v1] |h〉
〈E[proj2 〈v1, v2〉] |h〉 → 〈E[v2] |h〉
〈E[(fix f (x).e) v] |h〉 → 〈E[e[fix f (x).e/ f , v/x]] |h〉
〈E[force (susp e)] |h〉 → 〈E[e] |h〉

〈E[ref v] |h〉 → 〈E[l] |h[l
→ v]〉 if l /∈ dom(h)

〈E[l := v] |h〉 → 〈E[()] |h[l
→ v]〉 if l ∈ dom(h)

〈E[! l] |h〉 → 〈E[h(l)] |h〉 if l ∈ dom(h)

Heaps H are finite maps from locations to closed values, and, for e ∈ E , h ∈ H and j ≥ 0, we write 〈e | h〉 j→ 〈e′ | h′〉
if 〈e | h〉 reduces to 〈e′ | h′〉 in j steps, counting all reduction steps. We write irr〈e | h〉 to state that no further reductions
of 〈e | h〉 are possible, either because e is a value or because we are stuck. Runtime errors (such as trying to look up a
nonexistent location or trying to apply a number as a function) are modeled by the evaluation getting stuck.

2.3. Type and effect system

Our effect system ensures that programs are well-typed in the standard sense of not getting stuck and, moreover, tracks
dependencies and side-effects of computations on the heap.

The typing rules for our effect system are given in Fig. 1. Types are defined by the following grammar:

δ ::= rdρ |wrρ |alρ

ε ::= δ1, . . . , δn

τ ::= 1 | int |τ1 × τ2 | refρτ |τ1 →ε τ2 | ∀ρ /∈ �.τε

where ρ ranges over a countably infinite set of region variables RV , � is a finite subset of RV and ε ranges over the set
of effects. An effect is a finite set of primitive effects, and a primitive effect is of one of the forms rdρ , wrρ , or alρ . The
primitive effect rdρ specifies a read effect on region ρ . Likewise wrρ specifies a write effect and alρ specifies an allocation
effect (that locations may be allocated in region ρ). Note that, as usual, the function type τ1 →ε τ2 includes a latent effect ε;
this is the effect that the function may have when called. The main novelty of this system is the restricted form of region
polymorphism ∀ρ /∈ �. τ ε , which restricts the possible instantiations of ρ to regions which are not in �. In practice, as we
will see, we restrict the choice of � to be FRV(τ , ε)\{ρ}.

We define the free region variables FRV(τ) of a type τ :

FRV(δ) ::= {ρ} with δ ∈ {rdρ,wrρ,alρ}
FRV(δ1, . . . , δn) ::= FRV(δ1) ∪ . . . ∪ FRV(δn)

FRV(1) ::= ∅
FRV(int) ::= ∅

FRV(τ1 × τ2) ::= FRV(τ1) ∪ FRV(τ2)

FRV(refρτ) ::= {ρ} ∪ FRV(τ)

FRV(τ1 →ε τ2) ::= FRV(τ1) ∪ FRV(ε) ∪ FRV(τ2)

FRV(∀ρ /∈ �.τε) ::= (FRV(τ) ∪ FRV(ε)) \ {ρ}
Thus ρ is bound in ∀ρ /∈ �. τ ε . Substitution in a type τ of a region variable σ for another region variable ρ is written
τ [σ/ρ] and is defined as usual, avoiding capture of bound region variables in region polymorphic types.

Furthermore, we define a notion of well-formed types, denoted wf(τ), which restricts the region quantification that can
occur in τ . Intuitively, any region-polymorphic type within τ that binds a region ρ has to ensure that ρ is different from its
free region variables. Formally, for any ∀ρ /∈ �. σε within τ , � has to be the set (FRV(τ) ∪ FRV(ε)) \ {ρ}. The full definition
follows.

164 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
T-Ax

wf(τ),wf(
) FRV(τ ,
) ⊆ �

� |
, x :τ � x : τ , ∅

T-Unit

wf(
) FRV(
) ⊆ �

� |
 � () : 1, ∅
wf(
) FRV(
) ⊆ �

� |
 � n : int, ∅ T-Int

T-Pair

� |
 � e1 : τ1, ε1 � |
 � e2 : τ2, ε2

� |
 � 〈e1, e2〉 : τ1 × τ2, ε1 ∪ ε2

� |
 � e : τ1 × τ2, ε

� |
 � proji e : τi , ε
T-Proji

T-Fix

� |
, f :τ1 →ε τ2, x :τ1 � e : τ2, ε

� |
 � fix f (x).e : τ1 →ε τ2, ∅
� |
 � e1 : τ1 →ε τ2, ε1 � |
 � e2 : τ1, ε2

� |
 � e1 e2 : τ2, ε1 ∪ ε2 ∪ ε
T-App

T-Alloc

� |
 � e : τ , ε ρ ∈ �

� |
 � ref e : refρτ , ε ∪ {alρ }

T-Deref

� |
 � e : refρτ , ε

� |
 � ! e : τ , ε ∪ {rdρ }
� |
 � e1 : refρτ , ε1 � |
 � e2 : τ , ε2

� |
 � e1 := e2 : 1, ε1 ∪ ε2 ∪ {wrρ } T-Assign

T-RegGen

�,ρ |
 � e : τ , ε ρ /∈ FRV(
) and � = FRV(τ , ε)\{ρ}
� |
 � susp e : ∀ρ /∈ �.τ ε, ∅

T-RegInst

� |
 � e : ∀ρ /∈ �.τ ε, ε′ σ ∈ �\�
� |
 � force e : τ [σ/ρ], ε[σ/ρ] ∪ ε′

T-Masking

�,ρ |
 � e : τ , ε ρ /∈ FRV(
, τ)

� |
 � e : τ , ε − ρ

T-Sub

� |
 � e : τ1, ε1 � � τ1 ≤ τ2 ε1 ⊆ ε2

� |
 � e : τ2, ε2 (FRV(ε2) ⊆ �)

Fig. 1. Type and effect system.

wf(1) ::= true

wf(int) ::= true

wf(τ1 × τ2) ::= wf(τ1) ∧ wf(τ2)

wf(refρτ) ::= wf(τ)

wf(τ1 →ε τ2) ::= wf(τ1) ∧ wf(τ2)

wf(∀ρ /∈ �.τε) ::= FRV(τ , ε) \ {ρ} = � ∧ wf(τ)

Well-formedness is extended straightforwardly to typing contexts
.
Judgments are of the form: � |
 � e : τ , ε. Here � is a region variable context (a finite set of region variables),
 is a

variable context (a finite map from variables to types), e is an expression, τ is the result type and ε is the effect of the
computation. The typing rules are given in Fig. 1.

The effect system is fairly standard, except for the region polymorphism. Note the inclusion of the effect masking rule
T-Masking; here ε − ρ is defined as ε − {rdρ, wrρ, alρ} and �, ρ denotes the union of � and {ρ}. We write FRV(
, τ) for
the region variables in the types of
 and in τ . The masking rule expresses that to mask out primitive effects on ρ from ε,
the region variable ρ must not be free in
, nor in τ . The idea is that in this case the remaining part of the computation
cannot access ρ and thus we may hide the effects on ρ .

The rule T-RegGen forces the forbidden regions in � of the restricted polymorphism ∀ρ /∈ �. τ ε to be equal to the
free region variables of τ and ε. This ensures the well-formedness of ∀ρ /∈ �. τ ε . As we could expect, the rule T-RegInst

prevents the instantiation of ρ by a region in �. Note the use of suspend (susp e) and force (force e) for region abstraction
and instantiation; alternatively we could have used a value restriction.

Also note that there is a standard notion of effect subtyping, given by finite set inclusion, which also yields a notion of
subtyping, defined by the rules in Fig. 2.

Consider the example expression e from the introduction. Note that it is well-typed (let-expressions are definable as
usual) since the judgment

{σ } | ∅ � e : 1 →wrσ 1, {alσ }

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 165
� � τ ≤ τ
(FRV(τ) ⊆ �) � � τ1 ≤ τ ′

1 � � τ2 ≤ τ ′
2

� � τ1 × τ2 ≤ τ ′
1 × τ ′

2

� � τ ′
1 ≤ τ1 � � τ2 ≤ τ ′

2 ε1 ⊆ ε2

� � τ1 →ε1 τ2 ≤ τ ′
1 →ε2 τ ′

2
(FRV(ε2) ⊆ �)

�,ρ � τ1 ≤ τ2 ε1 ⊆ ε2

� � ∀ρ /∈ �1. τ1
ε1 ≤ ∀ρ /∈ �2. τ2

ε2
(FRV(ε2) ⊆ �, ρ and wf(∀ρ /∈ �i . τi

εi))

Fig. 2. Subtyping rules.

is derivable in the effect system. The last rule applied is the T-Masking rule, which enables hiding the local effect on ρ .
Specifically, we apply the masking rule like this:

{σ ,ρ} | ∅ � e : 1 →wrσ 1, {alρ,alσ }
{σ } | ∅ � e : 1 →wrσ 1, {alσ }

Thus we hide the allocation and use of the local reference bound to x.
Effect masking makes it possible to do more optimizations: consider the familiar example of an efficient implementation

fib of the Fibonacci function using two local references. We can use the masking rule to give it type and effect int →∅ int, ∅.
This allows us to view the imperative implementation as pure, and thus, e.g., by Theorem 30 we find that it is sound to
optimize two identical calls to fib into one call. This sounds like a simple optimization, but the point is that a compiler can
perform it automatically, just based on the effect types — and our model justifies that it is sound to do so. See [14,15] for
more examples.

Note, though, that these earlier works either have ground store (only integers in memory) or no dynamic allocation, so
many non-trivial uses of memory cannot be expressed. By contrast, we can write, say, a function that sorts a (functional)
list of integers by doing an internal (imperative) heap sort, i.e., by building a heap in fresh memory, and returning a sorted
list. Using the masking rule, we could type such a function as a pure function with no effects, and would know, e.g., that
sorting the same list twice serves no purpose.

We end this section by recording some simple facts about the type system (all proved by induction).

Lemma 1. If wf(τ) then wf(τ [σ/ρ]).

Lemma 2. If � � τ1 ≤ τ2 then wf(τ1) iff wf(τ2).

Proposition 3. If � |
 � e : τ , ε then wf(τ), wf(
) and FRV(τ , ε,
) ⊆ �.

3. Overview of the technical development

Our starting point is the Kripke logical relation reading of types for an ML-like programming language that has been
explored extensively by the authors and others [18,19,17,20]. The common approach is to augment the semantics — be it
operational or denotational — with worlds that keep track of the layout of the heap: it knows the types of values stored
at the allocated locations of the heap.5 We then index type interpretations by worlds; this makes it possible to interpret
refτ as the set of allocated locations that hold values of type τ . A computation has the “precondition” that all locations
hold well-typed values according to the world, and this property must be re-established after running the computation, i.e.,
it also serves as a “postcondition”. As more locations are allocated, the world grows and the interpretation of types is set
up to grow as well: it is a crucial property that interpreting types in future worlds yields more (or at least no fewer) values,
this we refer to as type monotonicity.

To extend this approach to the present region-based type-and-effect system, the worlds have to be partitioned into
regions and interpreting refρτ only considers region ρ of the world for locations that hold values of type τ . Also, compu-
tations now have effects and hence their behavior is more restricted: as “precondition” they only assume well-typedness of
values at locations in the regions with read effects; as “postcondition” they are required to have performed only well-typed
writes and allocations and, importantly, only in such regions as permitted, respectively, by the write and allocation effects.

The masking rule, however, introduces a new dimension to the development of worlds: in addition to adding new
locations with types to existing regions as sketched above, we may now introduce new regions as well as mask out existing
ones. One can loosely think of masking out region ρ as deallocating the locations of that region. A slightly revised intuition

5 In general, worlds may contain complex invariants of the heap; they may even vary over time and may thus be represented by state transition
systems [20]. Here, we only need the invariant that values stored at locations belong to certain types.

166 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
is that we just stop caring about region ρ: the environment has no way of telling the memory region is there, and so we
may safely relinquish control. On the level of worlds, we discard the region, i.e., lose the locations and the associated types.
Whether the locations are actually deallocated or just float around in the surroundings does not matter: from our point of
view they are gone. Thus, semantically, region masking is related to region deallocation. Ahmed developed a step-indexeded
model of region deallocation in her thesis [16], which turns out to be closely related to our treatment of region masking.
We now explain our approach, which was developed independently of Ahmed’s, and then detail the relationship to Ahmed’s
approach.

As argued by example in the Introduction, region masking leaves us with the issue of dangling pointers. Phrased more
concretely: how should the interpretation of types cope with region masking? What is, say, the interpretation of refρτ in a
world where region ρ has been masked out? A natural choice is the empty set — after all, we know nothing about region
ρ so what locations could we possibly choose. We, however, take a different approach: We generally interpret a type as all
values with the properties you expect from that type. The more properties, the fewer values and vice versa. A value v in
refρτ is a reference to a location that we used to — but no longer — control. The value at the location may have changed
or it may even have been deallocated: v is conceptually dangling. What can we reasonably do with a dangling pointer? We
can neither read nor write it, indeed, we can do only things that go for all values, e.g., put it into a pair, project it out, etc.
In other words, we expect no properties of dangling pointers and correspondingly interpret refρτ as the set of all values.
We take a similar stand on functions: interpreting a function type that has effects on masked out regions gives the set of
all values; such functions are somehow dangling too. Running such a function relies on preconditions outside our control,
so we make no promises about the behavior.

This approach goes well with type monotonicity: the interpretation of types should not shrink under masking and,
indeed, masking out region ρ enlarges refρτ to hold all values. There is a catch, though, since future worlds may introduce
new regions as well, and reintroducing region ρ would not do. This is obvious from type monotonicity; a more conceptual
explanation, however, is this: assume that some function reads region ρ and that region ρ holds location l that stores
values of some type. To run the function, we need to establish the precondition that a value of the proper type is stored
at location l, because the function could very well read l. We then mask out region ρ , losing all information about l in the
process, and afterwards reintroduce region ρ . To run the function now, we verify that all locations in region ρ hold values
of appropriate type — this is, after all, the precondition of the function — but as l is no longer in ρ , we cannot expect
proper behavior of the function.

We solve this issue by tracking, in the worlds, the regions that have been masked out and prohibit their reintroduction.
One viewpoint is that, as the world develops over time, a region goes through a life-cycle: initially, it is unknown to the
world, but at some point it gets initialized, joining the set of live regions. With further development of the world, locations
with associated types are added to the region. This proceeds until the region is masked out; it loses all content and is
moved to the set of dead regions. And this is a one-way street: once you are gone, you can’t come back.

In Ahmed’s unary model of a region calculus with region deallocation [16], she uses the same idea of keeping track of
dead regions. One technical difference is that in Ahmed’s approach, the dead regions still contain the old locations and their
types, whereas here we only retain the region name. This difference seems to be unimportant. In Ahmed’s case, regions
are part of the operational semantics, whereas in our case, they are a purely logical construct used for reasoning about the
standard operational semantics, following Benton et al.’s earlier work [14,15].

Local reasoning Conceptually, a world does not describe the entire heap, just the part of it that the program sees or controls.
On the level of definitions, this comes down to a frame property of our computations: a computation in a world runs in
a world-adhering heap extended with a frame, and the latter remains unchanged. In addition, a computation may allocate
locations that are not tracked by the ensuing world; these locations are conceptually transferred to the surroundings, they
become part of the frame of the following computation. This is the fate of locations in regions that are masked out. This way,
we achieve a form of local reasoning by quantifying over frames, similarly to models of separation logic for higher-order
languages [21].

4. Metric spaces and the type-world circularity

As argued above, we intend to augment our semantics with worlds that track the layout of the heap; hence we are
faced with the construction of such worlds. Defining them directly will not do since, loosely, a world holds semantic types
whilst semantic types are parameterized over worlds; this is the type-world circularity observed already by Ahmed in her
thesis [16].

In recent work, Reus, Schwinghammer, Støvring, Yang and two of the authors [17] have proposed a general solution
to such circularities, applying metric-space theory. The notion of worlds we require here is sufficiently simple that this
solution is applicable off-the-shelf, so to speak. So we omit the machinery of the construction from the main text and only
present the resulting definition of worlds, since this is our main object of interest. Details of the construction are given
in Appendix A. In addition, we will largely ignore the fact that we actually deal in metric spaces and not just plain sets.
We emphasize that this is just for presentation purposes, worlds and types are metric spaces with certain properties; this
is necessary to solve the circularity and must be taken into account, e.g., when interpreting types.

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 167
ParBij(X, Y ,Z) = {P ⊆fin X × Y × Z | ∀(x1, y1, z1), (x2, y2, z2) ∈ P .

(x1 = x2 ⇒ y1 = y2 ∧ z1 = z2)

∧(y1 = y2 ⇒ x1 = x2 ∧ z1 = z2)}
W = {(ϕ,ψ) ∈ (RN ⇀fin ParBij(L,L, T̂)) ×Pfin(RN) |

dom(ϕ) ∩ ψ = ∅
∧ ∀r, s ∈ dom(ϕ). r �= s ⇒ dom1(ϕ(r)) ∩ dom1(ϕ(s)) = ∅
∧ dom2(ϕ(r)) ∩ dom2(ϕ(s)) = ∅}

w � w ′ ⇐⇒ ∃n ∈ N. ∃w0, w1, . . . , wn ∈ W. w = w0 ∧ w ′ = wn ∧
∀i ∈ {0, . . . ,n − 1}. (∃r ∈RN . wi →reg(r) wi+1)

∨ (∃r ∈RN .∃l1, l2 ∈L.∃μ ∈ T̂. wi →al(r,l1,l2,μ) wi+1)

∨(∃r ∈RN . wi →mask(r) wi+1)

T = W →mon URel(V), ι : T̂ ∼= 1

2
T

Fig. 3. Our semantic footing: worlds and types. The former comes equipped with the preorder that is the reflexive, transitive closure of the transitions in
Fig. 4.

(ϕ,ψ) →al(r,l1,l2,μ) (ϕ′,ψ) ⇐⇒ r ∈ dom(ϕ) ∧ l1 /∈ dom1(ϕ(r))

∧l2 /∈ dom2(ϕ(r)) ∧ dom(ϕ′) = dom(ϕ)

∧ϕ′(r) = ϕ(r) ∪ {(l1, l2,μ)}
∧∀s ∈ dom(ϕ) \ {r}. ϕ′(s) = ϕ(s).

(ϕ,ψ) →reg(r) (ϕ′,ψ) ⇐⇒ r ∈RN \ (dom(ϕ) ∪ ψ)

∧ dom(ϕ′) = dom(ϕ) ∪ {r}
∧ϕ′(r) = ∅ ∧ ∀s ∈ dom(ϕ).ϕ′(s) = ϕ(s).

(ϕ,ψ) →mask(r) (ϕ′,ψ ′) ⇐⇒ r ∈ dom(ϕ) ∧ dom(ϕ′) = dom(ϕ) \ {r}
∧ψ ′ = ψ ∪ {r}
∧∀s ∈ dom(ϕ) \ {r}. ϕ′(s) = ϕ(s).

Fig. 4. The three worlds transitions. We have r ∈ RN in all of them and additionally l1, l2 ∈ L and μ ∈ T̂ in the first. Transitions are, once parameters are
given, partial maps from W to W.

We face an additional challenge here: as described above, we intend to track dead regions to avoid recycling them. But
if an expression is well-typed by the masking rule, then in terms of the development of worlds, it initializes and eventually
masks out the very same region on each evaluation, and we may want to run it more than once. Our solution to this is to
introduce a layer of indirection, following the ideas of earlier work [4,6]: on the level of syntactic types, we have the region
variables RV introduced above. In the worlds, however, we work with a countably infinite set of region names RN . To
interpret types we have region environments, i.e., maps RV ⇀fin RN with adequate domains; thus, on each evaluation of an
expression that performs masking, we can map the same region variable to a fresh region name. In the textual explanations
below, however, we purposely blur the distinction between region variables, region names and the regions themselves.

The definition of worlds and types is given in Fig. 3; the ordering on worlds relies on the world transitions given in
Fig. 4. Both warrant a few comments. ParBij(X, Y , Z) are finite partial bijections between X and Y decorated with elements
from Z; we write dom1(P) for the set of first coordinates and dom2(P) for the set of second coordinates. Worlds W have
two components: the first is the live regions, these are partial bijections; the second the dead regions. No region can be
both live and dead, nor can any location belong to more than one region.

Worlds may develop over time according to the transitions in Fig. 4. The first transition adds a location pair (l1, l2)
with associated type (μ) to a live region (r); this corresponds to an actual allocation in the operational semantics and is
a standard notion of world extension. The second and third transitions are orthogonal to the first. They give the region
dynamics and have no counterpart in the operational semantics; they are, however, intimately connected to the masking
rule. The first initializes a new empty region, the second masks out a live one, losing the partial bijection in the process.
After being masked out, a region is considered dead and cannot be initialized once more.

Since worlds consist of partial bijections on locations and allocation of new locations takes place in “lock-step” on both
sides, one might be concerned about whether it is possible to relate computations that use different numbers of locations.

168 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
�1� R w = {(k, (), ()) | k ∈ N}
�int� R w = {(k,n,n) | k ∈ N ∧ n ∈ Z}

�τ1 × τ2 � R w =
{
(k, 〈v1

1, v2
1〉, 〈v1

2, v2
2〉) | (k, v1

1, v1
2) ∈ �τ1 � R w

∧ (k, v2
1, v2

2) ∈ �τ2 � R w

}

�
refρτ

� R
w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

(k, l1, l2) | ∃μ ∈ T̂. (l1, l2,μ) ∈ w(R(ρ)) ∧
∀w ′ � w. �τ � R w ′ k= (ιμ)(w ′)

}
when R(ρ) ∈ dom(w){

(k, v1, v2) | k ∈N ∧ v1, v2 ∈V
}

when R(ρ) /∈ dom(w)

�τ1 →ε τ2 � R w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(k, fix f (x).e1,

fix f (x).e2)
|

∀ j ≤ k.∀w ′ � w.

R : FRV(ε) ↪→ dom(w ′) ⇒
∀v1, v2 ∈V .(j, v1, v2) ∈ �τ1 � R w ′ ⇒
(j, (fix f (x).e1) v1, (fix f (x).e2) v2)

∈ E �τ2
ε � R w ′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
�∀ρ /∈ �.τε � R w =

⎧⎨⎩ (k, susp e1,

susp e2)
|

∀ j ≤ k.∀w ′ � w.∀r ∈ |w ′|.
R[ρ
→ r] : FRV(ε) ↪→ dom(w ′) ⇒

(j, e1, e2) ∈ E �τ ε � R[ρ
→r] w ′

⎫⎬⎭
Fig. 5. Interpretation of types. For �τ � R to be defined we require wf(τ) and R : RV ⇀fin RN with FRV(τ) ⊆ dom(R). We have w ∈ W and assume
R(FRV(τ)) ⊆ |w|; otherwise we define �τ � R w to be the empty set.

That is indeed possible, because the relation on computations allows computations to allocate values outside of the part of
the heap tracked by the world, see Fig. 6 (in particular, f ′

1 and f ′
2 in the computation relation).

The reflexive, transitive closure of the transitions is a preorder on worlds. We require of our types T that they are
monotone with respect to that preorder and the standard set-theoretic inclusion on URel(V); this is the type monotonicity
(hence the subscript mon on the function space in the definition of T). For any set X , URel(X) is the set of indexed,
downwards closed relations on X , i.e.,

URel(X) = {R ⊆ N× X × X | ∀(k, x1, x2) ∈ R.∀ j < k. (j, x1, x2) ∈ R}.
The downwards closure is essential, it prevents values from fleeing types as the operational semantics progresses.6 One
minor issue remains: the types that decorate the partial bijections that are the regions belong to T̂ and must be coerced
into T by the isomorphism ι before they can be applied to a world. This isomorphism is what we get from the solution to
the type-world circularity (see Appendix A).

A bit of world-related notation will come in handy: for a world w = (ϕ, ψ) we set dom(w) = dom(ϕ) and |w| =
dom(ϕ) ∪ψ , i.e., dom(w) is the set of live regions and |w| is the combined set of live and dead regions. We write dom1(w)

for the union of all first coordinates of all live regions; dom2(w) is defined similarly. For r ∈ dom(w) we abuse notation and
write w(r) for ϕ(r).

Finally, let us remark that our worlds are simple in the sense that the only invariants we allow are those described by
semantic types. That is similar to the approach taken to model references in [22]. It suffices for showing the soundness of
effect-based program transformations, which only depend on types and effects rather than on the syntax of the program.
One could also consider richer notions of invariants, as in the models of references by Ahmed et al. [18] and by Dreyer
et al. [20], but that would complicate the model and is orthogonal to the main question of this paper.

5. Types and the logical relation

The relational, world-indexed interpretation of types is given in Fig. 5; it relies on the interpretation of computations
given in Fig. 6. It is worthwhile to comment a bit on this. Note that both the interpretation of types and computations take
a number of parameters; the requirements on those are given in the captions of the figures. Here we just emphasize that
we interpret well-formed types only. Note also that the definitions given here are asymmetric. We use them to define an
approximation relation, and take its symmetric closure as the logical equivalence relation, see Fig. 7 for the details.

Overall, we follow the intuition laid out in Section 3. First, whenever we interpret a type τ in a world w where
R(FRV(τ)) is outside the support, |w|, we get the empty set. This we never do; it is just a dummy clause that is neu-
tral with respect to type monotonicity, but we need it since, for technical convenience, we want interpreted types to be
applicable to all worlds. Integer, unit and product types are standard. Looking at the reference type there are two cases: The
first case is the proper one, here R(ρ) is a live region and we go through it in search for location pairs that hold values
of a type semantically identical to τ . The quantification over future worlds ensure type monotonicity and the k-equality is
necessary for the step-indexed setup; both are quite standard. The latter means that the sets we compare are equal if we

6 The set URel(X) has a natural metric [17] and the functions in T are not only monotone but also non-expansive; see Appendix A for details.

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 169
E �τ ε � R w =
{
(k, e1, e2) | ∀ j ≤ k.∀e′

1 ∈ E .∀h1,h2, f1, f2,h†
1 ∈H.[

(k,h1,h2) ∈ PR
ε w ∧ 〈e1 |h1 · f1〉 j→ 〈e′

1 |h†
1〉 ∧ irr〈e′

1 |h†
1〉]

⇒ ∃w ′ � w.∃e′
2 ∈ E .∃h′

1,h′
2, f ′

1, f ′
2 ∈H.

[
dom(w) = dom(w ′) ∧ h†

1 = h′
1 · f ′

1 · f1

∧ 〈e2 |h2 · f2〉 ∗→ 〈e′
2 |h′

2 · f ′
2 · f2〉 ∧ (k − j,h1,h2,h′

1,h′
2) ∈ QR

ε w, w ′

∧ (k − j, e′
1, e′

2) ∈ �τ � R w ′]}

(k,h1,h2) ∈ PR
ε w ⇐⇒

dom(hi) = domi(w)

∧ (∀ρ ∈ rdsε.∀(l1, l2,μ) ∈ w(R(ρ)).k > 0 ⇒ (k − 1,h1(l1),h2(l2)) ∈ (ιμ)(w)
)

(k,h11,h21,h12,h22) ∈ QR
ε w1, w2 ⇐⇒

dom(hij) = domi(w j) ∧ (∀l1 ∈ dom(h11).h11(l1) �= h12(l1) ⇒ ∃ρ ∈ wrsε.

∃(m1, l2,μ) ∈ w1(R(ρ)). l1 = m1 ∧ k > 0 ⇒ (k − 1,h12(l1),h22(l2)) ∈ (ιμ)(w2)
)

∧ (∀l2 ∈ dom(h21).h21(l2) �= h22(l2) ⇒ ∃ρ ∈ wrsε.∃(l1,m2,μ) ∈ w1(R(ρ)). l2 = m2 ∧
k > 0 ⇒ (k − 1,h12(l1),h22(l2)) ∈ (ιμ)(w2)

)
∧ (∀r ∈ dom(w1).∀(l1, l2,μ) ∈ w2(r) \ w1(r).r ∈ R(alsε) ∧

k > 0 ⇒ (k − 1,h12(l1),h22(l2)) ∈ (ιμ)(w2)
)

Fig. 6. Interpretation of computations with pre- and postconditions. There are implicit disjointness requirements on heaps: the heap compositions must all
be well-defined. In all three cases we have R : RV ⇀fin RN and w ∈ W. For E �ετ � R w we require wf(τ), FRV(ε, τ) ⊆ dom(R) and R(FRV(ε)) ⊆ dom(w).
PR

ε w is defined for FRV(ε) ⊆ dom(R) and R(FRV(ε)) ⊆ dom(w), QR
ε w1, w2 additionally requires w2 ∈ W and w1 � w2 with dom(w1) = dom(w2).

restrict to elements with index strictly less than k. In the last case we look for references to a masked region; these are
conceptually dangling pointers that we make no assumption about, hence we return all (pairs of) values.

Interpreting functions and region polymorphism proceeds along similar lines. To obtain type monotonicity we quantify
over future worlds, but we make promises only for proper worlds, i.e., worlds where all effect-relevant regions are live. We
could, similarly, have considered only future worlds with R(ρ) intact for the reference types, but for simplicity we leave it
out.

The interpretation of computations is crucial. Note, first, that rds ε are all region variables with read effects in ε; wrs ε
and alsε are defined similarly. PR

ε w denotes the precondition on heaps that computations running in world w with effects
ε should satisfy: that all location pairs in all regions with read effects do, in fact, hold related values of the appropriate type.
If the precondition holds and the left hand side terminates, then so does the right hand side, and there is a future world
w ′ such that the results are related at the desired type in w ′ , and the resulting heaps satisfy the postcondition QR

ε w, w ′ .
Note that not all locations allocated by the computations need to be in domi w ′: f ′

i contain precisely these locations; they
contain, for instance, locations masked out throughout the computations. Also, w ′ is picked only when the computations
finish. Thus, until that point the newly allocated locations that should be tracked by world do not have to be in any way
related: we only need to exhibit that when the computations finish, newly allocated parts of the world are indeed related.
This is enforced by the postcondition relation that we mentioned earlier, QR

ε w, w ′ . It states that any writes to existing
locations are of the correct type and are permitted by a write effect; also any newly allocated locations tracked by w ′
hold well-typed, related values and are in regions with an allocation effect. It is not unusual that the postcondition speaks
of the initial heaps as well as the final ones: this is also the case in, for example, Hoare Type Theory [23]. Since we do
local reasoning, there may be parts of the heap outside our control; these are the frames f1 and f2, which must remain
unmodified.

Finally, it is worthwhile to remark that the region-dynamics of computations is quite restricted: the future world w ′ must
have the same live regions as w . In other words, computations cannot mask out existing regions and if they initialize any
new regions, they are obliged to mask them out before they terminate. Here we take inspiration from work on region-based
memory management [4,6] where regions are allocated and deallocated following a stack discipline.

We prove that the interpretation is well-defined in a series of lemmas and propositions; we assume throughout that all
parameters satisfy the requirements of the operators, see the figures for details.

Lemma 4. For any n ∈N and w1, w2 ∈ W with w1
n= w2 we have PR

ε w1
n= PR

ε w2 , with the metric of URel(H).

170 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
(k, γ1, γ2) ∈ �
� R w ⇐⇒ ∀x ∈ dom(
). (k, γ1(x), γ2(x)) ∈ �
(x)� R w

� |
 |� e1 � e2 : τ , ε ⇐⇒
∀k ∈ N.∀w ∈ W.∀R : � → |w|.∀γ1, γ2 ∈ Subst(
).[

R : FRV(ε) ↪→ dom(w) ∧ (k, γ1, γ2) ∈ �
� R w
] ⇒ (k, γ1(e1), γ2(e2)) ∈ E �τ ε � R w

� |
 |� e1 � e2 : τ , ε ⇐⇒ � |
 |� e1 � e2 : τ , ε ∧ � |
 |� e2 � e1 : τ , ε

Fig. 7. Definition of the logical approximation and equivalence. We require all types to be well-formed, FRV(
, τ , ε) ⊆ � and, as always, FV(e1, e2) ∈
.
Subst(
) denotes the set of substitutions mapping the variables of
 to closed values. R has to be an injection from the free region variables of ε to the
live regions of w .

Lemma 5. For any n ∈ N and w1, w ′
1, w2, w ′

2 ∈ W with w1
n= w2 , w ′

1
n= w ′

2 , w1 � w ′
1 and w2 � w ′

2 we have QR
ε w1, w ′

1
n=

QR
ε w2, w ′

2 , with the metric of URel(H).

Remember that the postcondition operator has nontrivial side-conditions: for QR
ε w, w ′ to be defined we require w � w ′

and dom(w) = dom(w ′) as well as the standard requirement, i.e., that R be injective from FRV(ε) to dom(w).

Proposition 6. We have �τ � R is a well-defined type, i.e., it is a non-expansive and monotone map from W to URel(V).

Lemma 7. For w1, w2 ∈ W we have that w1
n= w2 implies E �ετ � R w1

n= E �ετ � R w2 for any n ∈N.

These two are proved by simultaneous induction. Notice that we make no monotonicity requirement on the interpreta-
tion of computations, indeed, we do not even claim that it maps W to URel(E). As such, the use of n-equality is abuse of
notation since we may have strayed outside our metric spaces; the meaning is the usual, though: the two sets agree if we
restrict to elements with indices strictly less than n.

When interpreting a type, we use region environments with possibly excessive domains. Clearly, the value of the region
environments outside the region variables of the type should not matter; this is captured in the following lemmas, crucial
for proving compatibility; the proof goes by mutual induction:

Lemma 8 (Environment extension). For any R :RV ⇀fin RN and τ such that FRV(τ) ⊆ dom(R) we have �τ � R = �τ � R|FRV(τ) .

Lemma 9. For any R :RV ⇀fin RN , τ and ε, such that FRV(τ , ε) ⊆ dom(R), we have E �τ ε � R = E �τ ε � R|FRV(τ ,ε) .

The logical relation on expressions is defined in Fig. 7. � is a syntactic over-approximation of all region variables;
together with the condition R : � → |w| it ensures that we deal in live and dead regions only, not unknown ones. As for
functions and computations, we require that the regions of the effects are live.

The logical relation is asymmetrical: the left hand side approximates the right hand side. We write � |
 |� e1 � e2 : τ , ε
if the approximation goes both ways and consider the computations equivalent in that case. Our logical relation is sound in
the following, standard, sense, with subtyping interpreted through set inclusion:

Theorem 10 (Compatibility). The logical relation in Fig. 7 is compatible with the typing rules of Fig. 1. That is, the formation of
expressions according to the typing rules respects the logical relation.

Proposition 11. For any region environment R : � →RN and any world w ∈ W, if � � τ1 ≤ τ2 then �τ1 � R w ⊆ �τ2 � R w.

The proof of the theorem relies naturally on the proposition. The proofs are deferred to the next section.
We have the Fundamental Lemma as corollary:

Lemma 12. (Fundamental)

� |
 � e : τ , ε �⇒ � |
 |� e � e : τ , ε.

Definition 1 (Contextual equivalence). Two well-typed computations are contextually equivalent if for any closing, integer
contexts, they co-terminate with the same value, when run in any two heaps. Formally:

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 171
� |
 � e1 ≡ e2 : τ , ε ⇐⇒ � |
 � ei : τ , ε ∧
∀C ∈ C. ∀h1,h2 ∈ H. ∀n ∈N. · | · � C[ei] : int, ∅ ∧

(〈C[e1] |h1〉 ∗→ 〈n | _〉 ⇐⇒ 〈C[e2] |h2〉 ∗→ 〈n | _〉)

Also as a corollary of compatibility, we get the following theorem:

Theorem 13. The logical relation defined in Fig. 7 is sound with respect to contextual equivalence, i.e.,

� |
 |� e1 � e2 : τ , ε �⇒ � |
 � e1 ≡ e2 : τ , ε.

5.1. On interpretation of the write effects

Before we proceed to the soundness proof, we pause to discuss briefly the definitions of effect interpretations in Fig. 6.
Particularly interesting is the fact that we require the values stored outside the write effects to be the same between the
initial and final heaps. Since our relation is built over the operational semantics, the equality used there is syntactic, which
could be considered unsatisfactory. Indeed, since we are building a relational model, one could think that we should use
the semantic type of this location, and only require the values to be related at that semantic type. This, however, would lead
to significant problems.

Conceptually, the first hurdle is that the type stored in the world is supposed to relate values of the first, “left-hand-side”,
computation to values of the “right-hand-side” one. Hence, in the presence of open types, where the types of the left- and
right-values need not agree, one cannot simply use the relation itself, because we want to express an equivalence among
two values on the same side. Moreover, this approach would not scale to the unary case, where the relation being defined
is not even binary. These problems suggest that one would at the least need to generalize the construction of the worlds.

A second, more pressing issue that comes up in our setup is that we need to sequence the interpretation of the effects
in a computation: for instance in a let-binding rule. Currently, this ability is expressed by Lemma 17 in the following. Thus,
any relation used to relate the initial and final states of the values outside the write effects of a computation would need
to be transitive. However, transitivity is a property that is normally lost in the step-indexed models: we only regain it at
the contextual equivalence level. Thus, even disregarding the conceptual issues, we simply cannot use the semantic type
directly, to allow more leeway in the behavior of values that are outside the write effects.

One question remains: how does this possible deficiency compare with other work, in particular domain-theoretic mod-
els, e.g., [14]. In the domain-theoretic models, the relational interpretation of types is constructed over a universal domain,
which is used to give an interpretation of the untyped language. We emphasize that such models also require a base equal-
ity as a building block of the relational interpretation (the equality on the universal domain). In particular the values in the
heap outside the write effects are related by this base equality. Of course, in the denotational models the base equality is
semantic and so less fine-grained than our syntactic equality, which can be considered better, but the core problem still
persists there.

6. Soundness

In this section, we present most of the cases of the proof of the Compatibility Theorem stated just above. We begin with
lemmas about pre- and postconditions.

Lemma 14 (Precondition strengthening). The effect annotation of the precondition relation can be strengthened, i.e., PR
ε∪ε′ w ⊆ PR

ε w.

Proof. Take arbitrary (k, h1, h2) ∈ PR
ε∪ε′ w . In the definition of (k, h1, h2) ∈ PR

ε w , the equalities dom(hi) = domi(w) are triv-
ially enforced by the hypothesis. The property

∀ρ ∈ rdsε.∀(l1, l2,μ) ∈ w(R(ρ)). k > 0 ⇒ (k − 1,h1(l1),h2(l2)) ∈ (ιμ)(w)

also follows from the hypothesis (k, h1, h2) ∈ PR
ε∪ε′ w since rdsε ⊆ rds (ε ∪ ε′). �

Lemma 15 (Postcondition weakening). The effect annotation of the postcondition relation can be weakened, respecting the domains
of the region map and the world, i.e., if FRV(ε′) ⊆ dom(R) and R(FRV(ε′)) ⊆ dom(w), then QR

ε w, w ′ ⊆ QR
ε∪ε′ w, w ′ .

Proof. In the definition of QR
ε∪ε′ w, w ′ only existential quantifications on wrs (ε ∪ ε′) and als (ε ∪ ε′) are used, and so the

inclusions wrsε ⊆ wrs (ε ∪ ε′) and alsε ⊆ als (ε ∪ ε′) suffice for the proof. �
Lemma 16 (Precondition composition). The postcondition relation maps pairs of heaps that are related by precondition at the initial
world to pairs of heaps that are related by precondition at the terminal world, i.e., if we have (k, h1, h2) ∈ PR

ε w and (k, h1, h2, h′
1, h

′
2) ∈

QR′ w, w ′ , then (k, h′ , h′) ∈ PR
ε w ′ holds too.
ε 1 2

172 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
Proof. Unwinding the definition of (k, h′
1, h

′
2) ∈ PR

ε w ′ , the equalities dom(h′
i) = domi(w ′) come directly from (k, h1, h2,

h′
1, h

′
2) ∈ QR

ε′ w, w ′ . To prove

∀ρ ∈ rdsε.∀(l1, l2,μ) ∈ w ′(R(ρ)). k > 0 ⇒ (k − 1,h′
1(l1),h′

2(l2)) ∈ (ιμ)(w ′)

there are multiple possibilities:

• If l1 /∈ dom(h1) then (l1, l2, μ) ∈ w ′(R(ρ)) \ w(R(ρ)) and so from (k, h1, h2, h′
1, h

′
2) ∈ QR

ε′ w, w ′ we get that ρ ∈ alsε′ and
k > 0 ⇒ (k − 1, h′

1(l1), h
′
2(l2)) ∈ (ιμ)(w ′). Similarly if l2 /∈ dom(h2).

• If h1(l1) = h′
1(l1) and h2(l2) = h′

2(l2) it comes down to (k, h1, h2) ∈ PR
ε w and type monotonicity.

• If h1(l1) �= h′
1(l1) then (k, h1, h2, h′

1, h
′
2) ∈ QR

ε′ w, w ′ enforces that there is ρ ′ ∈ wrsε′ such that

∃(m1, l′2,μ) ∈ w(R(ρ ′)). l1 = m1 ∧ k > 0 ⇒ (k − 1,h′
1(l1),h′

2(l
′
2)) ∈ (ιμ)(w ′)

By the construction of worlds, R(ρ ′) = R(ρ) since both contain l1. We proceed similarly if h2(l2) �= h′
2(l2). �

It is worth emphasizing that we require no relationship between ε and ε′; we simply rely on the fact that the postcon-
dition ensures well-typed updates and allocations, no matter the region.

Lemma 17 (Postcondition composition). If we have (k, h1, h2, h′
1, h

′
2) ∈ QR

ε w, w ′ and (k, h′
1, h

′
2, h

′′
1, h′′

2) ∈ QR
ε w ′, w ′′ , then

(k, h1, h2, h′′
1, h′′

2) ∈ QR
ε w, w ′′ holds.

Proof. To prove (k, h1, h2, h′′
1, h′′

2) ∈ QR
ε w, w ′′ , we have to show a range of things. Notice first that dom(hi) = domi(w) and

dom(h′′
i) = domi(w ′′), which come respectively from (k, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ and (k, h′
1, h

′
2, h

′′
1, h′′

2) ∈ QR
ε w ′, w ′′ .

We now look into changes to the initial heap h1; changes to h2 are handled similarly. Take any l1 ∈ dom(h1) and let us
consider the case h′

1(l1) �= h′′
1(l1). From (k, h′

1, h
′
2, h

′′
1, h′′

2) ∈ QR
ε w ′, w ′′ there exists ρ ∈ wrsε and (m1, l2, μ) ∈ w ′(R(ρ)) with

m1 = l1 such that k > 0 ⇒ (k − 1, h′′
1(l1), h′′

2(l2)) ∈ (ιμ)(w ′′). Since l1 ∈ dom(h1) = dom1(w) we have (m1, l2, μ) ∈ w(R(ρ))

too.
Otherwise, we are left to consider the case h′

1(l1) = h′′
1(l1) and h1(l1) �= h′

1(l1) and from the fact (k, h1, h2, h′
1, h

′
2) ∈

QR
ε w, w ′ there exists ρ ∈ wrsε and (m1, l2, μ) ∈ w(R(ρ)) with m1 = l1 such that k > 0 implies (k − 1, h′

1(l1), h
′
2(l2)) ∈

(ιμ)(w ′). By an argument as above, with can assume h′
2(l2) = h′′

2(l2) without loss of generality and we are done by type
monotonicity.

Finally we need to consider allocation, i.e., we take r ∈ dom(w) and (l1, l2, μ) ∈ w ′′(r) \ w(r) and must prove r ∈ R(alsε)

and k > 0 ⇒ (k −1, h′′
1(l1), h′′

2(l2)) ∈ (ιμ)(w ′′). If (l1, l2, μ) /∈ w ′(r), then it follows directly from (k, h′
1, h

′
2, h

′′
1, h′′

2) ∈ QR
ε w ′, w ′′ .

Otherwise, (l1, l2, μ) ∈ w ′(r) \ w(r), so (k, h1, h2, h′
1, h

′
2) ∈ QR

ε w, w ′ implies r ∈ R(alsε) and k > 0 ⇒ (k − 1, h′
1(l1), h

′
2(l2)) ∈

(ιμ)(w ′). Then, if h′
1(l1) = h′′

1(l1) and h′
2(l2) = h′′

2(l2), we conclude using type monotonicity. But if h′
1(l1) �= h′′

1(l1) or h′
2(l2) �=

h′′
2(l2), we use the hypothesis (k, h′

1, h
′
2, h

′′
1, h′′

2) ∈ QR
ε w ′, w ′′ . �

We begin with the compatibility lemmas for the rules App and Fix.

Lemma 18 (App). � |
 |� e1 � e2 : τ1 →ε τ2, ε1 and � |
 |� e†
1 � e†

2 : τ1, ε2 implies � |
 |� e1 e†
1 � e2 e†

2 : τ2, ε ∪ ε1 ∪ ε2 .

Proof. We unroll the definition of the logical relation: let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) — be arbitrary.
Assume R : FRV(ε ∪ ε1 ∪ ε2) ↪→ dom(w), and (k, γ1, γ2) ∈ �
� R w . We now must show that

(k, γ1(e1)γ1(e†
1), γ2(e2)γ2(e†

2)) ∈ E
�
τ2

ε∪ε1∪ε2
� R

w.

We proceed to unroll the definition of computations: let j ≤ k, h1, h2, f1, f2 ∈ H, e′′′
1 ∈ E and h⊥

1 ∈ H be arbitrary. Assume
(k, h1, h2) ∈ PR

ε∪ε1∪ε2
w , that

〈γ1(e1)γ1(e†
1) |h1 · f1〉 j→ 〈e′′′

1 |h⊥
1 〉

and that irr〈e′′′
1 | h⊥

1 〉.

By the operational semantics, there must be 0 ≤ i ≤ j, e′
1 ∈ E and h†

1 ∈H, such that

〈γ1(e1) |h1 · f1〉 i→ 〈e′
1 |h†

1〉
and

〈e′ γ1(e†
) |h† 〉 j−i→ 〈e′′′ |h⊥〉
1 1 1 1 1

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 173
and irr〈e′
1 | h†

1〉 holds. The first assumption of the lemma gives us that (k, γ1(e1), γ2(e2)) ∈ E
�
τ1 →ε τ2

ε1
� R

w and Precon-
dition Strengthening gives (k, h1, h2) ∈ PR

ε1
w . Hence, there are w ′ � w with dom(w ′) = dom(w) as well as e′

2 ∈ E and
h′

1, h
′
2, f

′
1, f

′
2 ∈H such that h†

1 = h′
1 · f ′

1 · f1 and

〈γ2(e2) |h2 · f2〉 ∗→ 〈e′
2 |h′

2 · f ′
2 · f2〉,

with (k − i, e′
1, e

′
2) ∈ �τ1 →ε τ2 � R w ′ as well as the postcondition (k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε1
w, w ′ .

We observe e′
1 ∈ V and turn the crank once more: there must be 0 ≤ i′ ≤ j − i, e′′

1 ∈ E and h‡
1 ∈H, such that

〈γ1(e†
1) |h′

1 · f ′
1 · f1〉 i′→ 〈e′′

1 |h‡
1〉

and

〈e′
1 e′′

1 |h‡
1〉

j−i−i′→ 〈e′′′
1 |h⊥

1 〉
and irr〈e′′

1 | h‡
1〉 holds. The second assumption gives us (k − i, γ1(e†

1), γ2(e†
2)) ∈ E �τ1

ε2 � R w ′ . Precondition Composition gives
us (k − i, h′

1, h
′
2) ∈ PR

ε∪ε1∪ε2
w ′ and using Precondition Strengthening then yields (k − i, h′

1, h
′
2) ∈ PR

ε2
w ′ . Then there is w ′′ � w ′

with dom(w ′′) = dom(w ′) as well as e′′
2 ∈ E and h′′

1, h′′
2, f ′′

1 , f ′′
2 ∈H such that h‡

1 = h′′
1 · f ′′

1 · f ′
1 · f1 and

〈γ2(e†
2) |h′

2 · f ′
2 · f2〉 ∗→ 〈e′′

2 |h′′
2 · f ′′

2 · f ′
2 · f2〉,

with (k − i − i′, e′′
1, e′′

2) ∈ �τ1 � R w ′′ as well as the postcondition (k − i − i′, h′
1, h

′
2, h

′′
1, h′′

2) ∈ QR
ε2

w ′, w ′′ . The latter, by Postcon-
dition Weakening and Postcondition Composition, yields (k − i − i′, h1, h2, h′′

1, h′′
2) ∈ QR

ε1∪ε2
w, w ′′ .

The key to the remaining, and proper, part of the proof is that we have (k − i − i′, e′
1, e

′
2) ∈ �τ1 →ε τ2 � R w ′′ . As

R : FRV(ε) ↪→ dom(w) = dom(w ′′) we get that, since (k − i − i′, e′′
1, e′′

2) ∈ �τ1 � R w ′′ , we have(
k − i − i′, e′

1 e′′
1, e′

2 e′′
2

) ∈ E �τ2
ε � R w ′′.

Precondition Composition gives (k − i − i′, h′′
1, h′′

2) ∈ PR
ε∪ε1∪ε2

w ′′ and Precondition Strengthening then yields (k − i − i′,
h′′

1, h′′
2) ∈ PR

ε w ′′ . Then there is w ′′′ � w ′′ with dom(w ′′′) = dom(w ′′) as well as e′′′
2 ∈ E and h′′′

1 , h′′′
2 , f ′′′

1 , f ′′′
2 ∈ H such that

h⊥
1 = h′′′

1 · f ′′′
1 · f ′′

1 · f ′
1 · f1 and

〈e′
2 e′′

2 |h′′
2 · f ′′

2 · f ′
2 · f2〉 ∗→ 〈e′′′

2 |h′′′
2 · f ′′′

2 · f ′′
2 · f ′

2 · f2〉,
with (k − j, e′′′

1 , e′′′
2) ∈ �τ2 � R w ′′′ as well as the postcondition (k − j, h′′

1, h′′
2, h′′′

1 , h′′′
2) ∈ QR

ε w ′′, w ′′′ . The latter, by Postcondition
Weakening and Postcondition Composition, yields (k − j, h1, h2, h′′′

1 , h′′′
2) ∈ QR

ε∪ε1∪ε2
w, w ′′′ . �

Lemma 19 (Fix). �,
, f : τ1 →ε τ2, x : τ1 |� e1 � e2 : τ2, ε implies �,
 |� fix f (x).e1 � fix f (x).e2 : τ1 →ε τ2,∅.

Proof. We unroll the definition of the logical relation: let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary. The
assumption R : FRV(∅) ↪→ dom(w) gives us nothing, but we do get that (k, γ1, γ2) ∈ �
� R w . Write e′

1 = fix f (x).γ1(e1) and
e′

2 = fix f (x).γ2(e2); we must show that

(k, e′
1, e′

2) ∈ E
�
τ1 →ε τ2

∅� R
w.

As both expressions are, in fact, values it will suffice to show

(k, e′
1, e′

2) ∈ �τ1 →ε τ2 � R w.

We aim to prove by induction that for all 0 ≤ j ≤ k we have

(j, e′
1, e′

2) ∈ �τ1 →ε τ2 � R w.

The base case is easy, since there is no termination in 0 steps here. So assume the above for 0 ≤ j < k; we must prove that

(j + 1, e′
1, e′

2) ∈ �τ1 →ε τ2 � R w

is good too. Let i ≤ j +1 and pick w ′ � w with R : FRV(ε) ↪→ dom(w ′). Let v1, v2 ∈ V be arbitrary with (i, v1, v2) ∈ �τ1 � R w ′ .
We must show

(i, e′ v1, e′ v2) ∈ E �τ2
ε � R w ′.
1 2

174 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
So, let i′ ≤ i, e′
1 ∈ E and h1, h2, f1, f2, h

†
1 ∈H be arbitrary and assume (i, h1, h2) ∈ PR

ε w ′ and that

〈e′
1 v1 |h1 · f1〉 i′→ 〈e′

1 |h†
1〉

with irr〈e′
1 | h†

1〉. Clearly, i′ > 0, so the reduction must go like

〈e′
1 v1 |h1 · f1〉 → 〈γ1(e1){e′

1/ f , v1/x} |h1 · f1〉
i′−1→ 〈e′

1 |h†
1〉

It is now time to make use of the lemma’s assumption, which we can instantiate with i − 1, w ′ , R and the extended substi-
tutions: γ1, e′

1/ f , v1/x, and γ2, e′
2/ f , v2/x. These substitutions are related at i − 1 due to downwards closure, assumptions

and, in the case of f , induction hypothesis, since i − 1 ≤ j. This gets us

(i − 1, γ1(e1){e′
1/ f , v1/x}, γ2(e2){e′

2/ f , v2/x}) ∈ E �τ2
ε � R w ′,

which, after unfolding the definitions, concludes the proof. �
Lemma 20 (Susp). If ρ,� |
 |� e1 � e2 : τ , ε with ρ /∈ FRV(
), then � |
 |� susp e1 � susp e2 : ∀ρ /∈ �.τε,∅ where � =
FRV(τ , ε)\ρ .

Proof. Take any k ∈ N, w ∈ W, R : � → |w|, γ1, γ2 ∈ Subst(
) such that (k, γ1, γ2) ∈ �
� R w . We need to show that

(k, susp ê1, susp ê2) ∈ E
�

∀ρ /∈ �.τε∅� R
w , where êi = γi(ei). However, since susp e is always a value, it suffices to show

that, (k, susp ê1, susp ê2) ∈ �∀ρ /∈ �.τε � R w . This in turn requires us to show that (j, ̂e1, ̂e2) ∈ E �τ ε � R[ρ
→r] w ′ for some
j ≤ k, w ′ � w and r ∈ |w ′| such that R[ρ
→ r] : FRV(ε) ↪→ dom(w ′). To prove it, we instantiate the assumption with j, w ′ ,
R[ρ
→ r], γ1 and γ2. We already have the first two prerequisites, and for the third one, Environment Extension gives us
(k, γ1, γ2) ∈ �
� R[ρ
→r] w ′ , since ρ /∈ FRV(
). �
Lemma 21 (Mask-post). The postcondition relation is closed under simultaneous allocation and masking out of a region: if, for r /∈ |w1|,
we have w1 →reg(r) w ′

1 , w ′
2 →mask(r) w2 and (k, h11, h21, h12, h22) ∈ QR[ρ
→r]

ε w ′
1, w ′

2 , then (k, h11, h21, h′
12, h

′
22) ∈ QR

ε−ρ w1, w2 ,
where h′

i2 = hi2
∣∣
domi(w2)

.

Proof. We have a range of things to show here. Note first that the dom(hi1) = domi(w1), since the newly allocated region
has to be empty, and dom(hi2) = domi(w ′

1). The other heap domains are explicitly cut down to size.
For the writes, assume l1 ∈ dom(h11) such that h11(l1) �= h′

12(l1). We can use these to instantiate our assumption, and get
σ ∈ wrsε and (m1, l2, μ) ∈ w ′

1(R[ρ
→ r](σ)) such that l1 = m1 and k > 0 �⇒ (k − 1, h12(l1), h22(l2)) ∈ (ιμ)(w ′
2). Since the

new region r is empty in w ′
1, this means R[ρ
→ r](σ) �= r, and so σ �= ρ — which gets us σ ∈ wrsε − ρ and (m1, l2, μ) ∈

w1(R(σ)). Since both li are outside the region r, they have to belong to the respective domi(w2), and so also to dom(h′
i2).

Now, by type monotonicity we can replace w ′
2 with w2 in our assumption, and get k > 0 �⇒ (k − 1, h′

12(l1), h
′
22(l2)) ∈

(ιμ)(w2), which was our last obligation in this part of the proof. The other obligation on the writes proceeds symmetrically.
The last obligation we have left are the allocations. Take any r1 ∈ dom(w2) and (l1, l2, μ) ∈ w2(r1) \ w1(r1) (this means,

in particular, that r �= r1). We can use these to instantiate the assumption about postcondition, since wi(r1) = w ′
i(r1), and

get r1 ∈ R[ρ
→ r](alsε) and k > 0 �⇒ (k − 1, h12(l1), h22(l2)) ∈ (ιμ)(w ′
2). Since r1 �= r, we get r1 ∈ R(alsε − ρ), and by type

monotonicity and the fact that li ∈ domi(w2) we get k > 0 �⇒ (k − 1, h′
12(l1), h

′
22(l2)) ∈ (ιμ)(w2), which ends the proof. �

Lemma 22 (Mask). If �,ρ |
 |� e1 � e2 : τ , ε and ρ /∈ FRV(
, τ), then � |
 |� e1 � e2 : τ , ε − ρ .

Proof. Take any k ∈ N, w ∈ W, R : � → |w|, and γ1, γ2 ∈ Subst(
). Assume that R : FRV(ε − ρ) ↪→ dom(w) and (k, γ1, γ2) ∈
�
� R w . We need to show that (k, ̂e1, ̂e2) ∈ E

�
τ ε−ρ

� R
w , where êi = γi(ei). Take r /∈ |w|, w1 defined by w →reg(r) w1,

R ′ = R[ρ
→ r] : �, ρ → |w1|. By Environment Extension we get (k, γ1, γ2) ∈ �
� R ′
w1. Since R ′ : FRV(ε) ↪→ dom(w1), the

assumption provides us with (k, ̂e1, ̂e2) ∈ E �τ ε � R ′
w1. We proceed by unrolling the definition of relatedness of closed ex-

pressions, and take any j ≤ k, e′
1, h1, h2, f1, f2 and h†

1, such that (k, h1, h2) ∈ PR
ε−ρ w , 〈ê1 | h1 · f1〉
→ j 〈e′

1 | h†
1〉 and irr〈e′

1 | h†
1〉.

We use these variables to instantiate the relatedness assumption: note that (k, h1, h2) ∈ PR
ε w1, since r is empty in w1. This

gives us a new world, w2 � w1, e′
2, h′

1, h′
2, f ′

1 and f ′
2 such that

• dom(w2) = dom(w1)

• h†
1 = h′

1 · f ′
1 · f1

• 〈ê2 | h2 · f2〉
→∗ 〈e′ | h′ · f ′ · f2〉
2 2 2

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 175
• (k − j, h1, h2, h′
1, h

′
2) ∈ QR ′

ε w1, w2

• (k − j, e′
1, e

′
2) ∈ �τ � R ′

w2

Take w3 as defined by w2 →mask(r) w3, write h′
1 = h′′

1 · f ′′
1 with dom(h′′

1) = dom1(w3) and similarly for h′
2, h′′

2, f ′′
2 . We get

(k − j, h1, h2, h′′
1, h′′

2) ∈ QR
ε−ρ w, w3 by Lemma 21, and by Lemma 8 we get (k − j, e′

1, e
′
2) ∈ �τ � R w3. �

Lemma 23 (Lookup). � |
 |� e1 � e2 : refρτ , ε implies � |
 |� ! e1 � ! e2 : τ , ε ∪ {rdρ}.

Proof. We unroll the definition of the logical relation: let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary.
Assume R : FRV(ε ∪ {rdρ}) ↪→ dom(w) and that (k, γ1, γ2) ∈ �
� R w . We now must show that

(k, !γ1(e1), !γ2(e2)) ∈ E
�
τ ε∪{rdρ }� R

w.

We proceed to unroll the definition of the relation on computations: let j ≤ k, e′′
1 ∈ E and h1, h2, f1, f2, g′′

1 ∈H be arbitrary.
Assume (k, h1, h2) ∈ PR

ε∪{rdρ } w , that

〈!γ1(e1) |h1 · f1〉 j→ 〈e′′
1 | g′′

1〉
and irr〈e′′

1 | g′′
1〉.

By the operational semantics, there must be 0 ≤ i ≤ j, e′
1 ∈ E and g′

1 ∈H, such that

〈γ1(e1) |h1 · f1〉 i→ 〈e′
1 | g′

1〉, 〈! e′
1 | g′

1〉
j−i→ 〈e′′

1 | g′′
1〉

and irr〈e′
1 | g′

1〉 holds. The assumption of the lemma and Precondition Strengthening gives us w ′ � w with dom(w ′) =
dom(w) as well as e′

2 ∈ E and g′
2, h′

1, h′
2, f ′

1, f ′
2 such that

〈γ2(e2) |h2 · f2〉 ∗→ 〈e′
2 | g′

2〉,
with g′

1 = h′
1 · f ′

1 · f1, g′
2 = h′

2 · f ′
2 · f2 and (k − i, e′

1, e
′
2) ∈

�
refρτ

� R
w ′ as well as (k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ .
Let us consider the fact (k − i, e′

1, e
′
2) ∈

�
refρτ

� R
w ′ . By assumption, R(ρ) ∈ dom(w) = dom(w ′) and so we must have

l1, l2 ∈L and μ ∈ T̂ such that e′
1 = l1, e′

2 = l2, (l1, l2, μ) ∈ w ′(R(ρ)) and �τ � R w ′ k−i= (ιμ)(w ′).
We must have i = j − 1 and the entire left hand side reduction must look like

〈!γ1(e1) |h1 · f1〉 j−1→ 〈! l1 | g′
1〉 → 〈h′

1(l1) | g′
1〉,

in particular e′′
1 = h′

1(l1) and g′′
1 = g′

1. Moreover, since

〈γ2(e2) |h2 · f2〉 ∗→ 〈l2 | g′
2〉,

and l2 ∈ dom2(w ′) = dom(h′
2) ⊆ dom(g′

2) we get a similar reduction on the right hand side

〈!γ2(e2) |h2 · f2〉 ∗→ 〈! l2 | g′
2〉 → 〈h′

2(l2) | g′
2〉.

We are left to verify only that (k − j, h′
1(l1), h

′
2(l2)) ∈ �τ � R w ′ . Since �τ � R w ′ k− j+1= (ιμ)(w ′), it suffices to prove

(k − j, h′
1(l1), h

′
2(l2)) ∈ (ιμ)(w ′). But this is immediate as Precondition Composition and Precondition Strengthening together

gives (k − i, h′
1, h

′
2) ∈ PR

{rdρ } w ′ . �
Lemma 24 (Assign). � |
 |� e1 � e2 : refρτ , ε and � |
 |� e†

1 � e†
2 : τ , ε† implies � |
 |� e1 := e†

1 � e2 := e†
2 : 1, ε ∪ ε† ∪ {wrρ}.

Proof. We unroll the definition of the logical relation: let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary.
Assume R : FRV(ε ∪ ε† ∪ {wrρ})) ↪→ dom(w) and that (k, γ1, γ2) ∈ �
� R w . We now must show that

(k, γ1(e1) :=γ1(e†
1),

γ2(e2) :=γ2(e†
2)) ∈ E

�
1ε∪ε†∪{wrρ }� R

w.

We proceed to unroll the definition of computations: let j ≤ k, h1, h2, f1, f2 ∈ H, e′′′
1 ∈ E and h⊥

1 ∈ H be arbitrary. Assume
(k, h1, h2) ∈ PR

† w , that

ε∪ε ∪{wrρ }

176 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
〈γ1(e1) :=γ1(e†
1) |h1 · f1〉 j→ 〈e′′′

1 |h⊥
1 〉

and irr〈e′′′
1 | h⊥

1 〉.

By the operational semantics, there must be 0 ≤ i ≤ j, e′
1 ∈ E and h†

1 ∈H, such that

〈γ1(e1) |h1 · f1〉 i→ 〈e′
1 |h†

1〉
and

〈e′
1 :=γ1(e†

1) |h†
1〉

j−i→ 〈e′′′
1 |h⊥

1 〉
and irr〈e′

1 | h′
1〉 holds. The first assumption of the lemma gives us that (k, γ1(e1), γ2(e2)) ∈ E

�
refρτ ε

� R
w and Precondition

Strengthening gives (k, h1, h2) ∈ PR
ε w . Hence, there is w ′ � w with dom(w ′) = dom(w) as well as e′

2 ∈ E and h′
1, h

′
2, f

′
1, f

′
2 ∈

H such that h†
1 = h′

1 · f ′
1 · f1 and

〈γ2(e2) |h2〉 ∗→ 〈e′
2 |h′

2 · f ′
2 · f2〉,

with (k − i, e′
1, e

′
2) ∈

�
refρτ

� R
w ′ as well as (k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ .
An easy consequence is that e′

1 ∈ V and so we can continue: there must be 0 ≤ i′ ≤ j − i, e′′
1 ∈ E and h‡

1 ∈H, such that

〈γ1(e†
1) |h′

1 · f ′
1 · f ′

1〉 i′→ 〈e′′
1 |h‡

1〉
and

〈e′
1 := e′′

1 |h‡
1〉

j−i−i′→ 〈e′′′
1 |h⊥

1 〉

and 〈irr | e′′
1〉h′′

1 holds. The second assumption gives us (k − i, γ1(e†
1), γ2(e†

2)) ∈ E
�
τ ε†

� R
w ′ . Precondition Composition gives

(k − i, h′
1, h

′
2) ∈ PR

ε∪ε′∪{wrρ } w ′ and using Precondition Strengthening then yields (k − i, h′
1, h′

2) ∈ PR
ε† w ′ . Then there is w ′′ � w ′

with dom(w ′′) = dom(w ′) as well as e′′
2 ∈ E and h′′

1, h′′
2, f ′′

1 , f ′′
2 ∈H such that h‡

1 = h′′
1 · f ′′

1 · f ′
1 · f1 and

〈γ2(e†
2) |h′

2〉 ∗→ 〈e′′
2 |h′′

2 · f ′′
2 · f ′

2 · f2〉,
with (k − i − i′, e′′

1, e′′
2) ∈ �τ � R w ′′ as well as the postcondition (k − i − i′, h′

1, h
′
2, h

′′
1, h′′

2) ∈ QR
ε† w ′, w ′′ . The latter, by Postcon-

dition Composition, yields (k − i − i′, h1, h2, h′′
1, h′′

2) ∈ QR
ε∪ε† w, w ′′ .

Now, finally, for the computation proper. Since we have that R(ρ) ∈ dom(w) = dom(w ′′), there are l1, l2 ∈ L with
e′

1 = l1 and e′
2 = l2 and such that there is μ ∈ T̂ with (l1, l2, μ) ∈ w ′′(R(ρ)) and �τ � R w ′′ k−i−i′= (ιμ)(w ′′). In particular,

l1 ∈ dom1(w ′′) ⊆ h′′
1 and the final step of the left hand side reduction must go

〈e′
1 := e′′

1 |h′′
1 · f ′′

1 · f ′
1 · f1〉 = 〈l1 := e′′

1 |h′′
1 · f ′′

1 · f ′
1 · f1〉

→ 〈() |h′′
1[l1
→ e′′

1] · f ′′
1 · f ′

1 · f1〉 = 〈e′′′
1 |h′′′

1 〉.
On the right hand side, we have a complete reduction as l2 ∈ dom(h′′

2):

〈γ2(e2) :=γ2(e†
2) |h2 · f2〉 ∗→ 〈l2 :=γ2(e†

2) |h′
2 · f ′

2 · f2〉
∗→ 〈l2 := e′′

2 |h′′
2 · f ′′

2 · f ′
2 · f2〉

→ 〈() |h′′
2[l2
→ e′′

2] · f ′′
2 · f ′

2 · f2〉.
The return values obviously have the correct type. All that remains is to verify that we do indeed have

(k − i − i′ − 1,h1,h2,h′′
1[l1
→ e′′

1],h′′
2[l2
→ e′′

2]) ∈ QR
ε∪ε†∪{wrρ } w, w ′′,

but that is an easy consequence of the fact that we have (k − i − i′ − 1, e′′
1, e′′

2) ∈ �τ � R w ′′ and that �τ � R w ′′ and (ιμ)(w ′′)
are sufficiently close. �
Lemma 25 (Alloc). � |
 |� e1 � e2 : τ , ε implies

� |
 |� ref e1 � ref e2 : refρτ , ε ∪ {alρ}

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 177
Proof. We unroll the definition of the logical relation: let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary.
Assume R : FRV(ε ∪ {alρ}) ↪→ dom(w) and that (k, γ1, γ2) ∈ �
� R w . We now must show that

(k,refγ1(e1),refγ2(e2)) ∈ E
�

refρτ ε∪{alρ }� R
w.

We proceed to unroll the definition of computations: let j ≤ k, h1, h2, f1, f2 ∈ H, e′′
1 ∈ E and h‡

1 ∈ H be arbitrary. Assume
(k, h1, h2) ∈ PR

ε∪{alρ } w , that

〈refγ1(e1) |h1 · f1〉 j→ 〈e′′
1 |h‡

1〉
and that irr〈e′′

1 | h‡
1〉.

By the operational semantics, there must be 0 ≤ i ≤ j, e′
1 ∈ E and h†

1 ∈H, such that

〈γ1(e1) |h1 · f1〉 i→ 〈e′
1 |h†

1〉
and

〈ref e′
1 |h†

1〉
j−i→ 〈e′′

1 |h‡
1〉

and irr〈e′
1 | h†

1〉 holds. The assumption gives us that we have (k, γ1(e1), γ2(e2)) ∈ E �τ ε � R w and Precondition Strengthening
gives (k, h1, h2) ∈ PR

ε w . Then, there is w ′ � w with dom(w ′) = dom(w) as well as e′
2 ∈ E and h′

1, h
′
2, f

′
1, f

′
2 ∈ H such that

h†
1 = h′

1 · f ′
1 · f1 and

〈γ2(e2) |h2 · f2〉 ∗→ 〈e′
2 |h′

2 · f ′
2 · f2〉,

with (k − i, e′
1, e

′
2) ∈ �τ � R w ′ as well as the postcondition (k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ .
As before, we now exploit the fact that we must have e′

1 ∈ V . This means that the entire left hand side reduction must
go like

〈refγ1(e1) |h1 · f1〉 i→ 〈ref e′
1 |h′

1 · f ′
1 · f1〉

→ 〈l1 |h′
1[l1
→ e′

1] · f ′
1 · f1〉 = 〈e′′

1 |h‡
1〉

for l1 /∈ dom(h′
1 · f ′

1 · f1), i.e., the heap was expanded. On the right hand side, we can give the following reduction for
l2 /∈ dom(h′

2):

〈refγ2(e2) |h1 · f1〉 ∗→ 〈ref e′
2 |h′

2 · f ′
2 · f2〉 → 〈l2 |h′

2[l2
→ e′
2] · f ′

2 · f2〉.
Note that l1 /∈ dom(h′

1) = dom1(w ′) so l1 /∈ dom1(w ′) and similarly l2 /∈ dom2(w ′). Writing r = R(ρ) we have r ∈ dom(w) =
dom(w ′). This justifies the building of a new world w ′′ ∈ W by the transition w ′ →al(r,l1,l2,μ) w ′′ where we naturally set
μ = ι−1(�τ � R

). We do, in other words, extend the world to match the allocation of the operational semantics.
Since w ′′ � w and dom(w ′′) = dom(w) it remains to prove that we return appropriately typed values, i.e., that (k − i −1,

l1, l2) ∈
�

refρτ
� R

w ′′ holds, and that the postcondition of the entire computation holds, i.e., that

(k − i − 1,h1,h2,h′
1[l1
→ e′

1],h′
2[l2
→ e′

2]) ∈ QR
ε∪{alρ } w, w ′′.

The former is immediate by the fact that ιμ = ι(ι−1(�τ � R
)) = �τ � R . And the latter comes down to showing

k − i − 1 > 0 ⇒ (k − i − 1 − 1, e′
1, e′

2) ∈ �τ � R w ′′

which is a consequence of having (k − i, e′
1, e

′
2) ∈ �τ � R w ′ . �

Finally, the compatibility lemma for the rule T-RegInst is a bit more tedious. It will necessitate few auxiliary lemmas.

Lemma 26. Let R : RV → RN with σ ∈ dom(R). If wf(τ), σ /∈ FRV(τ , ε), and �τ � R[ρ
→R(σ)] = �τ [σ/ρ]� R then

E �τ ε � R[ρ
→R(σ)] = E
�
τ [σ/ρ]ε[σ/ρ]� R

.

Proof. We just have to prove that PR[ρ
→R(σ)]
ε w = PR

ε[σ/ρ] w and QR[ρ
→R(σ)]
ε w = QR

ε[σ/ρ] w . This follows from the equalities:

• R[ρ
→ R(σ)](rdsε) = R(rdsε[σ/ρ])
• R[ρ
→ R(σ)](wrsε) = R(wrsε[σ/ρ])
• R[ρ
→ R(σ)](alsε) = R(alsε[σ/ρ]) �

178 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
Lemma 27. Let R :RV →RN with σ ∈ dom(R). If wf(τ) and σ /∈ FRV(τ) then �τ � R[ρ
→R(σ)] = �τ [σ/ρ]� R .

Proof. First notice that R[ρ
→ R(σ)](FRV(τ)) � |w| iff R(FRV(τ [σ/ρ])) � |w|, in which case both sets are indeed empty by
the definition of �τ �, since R does not map free region variables of τ to regions of w .

So suppose that both R[ρ
→ R(σ)](FRV(τ)) ⊆ |w| and R(FRV(τ [σ/ρ])) ⊆ |w|, and let us continue the proof by induction
on τ :

• For types 1, int and τ1 × τ2 the proof is straightforward.
• Assume �τ � R[ρ
→R(σ)] = �τ [σ/ρ]� R we prove �refατ � R[ρ
→R(σ)] = �(refατ)[σ/ρ]� R :

– If α �= ρ then (refατ)[σ/ρ] = refα(τ [σ/ρ]) and since R[ρ
→ R(σ)](α) = R(α) the equality follows directly from the
induction hypothesis.

– If α = ρ , then (refατ)[σ/ρ] = refσ (τ [σ/ρ]) and we show that
�

refρτ
� R[ρ
→R(σ)] = �(refσ (τ [σ/ρ])� R . To do so, we

use the equality R(σ) = R[ρ
→ R(σ)](ρ) and the induction hypothesis.
• Assume �τ1 � R[ρ
→R(σ)] = �τ1[σ/ρ]� R and �τ2 � R[ρ
→R(σ)] = �τ2[σ/ρ]� R , we prove �τ1 →ε τ2 � R[ρ
→R(σ)] =

�(τ1 →ε τ2)[σ/ρ]� R .
The equality is simply proved using the three following facts:
– The logical equivalence between the injectivity of R[ρ
→ R(σ)] on FRV(ε) and the injectivity of R on FRV(ε[σ/ρ]),

from Lemma 28.
– The first induction hypothesis �τ1 � R[ρ
→R(σ)] = �τ1[σ/ρ]� R .

– The equality E �τ2
ε � R[ρ
→R(σ)] = E

�
τ2[σ/ρ]ε[σ/ρ]� R

, from Lemma 26 with the induction hypothesis.

• Assume �τ � R[α
→r][ρ
→R(σ)] = �τ [σ/ρ]� R[α
→r] we prove �∀α /∈ �.τε � R[ρ
→R(σ)] = �(∀α /∈ �.τε)[σ/ρ]� R . Again, the
equality follows from the two following facts:
– The logical equivalence between the injectivity of R[α
→ r][ρ
→ R(σ)] on FRV(ε) and the injectivity of R[α
→ r] on

FRV(ε[σ/ρ]), from Lemma 28.

– The equality E �τ ε � R[α
→r][ρ
→R(σ)] = E
�
τ [σ/ρ]ε[σ/ρ]� R[α
→r]

, from Lemma 26 with the induction hypothesis. �
Lemma 28 (Injectivity conservation). Let R : � → F , FRV(ε) ⊆ � and α, β ∈RV , with β /∈ FRV(ε) then R[α
→ R(β)] : FRV(ε) ↪→ F
iff R : FRV(ε[β/α]) ↪→ F

Proof. If α /∈ FRV(ε), then FRV(ε[β/α]) = FRV(ε) and R[α
→ R(β)]| FRV(ε) = R | FRV(ε) , so the equivalence holds. Otherwise,
suppose α ∈ FRV(ε).

• If R[α
→ R(β)] : FRV(ε) ↪→ F , then for any γ ∈ FRV(ε) − α, R[α
→ R(β)](α) �= R[α
→ R(β)](γ). So for any γ ∈
FRV(ε[β/α]) \ {β}, R(β) �= R(γ) since β /∈ FRV(ε), i.e. R : FRV(ε[β/α]) ↪→ F .

• Reciprocally, suppose R : FRV(ε[β/α]) ↪→ F , then for any γ ∈ FRV(ε) \ {α}, R(β) �= R(γ). So for any γ ∈ FRV(ε), R[α
→
R(β)](α) �= R[α
→ R(β)](γ) since β /∈ FRV(ε), i.e. R[α
→ R(β)] : FRV(ε) ↪→ F . �

Lemma 29 (Force). If � |
 |� e1 � e2 : ∀ρ /∈ �.τε, ε′ and σ ∈ �\�, then � |
 |� force e1 � force e2 : τ [σ/ρ], ε[σ/ρ] ∪ ε′ .

Proof. Take any k ∈ N, w ∈ W, R : � → |w|, and γ1, γ2 ∈ Subst(
) be arbitrary. Assume that R : FRV(ε[σ/ρ] ∪ ε′) ↪→
dom(w), and (k, γ1, γ2) ∈ �
� R w . We need to show that (k, force ê1, force ê2) ∈ E

�
τ [σ/ρ]ε[σ/ρ]∪ε′ � R

w , where êi = γi(ei).

Instantiating the assumption with k, w , R , γ1 and γ2, we obtain (k, ̂e1, ̂e2) ∈ E
�

∀ρ /∈ �.τεε′ � R
w . We continue by un-

rolling the interpretation of expressions: we take any j ≤ k, e′
1, h1, h2, f1, f2 and h†

1, such that (k, h1, h2) ∈ PR
ε1∪ε′ w ,

where ε1 = ε[σ/ρ], 〈force ê1 | h1 · f1〉 → j 〈e′
1 | h†

1〉 and irr〈e′
1 | h†

1〉. This means that there exists i ≤ j, e‡
1 and h‡

1, such that
〈ê1 | h1 · f1〉 →i 〈e‡

1 | h‡
1〉, irr〈e‡

1 | h‡
1〉 and 〈force e‡

1 | h‡
1〉 → j−i 〈e′

1 | h†
1〉. Moreover, Precondition Strengthening gives (k, h1, h2) ∈

PR
ε′ w .

Now we can instantiate the assumption about ê1 and ê2 being related with i, e‡
1, h1, h2, f1, f2 and h‡

1. We have already
provided all the prerequisites, so we obtain a world w ′ � w , e‡

2, h′
2, g′

1, g′
2, such that

• dom(w ′) = dom(w),
• 〈ê2 | h2 · f2〉 →∗ 〈e‡

2 | h′
2 · g′

2 · f2〉,

• h‡
1 = h′

1 · g′
1 · f1,

• (k − i, h1, h2, h′
1, h

′
2) ∈ QR

ε′ w, w ′

• (k − i, e‡
, e‡

) ∈ �∀ρ /∈ �.τε � R w ′ .
1 2

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 179
〈γ1(e) |h1 · f1〉

PR
ε w

〈e′
1 |h′

1 · f ′
1 · f1〉

�τ � R w ′ QR
ε w,w ′

〈γ2(e) |h2 · f2〉 〈e′
2 |h′

2 · f ′
2 · f2〉

〈γ1(e) |h′
1 · f ′

1 · f1〉

PR
ε w ′

〈e′′
1 |h′′

1 · f ′′
1 · f ′

1 · f1〉

�τ � R w ′′ QR
ε w ′,w ′′

〈γ2(e) |h2 · f2〉 〈e′
2 |h′

2 · f ′′
2 · f2〉

Fig. 8. Illustrated proof of the Idempotent Computation Theorem.

Recall now, that � = FRV(τ , ε) \ {ρ}, since wf(∀ρ /∈ �.τε, ε′) holds, and so we know that σ /∈ FRV(τ , ε). From the defi-
nition of �∀ρ /∈ �.τε � R we know that for any future world w ′′ and interpretation of ρ ∈ |w ′′| we pick, the expressions
will be related. Pick w ′ as the world and R(σ) as r, which is indeed in |w ′|, then we have to prove that R[ρ
→
R(σ)] : FRV(ε) ↪→ dom(w ′), which comes from Lemma 28 since R : FRV(ε[σ/ρ] ∪ ε′) ↪→ dom(w) and dom(w) = dom(w ′).
So we get that (k − i, ̃e1, ̃e2) ∈ E �τ ε � R[ρ
→R(σ)] w ′ , where e‡

i = susp ẽi . From this, by Lemmas 27 and 26, we get that
(k − i, ̃e1, ̃e2) ∈ E

�
τ [σ/ρ]ε[σ/ρ]� R

w ′ . Finally, instantiate this assumption with j − i − 1, e′
1, h′

1, h′
2, g′

1 · f1, g′
2 · f2 and h†

1.
Using Precondition Composition, we have (k − i, h′

1, h
′
2) ∈ PR

ε1∪ε′ w ′ and, since the other preconditions are trivial (the re-
duction takes one less step due to force-susp redex being already reduced), we get w ′′ � w ′ , e′

2, h′′
1, h′′

2, g′′
1 and g′′

2 such
that

• dom(w ′) = dom(w ′′),
• 〈ẽ2 | h′

2 · g′
2 · f2〉 →∗ 〈e′

2 | h′′
2 · g′′

2 · g′
2 · f2〉,

• h†
1 = h′′

1 · g′′
1 · g′

1 · f1,
• (k − j + 1, h′

1, h
′
2, h

′′
1, h′′

2) ∈ QR
ε1

w ′, w ′′ ,
• (k − j + 1, e′

1, e
′
2) ∈ �τ [σ/ρ]� R w ′′ .

Now we finally are able to give the required witnesses: w ′′ � w , e′
2, h′′

1, h′′
2, g′′

1 · g′
1 and g′′

2 · g′
2. The first three obli-

gations are trivial, and the final one holds by downwards-closure of type interpretations. What is left to show is that
(k − j, h1, h2, h′′

1, h′′
2) ∈ QR

ε1∪ε′ w, w ′′ , which holds by Postcondition Weakening and Postcondition Composition. �
7. Applications

We now show applications of our logical relations model: we verify four effect-based program transformations. These
transformations are also considered in [14], but only for a language with ground store. To the best of our knowledge,
the soundness of these effect-based transformations have not been proved before for a general ML-like language with
higher-order store.

Theorem 30 (Idempotent computation). A computation with disjoint read and write effects and no allocation effects is idempotent.
More precisely, assume that we have

� |
 � e : τ , ε

with rdsε ∩ wrsε = ∅ = alsε. Then it holds that

� |
 |� let x = e in let y = e in (x,y) � let x = e in (x,x) : τ × τ , ε.

Proof. We just prove that the left hand side approximates the right hand side, the other way round proceeds similarly
(see Fig. 8). Let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary. Assume that R : FRV(ε) ↪→ dom(w) and that
(k, γ1, γ2) ∈ �
� R w . We set

e1 = let x = γ1(e) in let y = γ1(e) in (x,y)

and

180 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
e2 = let x = γ2(e) in (x,x)

and have to prove (k, e1, e2) ∈ E �τ × τ ε � R w .
We proceed to unroll the definition of the relation on computations: let j ≤ k, e′′′

1 ∈ E and h1, h2, f1, f2, g′′′
1 ∈ H be

arbitrary. Assume that (k, h1, h2) ∈ PR
ε w , that

〈e1 |h1 · f1〉 j→ 〈e′′′
1 | g′′′

1 〉
and that irr〈e′′′

1 | g′′′
1 〉.

By the definition of the operational semantics there must be 0 ≤ i ≤ j, e′
1 ∈ E and g′

1 ∈ H such that the above reduction
can be split into

〈e1 |h1 · f1〉 i→ 〈 let x = e′
1 in let y = γ1(e) in (x,y) | g′

1〉
j−i→ 〈e′′′

1 | g′′′
1 〉

with

〈γ1(e) |h1 · f1〉 i→ 〈e′
1 | g′

1〉
and irr〈e′

1 | g′
1〉.

From the Fundamental Lemma we get (k, γ1(e), γ2(e)) ∈ E �τ ε � R w . Hence, we get w ′ � w with dom(w) = dom(w ′) as
well as e′

2 ∈ E and g′
2, h

′
1, h

′
2, f

′
1, f

′
2 ∈H such that

〈γ2(e) |h2 · f2〉 ∗→ 〈e′
2 | g′

2〉,
g′

1 = h′
1 · f ′

1 · f1, g′
2 = h′

2 · f ′
2 · f2, (k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ and (k − i, e′
1, e

′
2) ∈ �τ � R w ′ . The latter implies e′

1 ∈ V and
so we must have i < j as the alternative would invalidate irr〈e′′′

1 | g′′′
1 〉. Indeed, there must be 0 ≤ i′ ≤ j − i − 1, e′′

1 ∈ E and
g′′

1 ∈H such that we can split the last j − i steps further

〈let x = e′
1 in let y = γ1(e) in (x,y) | g′

1〉
→ 〈let y = γ1(e) in (e′

1,y) | g′
1〉

i′→ 〈let y = e′′
1 in (e′

1,y) | g′′
1〉

j−i−1−i′→ 〈e′′′
1 | g′′′

1 〉
with

〈γ1(e) | g′
1〉 i′→ 〈e′′

1 | g′′
1〉

and irr〈e′′
1 | g′′

1〉.
Now for something odd: we reset the right hand side to the initial state. More precisely, we argue that (k − i −1, h′

1, h2) ∈
PR

ε w ′; this is the crux of the entire proof. Notice initially, that not only is it the case that dom(w) = dom(w ′), we also have
∀r ∈ dom(w). w(r) = w ′(r) since alsε = ∅; in particular we get dom2(w) = dom2(w ′). Combining now the facts

∀ρ ∈ rdsε.∀(l1, l2,μ) ∈ w(R(ρ)).

k > 0 ⇒ (k − 1,h1(l1),h2(l2)) ∈ (ιμ)(w)

and

∀l1 ∈ dom(h1). h1(l1) �= h′
1(l1) ⇒

∃ρ ∈ wrsε.∃(m1, l2,μ) ∈ w(R(ρ)). l1 = m1,

with rdsε ∩ wrsε = ∅ and the injectivity of R on FRV(ε) buys us

∀ρ ∈ rdsε.∀(l1, l2,μ) ∈ w ′(R(ρ)).

k − i − 1 > 0 ⇒ (k − i − 2,h′
1(l1),h2(l2)) ∈ (ιμ)(w ′).

Loosely speaking, the locations we are permitted to read held values of the correct type from the beginning and were not
changed by the computation seen so far.

We proceed to use the fact that (k − i − 1, γ1(e), γ2(e)) ∈ E �τ ε � R w ′ by a second application of the Fundamental Lemma
instantiated with k − i − 1 and w ′ . Using the fact that (k − i − 1, h′

1, h2) ∈ PR
ε w ′ , this yields w ′′ � w ′ with dom(w ′) =

dom(w ′′) as well as e′′ ∈ E and g′′, h′′, h′′, f ′′, f ′′ ∈H such that
2 2 1 2 1 2

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 181
〈e1 |h1 · f1〉

PR
ε∪ε′ w

i+1 〈ê1 |h′
1 · f ′

1 · f1〉

PR
ε′ w

i′+1 〈(e′
1, e′′

1) |h′′
1 · f ′′

1 · f †
1 · f ′

1 · f1〉

〈e2 |h2 · f2〉 ∗ 〈ê2 |h′
2 · f ′

2 · f2〉

QR
ε′ w,w ′PR

ε w

∗ 〈(e′′
2, e′

2) |h′′
2 · f ′′

2 · f †
2 · f ′

2 · f2〉
QR

ε w,w ′′

QR
ε∪ε′ w,w ′′′

Fig. 9. Illustrated proof of the Commuting Computations Theorem. In the diagram, we use ê1 = let y = γ1(e′) in (e′
1,y) and ê2 = let x =

γ2(e) in (x,e′
2) as abbreviations.

〈γ2(e) |h2 · f2〉 ∗→ 〈e′′
2 | g′′

2〉,
g′′

1 = h′′
1 · f ′′

1 · f ′
1 · f1, g′′

2 = h′′
2 · f ′′

2 · f2, (k − i − 1 − i′, h′
1, h2, h′′

1, h′′
2) ∈ QR

ε w ′, w ′′ and (k − i − 1 − i′, e′′
1, e′′

2) ∈ �τ � R w ′′ . The latter
implies e′′

1 ∈ V and so we must have i′ < j − i − 1 since an equality would conflict with irr〈e′′′
1 | g′′′

1 〉. Even more precisely,

we must have j − i − 1 − i′ = 1 and the final step in the entire reduction 〈e1 | h1 · f1〉 j→ 〈e′′′
1 | g′′′

1 〉 must be

〈let y = e′′
1 in (e′

1,y) | g′′
1〉 → 〈(e′

1, e′′
1) | g′′

1〉,
in particular e′′′

1 = (e′
1, e

′′
1) and g′′′

1 = g′′
1 .

We immediately get

〈e2 |h2 · f2〉 ∗→ 〈(e′′
2, e′′

2) | g′′
2〉.

In the proof, it now remains to prove (k − j, h1, h2, h′′
1, h′′

2) ∈ QR
ε w, w ′′ and that (k − j, (e′

1, e
′′
1), (e′′

2, e′′
2)) ∈ �τ × τ � R w ′′ .

Notice initially, that by the determinism of the operational semantics and the fact that e′
2, e′′

2 ∈ V we have e′
2 = e′′

2 and
g′

2 = g′′
2 . Since dom2(w ′) = dom2(w ′′) by alsε = ∅ we furthermore get h′

2 = h′′
2 and f ′

2 = f ′′
2 . Also recall k − j = k − i − i′ − 2.

On the first obligation, we take l1 ∈ dom(h1) and assume that h1(l1) �= h′′
1(l1). If also h′

1(l1) �= h′′
1(l1) then the de-

sired follows from (k − i − 1 − i′, h′
1, h2, h′′

1, h′′
2) ∈ QR

ε w ′, w ′′ . Otherwise, we must have h1(l1) �= h′
1(l1) = h′′

1(l1), and
(k − i, h1, h2, h′

1, h
′
2) ∈ QR

ε w, w ′ paves the way. And the second obligation is met by recalling (k − i, e′
1, e

′
2) ∈ �τ � R w ′ and

(k − i − 1 − i′, e′′
1, e′′

2) ∈ �τ � R w ′′ . �
Theorem 31 (Commuting computations). Two computations commute if neither reads a region that the other writes, and there is no
region they both write. More precisely, assume that we have

� |
 � e : τ , ε, � |
 � e′ : τ ′, ε′

with rdsε ∩ wrsε′ = rdsε′ ∩ wrsε = wrsε ∩ wrsε′ = ∅.

let x = e in let y = e′ in (x,y) � let y = e′ in let x = e in (x,y)

in context � |
 at type τ × τ ′ , ε ∪ ε′ .

Proof. Again we give the details only one way: that the left hand side approximates the right hand side (see Fig. 9). Let
k ∈N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary. Assume that R : FRV(ε ∪ ε′) ↪→ dom(w) and that (k, γ1, γ2) ∈�
� R w . Set

e1 = let x = γ1(e) in let y = γ1(e′) in (x,y)

and

e2 = let y = γ2(e′) in let x = γ2(e) in (x,y);
we have to prove (k, e1, e2) ∈ E

�
τ × τ ′ε∪ε

� R
w .

We proceed to unroll the definition of the relation on computations: let j ≤ k, e′′′
1 ∈ E and h1, h2, f1, f2, g′′′

1 ∈ H be
arbitrary. Assume that (k, h1, h2) ∈ PR

ε∪ε′ w , that

〈e1 |h1 · f1〉 j→ 〈e′′′
1 | g′′′

1 〉
and that irr〈e′′′

1 | g′′′
1 〉.

By the definition of the operational semantics there must be 0 ≤ i ≤ j, e′
1 ∈ E and g′

1 ∈H such that the above reduction
can be split into

182 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
〈e1 |h1 · f1〉 i→ 〈 let x = e′
1 in let y = γ1(e′) in (x,y) | g′

1〉
j−i→ 〈e′′′

1 | g′′′
1 〉

with

〈γ1(e) |h1 · f1〉 i→ 〈e′
1 | g′

1〉
and irr〈e′

1 | g′
1〉.

From the Fundamental Lemma we get (k, γ1(e), γ2(e)) ∈ E �τ ε � R w . By Precondition Strengthening we get the two fol-
lowing facts: that e′

1 ∈ V and that for l1 ∈ dom(h1) such that there is r ∈ R(rdsε′) and (m1, l2, μ) ∈ w(r) with m1 = l1 we
have g′

1(l1) = h1(l1). The latter is a consequence of wrsε ∩ rdsε′ = ∅ and the injectivity of R on FRV(ε ∪ ε′).
We must have i < j as the alternative would invalidate irr〈e′′′

1 | g′′′
1 〉. Indeed, there must be 0 ≤ i′ ≤ j − i − 1, e′′

1 ∈ E and
g′′

1 ∈H such that we can split the last j − i steps further into

〈let x = e′
1 in let y = γ1(e′) in (x,y) | g′

1〉
→ 〈let y = γ1(e′) in (e′

1,y) | g′
1〉

i′→ 〈let y = e′′
1 in (e′

1,y) | g′′
1〉

j−i−1−i′→ 〈e′′′
1 | g′′′

1 〉
with

〈γ1(e′) | g′
1〉 i′→ 〈e′′

1 | g′′
1〉

and irr〈e′′
1 | g′′

1〉.
Much as in the previous proof, we now ditch our right hand side progress, but unlike that, we also lose our new

future world. Notice first that the Fundamental Lemma gives us (k − i − 1, γ1(e′), γ2(e′)) ∈ E
�
τ ′ε′ � R

w; we would like

to apply that. Write g′
1 = h†

1 · h◦
1 for h†

1, h
◦
1 ∈ H with dom(h†

1) = dom1(w); the crucial observation now is that we have
(k − i − 1, h†

1, h2) ∈ PR
ε′ w . Hence we get w ′ � w with dom(w) = dom(w ′) as well as e′

2 ∈ E and g′
2, h

′′
1, h′

2, f
′′
1 , f ′

2 ∈ H such
that

〈γ2(e′) |h2 · f2〉 ∗→ 〈e′
2 | g′

2〉,
g′′

1 = h′′
1 · f ′′

1 · h◦
1, g′

2 = h′
2 · f ′

2 · f2, (k − i − 1 − i′, h†
1, h2, h′′

1, h′
2) ∈ QR

ε′ w, w ′ and (k − i − 1 − i′, e′′
1, e′

2) ∈ �τ ′� R w ′ .
Much as we have argued before, we now know that e′′

1 ∈ V , hence j − i −1 − i′ = 1 and the entire left hand side reduction
must look like

〈e1 |h1 · f1〉 j→ 〈(e′
1, e′′

1) | g′′
1〉,

in particular, e′′′
1 = (e′

1, e
′′
1) and g′′′

1 = g′′
1 .

We have now, in some sense, considered the situation from the point of view of e′; it is time to turn the tables.
There are h†

2, f †
2 with dom(h†

2) = dom2(w) such that h′
2 = h†

2 · f †
2 . So we have (k, h1, h

†
2) ∈ PR

ε w by arguments as above;
in particular we apply wrsε′ ∩ rdsε = ∅. Now, we still have (k, γ1(e), γ2(e)) ∈ E �τ ε � R w and so there is w ′′ � w with
dom(w) = dom(w ′′) as well as e′′

2 ∈ E and g′′
2, h′

1, h
′′
2, f ′

1, f
′′
2 ∈H such that

〈γ2(e) |h†
2 · f †

2 · f ′
2 · f2〉 ∗→ 〈e′′

2 | g′′
2〉,

g′
1 = h′

1 · f ′
1 · f1, g′′

2 = h′′
2 · f ′′

2 · f †
2 · f ′

2 · f2, (k − i, h1, h
†
2, h

′
1, h

′′
2) ∈ QR

ε w, w ′′ and (k − i, e′
1, e

′′
2) ∈ �τ � R w ′′ . Write h′

1 = h†
1 · f †

1 for
f †
1 ∈ H, in particular g′

1 = h†
1 · f †

1 · f ′
1 · f1 and g′′

1 = h′′
1 · f ′′

1 · f †
1 · f ′

1 · f1; this is notation we need soon. Observe first, though,
that we have the right hand side reduction

〈e2 |h2 · f2〉 ∗→ 〈(e′
2, e′′

2) | g′′
2〉.

We now build a world w ′′′ with dom(w ′′′) = dom(w) and with both w ′′′ � w ′ and w ′′′ � w ′′ , i.e., a common future
world. The natural choice is for the dead regions of w ′′′ to be the dead regions of both w ′ and w ′′ . For r ∈ dom(w) we
set w ′′′(r) = w ′(r) ∪ w ′′(r), but we must take care not to wreck the partial bijections nor their mutual disjointness. Let
r, s ∈ dom(w) and take (l′1, l′2, μ′) ∈ w ′(r) \ w(r) and (l′′1, l′′2, μ′′) ∈ w ′′(s) \ w(s); it will suffice to show l′1 �= l′′1 and l′2 �= l′′2.
Now, we know that l′1 ∈ dom1(w ′) = dom(h′′

1); in particular we have l′1 /∈ dom(f †
1). Also l′1 /∈ dom1(w) = dom(h†

1). But
l′′ ∈ dom1(w ′′) = dom(h′) and since h′ = h† · f † we must have l′ �= l′′ . Proving l′ �= l′′ proceeds similarly.
1 1 1 1 1 1 1 2 2

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 183
It shall now suffice to show

(k − j,h1,h2,h′′
1 · f †

1 ,h′′
2 · f †

2) ∈ QR
ε∪ε′ w, w ′′′

as the remaining obligations are discharged already. We have

dom1(w ′′′) = dom1(w ′) ∪ dom1(w ′′)
= dom(h′′

1) ∪ dom(h†
1 · f †

1)

= dom(h′′
1 · f †

1)

and get dom2(w ′′′) = dom(h′′
2 · f †

2) similarly. So take l1 ∈ dom(h1) and assume that h1(l1) �= h′′
1(l1). If h†

1(l1) �= h′′
1(l1) we get

ρ ∈ wrsε′ and (m1, l2, μ) ∈ w(R(ρ)) with l1 = m1 and (k − j, h′′
1(l1), h′

2(l2)) ∈ (ιμ)(w ′). And since wrsε ∩ wrsε = ∅ we
know that h′′

2(l2) = h′
2(l1). If, on the other hand, h†

1(l1) = h′′
1(l1) then we must have h1(l1) �= h†

1(l1) and we get ρ ∈ wrsε and
(m1, l2, μ) ∈ w(R(ρ)) with l1 = m1 and (k − i − 1, h†

1(l1), h
′′
2(l2)) ∈ (ιμ)(w ′′).

It remains to consider allocation. So take r ∈ dom(w) and (l1, l2, μ) ∈ w ′′′(r) \ w(r). By the construction of w ′′′ we get
(l1, l2, μ) ∈ w ′(r) \ w(r) or (l1, l2, μ) ∈ w ′(r) \ w(r); in both cases we proceed similarly, so assume the former holds. Then
we know r ∈ R(alsε′) and that (k − j, h′′

1(l1), h′
2(l2)) ∈ (ιμ)(w ′). But as l2 /∈ dom2(w) we must have l2 ∈ dom(f †

2) and so
(h′′

2 · f †
2)(l2) = f †

2(l2) = h′
2(l2) and we are done. �

In the remaining two applications we can prove only approximation, not equivalence, because of the possibility of non-
termination.

Theorem 32 (Neutral computation). A computation that performs no writes and has return type unit approximates the trivial compu-
tation. More precisely, having

� |
 � e : 1, ε

with wrsε = ∅ implies

� |
 |� e � () : 1, ε.

Proof. Let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary. Assume R : FRV(ε) ↪→ dom(w) and that
(k, γ1, γ2) ∈ �
� R w . We now must show that

(k, γ1(e), ()) ∈ E �1ε � R w.

We proceed to unroll the definition of computations: let j ≤ k, h1, h2, f1, f2 ∈ H, e′
1 ∈ E and h′

1 ∈ H be arbitrary. Assume
(k, h1, h2) ∈ PR

ε w , that

〈γ1(e) |h1 · f1〉 j→ 〈e′
1 |h′

1〉
and that irr〈e′

1 | h′
1〉.

By an application of the Fundamental Lemma, we get (k, γ1(e), γ2(e)) ∈ E �1ε � R w . This gives us that e′
1 = (), and, since

there are no write effects, that h′
1 = h1 · f ′

1 · f1. The right hand side of the computation proper terminates in zero steps, i.e.,
we have

〈() |h2 · f2〉 0→ 〈() |h2 · f2〉.
It is straightforward that (k, h1, h2, h1, h2) ∈ QR

ε w, w and (k, (), ()) ∈ �1� R w , so the proof is done. �
Theorem 33 (Pure lambda hoist). A pure computation evaluated as part of a function can, up to approximation, be evaluated once and
the result cached. More precisely, having

� |
 � e : τ1,∅, � |
, y : τ2, x : τ1 � e′ : τ3, ε

gives us

� |
 |� let x = e in λy. e′ � λy. let x = e in e′ : τ2 →ε τ3,∅

Proof. Let k ∈ N, w ∈ W, R : � → |w| and γ1, γ2 ∈ Subst(
) be arbitrary. Assume that (k, γ1, γ2) ∈ �
� R w . We have to
prove

184 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
(k, letx=γ1(e)inλy. γ1(e′),

λy. letx=γ2(e)inγ2(e′)) ∈ E
�
τ2 →ε τ3

∅� R
w.

We proceed to unroll the definition of computations: let j ≤ k, h1, h2, f1, f2 ∈ H, e′′
1 ∈ E and h‡

1 ∈ H be arbitrary. Assume
(k, h1, h2) ∈ PR

∅ w , that

〈letx=γ1(e)inλy. γ1(e′) |h1 · f1〉 j→ 〈e′′
1 |h‡

1〉
and irr〈e′′

1 | h′′
1〉. By the operational semantics, there must be 0 ≤ i ≤ j, e′

1 ∈ E and h†
1 ∈H, such that

〈γ1(e) |h1 · f1〉 i→ 〈e′
1 |h†

1〉
and

〈letx= e′
1 inλy. γ1(e′) |h†

1〉
j−i→ 〈e′′

1 |h‡
1〉

and irr〈e′
1 | h′

1〉 holds. The Fundamental Lemma gives us (k, γ1(e), γ2(e)) ∈ E
�
τ1

∅� R
w; it is an easy consequence that we

have e′
1 ∈ V and that there is f ′

1 ∈H such that h†
1 = h1 · f ′

1 · f1. In particular, only one step remains on the left hand side

〈letx= e′
1 inλy. γ1(e′) |h†

1〉
→ 〈λy. γ1(e′)[e′

1/x] |h†
1〉 = 〈e′′

1 |h‡
1〉

The right hand side is a value in itself, so we get the following zero-step reduction

〈λy. letx=γ2(e)inγ2(e′) |h2 · f2〉
0→ 〈λy. letx=γ2(e)inγ2(e′) |h2 · f2〉.

Using (k − j, h1, h2, h1, h2) ∈ QR
∅ w, w , we have left to prove that

(k − j, λy. γ1(e′)[e′
1/x], λy. letx=γ2(e)inγ2(e′)) ∈ �τ2 →ε τ3 � R w.

Notice first, that since the lambda is just syntactic sugar for a non-recursive fixed point, we have

λy. γ1(e′)[e′
1/x] = fix f (y). γ1(e′)[e′

1/x]
and similarly

λy. letx=γ2(e)inγ2(e′)
= fix f (y). letx=γ2(e)inγ2(e′).

So we proceed, according to the interpretation of function types: pick w ′ � w with R(FRV(ε)) ↪→ dom(w ′), k′ ≤ k − j,
v1, v2 ∈ V with (k′, v1, v2) ∈ �τ2 � R w ′ . We now have to show(

k′, (fix f (y). γ1(e′)[e′
1/x]) v1,

(fix f (y). letx=γ2(e)inγ2(e′)) v2
) ∈ E �τ3

ε � R w ′.
We proceed, once more, to unroll the definition of the relation on computations: let j′ ≤ k′ , h′′

1, h′′
2, f ′′

1 , f ′′
2 ∈ H, e◦

1 ∈ E and
h◦

1 ∈H be arbitrary. Assume (k′, h′′
1, h′′

2) ∈ PR
ε w ′ , that

〈(fix f (y). γ1(e′)[e′
1/x]) v1 |h′′

1 · f ′′
1 〉 j′→ 〈e◦

1 |h◦
1〉

and irr〈e◦
1 | h◦

1〉.
Intuitively, we now temporarily forget about the changes made between w and w ′ , and interpret the computations

γ1(e) and γ2(e). Afterwards, we retrace the changes from w to w ′ in the resulting world, since e cannot interfere with
them, and build the resulting world w ′′ . More precisely, we build a brand new world w† ∈ W that has the same dead
and live regions as w ′ but such that for any r ∈ dom(w†) we have w†(r) = w(r) if r ∈ dom(w) and w†(r) = ∅ if r /∈ |w|.
Note that w† � w and that dom1(w†) ⊆ dom1(w) as well as dom2(w†) ⊆ dom2(w ′). The latter two are the crux: there are
g1 ⊆ h1 and g′′

2 ⊆ h′′
2 with (k, g1, g′′

2) ∈ PR
∅ w†. The Fundamental Lemma yields (k, γ1(e), γ2(e)) ∈ E

�
τ1

∅� R
w† and so we get

w‡ � w† with dom(w‡) = dom(w†) and e′
2 ∈ E with

〈γ2(e) |h′′ · f ′′〉 ∗→ 〈e′ |h′′ · f ′′′ · f ′′〉
2 2 2 2 2 2

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 185
for some f ′′′
2 ∈H as well as (k − i, e′

1, e
′
2) ∈ �τ1 � R w‡. Now observe that the only difference between w† and w‡ is a possible

addition of dead regions as there are no allocation effects. And so we build the world w ′′ ∈ W that is just w ′ with the dead
regions extended to hold also the dead regions of w‡. In particular, we get w ′′ � w‡ as well as w ′′ � w ′ .

Returning to the computation at hand, the left hand side reduction must go like

〈(fix f (y). γ1(e′)[e′
1/x]) v1 |h′′

1 · f ′′
2 〉 →

〈γ1(e′)[e′
1/x][v1/y] |h′′

1 · f ′′
2 〉 j′−1→ 〈e◦

1 |h◦
1〉

and we can take a few steps on the right hand side as well

〈(fix f (y). letx=γ2(e)inγ2(e′)) v2 |h′′
2 · f ′′

2 〉
→ 〈letx=γ2(e)inγ2(e′)[v2/y] |h′′

2 · f ′′
2 〉

∗→ 〈letx= e′
2 inγ2(e′)[v2/y] |h′′

2 · f ′′′
2 · f ′′

2 〉
→ 〈γ2(e′)[v2/y][e′

2/x] |h′′
2 · f ′′′

2 · f ′′
2 〉.

All that remains now is, in essence, to apply the Fundamental Lemma to � |
, y : τ2, x : τ1 � e′ : τ3, ε: we note that
R(FRV(ε)) ↪→ dom(w ′) = dom(w ′′), that (k′ − 1, γ1, γ2) ∈ �
� R w ′′ , that (k′ − 1, v1, v2) ∈ �τ2 � R w ′′ and that (k′ − 1, e′

1, e
′
2) ∈�τ1 � R w ′′ . This gives us that

(k′ − 1, γ1(e′)[v1/y][e′
1/x], γ2(e′)[v2/y][e′

2/x]) ∈ E �τ3
ε � R w ′′.

Finally, we can use this knowledge together with

〈γ1(e′)[e′
1/x][v1/y] |h′′

1 · f ′′
2 〉 j′−1→ 〈e◦

1 |h◦
1〉,

where the appropriate precondition holds by Precondition Composition, since the only difference between w ′ and w ′′ are
the extra dead regions, to finish the proof. �
8. Discussion

8.1. Work by Benton et al.

An important point of reference for our work is the relational model by Benton et al. [14] of an effect system for a
higher-order language with dynamic allocation and ground store, i.e., only integers in the heap. Indeed, apart from our
extension to higher-order store and region polymorphism, the type systems and examples considered are roughly the same.

Having said so, we remark that our take on the issue of masking is novel; in particular it is different from that of Benton
et al. Their approach does not scale easily, if at all, to the higher-order store setting: the pivot is the Masking Lemma [14,
Lemma 3], stating that the interpretation of both types and computations in a world are preserved up to equality under
masking, provided that the region masked out is not, syntactically, in the type respectively in the computation. Combined
with ground store, this makes short work of soundness of the masking rule.

The Masking Lemma, however, does not scale easily to a higher-order store setting. Consider the computation from the
introduction: the returned function has latent effect {wrσ } and correspondingly writes to location 1 in region σ . But the
values stored at location 1 must be of type refρ int, and that depends on the type int associated with location 0 in region ρ .
In other words, the interpretation of a type may depend on regions that do not occur syntactically in the type; this is the
antithesis to the Masking Lemma.

As described above, we take a different approach: that interpretations of types should grow (or at least not shrink)
under any application of masking, and only when we actually perform reads, writes and allocations do we require that the
regions in question are still live. This also means that we can get by without a silent region [14, Sections 5 and 6]. This is a
designated region of the world that tracks inaccessible parts of the heap in an untyped way; in [14] it is necessary for the
Masking Lemma to hold for computations.

Our different approach to masking is actually in some cases more restrictive than Benton et al.’s: our model permits any
action on locations that have been masked out, including garbage collection or ownership transfer. The locations have left
the world and we make no further assumptions on them whatsoever. By contrast, locations in a silent region are still in
the world and computations may assume that they remain allocated, even if the stored value cannot be changed. Indeed,
computations may actually access such locations in extensionally invisible ways: we could, say, read a location in the silent
region as long as we make no use of the read value. Thus, more computations can be treated as pure if one uses the silent
region. However, it is not clear how this approach could be made to work in the higher-order case.

As mentioned earlier, our approach to masking is similar to the approach used by Ahmed to model region dealloca-
tion [16].

186 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
Benton et al.: higher order store In more recent work, Benton et al. [15] have given a relational model for a language with
higher order store. The language has no dynamic allocation though, nor is there any masking rule.

Unlike our approach, however, they work with a denotational semantics of the language; in particular they prove ex-
istence of the logical relation by solving a non-trivial mixed-variance domain equation, extending the standard technique
by Pitts [24] to do so. One advantage is transitivity of their logical relation; that is something we do not get. This is a
general issue with step-indexed models observed first by Ahmed [25]; there are fixes, but a more proper take is to reason
in a logic suited for step-indexing as done, e.g., by Dreyer et al. [26]. We are convinced, however, that using the techniques
developed by Støvring and two of the authors [19], we could also define a model based on a denotational semantics of the
programming language, hence achieving transitivity.

Preservation of all store relations Throughout their work, Benton et al. interpret computations by requiring preservation of
all relations on heaps that respect the effects of the computations, i.e., that ensure well-typed reads at locations with read
effects and is closed under well-typed writes to locations with write effects. Our approach is more simple-minded; we do,
in some sense, just preserve one relation. But it is unclear what the additional relations buy — we know of no equivalences
that fail due to our approach; indeed the two alternatives may very well be equivalent. What is clear, however, is that losing
the many relations, as well as the absence of a silent region, simplifies proofs considerably: writing out all the details, as
we do, is obviously quite verbose, but in essence one may argue using simple diagrams, as illustrated in Section 7.

8.2. On expressiveness

In this paper we have focused on a relatively simple model that is still sufficiently rich to verify effect-based program
transformations, where all the conditions for a transformation are expressed by types and effects rather than relying on
the syntax of the transformed program. That said, there are some limitations imposed by the world model we chose: for
example, the usual inductive argument cannot be used to relate a pure version of Fibonacci with the imperative version,
since the partial bijection model we use is not expressive enough.7 The expressivity of the world model, however, is an
issue orthogonal to the rest of the interpretation of types, so a more expressive one — like the ones of Ahmed et al. [18] or
Dreyer et al. [20] — could be used instead, if desired. In this paper, we refrained from doing so in order to keep that part of
the setup as simple as possible.

In particular, consider the following variant of the so-called awkward example, discussed in detail in [20]. Let τ =
(1

ε0→ 1) ε1→ int with ε0 = {rdρ, wrρ} and ε1 = {rdρ, wrρ, rdσ , wrσ } and define expressions e1 and e2, which both have type τ
and effect {alσ }, by

e1 = let x= refσ 0 in
λ f .(x := 0; f (); x := 1; f (); ! x)

e2 = let x= refσ 0 in
λ f .(f (); f (); x := 1; ! x).

We have used the subscript σ to indicate that x will have the type refσ int. Since ρ and σ are distinct, f cannot read or
write the reference bound to x; this ensures that both the left and the right hand side functions always return 1. Indeed we
can show that e1 and e2 are contextually equivalent. We remark that if, on the other hand, we had typed e1 and e2 with
the same region variable instead of two distinct region variables, then our semantic model would not be expressive enough
to show that e1 and e2 are contextually equivalent. For that, we could extend our model using ideas from the model for
non-effect-annotated types in [20]. This way, the effect information can be used to restrict the applicable contexts and can
thus make it easier to show two expressions equivalent (for those restricted contexts). Note that a standard unification-based
algorithm for inferring effects, would infer the type τ for e1 with ρ and σ distinct.

8.3. On region polymorphism

Until now, relational models of region-based type and effect systems for validating program equivalences have not
included region polymorphism. Traditionally, region polymorphism involved only simple quantification over region vari-
ables [3]. Our new form of region polymorphism can express restrictions on which regions can be used to instantiate
the quantified region variables, and thus restrict aliasing of regions. The type and effect system for Deterministic Parallel
Java (DPJ) [10] includes explicit region disjointness constraints, which also makes it possible to restrict aliasing of regions.
In future work, we would like to explore the connections between these two approaches further and investigate if our
modeling techniques can be used to give a relational model for the rich region calculus used in DPJ.

7 One could still imagine a proof that follows by taking related arguments, computing the results purely in the operational semantics, and showing these
are related, though.

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 187
9. Conclusion and future work

We have presented a solution to the open problem of constructing a relational model for an effect system for a higher-
order language with dynamically allocated higher-order store. We have demonstrated that the model can be used to
rigorously justify effect-based program transformations.

In this paper, our conceptual region model has followed the stack discipline used in Tofte and Talpin’s region-based
memory management [4]. It would be interesting to explore also models based on more liberal region schemes, such as
those in [27,28].

Future work also includes extending the language and model with concurrency, so that one can show the correctness
of effect-based parallelization. A first model for such an extension has recently been presented by some of the current
authors [29], using the same notion of worlds as in the present paper. Logical relations for concurrency have since also been
explored with more sophisticated worlds (for simple type systems without effects), which are useful for reasoning about
fine-grained concurrent data structures [30].

In the present approach we can hide local effects using the masking rule. In future work, we hope to investigate hiding
of other forms of effects that are local qua data abstraction. For example, a lookup function on an abstract tree type should
only have a read effect, even though it may also rewrite the structure of the tree internally (an internal effect). Here we
hope to build on ideas from recent work on fictional separation logic [31].

Appendix A. Metric spaces and metric domains

We assume familiarity with the basics of metric spaces theory: the definition of a metric space, convergence and Cauchy
sequences. Our interest is in metric spaces with three additional characteristics: They must be complete, i.e., all Cauchy
sequences must be convergent. They must be bisected, i.e., all non-zero distances are of the form 2−n for some n ∈ N.
And they must be ultrametric spaces. A metric space (X, d) is an ultrametric space if the metric satisfies the strong triangle
equality:

∀x, y, z ∈ X .d(x, z) ≤ max{d(x, y),d(y, z)}.
To ease the language, we refer to a complete, bisected ultrametric space as a metric domain, provided that it is non-empty.
After all, empty metric spaces are not much fun.

The standard, geometric understanding of metric spaces goes badly with metric domains; the strong triangle inequality,
e.g., outlaws partially overlapping balls. A better intuition, at least for our purposes, is this: metric domains are all about
approximations. Let (X, d) be a metric domain; we imagine that every element x ∈ X can be approximated to level n for
any n ∈ N. The zeroth approximation loses all information, the first approximation gives a very rough estimate and every
successive level of approximation adds more details. Having d(x, y) = 2−n with n ∈ N for two elements x, y ∈ M then
conceptually means that x and y are indiscernible at approximation level n but differ at level n + 1. Most often, we are
interested only in the former property, and so we write x n= y to mean d(x, y) ≤ 2−n and we say that x and y are n-equal;
the relation x= we call n-equality.

A function f : X → Y between (the carrier sets of) two metric domains is considered non-expansive if, for any n ∈ N,
they preserve n-equality, i.e., if x n= y implies f (x) n= f (y) for any two x, y ∈ X . Contractive functions are those with the
stronger property that x n= y implies f (x) n+1= f (y). Notation is lax already: the actual metrics on X and Y are implicit. The
non-expansive functions are the natural maps on metric domains; the subset of contractive functions is interesting for the
following reason:

Theorem 34 (Banach’s fixed point). A contractive endo-function on a metric domain has a unique fixed point.

The metric domains with non-expansive functions between them form a Cartesian closed category MetDom. The product
of metric domains X and Y is the set X × Y with the following defining property of the metric:

∀n ∈N. ∀(x1, y1), (x2, y2) ∈ X × Y .

(x1, y1)
n= (x2, y2) ⇐⇒ x1

n= x2 ∧ y1
n= y2.

The exponential Y X consists of the set X →nex Y of non-expansive functions from X to Y and a metric defined by the
following property:

∀n ∈N. ∀ f , g ∈ X →nex Y .

f
n= g ⇐⇒ ∀x ∈ X . f (x)

n= g(x).

A functor F : MetDomop ×MetDom → MetDom is locally non-expansive if, for any four metric domains X1, Y1, X2 and Y2,
and any four morphisms f , f ′ : X2 →nex X1 and g, g′ : Y1 →nex Y2 we have that

188 L. Birkedal et al. / Information and Computation 249 (2016) 160–189
∀n ∈N. f
n= f ′ ∧ g

n= g′ �⇒ F (f , g)
n= F (f ′, g′),

and it is locally contractive if we get (n + 1)-equality on the right hand side. We essentially require the action on hom-sets
to be non-expansive, respectively, contractive; here is the illustrated version:

X1 Y1

g′g n= �⇒

F (X1, Y1)

F (f ′,g′)F (f ,g) n=
X2

f n= f ′

Y2 F (X2, Y2)

The use of metric domains in the solution to the type-world circularity and similar circularities is due to the following
theorem by to America and Rutten [32]. It says that one can solve recursive domain equations in MetDom; the proof is
essentially an adaptation of the inverse-limit method from classical domain theory:

Theorem 35. Let F : MetDomop × MetDom → MetDom be a locally contractive functor. Then there exists a unique (up to isomor-
phism) metric domain X such that X ∼= F (X, X).

Everyday constructions often give functors that are locally non-expansive but not locally contractive; to apply the above
theorem, it is a standard technique to post-compose the shrinking functor

1

2
: MetDom → MetDom.

This functor leaves the underlying sets untouched but halves all the distances; it is the identity on morphisms.
A few concluding remarks to this subsection are appropriate: first, if you already know metric spaces, then you may

balk at the definitions of non-expansiveness and contractiveness as well as the constructions of products and exponentials.
Rest assured, though, that for metric domains, our definitions are equivalent to the standard ones. Elsewhere, the category
MetDom is known as BiCBUltne , a more precise if less catchy name. Benton, Birkedal, Kennedy and Varming have given a
Coq formalization of all theory in this subsection and more; Støvring and the two first authors have given a generalization
of the Theorem 35 [33] to metric domains that carry additional structure such as, e.g., certain orderings.

A.1. The present type-world circularity

We now proceed to build the metric domains of types T and worlds W that is our model. By comparison to the simple
type-world circularity for an ML-like language given by Reus, Schwinghammer, Støvring, Yang and the two first authors [17]
it has a few more quirks, but the approach is quite the same.

Above, we only defined local non-expansiveness for functors going from MetDomop × MetDom to MetDom, but the
concept goes for endo-functors on MetDom as well:

Lemma 36. For any two sets X and Y , the construction of finite, decorated partial bijections in Fig. 3 is a functor from Set to Set by
abstracting out Z. It extends to a locally non-expansive functor ParBij(X, Y , −) : MetDom → MetDom.

The distance between two elements P , Q ∈ ParBij(X, Y , Z) is 1 if the partial bijections, excluding the elements of Z, are
different. Otherwise it is the maximum of the distance between corresponding elements of Z.

Lemma 37. The construction of worlds W from ̂T in Fig. 3 can be seen as a functor Set → Set by abstracting out ̂T. It extends to a
locally non-expansive functor Worlds : MetDom → MetDom.

For a metric domain X, the distance between two elements (ϕ1, ψ1), (ϕ2, ψ2) in Worlds(X) is 1 if either dom(ϕ1) �=
dom(ϕ2) or ψ1 �= ψ2. Otherwise, it is the maximum of the distances between ϕ1(r) and ϕ2(r) as elements of ParBij(L, L, X)

over all r ∈ dom(ϕ1).
We recall from Section 4 that for any set X , URel(X) is the set of indexed, downwards closed relations on X , i.e.,

URel(X) = {R ⊆ N× X × X | ∀(k, x1, x2) ∈ R.∀ j < k. (j, x1, x2) ∈ R}.
We can restrict a relation R ∈ URel(X) to elements with index strictly less than some n ∈ N

R|n = {(k, x1, x2) | (k, x1, x2) ∈ R ∧ k < n}
and this gives us a metric:

Proposition 38. For any set X, URel(X) is a metric domain by a metric with the following defining property:

∀n ∈N.∀R, S ∈ URel(X). R
n= S ⇐⇒ R|n = S|n.

L. Birkedal et al. / Information and Computation 249 (2016) 160–189 189
Theorem 39. We can read the entire construction of types T from ̂T in Fig. 3 as a locally non-expansive functor Types : MetDomop →
MetDom given on objects by Types(X) = Worlds(ParBij(L, L, X)) →nex,mon URel(V).

Note that we do not take all monotone functions as carrier set, just the non-expansive ones. The ordering on the metric
domain Worlds(ParBij(L, L, X)) is the reflexive, transitive closure of the transitions in Fig. 4 and on URel(V) it is set-theoretic
inclusion. For once, we need a bit of metric tinkering: first we form the exponential

URel(V)Worlds(ParBij(L,L,X))

in MetDom, i.e., take all the non-expansive functions, then we restrict to the monotone ones. That we can do this without
losing completeness in the process must be verified; it is a consequence of the fact that inclusion is a continuous preorder
on URel(V), i.e., that for any two sequences (R)n∈N and (S)n∈N with limits R , S in URel(V) we have[∀n ∈N. Rn ⊆ Sn

] �⇒ R ⊆ S.

All that remains now, is to post-compose the shrinking functor; this gives us the locally contractive functor

1

2
· Types : MetDomop × MetDom → MetDom

An application of Theorem 35 yields an object ̂T of MetDom and the desired isomorphism:

ι : T̂ ∼= Types(̂T) = T.

References

[1] J. Thamsborg, L. Birkedal, A Kripke logical relation for effect-based program transformations, in: ICFP, ACM, 2011, pp. 445–456.
[2] D. Gifford, J. Lucassen, Integrating functional and imperative programming, in: LISP and Functional Programming, ACM, 1986, pp. 28–38.
[3] J. Lucassen, D. Gifford, Polymorphic effect systems, in: POPL, ACM, 1988, pp. 47–57.
[4] M. Tofte, J.-P. Talpin, Implementation of the typed call-by-value λ-calculus using a stack of regions, in: POPL, ACM, 1994, pp. 188–201.
[5] F. Henglein, H. Makholm, H. Niss, Effect types and region-based memory management, in: B. Pierce (Ed.), Advanced Topics in Types and Programming

Languages, MIT Press, 2005.
[6] L. Birkedal, M. Tofte, M. Vejlstrup, From region inference to von Neumann machines via region representation inference, in: POPL, ACM, 1996,

pp. 171–183.
[7] D. Grossman, J.G. Morrisett, T. Jim, M.W. Hicks, Y. Wang, J. Cheney, Region-based memory management in cyclone, in: PLDI, ACM, 2002, pp. 282–293.
[8] G. Boudol, Typing termination in a higher-order concurrent imperative language, Inf. Comput. 208 (6) (2010) 716–736.
[9] R. Amadio, On stratified regions, in: APLAS, Springer, 2009, pp. 210–225.

[10] R. Bocchino, V. Adve, S. Adve, S. Heumann, R. Komuravelli, J. Overbey, P. Simmons, H. Sung, M. Vakilian, A type and effect system for deterministic
parallel Java, in: OOPSLA, ACM, 2009, pp. 97–116.

[11] R. Bocchino, V. Adve, Types, regions, and effects for safe programming with object-oriented parallel frameworks, in: Proceedings of ECOOP, Springer,
2011, pp. 306–332.

[12] N. Benton, A. Kenney, M. Hofmann, L. Beringer, Reading, writing and relations: towards extensional semantics for effect analyses, in: APLAS, Springer,
2006, pp. 114–130.

[13] N. Benton, P. Buchlovsky, Semantics of an effect analysis for exceptions, in: TLDI, ACM, 2007, pp. 15–26.
[14] N. Benton, L. Beringer, M. Hofmann, A. Kennedy, Relational semantics for effect-based program transformations with dynamic allocation, in: PPDP,

ACM, 2007, pp. 87–96.
[15] N. Benton, L. Beringer, M. Hofmann, A. Kennedy, Relational semantics for effect-based program transformations: higher-order store, in: PPDP, ACM,

2009, pp. 301–312.
[16] A. Ahmed, Semantics of types for mutable state, PhD thesis, Princeton University, 2004.
[17] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, H. Yang, Step-indexed Kripke models over recursive worlds, in: POPL, ACM, 2011,

pp. 119–132.
[18] A. Ahmed, D. Dreyer, A. Rossberg, State-dependent representation independence, in: POPL, ACM, 2009, pp. 340–353.
[19] L. Birkedal, K. Støvring, J. Thamsborg, Realizability semantics of parametric polymorphism, general references, and recursive types, in: FOSSACS,

Springer, 2009, pp. 456–470.
[20] D. Dreyer, G. Neis, L. Birkedal, The impact of higher-order state and control effects on local relational reasoning, in: ICFP, ACM, 2010, pp. 143–156.
[21] L. Birkedal, N. Torp-Smith, H. Yang, Semantics of separation-logic typing and higher-order frame rules for algol-like languages, Log. Methods Comput.

Sci. 2 (5) (2006) 1–33.
[22] L. Birkedal, K. Støvring, J. Thamsborg, Realisability semantics of parametric polymorphism, general references and recursive types, Math. Struct. Comput.

Sci. 20 (4) (2010) 655–703.
[23] A. Nanevski, G. Morrisett, L. Birkedal, Polymorphism and separation in hoare type theory, in: J.H. Reppy, J.L. Lawall (Eds.), ICFP, ACM, 2006, pp. 62–73.
[24] A.M. Pitts, Relational properties of domains, Inf. Comput. 127 (2) (1996) 66–90.
[25] A.J. Ahmed, Step-indexed syntactic logical relations for recursive and quantified types, in: P. Sestoft (Ed.), ESOP, in: Lecture Notes in Computer Science,

vol. 3924, Springer, 2006, pp. 69–83.
[26] D. Dreyer, A. Ahmed, L. Birkedal, Logical step-indexed logical relations, in: LICS, IEEE Computer Society, 2009, pp. 71–80.
[27] A. Aiken, M. Fähndrich, R. Levien, Better static memory management: improving region-based analysis of higher-order languages, in: PLDI, ACM, 1995,

pp. 174–185.
[28] D. Walker, K. Watkins, On regions and linear types, in: ICFP, ACM, 2001, pp. 181–192.
[29] L. Birkedal, F. Sieczkowski, J. Thamsborg, A concurrent logical relation, in: CSL, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2012, pp. 107–121.
[30] A.J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, D. Dreyer, Logical relations for fine-grained concurrency, in: POPL, ACM, 2013, pp. 343–356.
[31] J.B. Jensen, L. Birkedal, Fictional separation logic, in: ESOP, Springer, 2012, pp. 377–396.
[32] P. America, J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete metric spaces, J. Comput. Syst. Sci. 39 (3) (1989) 343–375.
[33] L. Birkedal, K. Støvring, J. Thamsborg, The category-theoretic solution of recursive metric-space equations, Theor. Comput. Sci. 411 (47) (2010)

4102–4122.

http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A636F6E662F696366702F5468616D73626F7267423131s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib676966666F7264s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib6C7563617373656Es1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib746F6674653A74616C70696E3A3934s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib68656E676C65696E3A7461706Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib68656E676C65696E3A7461706Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A726567696E6Ds1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A726567696E6Ds1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib6379636C6F6E65s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib626F75646F6C3A32303130s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib616D6164696F3A61706C61733039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib64706A3A6F6F70736C613A3039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib64706A3A6F6F70736C613A3039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib626F636368696E6F3A65636F6F70s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib626F636368696E6F3A65636F6F70s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A3036s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A3036s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A32303037s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A707064703037s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A707064703037s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A707064703039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib62656E746F6E3A707064703039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib41686D65643A506844s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A737465702D6B7269706B652D726563776F726C642D636F6E66s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A737465702D6B7269706B652D726563776F726C642D636F6E66s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib616472s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A706172616D65747269636974792D73746174652D6D65747269632D636F6E66s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A706172616D65747269636974792D73746174652D6D65747269632D636F6E66s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A7374736C722D636F6E66s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A73656D736C742D6A6F75726E616Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A73656D736C742D6A6F75726E616Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A706172616D65747269636974792D73746174652D6D65747269632D6A6F75726E616Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib4269726B6564616C4C3A706172616D65747269636974792D73746174652D6D65747269632D6A6F75726E616Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A636F6E662F696366702F4E616E6576736B694D423036s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A6A6F75726E616C732F69616E64632F50697474733936s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A636F6E662F65736F702F41686D65643036s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A636F6E662F65736F702F41686D65643036s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A636F6E662F6C6963732F44726579657241423039s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib61696B656E3A3935s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib61696B656E3A3935s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib77616C6B6572s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib63736C32303132s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib7475726F6E2D6574616C2D32303133s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib66736Cs1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A6A6F75726E616C732F6A6373732F416D6572696361523839s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A6A6F75726E616C732F7463732F4269726B6564616C53543130s1
http://refhub.elsevier.com/S0890-5401(16)30014-1/bib44424C503A6A6F75726E616C732F7463732F4269726B6564616C53543130s1

	A Kripke logical relation for effect-based program transformations
	1 Introduction
	2 Language and effect system
	2.1 Syntax
	2.2 Dynamic semantics
	2.3 Type and effect system

	3 Overview of the technical development
	4 Metric spaces and the type-world circularity
	5 Types and the logical relation
	5.1 On interpretation of the write effects

	6 Soundness
	7 Applications
	8 Discussion
	8.1 Work by Benton et al.
	8.2 On expressiveness
	8.3 On region polymorphism

	9 Conclusion and future work
	Appendix A Metric spaces and metric domains
	A.1 The present type-world circularity

	References

