
BI Hyperdoctrines and

Higher-Order Separation Logic

Bodil Biering, Lars Birkedal?, and Noah Torp-Smith?

Department of Theoretical Computer Science, IT University of Copenhagen, Denmark
{biering, birkedal, noah}@itu.dk

Abstract. We present a precise correspondence between separation logic
and a new simple notion of predicate BI, extending the earlier correspon-
dence given between part of separation logic and propositional BI [14].
Moreover, we introduce the notion of a BI hyperdoctrine and show that
it soundly models classical and intuitionistic first- and higher-order pred-
icate BI, and use it to show that we may easily extend separation logic to
higher-order. We argue that the given correspondence may be of import
for formalizations of separation logic.

1 Introduction

Separation logic [20, 19, 5, 6, 22, 9, 2] is a Hoare-style program logic, and variants
of it have been applied to prove correct interesting pointer algorithms such as
copying a dag, disposing a graph, the Schorr-Waite graph algorithm, and Ch-
eney’s copying garbage collector. Different extensions of core separation logic
were employed to conduct these proofs. For example, Yang [21] extended the
core logic with lists and trees, and in [2] the logic included finite sets and re-
lations. Thus it is natural to ask whether one has to make a new extension of
separation logic for every proof one wants to make [17]. This would be unfortu-
nate for formal verification of proofs in separation logic since it would make the
enterprise of formal verification burdensome and dubious. We argue that there
is a natural single underlying logic in which it is possible to define the various
extensions and prove the expected properties thereof; this is then the single logic
that should be employed for formal verification.

Part of the pointer model of separation logic, namely that given by heaps
(but not stacks), has been related to propositional BI, the logic of bunched
implications introduced by O’Hearn and Pym [12]. In this paper we show how
the correspondence may be extended to a precise correspondence between all
of the pointer model (including stacks) and a simple notion of predicate BI. We
introduce the notion of a BI hyperdoctrine, a simple extension of Lawvere’s notion
of hyperdoctrine [8], and show that it soundly models predicate BI. We consider
a different notion of predicate BI than that of [15, 16], which has a BI structure
on contexts. However, we believe that our notion of predicate BI with its class
of BI hyperdoctrine models is the right one for separation logic (Pym aimed to
model mulitiplicative quantifiers; separation logic only uses additive quantifiers).

? Partially supported by Danish Technical Research Council Grant 56-00-0309.

To make this point, we show that the pointer model of separation logic exactly
corresponds to the interpretation of predicate BI in a simple BI hyperdoctrine.
This correspondence also allows us to see that it is simple to extend separation
logic to higher-order separation logic. We explain this extension and suggest that
it may be useful for program proving.

Before proceeding with the technical development we give an intuitive jus-
tification of the use of BI hyperdoctrines to model higher-order predicate BI.
A powerful way of obtaining models of BI is by means of functor categories
(presheaves), using Day’s construction to obtain a doubly-closed structure on
the functor category [14]. Such functor categories can be used to model propo-
sitional BI in two different senses: In the first sense, one models provability,
entailment between propositions, and it works because the lattice of subobjects
of the terminal object in such functor categories form a BI algebra (a doubly
cartesian closed preorder). In the second sense, one models proofs, and it works
because the whole functor category is doubly cartesian closed. Here we seek
models of provability of predicate BI. Since the considered functor categories are
toposes and hence model higher-order predicate logic, one might think that a
straightforward extension is possible. But, alas, it is not the case. In general,
for this to work, every lattice of subobjects (for any object, not only for the
terminal object) should be a BI algebra and, moreover, to model substitution
correctly the BI algebra structure should be preserved by pulling back along any
morphism. We show that this can only be the case if the BI algebra structure is
trivial, that is, coincides with the cartesian structure (see Theorem 7). Our the-
orem holds for any topos, not just for the functor categories considered earlier.
Hence we need to consider a wider class of models for predicate BI than just
toposes and this justifies the notion of a BI hyperdoctrine. The intuitive reason
that BI hyperdoctrines work, is that predicates are not required to be modeled
by subobjects, they can be something more general. Another important point
of BI hyperdoctrines is that they are easy to come by: given any complete BI
algebra B, we can define a canonical BI hyperdoctrine in which predicates are
modeled as B-valued functions; we explain this in detail in Example 6.

The remainder of this paper is organized as follows. In Section 2 we recall
the notion of a (first-order) hyperdoctrine and explain how it soundly models
predicate logic. We then define the concept of a (first-order) BI hyperdoctrine
and explain how it soundly models predicate BI. In Section 3 we briefly recall the
standard pointer model of separation logic and show how it can be construed
as a first-order BI hyperdoctrine. In Section 4 we discuss some consequences
for separation logic, and in particular, we use the higher-order logic to give
logical characterizations of interesting classes of predicates. Finally, we conclude
in Section 5.

2 BI Hyperdoctrines

In this section we introduce Lawvere’s notion of a hyperdoctrine [8] and briefly
recall how it can be used to model intuitionistic and classical first- and higher-

order predicate logic (see, for example, [13] and [7] for more explanations than
can be included here). We then define the notion of a BI hyperdoctrine, which is
a straightforward extension of the standard notion of hyperdoctrine, and explain
how it can be used to model predicate BI logic.

Hyperdoctrines. A first-order hyperdoctrine is a categorical structure tailored to
model first-order predicate logic with equality. The structure has a base category
C for modeling the types and terms, and a C-indexed category P for modeling
formulas.

Definition 1 (First-order hyperdoctrines) Let C be a category with finite
products. A first-order hyperdoctrine P over C is a contravariant functor P :
Cop → Poset from C into the category of partially ordered sets and monotone
functions, with the following properties.

1. For each object X, the partially ordered set P(X) is a Heyting algebra.
2. For each morphism f : X → Y in C, the monotone function P(f) : P(Y) →

P(X) is a Heyting algebra homomorphism.
3. For each diagonal morphism ∆X : X → X × X in C, the left adjoint to

P(∆X) at the top element > ∈ P(X) exists. In other words, there is an
element =X of P(X ×X) satisfying that for all A ∈ P(X ×X),

> ≤ P(∆X)(A) iff =X≤ A.

4. For each product projection π : Γ × X → Γ in C, the monotone function
P(π) : P(Γ) → P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint
(∀X)Γ :

A ≤ P(π)(A′) if and only if (∃X)Γ (A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ (A).

Moreover, these adjoints are natural in Γ , i.e., given s : Γ → Γ ′ in C, we
have

P(Γ ′ ×X)
P(s×idX)

//

(∃X)Γ ′

��

P(Γ ×X)

(∃X)Γ

��

P(Γ ′ ×X)
P(s×idX)

//

(∀X)Γ ′

��

P(Γ ×X)

(∀X)Γ

��
P(Γ ′)

P(s)
// P(Γ) P(Γ ′)

P(s)
// P(Γ).

The elements of P(X), where X ranges over objects of C, will be referred to
as P-predicates.

Interpretation of first-order logic in a first-order hyperdoctrine. Given a (first
order) signature with types X , function symbols f : X1, . . . , Xn → X , and
relation symbols R ⊂ X1, . . . , Xn, a structure for the signature in a first-order
hyperdoctrine P over C assigns an object [[X]] in C to each type, a morphism
[[f]] : [[X1]] × · · · × [[Xn]] → [[X]] to each function symbol, and a P-predicate

[[R]] ∈ P([[X1]]×· · ·×[[Xn]]) to each relation symbol. Any term t over the signature,
with free variables in Γ = {x1 : X1, . . . , xn : Xn} and of typeX say, is interpreted
as a morphism [[t]] : [[Γ]] → [[X]], where [[Γ]] = [[X1]] × · · · × [[Xn]], by induction
on the structure of t (in the standard manner in which terms are interpreted in
categories).

Each formula φ with free variables in Γ is interpreted as a P-predicate
[[φ]] ∈ P([[Γ]]) by induction on the structure of φ using the properties given
in Definition 1. For atomic formulas R(t1, . . . , tn), the interpretation is given by
P(〈[[t1]], . . . , [[tn]]〉)([[R]]). In particular, the atomic formula t =X t′ is interpreted
by the P-predicate P(〈[[t]], [[t′]]〉)(=[[X]]). The interpretation of other formulas is
given by structural induction. Assume φ, φ′ are formulas with free variables in
Γ and that ψ is a formula with free variables in Γ ∪ {x : X}. Then,

[[>]] = >H

[[⊥]] = ⊥H

[[φ ∧ φ′]] = [[φ]] ∧H [[φ′]]
[[φ ∨ φ′]] = [[φ]] ∨H [[φ′]]
[[φ→ φ′]] = [[φ]] →H [[φ′]]

[[∀x : X.ψ]] = (∀[[X]])[[Γ]]([[ψ]]) ∈ P([[Γ]])
[[∃x : X.ψ]] = (∃[[X]])[[Γ]]([[ψ]]) ∈ P([[Γ]]),

where ∧H ,∨H , etc., is the Heyting algebra structure on P([[Γ]]).
We say that a formula φ with free variables in Γ is satisfied if [[φ]] is the

top element of P([[Γ]]). This notion of satisfaction is sound for intuitionistic
predicate logic, in the sense that all provable formulas are satisfied. Moreover,
it is also complete in the sense that a formula is provable if it is satisfied in all
structures in first-order hyperdoctrines. A first-order hyperdoctrine P is sound
for classical predicate logic in case all the fibres P(X) are Boolean algebras and
all the reindexing functions P(f) are Boolean algebra homomorphisms.

Definition 2 (Hyperdoctrines) A (general) hyperdoctrine is a first-order
hyperdoctrine with the following additional properties: C is cartesian closed, and
there is a Heyting algebra H and a natural bijection ΘX : Obj(P(X)) ' C(X,H).

A hyperdoctrine is sound for higher-order intuitionistic predicate logic: the
Heyting algebra H is used to interpret the type, call it prop, of propositions
and higher types (e.g., propX , the type for predicates over X), are interpreted
by exponentials in C. The natural bijection ΘX is used to interpret substitution
of formulas in formulas: Suppose φ is a formula with a free variable q of type
prop and with remaining free variables in Γ , and that ψ is a formula with free
variables in Γ . Then [[ψ]] ∈ P([[Γ]]), [[φ]] ∈ P([[Γ]] × H), and φ[ψ/q] (φ with ψ
substituted in for q) is interpreted by P(〈id, Θ([[ψ]])〉)([[φ]]). For more details see,
e.g., [13].

Again it is the case that a hyperdoctrine P is sound for classical higher-
order predicate logic in case all the fibres P(X) are Boolean algebras and all the
reindexing functions P(f) are Boolean algebra homomorphisms.

Example 3 (Canonical hyperdoctrine over a topos) Let E be a topos. It
is well-known that E models higher-order predicate logic, by interpreting types as

objects in E, terms as morphisms in E and predicates as subobjects in E. The
topos E induces a canonical E-indexed hyperdoctrine SubE : Eop → Poset, which
maps an object X in E to the poset of subobjects of X in E and a morphisms
f : X → Y to the pullback functor f∗ : Sub(Y) → Sub(X). Then the standard
interpretation of predicate logic in E coincides with the interpretation of predi-
cate logic in the hyperdoctrine SubE . Compared to the standard interpretation in
toposes, however, hyperdoctrines allow that predicates are not always modeled by
subobjects but can come from some other universe. Thus hyperdoctrines describe
a wider class of models than toposes do.

BI Hyperdoctrines. Recall that a Heyting algebra is a bi-cartesian closed partial
order, i.e., a partial order, which, when considered as a category, is cartesian
closed (>, ∧, →) and has finite coproducts (⊥, ∨). Further recall that a BI
algebra is a Heyting algebra, which has an additional symmetric monoidal closed
structure (I, ∗, −−∗) [15].

We now present a straightforward extension of (first-order) hyperdoctrines,
which models first and higher-order predicate BI.

Definition 4 (BI Hyperdoctrines)

– A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in case
all the fibres P(X) are BI algebras and all the reindexing functions P(f) are
BI algebra homomorphisms.

– A BI hyperdoctrine is a first-order BI hyperdoctrine with the additional prop-
erties that C is cartesian closed, and there is a BI algebra B and a natural
bijection ΘX : Obj(P(X)) ' C(X,B).

First-order predicate BI is first-order predicate logic with equality, extended
with formulas I, φ ∗ ψ, φ −−∗ ψ satisfying the following rules (in any context Γ
including the free variables of the formulas):

(φ ∗ ψ) ∗ θ `Γ φ ∗ (ψ ∗ θ) φ ∗ (ψ ∗ θ) `Γ (φ ∗ ψ) ∗ θ `Γ φ ↔ φ ∗ I

φ ∗ ψ `Γ ψ ∗ φ

φ `Γ ψ θ `Γ ω

φ ∗ θ `Γ ψ ∗ ω

φ ∗ ψ `Γ θ

φ `Γ ψ −−∗ θ

Our notion of predicate BI should not be confused with the one presented
in [15]; the latter seeks to also include a BI structure on contexts but we do not
attempt to do that here, since that is not what is used in separation logic. In
particular, weakening at the level of variables is always allowed:

φ `Γ ψ

φ `Γ∪{x:X} ψ

We can interpret first-order predicate BI in a first-order BI hyperdoctrine
simply by extending the interpretation of first-order logic in first-order hyper-
doctrine given above by:

[[I]] = IB
[[φ ∗ ψ]] = [[φ]] ∗B [[ψ]]
[[φ −−∗ ψ]] = [[φ]] −−∗B [[ψ]],

where IB , ∗B and −−∗B is the monoidal closed structure in the BI algebra P([[Γ]]).
We then have:

Theorem 5 The interpretation of first-order predicate BI given above is sound
and complete.

Likewise, BI hyperdoctrines form sound and complete models for higher-order
predicate BI. Of course, a (first-order) BI hyperdoctrine is sound for classical
BI in case all the fibres P(X) are Boolean BI algebras and all the reindexing
functions P(f) are Boolean BI algebra homomorphisms. Here is a canonical
example of a BI hyperdoctrine.

Example 6 (BI hyperdoctrine over a complete BI algebra) Let B be a
complete BI algebra, i.e., it has all joins and meets. It determines a BI hyperdoc-
trine over the category Set as follows. For each set X, let P(X) = BX , the set of
functions from X to B, ordered pointwise. Given f : X → Y , P(f) : BY → BX

is the BI algebra homomorphism given by composition with f . For example if
s, t ∈ P(Y), i.e., s, t : Y → B, then P(f)(s) = s ◦ f : X → B and s ∗ t is defined
pointwise as (s ∗ t)(y) = s(y) ∗ t(y). Equality predicates =X in BX×X are given
by

=X (x, x′)
def
=

{

> if x = x′

⊥ if x 6= x′

where > and ⊥ are the greatest and least elements of B, respectively. The quan-
tifiers use set-indexed joins (

∨

) and meets (
∧

). Specifically, given A ∈ BΓ×X

one has

(∃X)Γ (A)
def
= λi ∈ Γ.

∨

x∈X

A(i, x) (∀X)Γ (A)
def
= λi ∈ Γ.

∧

x∈X

A(i, x)

in BΓ . The conditions in Definition 2 are trivially satisfied (Θ is the identity).

There are plenty of examples of complete BI algebras: for any Grothendieck
topos E with an additional symmetric monoidal closed structure, SubE(1) is a
complete BI algebra, and for any monoidal category C such that the monoid is
cover preserving w.r.t. the Grothendieck topology J , SubSh(C,J)(1) is a complete
BI algebra [1, 14].

The following theorem shows that to get interesting models of higher-order
predicate BI, it does not suffice to consider BI hyperdoctrines arising as the
canoncial hyperdoctrine over a topos (as in Example 3). Indeed this is the reason
for introducing the more general BI hyperdoctrines. For reasons of space, we omit
the proof in this exposition.

Theorem 7 Let E be a topos and suppose SubE : Eop → Poset is a BI hyper-
doctrine. Then the BI structure on each lattice SubE(X) is trivial, i.e., for all
ϕ, ψ ∈ SubE(X), ϕ ∗ ψ ↔ ϕ ∧ ψ.

3 Separation Logic modeled by BI-hyperdoctrines

We briefly recall the standard pointer model of separation logic (for a more thor-
ough presentation see, for instance, [20]) and then show how it can be construed
as a BI hyperdoctrine over Set.

The core assertion language of separation logic (which we will henceforth
also call separation logic) is often defined as follows. There is a single type Val
of values. Terms t are defined by a grammar

t ::= x | n | t+ t | t− t | · · · ,

where n : Val are constants for all integers n. Formulas, also called assertions,
are defined by

φ ::= > | ⊥ | t = t | t 7→ t | φ∧φ | φ∨φ | φ→ φ | φ∗φ | φ −−∗ φ | emp | ∀x.φ | ∃x.φ

The symbol emp is used in separation logic for the unit of BI.

Note that the above is just another way of defining a signature (specification
of types, function symbols and predicate symbols) for first-order predicate BI
with a single type Val, function symbols +,−, . . . : Val,Val → Val, constants
n : Val, and relation symbol 7→ ⊆ Val,Val.

The pointer model. The standard pointer model of separation logic is usually
presented as follows. It consists of a set [[Val]] interpreting the type Val and a
set [[Loc]] of locations such that [[Loc]] ⊆ [[Val]] and binary functions on [[Val]]
interpreting the function symbols +,−. The set H = [[Loc]] ⇀fin [[Val]] of finite
partial functions from [[Loc]] to [[Val]], ordered discretely, is referred to as the set
of heaps. The set of heaps has a partial binary operation ∗ defined by

h1 ∗ h2 =

{

h1 ∪ h2 if h1#h2

undefined otherwise,

where # is the binary relation on heaps defined by h1#h2 iff dom(h1)∩dom(h2) =
∅. The interpretation of the relation 7→ ⊆ [[Val]]× [[Val]] is the subset of singleton
heaps, that is, for h ∈ H , h ∈ 7→ iff h = {(v1, v2)} for some values v1, v2. To
define the standard interpretation of terms and formulas, one assumes a partial
function s : Var ⇀fin [[Val]], called a stack (also called a store in the literature).
The interpretation of terms depends on the stack and is defined by

[[x]]s = s(x)
[[n]]s = [[n]]
[[t1 ± t2]]s = [[t1]]s± [[t2]]s

The interpretation of formulas is standardly given by a forcing relation s, h

φ, where FV(φ) ⊆ dom(s), as follows

s, h t1 = t2 iff [[t1]]s = [[t2]]s
s, h t1 7→ t2 iff dom(h) = {[[t1]]s} and h([[t1]]s) = [[t2]]s
s, h emp iff h = ∅
s, h > always
s, h ⊥ never
s, h φ ∗ ψ iff there exists h1, h2 ∈ H.h1 ∗ h2 = h and

s, h1 φ and s, h2 ψ
s, h φ −−∗ ψ iff for all h′, h′#h and s, h′ φ implies s, h ∗ h′ ψ
s, h φ ∨ ψ iff s, h φ or s, h ψ
s, h φ ∧ ψ iff s, h φ and s, h ψ
s, h φ → ψ iff s, h φ implies s, h ψ
s, h ∀x.φ iff for all v ∈ [[Val]].s[x 7→ v], h φ
s, h ∃x.φ iff there exists v ∈ [[Val]].s[x 7→ v], h φ

We now show how this pointer model is an instance of a BI-hyperdoctrine of
a complete Boolean BI algebra (cf. Example 6).

The pointer model as a BI hyperdoctrine. Let (H⊥, ∗) be the discretely ordered
set of heaps with a bottom element added to represent undefined, and let ∗ :
H⊥ × H⊥ → H⊥ be the total extension of ∗ : H ×H ⇀ H satisfying ⊥ ∗ h =
h ∗⊥ = ⊥, for all h ∈ H⊥. This defines a partially ordered commutative monoid
with the empty heap {} as the unit for ∗. The powerset of H , P(H) (without
⊥) is a complete Boolean BI algebra, ordered by inclusion and with monoidal
closed structure given by (for U, V ∈ P(H)):

– I is {∅}
– U ∗ V := {h ∗ h′ | h ∈ U ∧ h′ ∈ V } \ {⊥}
– U −−∗ V :=

⋃

{W ⊆ H | (W ∗ U) ⊆ V }.

It can easily be verified directly that this defines a complete Boolean BI algebra;
it also follows from more abstract arguments in [14, 1].

Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra
P(H) as in Example 6. To show that the interpretation of separation logic in this
BI hyperdoctrine exactly corresponds to the standard pointer model presented
above we spell out the interpretation of separation logic in S.

A term t in a context Γ = {x1 : Val, . . . , xn : Val} is interpreted as a
morphism between sets:

– [[xi : Val]] = πi, where πi : Valn → Val is the i’th projection,

– [[n]] is the map [[n]] : [[Γ]] → 1 → [[Val]] which sends the unique element of the
one-point set 1 to [[n]],

– [[t1±t2]] = [[t1]]±[[t2]] : [[Γ]] → [[Val]]×[[Val]] → [[Val]], where [[ti]] : [[Γ]] → [[Val]],
for i = 1, 2.

The interpretation of a formula φ in a context Γ = {x1 : Val, . . . , xn : Val}
is given inductively as follows. Let I = [[Val]] × · · · × [[Val]] = [[Val]]n and write v
for elements of I . Then φ is interpreted as an element of P(I) as follows:

[[t1 7→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v), ∅ otherwise
[[>]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[φ ∧ ψ]](v) = [[φ]](v) ∩ [[ψ]](v)
[[φ ∨ ψ]](v) = [[φ]](v) ∪ [[ψ]](v)
[[φ → ψ]](v) = {h | h ∈ [[φ]](v) implies h ∈ [[ψ]](v)}
[[φ ∗ ψ]](v) = [[φ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[φ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[φ −−∗ ψ]](v) = [[φ]](v) −−∗ [[ψ]](v)

= {h | [[φ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x : Val .φ]](v) =

⋂

vx∈[[Val]]([[φ]](vx, v))

[[∃x : Val .φ]](v) =
⋃

vx∈[[Val]]([[φ]](vx, v))

Now it is easy to verify by structural induction on formulas φ that the inter-
pretation given in the BI hyperdoctrine S corresponds exactly to the forcing
semantics given earlier:

Theorem 8 h ∈ [[φ]](v1, . . . , vn) iff [x1 7→ v1, . . . , xn 7→ vn], h φ.

As a consequence, we of course obtain the well-known result that separation logic
is sound for classical first-order BI. But, more interestingly, the correspondence
also shows that we may easily extend separation logic to higher-order since the BI
hyperdoctrine S soundly models higher-order BI. We expand on this in the next
section, which also discusses other consequences of the above correspondence.
First, however, we explain that one can also obtain such a correspondence for
other versions of separation logic.

An intuitionistic model. Consider again the set of heaps (H⊥, ∗) with an added
bottom ⊥, as above. We now define the order by

h1 w h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1). h1(x) = h2(x).

Let I be the set of sieves on H , i.e., downwards closed subsets of H , ordered
by inclusion. This is a complete BI algebra, as can be verified directly or by an
abstract argument [1, 14].

Now let T be the BI hyperdoctrine induced by the complete BI algebra
I as in Example 6. The interpretation of predicate BI in this BI hyperdoctrine
corresponds exactly to the intuitionistic pointer model of separation logic, which
is presented using a forcing style semantics in [6].

The permissions model. It is also possible to fit the permissions model of sepa-
ration logic from [4] into the framework presented here. The main point is that
the set of heaps, which in that model map locations to values and permissions,
has a binary operation ∗, which makes (H⊥, ∗) a partially ordered commutative
monoid.

Remark 9 The correspondences between separation logic and BI hyperdoctrines
given above illustrate that what matters for the interpretation of separation logic
is the choice of BI algebra. Indeed, the main relevance of the topos-theoretic
constructions in [14] for models of separation logic is that they can be used to
construct suitable BI-algebras (as subobject lattices in categories of sheaves).

4 Consequences for Separation Logic

We have shown above that it is completely natural and straightforward to in-
terpret first-order predicate BI in first-order BI-hyperdoctrines and that the
standard pointer model of separation logic corresponds to a particular case of
BI-hyperdoctrine. Based on this correspondence, in this section we draw some
further consequences for separation logic.

4.1 Formalizing Separation Logic

The strength of separation logic has been demonstrated in numerous papers
before. In the early days of separation logic, it was shown that it could handle
simple programs for copying trees, deleting lists, etc. The first proof of a more
realistic program appeared in Yang’s thesis [21], in which he showed correctness
of the Schorr-Waite graph marking algorithm. Later, a proof of correctness of
Cheney’s garbage collection algorithm was published in [2], and other examples
of correctness proofs of non-trivial algorithms may be found in [3]. In all of
these papers, different simple extensions of core separation logic were used. For
example, Yang used lists and binary trees as parts of his term language, and
Birkedal et. al. introduced expression forms for finite sets and relations. It would
seem that it is a weakness of separation logic that one has to come up with
suitable extensions of it every time one has to prove a new program correct. In
particular, it would make machine-verifiable formalizations of such proofs more
burdensome and dubious if one would have to alter the underlying logic for every
new proof.

We argue that the right way to look at these “extensions” is that they are
really trivial definitional extensions of one and the same logic, namely the inter-
nal logic of the classical BI hyperdoctrine S presented in Section 3. The internal
language of a BI hyperdoctrine P over C is formed as follows: to each object of C
one associates a type, to each morphism of C one associates a function symbol,
and to each predicate in P(X) one associates a relation symbol. The terms and
formulas over this signature (considered as a higher-order signature [7]) form the
internal language of the BI hyperdoctrine. There is an obvious structure for this
language in P .

Let 2 = {⊥,>} be a two-element set (the subobject classifier of Set). There
is a canonical map ι : 2 → P(H) that maps ⊥ to {} (the bottom element of the
BI algebra P(H)) and > to H (the top element of P(H)).

Definition 10 Let φ be an S-predicate over a set X, i.e., a function φ : X →
P(H). Call φ pure if φ factors through ι.

Thus φ : X → P(H) is pure if there exists a map χφ : X → 2 such that

X
φ

//

χφ

��>
>>

>>
>>

>
P(H)

2

ι

==zzzzzzzz

commutes. This corresponds to the notion of pure predicate traditionally used
in separation logic [20].

The sub-logic of pure predicates is simply the standard classical higher-order
logic of Set, and thus it is sound for classical higher-order logic. Hence one can
use classical higher-order logic for defining lists, trees, finite sets and relations
in the standard manner using pure predicates and prove the standard properties
of these structures, as needed for the proofs presented in the papers referred
to above. In particular, notice that recursive definitions of predicates, which in
[21, 2, 3] are defined at the meta level, can be defined inside the higher-order
logic itself. For machine verification one would thus only need to formalize one
and the same logic, namely a sufficient fragment of the internal logic of the
BI hyperdoctrine (with obvious syntactic rules for when a formula is pure).
The internal logic itself is “too big” (it can have class-many types and function
symbols, e.g.); hence the need for a fragment thereof, say classical higher-order
logic with natural numbers.

4.2 Higher-order Separation Logic

As mentioned in Section 3, the interpretation of separation logic in BI hyperdoc-
trines shows that we may extend separation logic to higher-order. Specifically,
we may quantify over any set X in ∀x : X.φ and ∃x : X.φ, including “pure sets”
of trees, lists, etc., but also including propositions — the BI algebra P(H) —
and predicates — sets of the form (P(H))Y , for some set Y . The quantification
over “pure sets” has been usefully applied in program proving with separation
logic, as mentioned in the previous section (it has also been usefully applied in
Hoare logic, as pointed out to us by John Reynolds, see [18]). It remains to be
seen to what extent quantification over general propositions and predicates is
useful in actual program proving. But let us consider a simple example, which
indicates that it may be useful. Consider the assertion ∃P : prop . P −−∗ Q. In-
tuitively, is says that for some extension of the current heap, described by P ,
the combined heap will satisfy Q. Consider a canonical algorithm for copying a
tree. To describe the invariant, we look at the snapshot in Fig. 1. Suppose the

Fig. 1. Copying a tree.

predicate tree τ asserts that “the tree on the left in Fig. 1 is represented in the
heap” (we are a bit informal here, but a formal presentation would clutter the
point). Then the following assertion describes the situation in Fig. 1:

tree τ ∗ ((∃l1, l2, v1, v2. l1 7→ v1 ∗ l2 7→ v2) −−∗ tree τ).

However, we might not care about the number of actual values and locations
that are missing in the “new” tree in the heap, but just wish to express that
some of the original tree has been copied, and that the original tree has not been
manipulated. This can be done with the assertion

tree τ ∗ (∃P : prop. P −−∗ tree τ).

Future research will show how useful higher-order separation logic is in actual
proofs of programs.

4.3 Logical Characterizations of Classes of Assertions

Different classes of assertions, precise, monotone, and pure, were introduced
in [20], and it was noted that special axioms for these classes of assertions are
valid. Such special axioms were further exploited in [2], where pure assertions
were moved in and out of the scope of iterated separating conjunctions, and
in [11], where precise assertions were crucially used to verify soundness of the
hypothetical frame rule. The different classes of assertions were defined seman-
tically and the special axioms were also validated using the semantics. We now
show how the higher-order features of higher-order separation logic may be used
to logically characterize the classes of assertions and logically prove the proper-
ties earlier taken as axioms. This is, of course, important for machine verification,
since it means that the special classes of assertions and their properties can be
expressed in the logic.

To simplify notation we just present the characterizations for closed asser-
tions, the extension to open assertions is straightforward. Recall that closed
assertions are interpreted in S as functions from 1 to P(H), i.e., as subsets of
H .

In the proofs below, we use assertions which describe heaps in a canonical
way. Since a heap h has finite domain, there is a unique (up to permutation)
way to write an assertion ph ≡ l1 7→ n1 ∗ . . . ∗ lk 7→ nk such that [[ph]] = {h}.

Precise assertions. The traditional definition of a precise assertion is semantic,
in that an assertion q is precise if, and only if, for all states s, h, there is at
most one subheap h0 of h such that s, h0 q. The following proposition logically
characterizes closed precise assertions (at the semantic level, this characterization
of precise predicates was mentioned in [10]).

Proposition 11 The closed assertion q is precise if, and only if, the assertion

∀p1, p2 : prop . (p1 ∗ q) ∧ (p2 ∗ q) → (p1 ∧ p2) ∗ q (1)

is valid in the BI hyperdoctrine S.

Proof: The “only-if” direction is trivial, so we focus on the other implication.
Thus suppose (1) holds for q, and let h be a heap with two different subheaps
h1, h2 for which hi ∈ [[q]]. Let p1, p2 be canonical assertions that describe the
heaps h \ h1 and h \ h2, respectively. Then h ∈ [[(p1 ∗ q) ∧ (p2 ∗ p)]], so h ∈
[[(p1 ∧ p2) ∗ q]], whence there is a subheap h′ ⊆ h with h′ ∈ [[p1 ∧ p2]]. This is a
contradiction. ut

One can verify properties that hold for precise assertions in the logic without
using semantical arguments. For example, one can show that q1 ∗ q2 is precise
if q1 and q2 are by the following logical argument: Suppose (1) holds for q1, q2.
Then,

(p1 ∗ (q1 ∗ q2)) ∧ (p2 ∗ (q1 ∗ q2)) ⇒ ((p1 ∗ q1) ∗ q2) ∧ ((p2 ∗ q1) ∗ q2))
⇒ ((p1 ∗ q1) ∧ (p2 ∗ q1)) ∗ q2 ⇒ ((p1 ∧ p2) ∗ q1) ∗ q2
⇒ (p1 ∧ p2) ∗ (q1 ∗ q2),

as desired.

Monotone assertions. A closed assertion q is defined to be monotone if, and only
if, whenever h ∈ [[q]] then also h′ ∈ [[q]], for all extensions h′ ⊇ h.

Proposition 12 The closed assertion q is monotone if, and only if, the asser-
tion ∀p : prop . p ∗ q → q is valid in the BI hyperdoctrine S.

This is also easy to verify, and again, one can show the usual rules for monotone
assertions in the logic (without semantical arguments) using this characteriza-
tion.

Pure assertions. Recall from above that an assertion q is pure iff its interpre-
tation factors through 2. Thus a closed assertion is pure iff its interpretation is
either ∅ or H .

Proposition 13 The closed assertion q is pure if, and only if, the assertion

∀p1, p2 : prop . (q ∧ p1) ∗ p2 ↔ q ∧ (p1 ∗ p2) (2)

is valid in the BI hyperdoctrine S.

Proof: Again, the interesting direction here is the “if” implication. Hence, sup-
pose (2) holds for the assertion q, and that h ∈ [[q]]. For any heap h0, we must
then show that h0 ∈ [[q]]. This is done via the verification of two claims.
Fact 1: For all h′ ⊆ h, h′ ∈ [[q]]. Proof: Let p1 be a canonical description of h′, and
p2 a canonical description of h\h′. Then h ∈ [[q∧ (p1 ∗p2)]], so h ∈ [[(q∧p1)∗p2]].
This means that there is a split h1 ∗ h2 = h with h1 ∈ [[q ∧ p1]] and h2 ∈ [[p2]].
But then, h2 = h \ h′, so h1 = h′, and thus, h′ ∈ [[q]].
Fact 2: For all h′ ⊇ h, h′ ∈ [[q]]. Proof: Let p1 and p2 be canonical descriptions
of h and h′ \ h, respectively. Then, h′ ∈ [[(q ∧ p1) ∗ p2]], so h′ ∈ [[q ∧ (p1 ∗ p2)]],
and in particular, h′ ∈ [[q]], as desired.

Using Facts 1 and 2, we deduce h ∈ [[q]] ⇒ ∅ ∈ [[q]] ⇒ h0 ∈ [[q]]. ut

4.4 Separation Logic for Richer Languages

Separation logic has mostly been used for low-level languages with a simple set-
theoretic operational semantics. Yang [21, Ch. 9] has made some initial work on
separation logic for richer languages such as Idealized Algol with heaps. For such
richer languages, the semantics is typically given using more involved semantic
structures such as functor categories and domains. We emphasize that all the de-
velopments in the present paper easily generalize to such more involved settings.
Specifically, given any cartesian closed category C with an internal complete BI
algebraB, one may construct a C-indexed BI hyperdoctrine just as in Example 6.

5 Conclusion

We have introduced the notion of a (first-order) BI hyperdoctrine and shown that
it soundly models classical and intuitionistic first- and higher-order predicate
BI, thus connecting models of prediate BI with standard categorical notions of
models of predicate logic. Moreover, we have shown that the standard pointer
model of separation logic exactly corresponds to the interpretation of predicate
BI in a BI hyperdoctrine. Finally, we have argued that this correspondence is of
import for formalizations of separation logic, and that one can extend separation
logic to higher-order.

Acknowledgements: The authors wish to thank Carsten Butz and the anonymous
referees for their helpful comments and suggestions.

References

1. B. Biering. On the logic of bunched implications and its relation to separation
logic. Master’s thesis, University of Copenhagen, 2004.

2. L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying
garbage collector. In Proceedings of the 31-st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’04), pages 220 – 231, Venice,
Italy, 2004.

3. R. Bornat. Local reasoning, separation and aliasing. In Proceedings of the Sec-
ond Workshop on Semantics, Program Analysis and Computing Environments for
Memory Management (SPACE’04), Venice, Italy, January 2004.

4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting
in separation logic. In Proceedings of POPL’05, Long Beach, CA, USA, January
2005. ACM. Accepted for publication.

5. C. Calcagno, P. W. O’Hearn, and R. Bornat. Program logic and equivalence in the
presence of garbage collection. Theoretical Computer Science, 298(3):557 – 587,
2003.

6. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’01), 2001.

7. B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1999.

8. F.W. Lawvere. Adjointness in foundations. Dialectica, 23(3/4):281–296, 1969.
9. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Local reasoning about programs

that alter data structures. In Proceedings of CSL’01, pages 1 – 19, Paris, France,
September 2001. Springer Verlag.

10. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding
(work in progress). Extended version of [11], 2003.

11. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In Proceedings of the 31-st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’04), pages 268 – 280, Venice, Italy, 2004.

12. P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.

13. A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, Volume 5. Algebraic
and Logical Structures, chapter 2. Oxford University Press, 2000.

14. D. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources: The semantics
of BI. Theoretical Computer Science, 315(1):257 – 305, May 2004.

15. D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Kluwer Academic Publishers, 2002.

16. D. J. Pym. Errata and remarks for the semantics and proof theory of the logic of
bunched implications. 2004. Available at
http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf.

17. J. C. Reynolds. On extensions of separation logic. Private Communication.
18. J. C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.
19. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In

J. Davies, B. Roscoe, and J. Woodcock, editors, Millennial Perspectives in Com-
puter Science, pages 303–321. Palgrave, Houndsmill, Hampshire, 2000.

20. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Seventeenth Annual IEEE symposium on Logic in Computer Science (LICS’02),
pages 55 – 74, Copenhagen, Denmark, 2002.

21. H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois,
Urbana-Champaign, 2001.

22. H. Yang and U. Reddy. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1):129 – 160, March 2004.

