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Realizability Semantics of
Parametric Polymorphism, General References,

and Recursive Types

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

IT University of Copenhagen∗

Abstract

We present a realizability model for a call-by-value, higher-order programming language with
parametric polymorphism, general first-class references, and recursive types. The main novelty is a
relational interpretation of open types (as needed for parametricity reasoning) that include general
reference types. The interpretation uses a new approach to modeling references.

The universe of semantic types consists of world-indexed families of logical relations over a uni-
versal predomain. In order to model general reference types, worlds are finite maps from locations
to semantic types: this introduces a circularity between semantic types and worlds that precludes a
direct definition of either. Our solution is to solve a recursive equation in an appropriate category
of metric spaces. In effect, types are interpreted using a Kripke logical relation over a recursively
defined set of worlds.

We illustrate how the model can be used to prove simple equivalences between different imple-
mentations of imperative abstract data types.

1 Introduction

In this article we develop a semantic model of a call-by-value programming language with impredica-
tive and parametric polymorphism, general first-class references, and recursive types. Motivations for
conducting this study include:

∙ Extending the approach to reasoning about abstract data types via relational parametricity from
pure languages to more realistic languages with effects, here general references. We discussed
this point of view extensively earlier [11].

∙ Investigating what semantic structures are needed in general models for effects. Indeed, we see the
present work as a pilot study for studying general type theories and models of effects (e.g., [18,
24]), in which we identify key ingredients needed for semantic modeling of general first-class
references.

∙ Paving the way for developing models of separation logic for ML-like languages with reference
types. Earlier such models of separation logic [21] only treat so-called strong references, where
the type on the contents of a reference cell can vary: therefore proof rules cannot take advantage
of the strong invariants provided by ML-style reference types.

∗Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark.
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We now give an overview of the conceptual development of the paper. The development is cen-
tered around three recursively defined structures, defined in three stages. In slogan form, there is one
recursively defined structure for each of the type constructors ∀, ref, and � alluded to in the title.

First, since the language involves impredicative polymorphism, the semantic model is based on a
realizability interpretation [4] over a certain recursively defined predomain V . Using this predomain we
can give a denotational semantics of an untyped version of the language. This part is mostly standard,
except for the fact that we model locations as pairs (l, n), with l a natural number corresponding to a
standard location and n ∈ ℕ ∪ {∞} indicating the “approximation stage” of the location [11]. These
pairs, called semantic locations, are needed for modeling reference types in stage three. Intuitively, the
problem with the more standard approach of modeling locations as natural numbers is that such “flat”
locations contain no approximation information that can be used to define relations by induction.

Second, to account for dynamic allocation of typed reference cells, we follow earlier work on mod-
eling simple integer references [8] and use a Kripke-style possible worlds model. Here, however, the set
of worlds needs to be recursively defined since we treat general references. Semantically, a world maps
locations to semantic types, which, following the general realizability idea, are certain world-indexed
families of relations on V : this introduces a circularity between semantic types and worlds that precludes
a direct definition of either. Thus we need to solve recursive equations of approximately the following
form

W = ℕ0 ⇀fin T
T = W → CURel(V )

even in order to define the space in which types will be modeled. We formally define the recursive
equations in certain ultrametric spaces and show how to solve them using known results from metric-
space based semantics. The employed metric on relations on V is well-known from work on interpreting
recursive types and impredicative polymorphism [1, 4, 5, 13, 19]; here we extend its use to reference
types (combined with these two other features).

Third, having now defined the space in which types should be modeled, the actual semantics of
types can be defined. For recursive types, that also involves a recursive definition. Since the space T
of semantic types is a metric space we can employ Banach’s fixed point theorem to find a solution as
the fixed point of a contractive operator on T .1 This involves interpreting the various type constructors
of the language as non-expansive operators. For most type constructors doing so is straightforward, but
for the reference-type constructor it is not. That is the reason for introducing the semantic locations
mentioned above: using these, we can define a semantic reference-type operator (and show that it is
non-expansive).

Finally, having now defined semantics of types using a family of world-indexed logical relations,
we define the typed meaning of terms by proving the fundamental theorem of logical relations wrt. the
untyped semantics of terms.

Limitations. In this article we do not consider operational semantics but focus on presenting the model
outlined above. We have earlier shown a computational-adequacy result for a semantics similar to the
untyped semantics defined in stage one [11]: we expect that result to carry over to the present setup.

The model we construct does not validate standard equivalences involving local state; indeed, it can
only be used to equate computations that allocate references essentially “in lockstep.” Furthermore, a
certain technical requirement on the relations we consider (“uniformity”) seems to be too restrictive.

1We remark that the fixed point could also be found using the technique of Pitts [23]; the proof techniques are very
similar because of the particular way the requisite metrics are defined. In this article we do in any case need the metric-space
formulation, but not the extra separation of positive and negative arguments in recursive definitions of relations, and hence we
define the meaning of recursive types via Banach’s fixed point theorem [4, 5].
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In recent work we have shown that both these problems can be overcome: one can use the techniques
presented here to construct a more advanced (and more complicated) model that validates sophisticated
equivalences in the style of Ahmed et al. [3]. This work will be described elsewhere. Here we rather aim
to present the fundamental ideas behind Kripke logical relations over recursively defined sets of worlds.

Overview of the rest of the article. The rest of the article is organized as follows. In Section 2 we
sketch the language we consider. In Section 3 we present the untyped semantics, corresponding to stage
one in the outline above. In Section 4 we present the typed semantics, corresponding to the last two
stages. In Section 5 we present a few examples of reasoning using the model. Related work is discussed
in Section 6.

2 Language

We consider a standard call-by-value language with universal types, iso-recursive types, ML-style ref-
erence types, and a ground type of integers. The language is sketched in Figure 1. Terms are not
intrinsically typed; this allows us to give a denotational semantics of untyped terms. The typing rules
are standard [22]. In the figure, Ξ and Γ range over contexts of type variables and term variables, re-
spectively. As we do not consider operational semantics in this article, there is no need for location
constants, and hence no need for store typings.

3 Untyped semantics

We now give a denotational semantics for the untyped term language above. As usual for models of
untyped languages, the semantics is given by means of a “universal” complete partial order (cpo) in
which one can inject integers, pairs, functions, etc. This universal cpo is obtained by solving a recursive
domain equation.

The only non-standard aspect of the semantics is the treatment of store locations: locations are
modeled as elements of the cpo Loc = ℕ0 × ! where ! is the “vertical natural numbers” cpo Loc =
ℕ0 × ! where ! is the “vertical natural numbers” cpo: 1 ⊏ 2 ⊏ ⋅ ⋅ ⋅ ⊏ n ⊏ ⋅ ⋅ ⋅ ⊏ ∞. (For notational
reasons it is convenient to call the least element 1 rather than 0.) The intuitive idea is that locations can
be approximated: the element (l,∞) ∈ Loc is the “ideal” location numbered l, while the elements of the
form (l, n) for n <∞ are its approximations. It is essential for the construction of the typed semantics
(in the next section) that these “approximate locations” (l, n) are included.

3.1 Domain-theoretic preliminaries

We assume that the reader is familiar with basic denotational semantics, as presented for example in
Winskel [31], and with semantics in monadic style [20]. Methods for solving recursive domain equations
are used in a few of the proofs, but not elsewhere in the article. Familiarity with methods for proving
the existence of invariant relations [23] should be useful, but is not assumed.

Let Cpo be the category of !-cpos and !-continuous functions. We use the standard notation for
products, sums, and function spaces in Cpo. Injections into binary sums are written �1 and �2. For any
set M and any cpo A, the cpo M ⇀fin A has maps from finite subsets of M to A as elements, and is
ordered as follows: f ⊑ f ′ if and only if f and f ′ has the same domain M0 and f(m) ⊑ f ′(m) for all
m ∈M0.

A complete, pointed partial order (cppo) is a cpo containing a least element. We use the notation
A⊥ = {⌊a⌋ ∣ a ∈ A} ∪ {⊥} for the cppo obtained by “lifting” a cpo A. The least fixed-point of a
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Types: � ::= int ∣ 1 ∣ �1 × �2 ∣ 0 ∣ �1 + �2 ∣ ��.� ∣ ∀�.� ∣ � ∣ �1 → �2 ∣ ref �

Terms: t ::= x ∣ m ∣ ifz t0 t1 t2 ∣ t1 + t2 ∣ t1 − t2 ∣ () ∣ (t1, t2) ∣ fst t ∣ snd t

∣ void t ∣ inl t ∣ inr t ∣ case t0 x1.t1 x2.t2 ∣ fold t ∣ unfold t

∣ Λ�.t ∣ t [� ] ∣ �x.t ∣ t1 t2 ∣ fix f.�x.t ∣ ref t ∣ !t ∣ t1 := t2

Typing rules:

Ξ ∣ Γ ⊢ x : � (Ξ ⊢ Γ, Γ(x) = � ) Ξ ∣ Γ ⊢ m : int (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t0 : int Ξ ∣ Γ ⊢ t1 : � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ ifz t0 t1 t2 : �

Ξ ∣ Γ ⊢ t1 : int Ξ ∣ Γ ⊢ t2 : int

Ξ ∣ Γ ⊢ t1 ± t2 : int Ξ ∣ Γ ⊢ () : 1 (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t1 : �1 Ξ ∣ Γ ⊢ t2 : �2

Ξ ∣ Γ ⊢ (t1, t2) : �1 × �2

Ξ ∣ Γ ⊢ t : 0

Ξ ∣ Γ ⊢ void t : �
(Ξ ⊢ � )

Ξ ∣ Γ ⊢ t : �1 × �2

Ξ ∣ Γ ⊢ fst t : �1

Ξ ∣ Γ ⊢ t : �1 × �2

Ξ ∣ Γ ⊢ snd t : �2

Ξ ∣ Γ ⊢ t : �1

Ξ ∣ Γ ⊢ inl t : �1 + �2

(Ξ ⊢ �2) Ξ ∣ Γ ⊢ t : �2

Ξ ∣ Γ ⊢ inr t : �1 + �2

(Ξ ⊢ �1)

Ξ ∣ Γ ⊢ t0 : �1 + �2 Ξ ∣ Γ, xi : �i ⊢ ti : � (i = 1, 2)

Ξ ∣ Γ ⊢ case t0 x1.t1 x2.t2 : �

Ξ ∣ Γ ⊢ t : � [��.�/�]

Ξ ∣ Γ ⊢ fold t : ��.�

Ξ ∣ Γ ⊢ t : ��.�

Ξ ∣ Γ ⊢ unfold t : � [��.�/�]

Ξ, � ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ Λ�.t : ∀�.�
(Ξ ⊢ Γ) Ξ ∣ Γ ⊢ t : ∀�.�0

Ξ ∣ Γ ⊢ t [�1] : �0[�1/�]
(Ξ ⊢ �1)

Ξ ∣ Γ, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ �x.t : �0 → �1

Ξ ∣ Γ ⊢ t1 : � → � ′ Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 t2 : � ′

Ξ ∣ Γ, f : �0 → �1, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ fix f.�x.t : �0 → �1

Ξ ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ ref t : ref �

Ξ ∣ Γ ⊢ t : ref �

Ξ ∣ Γ ⊢ !t : �

Ξ ∣ Γ ⊢ t1 : ref � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 := t2 : 1

Figure 1: Programming language
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continuous function f : D → D from a cppo D to itself is written fix f . The cppo of strict, continuous
functions from a cpo A to a cppo D is written A⊸ D.

We shall also need to work with partial, continuous functions; these will be represented using the
Kleisli category for the lifting monad (−)⊥. Let pCpo be the Kleisli category for the lifting monad:
objects are cpos, while morphisms from A to B are continuous functions from A to B⊥. The identity
maps in pCpo are written id ; they are given by lifting: id = �a.⌊a⌋. Composition in pCpo is written ∘:

f ∘ g = �a.

{
f b, if g a = ⌊b⌋,
⊥, otherwise.

The semantics below is presented in monadic style [20], i.e., structured using a monad that models
the effects of the language. It is most convenient to define this monad by means of a Kleisli triple: for
every cpo S and every cppo Ans , the continuation-and-state monad TS,Ans : Cpo → Cpo over S and
Ans is given by

TS,Ans A = (A→ S → Ans)→ S → Ans

�A a = �k.�s. k a s

c ★A,B f = �k.�s. c (�a.�s′.f a k s′) s

where �A : A → TS,AnsA and ★A,B : TS,AnsA → (A → TS,AnsB) → TS,AnsB. In the following we
omit the type subscripts on � and ★. It is easy to verify that (TS,Ans , �, ★) satisfies the three monad laws:

� a ★ f = f a (1)

c ★ � = c (2)

(c ★ f) ★ g = c ★ (�a. f a ★ g) . (3)

(Continuations are included for a technical reason, namely to ensure chain-completeness of the relations
that will be used to model computations.)

3.2 Uniform cpos

The standard methods for solving recursive domain equations give solutions that satisfy certain induction
principles [23, 29]. One aspect of these induction principles is that, loosely speaking, one obtains as a
solution not only a cpo A, but also a family of “projection” functions $n on A (one function for each
n ∈ !) such that each element a of A is the limit of its projections $0(a), $1(a), etc. These functions
therefore provide a handle for proving properties about A by induction on n.

Definition 3.1.

1. A uniform cpo (A, ($n)n∈!) is a cpo A together with a family ($n)n∈! of continuous functions
from A to A⊥, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (4)⊔
n∈!

$n = idA = �a.⌊a⌋ (5)

$m ∘ $n = $n ∘ $m = $min(m,n) (6)

$0 = �e.⊥ . (7)
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2. A uniform cppo (D, ($n)n∈!) is a cppo D together with a family ($n)n∈! of strict, continuous
functions from D to itself, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (8)⊔
n∈!

$n = idD (9)

$m ∘$n = $n ∘$m = $min(m,n) (10)

$0 = �e.⊥ . (11)

Remark.

1. The projection functions $n will not be required to have finite range, cf. Abadi and Plotkin [1].
With this requirement, a uniform cppo would just be an SFP-domain together with a particular
choice of projection functions. In future work we plan to investigate practical consequences of
enforcing the finite-range requirement; this leads to working with metric spaces that are compact
(and not merely complete) [1].

2. Uniform cppos are exactly the algebras for a certain monad on the category of cppos and strict,
continuous functions. The monad is given by an obvious monoid structure on !: TuD = ! ⊗D,
�ue = (∞, e), �u(m, (n, e)) = (min(m,n), e). Our locations are modeled using a free algebra
for this monad: Loc⊥ ∼= ! ⊗ (ℕ0)⊥.

Uniform cppos are called rank-ordered cpos in earlier work by Baier and Majster-Cederbaum [7].
Uniform cpos and uniform cppos are two instances of a general construction on O-categories: see
Birkedal et al. [9, Section 8].

3.3 A universal uniform cpo

We are now ready to construct a uniform cpo (V, (�n)n∈!) such that V is a suitable “universal” cpo. The
functions �n will be used in the definition of the untyped semantics. Intuitively, if one for example looks
up the approximate location (l, n + 1) in a store s, one only obtains the approximate element �n(s(l))
as a result.

The exact requirements on the functions �n are written down rather verbosely in the proposition
below. This is not only convenient for proofs of properties about V : the functions �n are also used in the
definition of the untyped semantics. Intuitively, if one for example looks up the approximate location
(l, n+ 1) in a store s, one only obtains the approximate element �n(s(l)) as a result.

Proposition 3.2. There exists a uniform cpo (V, (�n)n∈!) satisfying the following two properties:

1. The following isomorphism holds in Cpo:

V ∼= ℤ + Loc + 1 + (V × V ) + (V + V ) + V

+ TS,AnsV + (V → TS,AnsV ) (12)

where

TS,AnsV = (V → S → Ans)→ S → Ans

S = ℕ0 ⇀fin V

Ans = (ℤ + Err)⊥
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�0 = �v.⊥ (13)

�n+1(inℤ(m)) = ⌊inℤ(m)⌋ (14)

�n+1(in1(∗)) = ⌊in1(∗)⌋ (15)

�n+1(inLoc(l,∞)) = ⌊inLoc(l, n+ 1)⌋ (16)

�n+1(inLoc(l,m)) = ⌊inLoc(l,min(n+ 1,m))⌋ (17)

�n+1(in×(v1, v2)) =

{
⌊in×(v′1, v

′
2)⌋ if �n v1 = ⌊v′1⌋ and �n v2 = ⌊v′2⌋

⊥ otherwise
(18)

�n+1(in+(�i v)) =

{
⌊in+(�i v

′)⌋ if �n v = ⌊v′⌋
⊥ otherwise

(i = 1, 2) (19)

�n+1(in� v) =

{
⌊in� v′⌋ if �nv = ⌊v′⌋
⊥ otherwise

(20)

�n+1(in∀ c) = ⌊in∀(�Tn+1 c)⌋ (21)

�n+1(in→ f) =

⌊
in→

(
�v.

{
�Tn+1 (f v′) if �n v = ⌊v′⌋
⊥ otherwise

)⌋
(22)

Here the functions �Sn : S → S⊥ and �Kn : K → K and �Tn : TV → TV are defined as follows:

�S0 = �s.⊥ �K0 = �k.⊥ �T0 = �c.⊥ (23)

�Sn+1(s) =

{
⌊s′⌋ if �n ∘ s = �l.⌊s′(l)⌋
⊥ otherwise

(24)

�Kn+1(k) = �v.�s.

{
k v′ s′ if �n v = ⌊v′⌋ and �Sn+1 s = ⌊s′⌋
⊥ otherwise

(25)

�Tn+1(c) = �k.�s.

{
c (�Kn+1 k) s′ if �Sn+1 s = s′

⊥ otherwise .
(26)

Figure 2: Characterization of the projection functions �n : V → V⊥.

and

Loc = ℕ0 × !
Err = 1 .

2. Abbreviate TV = TS,AnsV and K = V → S → Ans . Define the following injection functions
corresponding to the summands on the right-hand side of the isomorphism (12):

inℤ : ℤ→ V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV )→ V

in1 : 1→ V in� : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions �n : V → V⊥ satisfy (and are determined by) the equations
shown in Figure 2.

These two properties determine V uniquely, up to isomorphism in Cpo.
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Proof (sketch). One solves the predomain equation (12) as usual [29]; this gives a uniform cpo (V, ($n)n∈!)
which is almost right, except that the values of the $n on locations are wrong:

$n+1(inLoc p) = inLoc p.

Now define the functions �n (and �Tn etc.) as in the proposition (by induction on n). All the requirements
in the definition of a uniform cpo except the fact that ⊔n�n = id are easy to show. To show that
⊔n�n = id, one first shows by induction on m that �n ∘$m = $m ∘ �n for all n, and that

(⊔n�n) ∘$m = $m .

The conclusion then follows from the fact that ⊔m$m = id since (V, ($)n∈!) is a uniform cpo.

From here on, let V and (�n)n∈! be as in the proposition above. We furthermore use the ab-
breviations, notation for injections, etc. introduced in the proposition; in particular, TV = (V →
S → Ans) → S → Ans . Additionally, abbreviate �l = inLoc(l,∞) and �nl = inLoc(l, n). Let
errorAns ∈ Ans be the “error answer” and let error ∈ TV be the “error computation”:

errorAns = ⌊�2∗⌋
error = �k.�s. errorAns .

We shall later need:

Proposition 3.3.

1. (S, (�Sn )n∈!) is a uniform cpo.

2. (K, (�Kn )n∈!) and (TV, (�Tn )n∈!) are uniform cppos.

In order to model the three operations of the untyped language that involve references, we define the
three functions alloc, lookup, and assign in Figure 3.

Lemma 3.4. The functions alloc, lookup, and assign are continuous.

Notice that it would not suffice to define, e.g., lookup(�n+1
l )(k)(s) = ⊥ for l ∈ dom(s), and hence

avoid mentioning the projection functions: lookup would then not be continuous.
We are now ready to define the untyped semantics.

Definition 3.5. Let t be a term and let X be a set of variables such that FV(t) ⊆ X . The untyped
semantics of t with respect to X is the continuous function JtKX : V X → TV defined by induction on
t in Figure 4.

The semantics of a complete program, i.e., a term with no free term variables or type variables, is
defined by supplying an initial continuation and the empty store:

Definition 3.6. Let t be a term with no free term variables or type variables. The program semantics of
t is the element JtKp of Ans defined by

JtKp = JtK∅ ∅ kinit sinit

where

kinit = �v.�s.

{
⌊�1 m⌋ if v = inℤ(m)
errorAns otherwise

and where sinit ∈ S is the empty store.

We emphasize that even though the above semantics is slightly non-standard because of the use of the
projection functions in lookup and assignment, we can still use it to reason about operational behaviour:
as mentioned in the introduction an earlier adequacy proof [11] should carry over to the present setting.
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alloc : V → TV, lookup : V → TV, assign : V → V → TV.

alloc v = �k �s. k (�free(s)) (s[free(s) 7→ v])

(where free(s) = min{n ∈ ℕ0 ∣ n /∈ dom(s)})

lookup v = �k �s.

⎧⎨⎩

k s(l) s if v = �l and l ∈ dom(s)

k v′ s if v = �n+1
l , l ∈ dom(s),

and �n(s(l)) = ⌊v′⌋
⊥Ans if v = �n+1

l , l ∈ dom(s),
and �n(s(l)) = ⊥

errorAns otherwise

assign v1 v2 = �k �s.

⎧⎨⎩

k (in1∗) (s[l 7→ v2]) if v1 = �l and l ∈ dom(s)

k (in1∗) (s[l 7→ v′2]) if v1 = �n+1
l , l ∈ dom(s),

and �n(v2) = ⌊v′2⌋
⊥Ans if v1 = �n+1

l , l ∈ dom(s),
and �n(v2) = ⊥

errorAns otherwise

Figure 3: Functions used for interpreting reference operations.

4 Typed semantics

In this section we present a “typed semantics”, i.e., an interpretation of types and typed terms. As
described in the introduction, types will be interpreted as world-indexed families of binary relations on
the universal cpo V . Since worlds depend on semantic types, the space of semantic types is obtained by
solving a recursive metric-space equation, i.e., by finding a fixed-point of a functor on metric spaces.

The rest of this section is structured as follows. Section 4.1 presents the necessary material on metric
spaces. In Section 4.2 we construct an appropriate space of semantic types. Then, in Section 4.3, we
interpret each type of the language as a semantic type. Based on that interpretation of types, we introduce
a notion of semantic relatedness of typed terms in Section 4.4. We then show that all the term constructs
of the language respect semantic relatedness; as a corollary, we have a “fundamental lemma” stating that
every well-typed term is semantically related to itself. It follows that well-typed terms do not denote
“error”. More interestingly, well-typed terms of polymorphic type satisfy a relational parametricity
principle. In fact, all well-typed terms satisfy a relational parametricity principle involving the store:
this principle results from Kripke-style quantification over all future “semantic store typings”.

The reader is assumed to be familiar with basic properties of metric spaces [28], although the relevant
definitions are repeated below.

4.1 Ultrametric spaces

Let ℝ+ be the set of non-negative real numbers.

Definition 4.1. A metric space (X, d) is a set X together with a function d : X ×X → ℝ+ satisfying
the following three conditions:

(i) d(x, y) = 0 ⇐⇒ x = y

(ii) d(x, y) = d(y, x)

9



For every t with FV(t) ⊆ X , define the continuous JtKX : V X → TV by induction on t:

JxKX � = �(�(x))

JmKX � = �(inℤm)

Jifz t0 t1 t2KX � = Jt0KX � ★ �v0.

⎧⎨⎩
Jt1KX � if v0 = inℤ 0
Jt2KX � if v0 = inℤm where m ∕= 0
error otherwise

Jt1 ± t2KX � = Jt1KX � ★ �v1. Jt2KX � ★ �v2.

⎧⎨⎩
�(inℤ(m1 ±m2))

if v1 = inℤm1
and v2 = inℤm2

error otherwise

J()KX � = �(in1 ∗)
J(t1, t2)KX � = Jt1KX � ★ �v1. Jt2KX � ★ �v2. �(in×(v1, v2))

Jfst tKX � = JtKX � ★ �v.
{
�(v1) if v = in×(v1, v2)
error otherwise

Jsnd tKX � = JtKX � ★ �v.
{
�(v2) if v = in×(v1, v2)
error otherwise

Jvoid tKX � = JtKX � ★ �v. error

Jinl tKX � = JtKX � ★ �v. �(in+(�1 v))

Jinr tKX � = JtKX � ★ �v. �(in+(�2 v))

Jcase t0 x1.t1 x2.t2KX � = Jt0KX � ★ �v0.

⎧⎨⎩
Jt1KX,x1 (�[x1 7→ v]) if v0 = in+(�1 v)

Jt2KX,x2 (�[x2 7→ v]) if v0 = in+(�2 v)

error otherwise

J�x.tKX � = �(in→(�v. JtKX,x (�[x 7→ v])))

Jt1 t2KX � = Jt1KX � ★ �v1. Jt2KX � ★ �v2.

{
g v2 if v1 = in→ g
error otherwise

Jfix f.�x.tKX � = �(in→(fix (�gV→TV . �v. JtKX,f,x (�[f 7→ in→ g, x 7→ v]))))

Jfold tKX � = JtKX � ★ �v. �(in� v)

Junfold tKX � = JtKX � ★ �v.
{
�(v0) if v = in� v0

error otherwise

JΛ�.tKX � = �(in∀ (JtKX �))

Jt [� ]KX � = JtKX � ★ �v.
{
c if v = in∀ c
error otherwise

Jref tKX � = JtKX � ★ �v. alloc v

J!tKX � = JtKX � ★ �v. lookup v

Jt1 := t2KX � = Jt1KX � ★ �v1. Jt2KX � ★ �v2. assign v1 v2

Figure 4: Untyped semantics of terms.
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(iii) d(x, z) ≤ d(x, y) + d(y, z).

An ultrametric space is a metric space (X, d) that satisfies the stronger ultrametric inequality instead of
(iii):

(iii’) d(x, z) ≤ max(d(x, y), d(y, z)).

A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X .

By a sequence in a metric space (X, d) we mean an !-indexed sequence (xn)n∈! of elements of X .
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Definition 4.2.

1. A Cauchy sequence in a metric space (X, d) is a sequence (xn)n∈! of elements of X such that
for all � > 0, there exists an N ∈ ! such that d(xm, xn) < � for all m,n ≥ N .

2. A limit of a sequence (xn)n∈! in a metric space (X, d) is an element x of X such that for all
� > 0, there exists an N ∈ ! such that d(xn, x) < � for all n ≥ N .

3. A complete metric space is a metric space in which every Cauchy sequence has a limit.

In the following we shall consider complete, 1-bounded ultrametric spaces. As a canonical example
of such a metric space, consider the set ℕ! of infinite sequences of natural numbers, with distance
function d given by:

d(x, y) =

{
2−max{n∈!∣∀m≤n. x(m)=y(m)} if x ∕= y
0 if x = y.

To avoid confusion, call the elements of ℕ! strings instead of sequences. Here the ultrametric inequality
simply states that if x and y agree on the first n “characters” and y and z also agree on the first n
characters, then x and z agree on the first n characters. A Cauchy sequence in ℕ! is a sequence of
strings (xn)n∈! in which the individual characters “stabilize”: for all m, there exists N ∈ ! such that
xn1(m) = xn2(m) for all n1, n2 ≥ N . In other words, there is a number k such that xn(m) = k for
almost all n, i.e., all but finitely many n. The limit of the sequence (xn)n∈! is therefore the string x
defined by

x(m) = k where xn(m) = k for almost all n.

As illustrated by the above example, it might be helpful to think of the function d of a complete, 1-
bounded ultrametric space (X, d) not as a measure of (euclidean) distance between elements, but rather
as a measure of the degree of similarity between elements.

Definition 4.3.

1. A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is non-expansive
if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1.

2. A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is contractive
if there exists c < 1 such that d2(f(x), f(y)) ≤ c ⋅ d1(x, y) for all x and y in X1.

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as objects and non-expansive
functions as morphisms. This category is cartesian closed [30]. Products are defined in the natural way:
(X1, d1)× (X2, d2) = (X1 ×X2, dX1×X2) where

dX1×X2((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2) has the set of non-expansive maps from (X1, d1) to (X2, d2) as
the underlying set, and the “sup”-metric dX1→X2 as distance function:

dX1→X2(f, g) = sup{d2(f(x), g(x)) ∣ x ∈ X1} .

For both products and exponentials, limits are pointwise.
Note that the category of (not necessarily ultra-) metric spaces and non-expansive maps is not carte-

sian closed: the ultrametric inequality is required in order for the evaluation maps (corresponding to the
exponentials) to be non-expansive [30].

If X0 is a subset of the underlying set X of a metric space (X, d), then the restriction d0 = d∣X0×X0

of d turns (X0, d0) into a metric space. If X0 is closed, then (X0, d0) is complete:
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Definition 4.4. Let (X, d) be a metric space. A subset X0 of X is closed (with respect to d) if whenever
(xn)n∈! is a sequence of elements of X0 with limit x, the limit element x belongs to X0.

Proposition 4.5. Let (X, d) be a complete, 1-bounded ultrametric space, and let X0 be a closed subset
of X . The restriction d0 = d∣X0×X0 of d turns (X0, d0) into a complete, 1-bounded ultrametric space.

4.1.1 Banach’s fixed-point theorem

We need the following classical result:

Theorem 4.6 (Banach’s fixed-point theorem). Let (X, d) be a non-empty, complete metric space, and
let f be a contractive function from (X, d) to itself. There exists a unique fixed-point of f , i.e., a unique
element x of X such that f(x) = x.

For a given complete metric space, consider the function fix that maps every contractive operator to
its unique fixed-point. On complete ultrametric spaces, fix is non-expansive in the following sense [4]:

Proposition 4.7. Let (X, d) be a non-empty, complete ultrametric space. For all contractive functions
f and g from (X, d) to itself, d(fix f,fix g) ≤ d(f, g).

Proof. Let c < 1 be a non-negative number such that d(f(x), f(y)) ≤ c ⋅ d(x, y) for all x and y in X .
Now let x = fix f and y = fix g. By the ultrametric inequality,

d(x, y) = d(f(x), g(y))

≤ max(d(f(x), f(y)), d(f(y), g(y))

≤ max(d(f(x), f(y)), d(f, g))

≤ max(c ⋅ d(x, y), d(f, g)) .

If max(c ⋅d(x, y), d(f, g)) = c ⋅d(x, y) we have d(x, y) ≤ c ⋅d(x, y), and hence d(x, y) = 0 ≤ d(f, g).
Otherwise, max(c ⋅ d(x, y), d(f, g)) = d(f, g), and hence d(x, y) ≤ d(f, g).

4.1.2 Solving recursive metric-space equations

The inverse-limit method for solving recursive domain equations can be adapted from Cpo to CBUlt [6,
25]. For a unified account, see Wagner [30]; here we sketch a less general variant which suffices for this
article.

In CBUlt, one finds fixed points of locally contractive functors instead of locally continuous functors.

Definition 4.8.

1. A functor F : CBUltop × CBUlt→ CBUlt is locally non-expansive if

d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′))

for all non-expansive functions f , f ′, g, and g′.

2. A functor F : CBUltop × CBUlt→ CBUlt is locally contractive if there exists c < 1 such that

d(F (f, g), F (f ′, g′)) ≤ c ⋅max(d(f, f ′), d(g, g′))

for all non-expansive functions f , f ′, g, and g′.

One can obtain a locally contractive functor from a locally non-expansive one by multiplying with a
“shrinking” factor [6]:
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Proposition 4.9. Let 0 < c < 1.

1. Let (X, d) ∈ CBUlt, and define c ⋅ (X, d) = (X, c ⋅ d) where c ⋅ d : X × X → ℝ+ is given by
(c ⋅ d)(x, y) = c ⋅ d(x, y). We have c ⋅ (X, d) ∈ CBUlt.

2. Let F : CBUltop × CBUlt → CBUlt be a locally non-expansive functor. The functor c ⋅ F given
by

(c ⋅ F )((X1, d1), (X2, d2)) = c ⋅ F ((X1, d1), (X2, d2))

(c ⋅ F )(f, g) = F (f, g)

is locally contractive.

The main theorem about existence and uniqueness of fixed points of locally contractive functors is
actually most conveniently phrased in terms of the category of non-empty, complete, 1-bounded ultra-
metric spaces. The reason is the essential use of Banach’s fixed-point theorem in the proof. Rather than
considering this subcategory, we impose a technical requirement on the given mixed-variance functor F
on CBUlt, namely that F (1, 1) ∕= ∅ where 1 is the one-point metric space. It is not hard to see that this
requirement holds if and only if F restricts to the full subcategory of non-empty metric spaces.

Theorem 4.10. Let F : CBUltop × CBUlt → CBUlt be a locally contractive functor satisfying that
F (1, 1) ∕= ∅. There exists a unique (up to isomorphism) non-empty (X, d) ∈ CBUlt such thatF ((X, d), (X, d)) ∼=
(X, d).

Proof (sketch). By a well-known adaptation of the inverse-limit method [6, 25, 30]. For a detailed proof
of a more general theorem, see Birkedal et al. [9].

4.2 The space of semantic types

The space of semantic types is obtained by applying Theorem 4.10 above to a functor that maps metric
spaces to world-indexed binary relations on V . First, some standard definitions:

Definition 4.11. For every cpo A, let Rel(A) be the set of binary relations R ⊆ A×A on A.

1. A relation R ∈ Rel(A) is complete if for all chains (an)n∈! and (a′n)n∈! such that (an, a
′
n) ∈ R

for all n, also (⊔n∈!an,⊔n∈!a′n) ∈ R. Let CRel(A) be the set of complete relations on A.

2. A relation R ∈ Rel(D) on a cppo D is pointed if (⊥,⊥) ∈ R and admissible if it is pointed and
complete. Let ARel(D) be the set of admissible relations on D.

3. For every cpo A and every relation R ∈ Rel(A), define the relation R⊥ ∈ Rel(A⊥) by R⊥ =
{ (⊥,⊥) } ∪ { (⌊a⌋, ⌊a′⌋) ∣ (a, a′) ∈ R }.

4. For R ∈ Rel(A) and S ∈ Rel(B), let R → S be the set of continuous functions f from A to B
satisfying that for all (a, a′) ∈ R, (f a, f a′) ∈ S.

On uniform cpos and uniform cppos, we furthermore define the set of uniform binary relations [1, 4].
The key point is that a uniform and complete relation on a uniform cppo (D, ($n)n∈!) is completely
determined by its elements of the form ($n e,$n e

′).
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Definition 4.12.

1. Let (A, ($n)n∈!) be a uniform cpo. A relation R ∈ Rel(A) is uniform with respect to ($n)n∈!
if $n ∈ R → R⊥ for all n. Let CURel(A, ($n)n∈!) be the set of binary relations on A that are
uniform with respect to ($n)n∈! and complete.

2. Let (D, ($n)n∈!) be a uniform cppo. A relation R ∈ Rel(D) is uniform with respect to ($n)n∈!
if $n ∈ R → R for all n. Let AURel(D, ($n)n∈!) be the set of binary relations on D that are
uniform with respect to ($n)n∈! and admissible.

Proposition 4.13. Let (D, ($n)n∈!) be a uniform cppo, and let R,S ∈ AURel(D, ($n)n∈!).

1. If $n ∈ R→ S, then $n′ ∈ R→ S for all n′ ≤ n.

2. If $n ∈ R→ S for all n, then R ⊆ S.

We now define a number of metric spaces that will be used in constructing the universe of semantic
types. After defining one of these metric spaces (X, d), the “distance function” d will be fixed, so we
usually omit it and call X itself a metric space.

First, as in Amadio [4], we obtain:

Proposition 4.14. Let (D, ($n)n∈!) be a uniform cppo. Then the set AURel(D, ($n)n∈!) is a com-
plete, 1-bounded ultrametric space with the distance function given by

d(R,S) =

{
2−max{n∈! ∣ $n∈R→S ∧ $n∈S→R } if R ∕= S
0 if R = S.

Proof. First we show that the function d is well-defined: if R ∕= S, then there exists a greatest n in !
such that $n ∈ R→ S and $n ∈ S → R. Assume that R ∕= S. By (11) we always have $0 ∈ R→ S
and $0 ∈ S → R, so there is at least one such n. Now assume that there are infinitely many such n;
then Proposition 4.13 implies that R ⊆ S and S ⊆ R, i.e., that R = S, a contradiction.

Proposition 4.13(1) implies the following property, which we shall need below:

d(R,S) ≤ 2−n if and only if $n ∈ R→ S and $n ∈ S → R. (27)

It is easy to see that the function d defines a 1-bounded ultrametric. To see that it is complete, let
(Rm)m∈! be a Cauchy sequence. Then for all n there exists a numberMn such that d(Rm, Rm′) ≤ 2−n

for all m,m′ ≥ Mn. For all m,m′ ≥ Mn, (27) then implies that $n ∈ Rm → Rm′ . Therefore, for all
e, e′ ∈ D,

($n e,$n e
′) ∈ Rm =⇒ (($n ∘$n) e, ($n ∘$n) e′) ∈ Rm′ (by definition of d)

=⇒ ($n e,$n e
′) ∈ Rm′ , (by (10))

and the other way around by symmetry. This means that the set of related elements of the form
($n e,$n e

′) is the same in the relations RMn , RMn+1, etc. Now define the relation R by

(e, e′) ∈ R ⇐⇒ for all n, ($n e, $n e
′) ∈ RMn .

We first show that R is admissible and uniform, and then that R is the limit of (Rm)m∈!. First, R is
pointed by (11) and the fact that each Rn is pointed. R is complete since it is an intersection of inverse
images of the continuous functions $n with respect to the complete relations RMn . R is also uniform:
let (e, e′) ∈ R; then for allm and n, uniformity ofRMn and (10) imply that ($n($m e), $n($m e

′)) =
($m($n e), $m($n e

′)) ∈ RMn , and hence ($m e,$m e
′) ∈ R.
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It remains to show that R is the limit of (Rm)m∈!. It suffices to show: for all n and all m ≥Mn,

$n ∈ R→ Rm and $n ∈ Rm → R .

First, let (e, e′) ∈ R. Then ($n e, $n e
′) ∈ RMn by definition on R, and hence ($n e, $n e

′) ∈ Rm
since m ≥ Mn. Second, let (e, e′) ∈ Rm. By uniformity of Rm also ($n e,$n e

′) ∈ Rm. But then
($n e,$n e

′) belongs to RMn since m ≥ Mn. It then follows easily from (10) and the definition of R
that ($n e,$n e

′) ∈ R.

Proposition 4.15. Let (X, d) be a complete, 1-bounded ultrametric space. The set ℕ0 ⇀fin X of
finite maps from natural numbers to elements of X is a complete, 1-bounded ultrametric space with the
distance function given by

d′(Δ,Δ′) =

{
max {d(Δ(l),Δ′(l)) ∣ l ∈ dom(Δ)} if dom(Δ) = dom(Δ′)
1 otherwise.

Proof (sketch). Standard. CBUlt has all products and sums. Then, the set ℕ0 ⇀fin X can be viewed
as a sum of products:

∑
L⊆finℕ0

XL and the distance function above reflects that fact. In general, two
elements of different summands are given the maximal possible distance 1.

Definition 4.16. For every (X, d) ∈ CBUlt , define an “extension” ordering ≤ on ℕ0 ⇀fin X by

Δ ≤ Δ′ ⇐⇒ dom(Δ) ⊆ dom(Δ′) ∧ ∀l ∈ dom(Δ).Δ(l) = Δ′(l) .

Proposition 4.17. Let (X, d) ∈ CBUlt , let (D, ($n)n∈!) be a uniform cppo, and let

(ℕ0 ⇀fin X)→mon AURel(D, ($n)n∈!)

be the set of functions � from ℕ0 ⇀fin X to AURel(D, ($n)n∈!) that are both non-expansive and
monotone in the sense that Δ ≤ Δ′ implies �(Δ) ⊆ �(Δ′). This set is a complete, 1-bounded ultramet-
ric space with the “sup”-metric, given by

d′(�, � ′) = sup {d(�(Δ), � ′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin X} .

Proof. The set (ℕ0 ⇀fin X) →mon AURel(D, ($n)n∈!) is a subset of the underlying set of the
exponential (ℕ0 ⇀fin X)→ AURel(D, ($n)n∈!) in CBUlt, namely the subset of monotone as well as
non-expansive functions, and the distance function d defined above is the same as for the larger set. By
Proposition 4.5 it therefore suffices to show that the set of monotone and non-expansive functions is a
closed subset of the (complete) metric space of all non-expansive functions.

Let (�m)m∈! be a sequence of monotone and non-expansive functions from (ℕ0 ⇀fin X) to
AURel(D, ($n)n∈!) with limit � (for some function � which is non-expansive). We must show that �
is monotone. To that end, let Δ and Δ′ be elements of ℕ0 ⇀fin X such that Δ ≤ Δ′; we must show that
�(Δ) ⊆ �(Δ′). By Proposition 4.13(2) it suffices to show that $n ∈ �(Δ)→ �(Δ′) for all n. So let n
be given. Since (�m)m∈! has limit �, there exists an m such that d(�, �m) ≤ 2−n. By definition of the
metric on exponentials, this implies that d(�(Δ), �m(Δ)) ≤ 2−n, and hence that $n ∈ �(Δ)→ �m(Δ)
by Proposition 4.13(1). But �m is assumed to be monotone, so �m(Δ) ⊆ �m(Δ′) and therefore
$n ∈ �(Δ) → �m(Δ′). Since also d(�(Δ′), �m(Δ′)) ≤ 2−n, we have $n ∈ �m(Δ′) → �(Δ′),
and conclude by (10) that $n ∈ �(Δ)→ �(Δ′).

Propositions 4.14 and 4.17 and a little extra work give analogous results for uniform cpos:

Proposition 4.18. Let (A, ($n)n∈!) be a uniform cpo. Below, abbreviate CURel(A) = CURel(A, ($n)n∈!).
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1. The set CURel(A) is a complete, 1-bounded ultrametric space with the distance function given
by

d(R,S) =

{
2−max{n∈! ∣ $n∈R→S⊥ ∧ $n∈S→R⊥ } if R ∕= S
0 if R = S.

2. Let (X, d) ∈ CBUlt , and let (ℕ0 ⇀fin X) →mon CURel(A) be the set of functions � from
ℕ0 ⇀fin X to CURel(A) that are both non-expansive and monotone in the sense that Δ ≤ Δ′

implies �(Δ) ⊆ �(Δ′). This set is a complete, 1-bounded ultrametric space with the “sup”-metric,
given by

d′(�, � ′) = sup {d(�(Δ), � ′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin D} .

Proof.

1: It is easy to see that the family of strict extensions $†n : A⊥ → A⊥ of the projection functions $n :
A→ A⊥ turns (A⊥, ($

†
n)n∈!) into a uniform cppo. Abbreviate AURel(A⊥) = AURel(A⊥, ($

†
n)n∈!).

By definition of uniform relations,

R ∈ CURel(A) if and only if R⊥ ∈ AURel(A⊥) (28)

for all R in Rel(A). Furthermore, Proposition 4.14 gives a metric on the set AURel(A⊥), and it is easy
to see that the distance function on CURel(A) defined in Part 1 above is induced by the lifting operator,
i.e., d(R,S) = d(R⊥, S⊥). Since the lifting operator is injective, this induced distance function turns
CURel(A) into a 1-bounded ultrametric space.

However, not every S in AURel(A⊥) has the form R⊥ for some R in CURel(A): unless A is
empty, some relations in AURel(A⊥) relate ⊥ to elements different from ⊥. In other words, the lifting
operator from CURel(A) to AURel(A⊥) is not surjective. Therefore, completeness of AURel(A⊥)
does not immediately imply completeness of CURel(A). What we need to show is that the subset of
AURel(A⊥) consisting of strict relations, i.e., relations S for which (a,⊥) ∈ S or (⊥, a) ∈ S implies
a = ⊥, is a closed subset of AURel(A⊥). Proposition 4.5 then implies that the subset of strict relations
is a complete metric space, and (28) implies that it is isomorphic to CURel(A), which is therefore also
complete.

More generally, let (D, ($′n)n∈!) be a uniform cppo, and abbreviate AURel(D) = AURel(D, ($′n)n∈!);
we show that the subset SAURel(D) ⊆ AURel(D) of strict relations is closed. So let (Rm)m∈! be
a sequence of strict relations (elements of SAURel(D)) with limit R for some R ∈ AURel(D). We
must show that R is strict. So let (⊥, e) ∈ R: we show that e = ⊥. (The case where (e,⊥) ∈ R
is completely symmetric.) By (9) it suffices to show that $′n e = ⊥ for all n. Given n, choose m
large enough that d(R,Rm) ≤ 2−n. Then $′n ∈ R → Rm by Proposition 4.13(1), and therefore
(⊥, $′n e) = ($′n⊥, $′n e) ∈ Rm. But this implies that $′n e = ⊥ since Rm is strict. In conclusion, R
is strict.

2: In the proof of Part 1 we showed that CURel(A) is isomorphic to the complete, 1-bounded metric
space SAURel(A⊥) of strict, uniform, and admissible relations on A⊥. The isomorphism is the lifting
operator on relations, and this operator clearly preserves and reflects set-theoretic inclusion, i.e., R ⊆ S
if and only if R⊥ ⊆ S⊥. It therefore suffices to show that the set (ℕ0 ⇀fin X)→mon SAURel(A⊥) of
non-expansive and monotone functions from ℕ0 ⇀fin X to SAURel(A⊥) is a complete metric space
with the “sup” metric on functions:

d′(�, � ′) = sup {d(�(Δ), � ′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin D} .

By Proposition 4.5 it is enough to show that (ℕ0 ⇀fin X) →mon SAURel(A⊥) is a closed subset of
(ℕ0 ⇀fin X) →mon AURel(A⊥). But this follows immediately from the fact that SAURel(A⊥) is
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a closed subset of CURel(A⊥), as shown in Part 1, since limits with respect to the “sup” metric on
functions are pointwise.

In the rest of this section we do not need the extra generality of uniform cpos: recall that V is the
cpo obtained from Proposition 3.2 and abbreviate CURel(V ) = CURel(V, (�n)n∈!).

Proposition 4.19. The operation mapping each (X, d) ∈ CBUlt to the monotone function space
(ℕ0 ⇀fin X) →mon CURel(V ) (as given by the previous proposition) can be extended to a locally
non-expansive functor F : CBUltop → CBUlt in the natural way:

F (X, d) = (ℕ0 ⇀fin X)→mon CURel(V )

F (f) = ��. �Δ. �(f ∘Δ)

Proof. Let (X1, d1) and (X2, d2) be complete, 1-bounded ultrametric spaces. For every non-expansive
function f from X2 to X1, the F (f) given above is clearly a well-defined function from (ℕ0 ⇀fin

X1) →mon CURel(V ) to the set of functions from (ℕ0 ⇀fin X2) to CURel(V ). It is also easy to see
that F (f)(�) is monotone for every � in F (X1, d1): let Δ,Δ′ ∈ (ℕ0 ⇀fin X2) such that Δ ≤ Δ′; then
f ∘Δ ≤ f ∘Δ′ by definition of ≤, and therefore

F (f)(�)(Δ) = �(f ∘Δ) ⊆ �(f ∘Δ′) = F (f)(�)(Δ′)

since � is monotone.
We now show the following property: for all non-expansive functions f and f ′ from X2 to X1, all

� and � ′ in (ℕ0 ⇀fin X1)→mon CURel(V ), and all Δ and Δ′ in (ℕ0 ⇀fin X2),

d(F (f)(�)(Δ), F (f ′)(� ′)(Δ′)) ≤ max(d(f, f ′), d(�, � ′), d(Δ,Δ′)) . (29)

By definition, F (f)(�)(Δ) = �(f ∘Δ) and F (f ′)(� ′)(Δ′) = � ′(f ′ ∘Δ′). By the ultrametric inequality,

d(f ∘Δ, f ′ ∘Δ′) ≤ max(d(f ∘Δ, f ′ ∘Δ), d(f ′ ∘Δ, f ′ ∘Δ′))

But d(f ∘Δ, f ′ ∘Δ) ≤ d(f, f ′) by definition of the metric on (ℕ0 ⇀fin X2) and d(f ′ ∘Δ, f ′ ∘Δ′) ≤
d(Δ,Δ′) by the fact that f ′ is non-expansive. Therefore,

d(f ∘Δ, f ′ ∘Δ′) ≤ max(d(f, f ′), d(Δ,Δ′)) .

Then, by the ultrametric inequality and the fact that � ′ is non-expansive,

d(�(f ∘Δ), � ′(f ′ ∘Δ′)) ≤ max(d(�(f ∘Δ), � ′(f ∘Δ)), d(� ′(f ∘Δ), � ′(f ′ ∘Δ′)))

≤ max(d(�, � ′), d(f ∘Δ, f ′ ∘Δ′))

≤ max(d(�, � ′), d(f, f ′), d(Δ,Δ′)) ,

which shows (29).
Now, for all f and �, taking f ′ = f and � ′ = � in (29) shows that F (f)(�) is non-expansive.

Similarly, taking f ′ = f and Δ′ = Δ in (29) shows that F (f) is non-expansive. All in all, we have now
shown that F (f) is a morphism from F (X1, d1) to F (X2, d2) when f is a morphism from (X2, d2) to
(X1, d1).

The functor laws are then easily verified:

F (idX) = ��. �Δ. �(idX ∘Δ) = ��. �Δ. �(Δ) = idF (X,d) .
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(F (g) ∘ F (f))(�) = ((��. �Δ. �(g ∘Δ)) ∘ (��. �Δ. �(f ∘Δ)))(�)

= �Δ. (�Δ′. �(f ∘Δ′))(g ∘Δ))

= �Δ. �(f ∘ g ∘Δ)

= F (f ∘ g)(Δ) .

It remains to show that F is locally non-expansive, i.e., that

d(F (f), F (f ′)) ≤ d(f, f ′)

for all parallel morphisms (non-expansive functions) f and f ′. But that follows from (29) by taking
� ′ = � and Δ′ = Δ′.

Proposition 4.19, Proposition 4.9 (with c = 1/2), and Theorem 4.10 now immediately imply:

Theorem 4.20. There exists a complete, 1-bounded ultrametric space T̂ such that the isomorphism

T̂ ∼= 1
2((ℕ0 ⇀fin T̂ )→mon CURel(V )) (30)

holds in CBUlt .

Remark 4.21. Since in general the underlying sets of 1/2 ⋅ (X, d) and (X, d) are the same, the theorem
above gives a continuous, but not distance-preserving, bijection

T̂ ⇄ ((ℕ0 ⇀fin T̂ )→mon CURel(V )) .

We implicitly use that bijection below. Notice that the function space (ℕ0 ⇀fin T̂ ) →mon CURel(V )
consists of non-expansive functions, so one cannot simply forget about the metric, i.e., generalize to the
category of sets and functions and view T̂ as a solution to an equation like (30) but without the “1/2”.
Likewise, one cannot view T̂ as a solution to such an equation in the category of metric spaces and
continuous functions.

4.3 Interpretation of types

Let in the following T̂ be a complete, 1-bounded ultrametric space satisfying (30), and let App : T̂ →
1
2((ℕ0 ⇀fin T̂ ) →mon CURel(V )) be an isomorphism with inverse Lam : 1

2((ℕ0 ⇀fin T̂ ) →mon

CURel(V )) → T̂ . For convenience, we use the following abbreviations (where the namesW and T
are intended to indicate “worlds” and “types”, respectively):

W = ℕ0 ⇀fin T̂
T =W →mon CURel(V ) .

With that notation, (30) expresses that T̂ is isomorphic to 1
2T .

We choose T as our space of semantic types: types of the language will be interpreted as elements of
T , i.e., as certain world-indexed families of relations on V . We additionally define families of relations
on “states” (elements of S), “continuations” (elements of K = V → S → Ans), and “computations”
(elements of TV ).
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Definition 4.22. Abbreviate

AURel(TV ) = AURel(TV, (�Tn )n∈!),

AURel(K) = AURel(K, (�Kn )n∈!), and

CURel(S) = CURel(S, (�Sn )n∈!) .

Let

TT =W →mon AURel(TV )

TK =W →mon AURel(K)

be the complete, uniform 1-bounded ultrametric spaces given by Proposition 4.17. Furthermore, let

TS =W → CURel(S)

be the complete, uniform 1-bounded ultrametric space obtained from Propositions 4.15 and 4.18 and the
exponential in CBUlt. (The elements of TS are non-expansive but not necessarily monotone functions.)

In all the ultrametric spaces we consider here, all non-zero distances have the form 2−m for some
m. For such ultrametric spaces, there is a useful notion of n-approximated equality of elements:

Definition 4.23. For every complete, 1-bounded ultrametric space (D, d), every natural number n ≥ 0,
and all elements x, y ∈ D, the notation x n

=d y means that d(x, y) ≤ 2−n. When the distance function
d is clear from the context, we shall just write x n

= y for x n
=d y.

(In general, such approximated equality relations can of course also be defined for numbers not of
the form 2−n.) The ultrametric inequality implies that each relation n

=d is transitive, and therefore an
equivalence relation:

Proposition 4.24. If x n
=d y and y n

=d z, then x n
=d z.

The fact that the evaluation map corresponding to a given exponential is non-expansive can now
be expressed as a congruence property for approximated equality: for non-expansive maps f, f ′ :
(D1, d1)→ (D2, d2) and elements x, x′ ∈ D1,

f
n
= f ′ ∧ x

n
= x′ =⇒ f(x)

n
= f ′(x′) . (31)

That property will be used frequently below.
To interpret types of the language as elements of T , it remains to define a number of operators on

T (and TT and TK) that will be used to interpret the various type constructors of the language; these
operators are shown in the lower part of Figure 5. Notice that the operator ref is defined in terms of
n-approximated equality n

= on CURel(V ), as defined above.
In order to interpret the fragment of the language without recursive types, it suffices to verify that

these operators are well-defined (e.g., ref actually maps elements of T into T .) In order to interpret
recursive types, however, we furthermore need to verify that the operators are non-expansive.

The proofs below depend on a number of lemmas that give more concrete descriptions of the metric
spaces involved; these lemmas can be found in Appendix A. In particular, the factor 1/2 in (30) implies
that worlds that are “(n+ 1)-equal” only contain “n-equal” semantic types.

Lemma 4.25. The function states fromW to Rel(S) defined in the lower part of Figure 5 is an element
of TS .
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For every Ξ ⊢ � , define the non-expansive J�KΞ : T Ξ → T by induction on � :

J�KΞ ' = '(�)

JintKΞ ' = �Δ. { (inℤ k, inℤ k) ∣ k ∈ ℤ }
J1KΞ ' = �Δ. { (in1 ∗, in1 ∗) }

J�1 × �2KΞ ' = J�1KΞ '× J�2KΞ '

J0KΞ ' = �Δ. ∅
J�1 + �2KΞ ' = J�1KΞ '+ J�2KΞ '

Jref �KΞ ' = ref (J�KΞ ')

J∀�.�KΞ ' = �Δ. { (in∀ c, in∀ c
′) ∣ ∀� ∈ T . (c, c′) ∈ comp(J�KΞ,� '[� 7→ �])(Δ) }

J��.�KΞ ' = fix
(
��. �Δ. { (in� v, in� v

′) ∣ (v, v′) ∈ J�KΞ,� '[� 7→ �] (Δ) }
)

(see Theorem 4.29)

J�1 → �2KΞ ' = (J�1KΞ ')→ (comp(J�2KΞ '))

The following operators and elements are used above:

× : T × T → T comp : T → TT
+ : T × T → T cont : T → TK

ref : T → T states ∈ TS
→ : T × TT → T RAns ∈ CRel(Ans)

(�1 × �2)(Δ) = { (in×(v1, v2), in×(v′1, v
′
2)) ∣ (v1, v

′
1) ∈ �1(Δ) ∧ (v2, v

′
2) ∈ �2(Δ) }

(�1 + �2)(Δ) = { (in+(�1 v1), in+(�1 v
′
1)) ∣ (v1, v

′
1) ∈ �1(Δ) } ∪

{ (in+(�2 v2), in+(�2 v
′
2)) ∣ (v2, v

′
2) ∈ �2(Δ) }

ref (�)(Δ) = { (�l, �l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. App (Δ(l)) (Δ1) = �(Δ1) } ∪
{ (�n+1

l , �n+1
l ) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. App (Δ(l)) (Δ1)

n
= �(Δ1) }

(� → �)(Δ) = { (in→ f, in→ f
′) ∣ ∀Δ1 ≥ Δ. ∀(v, v′) ∈ �(Δ1) .(f v, f ′ v′) ∈ �(Δ1) }

cont(�)(Δ) = { (k, k′) ∣ ∀Δ1 ≥ Δ. ∀(v, v′) ∈ �(Δ1).
∀(s, s′) ∈ states(Δ1). (k v s, k′ v′ s′) ∈ RAns }

comp(�)(Δ) = { (c, c′) ∣ ∀Δ1 ≥ Δ. ∀(k, k′) ∈ cont(�)(Δ1).
∀(s, s′) ∈ states(Δ1). (c k s, c′ k′ s′) ∈ RAns }

states(Δ) = { (s, s′) ∣ dom(s) = dom(s′) = dom(Δ)
∧ ∀l ∈ dom(Δ). (s(l), s′(l)) ∈ App (Δ(l)) (Δ) }

RAns = { (⊥,⊥) } ∪ { (⌊�1 m⌋, ⌊�1 m⌋) ∣ m ∈ ℤ }

Figure 5: Interpretation of types.
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Proof. First, for every Δ ∈ W , the relation states(Δ) is complete: this follows from the fact that
App (Δ(l)) (Δ) is complete for all l ∈ dom(Δ). We now show that

Δ
n
= Δ′ =⇒ �Sn ∈ states(Δ)→ states(Δ′)⊥

for all Δ,Δ′ ∈ W . From this implication, uniformity follows by taking Δ′ = Δ and using Lemma A.2(1),
and non-expansiveness of states follows from Lemma A.2(1) and symmetry. So, let Δ

n
= Δ′ and let

(s, s′) ∈ states(Δ); we must show that either �Sn (s) = �Sn (s′) = ⊥, or �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋
where (s0, s

′
0) ∈ states(Δ′). If n = 0 we are done by (23); assume therefore that n > 0. Then

dom(Δ) = dom(Δ′) by the definition of the metric onW , and furthermore, for every l ∈ dom(Δ),

App (Δ(l)) (Δ)
n
= App (Δ(l)) (Δ′) (App (Δ(l)) non-expansive)
n−1
= App (Δ′(l)) (Δ′) . (Lemma A.1)

By transitivity (Proposition 4.24),

App (Δ(l)) (Δ)
n−1
= App (Δ′(l)) (Δ′) ,

and therefore Lemma A.2(1) gives that

�n−1 ∈ App (Δ(l)) (Δ)→ (App (Δ′(l)) (Δ′))⊥ .

Since the above holds for every l ∈ dom(Δ), Equation (24) gives that either �Sn (s) = �Sn (s′) = ⊥,
and we are done, or �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ for some s0 and s′0 such that (s0(l), s′0(l)) ∈
App (Δ′(l)) (Δ′) for all l ∈ dom(Δ′). But the latter means exactly that (s0, s

′
0) ∈ states(Δ′).

Lemma 4.26. Let Δ, Δ′, and Δ1 be elements ofW such that Δ
n
= Δ′ and Δ ≤ Δ1. There exists a Δ′1

such that Δ1
n
= Δ′1 and Δ′ ≤ Δ′1.

Proof. If n = 0 we can take Δ′1 = Δ′; in fact, any extension of Δ′ would do. If n > 0 we have
dom(Δ) = dom(Δ′) by definition of the metric on W . Now define Δ′1 ∈ W with dom(Δ′1) =
dom(Δ1) by

Δ′1(l) =

{
Δ′(l) if l ∈ dom(Δ)
Δ1(l) if l ∈ dom(Δ1) ∖ dom(Δ).

Clearly Δ′ ≤ Δ′1 since dom(Δ) = dom(Δ′). Also, by definition of the metric onW (as a maximum of
the distances for each “l”), d(Δ1,Δ

′
1) = d(Δ,Δ′) ≤ 2−n.

Lemma 4.27. The operators ×, +, ref , →, cont , and comp defined in the lower part of Figure 5 are
non-expansive.

Proof. We show that each operator maps into the appropriate codomain and that it is non-expansive.

× : T × T → T :
It is easy to see that (�1×�2)(Δ) is complete for all Δ ∈ W . To see that �1×�2 belongs to T , it therefore
suffices to verify the two conditions of Lemma A.2(3). Condition (a), monotonicity, is immediate. As
for Condition (b), we show a more general fact which furthermore implies non-expansiveness of ×: for
all �1, �2, � ′1, and � ′2 in T and all Δ and Δ′ in ℕ0 ⇀fin T̂ ,

�1
n
= � ′1 ∧ �2

n
= � ′2 ∧ Δ

n
= Δ′ =⇒ �n ∈ (�1 × �2)(Δ)→ (� ′1 × � ′2)(Δ)⊥ .

Condition (b) then follows by taking �1 = � ′1 and �2 = � ′2. Non-expansiveness of × follows by taking
Δ = Δ′ and using parts 1 and 2 of Lemma A.2 (and symmetry).
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So, assume that �1
n
= � ′1 and �2

n
= � ′2 and Δ

n
= Δ′, and let

(in×(v1, v2), in×(v′1, v
′
2)) ∈ (�1 × �2)(Δ) .

We must show that either (1) �n(in×(v1, v2)) = �n(in×(v′1, v
′
2)) = ⊥ or (2) �n(in×(v1, v2)) = ⌊w⌋

and �n(in×(v′1, v
′
2)) = ⌊w′⌋ for some w and w′ such that (w,w′) ∈ (� ′1 × � ′2)(Δ′). If n = 0 we

are done by Equation (4); assume therefore that n > 0. By definition of (�1 × �2)(Δ) we know that
(v1, v

′
1) ∈ �1(Δ) and (v2, v

′
2) ∈ �2(Δ). Since �1 and �2 are non-expansive functions, (31) gives that

�1(Δ)
n−1
= � ′1(Δ′) and �2(Δ)

n−1
= � ′2(Δ′) .

Therefore �n−1 ∈ �1(Δ)→ � ′1(Δ′)⊥ and �n−1 ∈ �2(Δ)→ � ′2(Δ′)⊥ by Lemma A.2(1). By definition
of �i(Δ)→ � ′i(Δ

′)⊥ (for i = 1, 2) there are now two cases:

1. �n−1(v1) = �n−1(v′1) = ⊥ or �n−1(v2) = �n−1(v′2) = ⊥.

2. There exist (w1, w
′
1) ∈ � ′1(Δ′) and (w2, w

′
2) ∈ � ′2(Δ′) where �n−1(v1) = ⌊w1⌋ and �n−1(v′1) =

⌊w′1⌋ and �n−1(v2) = ⌊w2⌋ and �n−1(v′2) = ⌊w′2⌋.

In case (1), (18) gives that �n(in×(v1, v2)) = �n(in×(v′1, v
′
2)) = ⊥ and we are done. In case (2), (18)

gives that �n(in×(v1, v2)) = ⌊in×(w1, w2)⌋ and �n(in×(v′1, v
′
2)) = ⌊in×(w′1, w

′
2)⌋. By definition of

(� ′1 × � ′2)(Δ′) we have that (in×(w1, w2), in×(w′1, w
′
2)) ∈ (� ′1 × � ′2)(Δ′) and we are done.

ref : T → T :
First, ref (�)(Δ) is complete for all Δ: this follows from the general fact that if R n

= S for all n ∈ !,
then d(R,S) = 0 and hence R = S. It is also easy to see that ref (�) is monotone. Similarly to the
previous case, we then show that ref (�) belongs to T and that ref is non-expansive by showing that

�
n
= � ′ ∧ Δ

n
= Δ′ =⇒ �n ∈ ref (�)(Δ)→ ref (� ′)(Δ′)⊥

for all � and � ′ in T and all Δ and Δ′ in ℕ0 ⇀fin T̂ .
So, assume that � n

= � ′ and Δ
n
= Δ′, and let (�ml , �

m
l ) ∈ ref (�)(Δ). (The case where (�l, �l) ∈

ref (�)(Δ) is completely similar, but slightly easier.) If n = 0 we are done by Equation (4). If n > 0,
(17) gives that �n(�ml ) = ⌊�min(n,m)

l ⌋, and it therefore remains to show that (�
min(n,m)
l , �

min(n,m)
l ) ∈

ref (� ′)(Δ′). To that end, let l ∈ dom(Δ′) and Δ′1 ≥ Δ′; we must show that App (Δ′(l)) (Δ′1)
min(n,m)−1

=

� ′(Δ′1). Lemma 4.26 gives a Δ1 ≥ Δ such that Δ1
n
= Δ′1. Then:

App (Δ′(l)) (Δ′1)
n
= App (Δ′(l)) (Δ1) (App (Δ′(l)) non-expansive)
n−1
= App (Δ(l)) (Δ1) (Lemma A.1)
m−1
= �(Δ1) (since (�ml , �

m
l ) ∈ ref (�)(Δ))

n
= � ′(Δ1) (Lemma A.2(2))
n
= � ′(Δ′1) . (� ′ non-expansive)

Hence by transitivity App (Δ′(l)) (Δ′1)
min(n,m)−1

= � ′(Δ′1).
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+ : T × T → T :
It is easy to see that (�1 + �2)(Δ) is complete for all Δ ∈ W , and that �1 + �2 is monotone. It then
suffices to show that

�1
n
= � ′1 ∧ �2

n
= � ′2 ∧ Δ

n
= Δ′ =⇒ �n ∈ (�1 + �2)(Δ)→ (� ′1 + � ′2)(Δ′)⊥

for all �1, �2, � ′1, and � ′2 in T and all Δ and Δ′ in ℕ0 ⇀fin T̂ .
So, assume that �1

n
= � ′1 and �2

n
= � ′2 and Δ

n
= Δ′, and let

(in+(�1 v), in+(�1v
′)) ∈ (�1 + �2)(Δ) .

(The case with �2 instead of �1 is completely symmetric.) If n = 0 we are done by Equation (4); assume
therefore that n > 0. By definition of (�1 + �2)(Δ) we have (v, v′) ∈ �1(Δ). Then, since �1

n
= � ′1

and Δ
n
= Δ′ implies �1(Δ)

n
= � ′1(Δ′), there are two cases: either �n−1(v) = �n−1(v′) = ⊥, and

we are done, or �n−1(v) = ⌊w⌋ and �n−1(v′) = ⌊w′⌋ where (w,w′) ∈ � ′1(Δ′). But then (19) gives
that �n(in+(�1v)) = ⌊in+(�1w)⌋ and �n(in+(�1v

′)) = ⌊in+(�1w
′)⌋ with (in+(�1w), in+(�1w

′)) ∈
(� ′1 + � ′2)(Δ′).

cont : T → TK:
First, cont(�)(Δ) is admissible for each Δ ∈ W since RAns is admissible. Also, cont(�) is monotone.
By Lemma A.3(3), it then suffices to show that

�
n
= � ′ ∧ Δ

n
= Δ′ =⇒ �Kn ∈ cont(�)(Δ)→ cont(� ′)(Δ′)

for all � and � ′ in T and all Δ and Δ′ in W . So, assume that � n
= � ′ and Δ

n
= Δ′ and let (k, k′) ∈

cont(�)(Δ); we must show that (�Kn (k), �Kn (k′)) ∈ cont(� ′)(Δ′). If n = 0 this follows from (23)
and the fact that cont(� ′)(Δ′) is pointed. Otherwise, let Δ′1 ≥ Δ′ and (v, v′) ∈ � ′(Δ′1) and (s, s′) ∈
states(Δ′1). We must show that (�Kn (k) v s, �Kn (k′) v′ s′) ∈ RAns . First, Lemma 4.26 gives a Δ1 ≥ Δ

such that Δ1
n
= Δ′1. By (31), �(Δ1)

n
= � ′(Δ′1). Furthermore, the fact that states belongs to TS , shown

above, implies that states(Δ1)
n
= states(Δ′1). Therefore, by (25), either �Kn (k) v s = �Kn (k′) v′ s′ =

⊥, and we are done, or �Kn (k) v s = k w s0 and �Kn (k′) v′ s′ = k′ w′ s′0 where �n(v) = ⌊w⌋ and
�n(v′) = ⌊w′⌋ and �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ with (w,w′) ∈ �(Δ1) and (s0, s

′
0) ∈ states(Δ1).

In the latter case, (k w s0, k
′ w′ s′0) ∈ RAns since (k, k′) ∈ cont(�)(Δ) and Δ ≤ Δ1.

comp : T → TT :
Completely similar to cont . First, comp(�)(Δ) is admissible for each Δ ∈ W sinceRAns is admissible.
Also, comp(�) is monotone. By Lemma A.3(3), it then suffices to show that

�
n
= � ′ ∧ Δ

n
= Δ′ =⇒ �Tn ∈ comp(�)(Δ)→ comp(� ′)(Δ′)

for all � and � ′ in T and all Δ and Δ′ in W . So, assume that � n
= � ′ and Δ

n
= Δ′ and let (c, c′) ∈

comp(�)(Δ); we must show that (�Tn (c), �Tn (c′)) ∈ comp(� ′)(Δ′). If n = 0 this follows from (23)
and the fact that comp(� ′)(Δ′) is pointed. Otherwise, let Δ′1 ≥ Δ′ and (k, k′) ∈ cont(� ′)(Δ′1) and
(s, s′) ∈ states(Δ′1). We must show that (�Tn (c) k s, �Tn (c′) k′ s′) ∈ RAns . Lemma 4.26 gives a
Δ1 ≥ Δ such that Δ1

n
= Δ′1. Since cont is non-expansive,

cont(�)(Δ1)
n
= cont(� ′)(Δ1)

n
= cont(� ′)(Δ′1) .

Furthermore, the fact that states belongs to TS implies that states(Δ1)
n
= states(Δ′1). Therefore,

by (26), either �Tn (c) k s = �Tn (c′) k′ s′ = ⊥, and we are done, or �Tn (c) k s = c (�Kn (k)) s0 and
�Tn (c′) k′ s′ = c′ (�Kn (k′)) s′0 where �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ with (�Kn (k), �Kn (k′)) ∈
cont(�)(Δ1) and (s0, s

′
0) ∈ states(Δ1). In the latter case, (c (�Kn (k)) s0, c

′ (�Kn (k′)) s′0) ∈ RAns

since (c, c′) ∈ comp(�)(Δ) and Δ ≤ Δ1.
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→: T × TT → T :
It is easy to see that (� → �)(Δ) is admissible for all Δ ∈ W since � maps worlds to admissible
relations. Also, � → � is obviously monotone. By Lemma A.3(3), it then suffices to show that

�
n
= � ′ ∧ �

n
= �′ ∧ Δ

n
= Δ′ =⇒ �n ∈ (� → �)(Δ)→ (� ′ → �′)(Δ′)⊥

for all � and � ′ in T , all � and �′ in TT , and all Δ and Δ′ in W . So, assume that � n
= � ′ and � n

= �′

and Δ
n
= Δ′, and let (in→f, in→f

′) ∈ (� → �)(Δ). If n = 0 we are done by Equation (4); assume
therefore that n > 0. Define the two functions

g = �v.

{
�Tn (f w) if �n−1 v = ⌊w⌋
⊥ otherwise

g′ = �v′.

{
�Tn (f ′ w′) if �n−1 v

′ = ⌊w′⌋
⊥ otherwise

By (22), it suffices to show that (in→(g), in→(g′)) ∈ (� ′ → �′)(Δ′). To that end, let Δ′1 ≥ Δ′

and let (v, v′) ∈ � ′(Δ′1); we must show that (g(v), g′(v′)) ∈ �′(Δ′1). Lemma 4.26 gives a Δ1 ≥ Δ

such that Δ1
n
= Δ′1. Then �(Δ1)

n−1
= � ′(Δ′1), and there are therefore two cases: either �n−1 v =

�n−1 v
′ = ⊥, and we are done, or �n−1 v = ⌊w⌋ and �n−1 v

′ = ⌊w′⌋ for some w,w′ such that
(w,w′) ∈ �(Δ1). In the latter case (f w, f ′ w′) ∈ �(Δ1) since (f, f ′) ∈ (� → �)(Δ) and Δ1 ≥ Δ.
Then by (31), �(Δ1)

n
= �′(Δ′1), and therefore (�Tn (f w), �Tn (f ′ w′)) ∈ �′(Δ′1). But this means exactly

that (g(v), g′(v′)) ∈ �′(Δ′1).

It is here, in order to show that ref is well-defined (and non-expansive), that we need the approximate
locations �nl . Suppose for the sake of argument that locations were modeled simply using a flat cpo of
natural numbers, i.e., suppose that Loc = ℕ0 and that �1(inLoc l) = ⌊inLoc l⌋ for all l ∈ ℕ0. The
definition of ref would then have the form ref (�)(Δ) = {(inLoc l, inLoc l) ∣ l ∈ dom(Δ) ∧ . . . }. The
function ref (�) from worlds to relations must be non-expansive. But assume then that Δ =1 Δ′; then
ref (�)(Δ) =1 ref (�)(Δ′) by non-expansiveness, and hence ref (�)(Δ) = ref (�)(Δ′) since �1 is the
(lifted) identity on locations. In other words, ref (�) would only depend on the “first approximation” of
its argument world Δ: this can never be right, no matter what the particular definition of ref is.2 This
observation generalizes to variants where �n(inLoc l) = ⌊inLoc l⌋) for some arbitrary finite n.

For any finite set Ξ of type variables, the set T Ξ of functions from Ξ to T is a metric space with the
product metric:

d′(','′) = max{ d('(�), '′(�)) ∣ � ∈ Ξ } .

We are now ready to formulate the interpretation of types:

Definition 4.28. Let � be a type and let Ξ be a type environment such that Ξ ⊢ � . The relational
interpretation of � with respect to Ξ is the non-expansive function J�KΞ : T Ξ → T defined by induction
on � in Figure 5. The interpretation of recursive types is by appeal to Banach’s fixed-point theorem (see
Theorem 4.29).

In more detail, well-definedness of J�KΞ must be argued together with non-expansiveness, by induc-
tion on � (see below). This is similar to the more familiar situation with the untyped semantics of terms
presented in Section 3: there, well-definedness must be argued together with continuity because of the
use of Kleene’s fixed-point theorem in the interpretation of fix f.�x.t.

Theorem 4.29. Let � be a type such that Ξ ⊢ � .
2In particular, the obvious definition of ref as ref (�)(Δ) = {(inLoc l, inLoc l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥

Δ. App (Δ(l)) (Δ1) = �(Δ1)} would not be well-defined, since it would not be non-expansive in Δ.
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1. The function J�KΞ : T Ξ → T defined in Figure 5 is non-expansive.

2. If Ξ = Ξ′, � then for all'′ ∈ T Ξ′ we have that ��. �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J�KΞ′,� '

′[� 7→ �] Δ }
is a contractive function from T to T . In particular, J��.�K is well-defined.

Proof. First, generalize Part 2 above:

2’. �'�Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J�KΞ 'Δ } is a contractive function from T Ξ to T .

By the definition of the product metric, 2’ implies 2.
We now show 1 and 2’ by simultaneous induction on n.

1: If � is int, 1, or 0, then J�KΞ is a constant function and hence trivially non-expansive. If � is a type
variable �, then non-expansiveness of J�KΞ follows directly from the definition of the product metric.
In the cases where � is �1 × �2, �1 + �2, ref � ′, or �1 → �2, non-expansiveness follows directly from
Lemma 4.27 and the induction hypothesis.

It remains to consider the cases where � is ��.� ′ or ∀�.� ′. First, assume that � is ��.� ′ for some
� ′ such that Ξ, � ⊢ � ′. We know from 2’ and the induction hypothesis that J��.� ′KΞ is a (well-defined)
function from T Ξ to T . To show that J��.� ′KΞ is non-expansive, let ' n

= '′; we must show that
J��.� ′KΞ '

n
= J��.� ′KΞ '

′. By Proposition 4.7 it suffices to show that the two contractive functions
g, g′ : T → T defined by

g = ��. �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈

q
� ′

y
Ξ,�

'[� 7→ �] Δ }

g′ = ��. �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈

q
� ′

y
Ξ,�

'′[� 7→ �] Δ }

satisfy that g n
= g′. So let � ∈ T be given; we must show that g � n

= g′ �. But this follows from 2’ and
the induction hypothesis. Therefore, J��.� ′KΞ is non-expansive.

Now assume that � is ∀�.� ′ for some � ′ such that Ξ, � ⊢ � ′. First, J∀�.� ′KΞ 'Δ is complete for
all Δ ∈ W since arbitrary intersections of complete relations are complete. It is also easy to see that
J∀�.� ′KΞ ' is monotone since comp(J� ′KΞ,� '[�→ �]) is monotone for all � ∈ T . By Lemma A.2(3),
it then suffices to show that

'
n
= '′ ∧ Δ

n
= Δ′ =⇒ �n ∈

q
∀�.� ′

y
Ξ
'Δ→ (

q
∀�.� ′

y
Ξ
'′Δ′)⊥

for all ' and '′ in T Ξ and all Δ and Δ′ in W . So, let (in∀ c, in∀ c
′) ∈ J∀�.� ′KΞ 'Δ. If n = 0

we are done by Equation (4); assume therefore that n > 0. By (21) it then suffices to show that
(in∀(�

T
n c), in∀(�

T
n c
′)) ∈ J∀�.� ′KΞ '

′Δ′. To this end, let Δ′1 ≥ Δ′ and � ∈ T ; we must show that
(�Tn c, �

T
n c
′) ∈ comp(J� ′KΞ,� '

′[� 7→ �])Δ′1. Lemma 4.26 gives a Δ1 ≥ Δ such that Δ1
n
= Δ′1.

Then (c, c′) ∈ comp(J� ′KΞ,� '[� 7→ �])Δ1 since (in∀ c, in∀ c
′) ∈ J∀�.� ′KΞ 'Δ. By the induction

hypothesis, J� ′KΞ,� is non-expansive, and therefore
q
� ′

y
Ξ,�

'[� 7→ �]
n
=

q
� ′

y
Ξ,�

'′[� 7→ �]

by the definition of the product metric. The operator comp is non-expansive by Lemma 4.27, and
therefore

comp(
q
� ′

y
Ξ,�

'[� 7→ �])
n
= comp(

q
� ′

y
Ξ,�

'′[� 7→ �]) .

Finally, by (31),

comp(
q
� ′

y
Ξ,�

'[� 7→ �])Δ1
n
= comp(

q
� ′

y
Ξ,�

'′[� 7→ �])Δ′1 ,

and we conclude that
(�Tn c, �

T
n c
′) ∈ comp(

q
� ′

y
Ξ,�

'′[� 7→ �])Δ′1

by Lemma A.3(1) and the fact that (c, c′) ∈ comp(J� ′KΞ,� '[� 7→ �])Δ1.
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2’: Let G = �'�Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J�KΞ 'Δ }; we must show that G is a contractive

function from T Ξ to T . First, it is easy to see that G(') is monotone and that G(')(Δ) is admissi-
ble for all ' and Δ. To show that G has codomain T it therefore remains to verify Condition (b) of
Lemma A.2(3). We show the following more general property which furthermore implies that G is
contractive: for all ' and '′ in T Ξ and all Δ and Δ′ inW ,

'
n
= '′ ∧ Δ

n
= Δ′ =⇒ �n+1 ∈ G(')(Δ)→ G('′)(Δ′)⊥ .

Notice the n + 1 on the right-hand side: the above property implies that G is contractive with factor
� = 1/2 (by taking Δ = Δ′ and using Lemma A.2(1) and symmetry.)

So, let ' n
= '′ and Δ

n
= Δ′, and let (in� v, in� v

′) ∈ G(')(Δ). We know that (v, v′) ∈ J�KΞ 'Δ

by definition of G. Part 1 gives that J�KΞ is non-expansive, and therefore J�KΞ '
n
= J�KΞ '

′. By (31),
J�KΞ 'Δ

n
= J�KΞ '

′Δ′, and there are therefore two cases: either �n v = �n v
′ = ⊥, in which case

we are done by (20), or there exists (w,w′) ∈ J�KΞ '
′Δ′ such that �n v = ⌊w⌋ and �n v′ = ⌊w′⌋.

But in the latter case, (20) gives that �n+1(in� v) = ⌊in� w⌋ and �n+1(in� v
′) = ⌊in� w′⌋ where

(in� w, in� w
′) ∈ G('′)(Δ′).

Finally, to appeal to Banach’s fixed-point theorem and conclude that the interpretation of recursive
types is well-defined, we need to ensure that the complete metric space T is non-empty. We have already
observed that, e.g., the constant function �Δ.∅, used to interpret the type 0, belongs to T .

We need the following weakening and substitution properties, easily proved by induction on � :

Proposition 4.30.

1. Let � be a type such that Ξ ⊢ � , and let � /∈ Ξ. For all ' in T Ξ and � ∈ T ,

J�KΞ ' = J�KΞ,� '[� 7→ �] .

2. Let � and � ′ be types such that Ξ, � ⊢ � and Ξ ⊢ � ′. For all ' in T Ξ,
q
� [� ′/�]

y
Ξ
' =

q
�
y

Ξ,�
('[� 7→

q
� ′

y
Ξ
']) .

Corollary 4.31. For Ξ, � ⊢ � and ' ∈ T Ξ,

J��.�KΞ ' = �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J� [��.�/�]KΞ 'Δ } .

4.4 Interpretation of terms

As for the interpretation of terms, we must show that the untyped meaning of a typed term is related to
itself at the appropriate type. We first show that comp respects the operations of the monad T .

Definition 4.32. For � ∈ T and � ∈ TT and Δ ∈ W , let � Δ→ � be the binary relation on functions
V → TV defined by

�
Δ→ � = { (f, f ′) ∣ ∀Δ1 ≥ Δ.∀(v, v′) ∈ �(Δ1). (f v, f ′ v′) ∈ �(Δ1) } .

Proposition 4.33. Let �, �1, �2 ∈ T and Δ ∈ W .

1. If (v, v′) ∈ �(Δ), then (� v, � v′) ∈ comp(�)(Δ).

2. If (c, c′) ∈ comp(�1)(Δ) and (f, f ′) ∈ �1
Δ→ comp(�2), then

(c ★ f, c′ ★ f ′) ∈ comp(�2)(Δ) .
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Proof.

1: Assume that (v, v′) ∈ �(Δ). By definition, � v = �k.�s. k v s, and similarly for � v′. To show that
(� v, � v′) ∈ comp(�)(Δ), let Δ1 ≥ Δ and (k, k′) ∈ cont(�)(Δ1) and (s, s′) ∈ states(Δ1); we must
show that ((� v) k s, (� v′) k′ s′) ∈ RAns , i.e., that (k v s, k′ v′ s′) ∈ RAns . But this follows directly
from the definition of cont(�)(Δ1) since (v, v′) ∈ �(Δ) ⊆ �(Δ1) by monotonicity.

2: Assume that (c, c′) ∈ comp(�1)(Δ) and (f, f ′) ∈ �1
Δ→ comp(�2). By definition, c ★ f =

�k.�s. c (�v.�s1.f v k s1) s, and similarly for c′ ★ f ′. To show that (c ★ f, c′ ★ f ′) ∈ comp(�2)(Δ), let
Δ1 ≥ Δ and (k, k′) ∈ cont(�2)(Δ1) and (s, s′) ∈ states(Δ1); we must show that ((c ★ f) k s, (c′ ★
f ′) k′ s′) ∈ RAns , i.e., that

(c (�v.�s1.f v k s1) s, c′ (�v′.�s′1.f
′ v′ k′ s′1) s′) ∈ RAns .

Since (c, c′) ∈ comp(�1)(Δ) and Δ1 ≥ Δ and (s, s′) ∈ states(Δ1), it suffices to show that (�v.�s1.f v k s1, �v
′.�s′1.f

′ v′ k′ s′1) ∈
cont(�1)(Δ1). So, let Δ2 ≥ Δ1 and (v, v′) ∈ �1(Δ2) and (s1, s

′
1) ∈ states(Δ2); we must show

that (f v k s1, f
′ v′ k′ s′1) ∈ RAns . First, (f v, f ′ v′) ∈ comp(�2)(Δ2) by assumption on (f, f ′). By

monotonicity of cont(�2) we have (k, k′) ∈ cont(�2)(Δ2), and by assumption, (s1, s
′
1) ∈ states(Δ2).

Therefore, it follows from the definition of cont(�2)(Δ2) that (f v k s1, f
′ v′ k′ s′1) ∈ RAns .

Definition 4.34. For every term environment Ξ ⊢ Γ, every ' ∈ T Ξ, and every Δ ∈ W , let JΓKΞ 'Δ be
the binary relation on V dom(Γ) defined by

JΓKΞ 'Δ = { (�, �′) ∣ ∀x ∈ dom(Γ). (�(x), �′(x)) ∈ JΓ(x)KΞ 'Δ } .

Definition 4.35. Two typed terms Ξ ∣ Γ ⊢ t : � and Ξ ∣ Γ ⊢ t′ : � of the same type are semantically
related, written Ξ ∣ Γ ∣= t ∼ t′ : � , if for all ' ∈ T Ξ, all Δ ∈ W , and all (�, �′) ∈ JΓKΞ 'Δ,(q

t
y

dom(Γ)
�,

q
t′
y

dom(Γ)
�′
)
∈ comp(

q
�
y

Ξ
')(Δ) .

Theorem 4.36 (Fundamental Theorem). Every typed term is semantically related to itself: if Ξ ∣ Γ ⊢
t : � , then Ξ ∣ Γ ∣= t ∼ t : � .

Proof. By showing the stronger property that semantic relatedness is preserved by all the term con-
structs. We use Proposition 4.33 to avoid tedious reasoning about continuations and states for the term
constructs that do not directly involve references. Below are some illustrative cases.

1. If Γ(x) = � , then Ξ ∣ Γ ∣= x ∼ x : � . Indeed, let ' ∈ T Ξ and Δ ∈ W and (�, �′) ∈ JΓKΞ 'Δ be
given. Then (�(x), �′(x)) ∈ J�KΞ 'Δ. Therefore, by Proposition 4.33(1),

(JxKdom(Γ) �, JxKdom(Γ) �
′) = (�(�(x)), �(�′(x))) ∈ comp(

q
�
y

Ξ
')(Δ) ,

as required.
2. If Ξ ∣ Γ ∣= t ∼ t′ : ��.� , then Ξ ∣ Γ ∣= unfold t ∼ unfold t′ : � [��.�/�]. Indeed, let ' ∈ T Ξ

and Δ ∈ W and (�, �′) ∈ JΓKΞ 'Δ be given. Recall that Junfold tKdom(Γ) � = JtKdom(Γ) � ★ f and
Junfold t′Kdom(Γ) �

′ = Jt′Kdom(Γ) �
′ ★ f where f : V → TV is given by

f v =

{
�(v0) if v = in� v0

error otherwise.

By assumption, (JtKdom(Γ) �, Jt′Kdom(Γ) �
′) ∈ comp(J��.�KΞ ')(Δ). Therefore, by Proposition 4.33(2),

it suffices to show that
(f, f) ∈ J��.�KΞ '

Δ→ comp(J� [��.�/�]KΞ ') .
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To see this, let Δ1 ≥ Δ and (v, v′) ∈ J��.�KΞ 'Δ1 be given; we must show that (f v, f v′) ∈
comp(J� [��.�/�]KΞ ')(Δ1). By Corollary 4.31, (v, v′) = (in� v0, in� v

′
0) for some (v0, v

′
0) ∈ J� [��.�/�]KΞ 'Δ1.

But then by Proposition 4.33(1),

(f v, f v′) = (�(v0), �(v′0)) ∈ comp(J� [��.�/�]KΞ ')(Δ1) ,

as required.
3. If Ξ, � ∣ Γ ∣= t ∼ t′ : � and Ξ ⊢ Γ, then Ξ ∣ Γ ∣= Λ�.t ∼ Λ�.t′ : ∀�.� . Indeed, let ' ∈ T Ξ and

Δ ∈ W and (�, �′) ∈ JΓKΞ 'Δ be given. Recall that JΛ�.tKdom(Γ) � = �(in∀(JtKdom(Γ) �)) and that
JΛ�.t′Kdom(Γ) �

′ = �(in∀(Jt′Kdom(Γ) �
′)) We must therefore show that(

�(in∀(
q
t
y

dom(Γ)
�)), �(in∀(

q
t′
y

dom(Γ)
�′))
)
∈ comp(J∀�.�KΞ ')(Δ) .

By Proposition 4.33(1) it suffices to show that(
in∀(

q
t
y

dom(Γ)
�), in∀(

q
t′
y

dom(Γ)
�′)
)
∈ J∀�.�KΞ 'Δ .

We proceed according to the definition of J∀�.�KΞ. Let � ∈ T be given; we must show that (JtKdom(Γ) �, Jt′Kdom(Γ) �
′) ∈

comp(J�KΞ,� '[� 7→ �])(Δ). But this follows from the assumption that Ξ, � ∣ Γ ∣= t ∼ t′ : � since
Proposition 4.30(1) (weakening) gives that (�, �′) ∈ JΓKΞ,� '[� 7→ �].

4. If Ξ ∣ Γ ∣= t ∼ t′ : ∀�.�0 and Ξ ⊢ �1, then Ξ ∣ Γ ∣= t [�1] ∼ t′ [�1] : �0[�1/�]. Indeed, let
' ∈ T Ξ and Δ ∈ W and (�, �′) ∈ JΓKΞ 'Δ be given. Recall that Jt [�1]Kdom(Γ) � = JtKdom(Γ) � ★ g and
Jt′ [�1]Kdom(Γ) �

′ = Jt′Kdom(Γ) �
′ ★ g where g : V → TV is given by

g v =

{
c if v = in∀ c
error otherwise.

By assumption, (JtKdom(Γ) �, Jt′Kdom(Γ) �
′) ∈ comp(J∀�.�KΞ ')(Δ). Therefore, by Proposition 4.33(2),

it suffices to show that
(g, g) ∈ J∀�.�KΞ '

Δ→ comp(J�0[�1/�]KΞ ') .

To see this, let Δ1 ≥ Δ and (v, v′) ∈ J∀�.�KΞ 'Δ1 be given; we must show that (g v, g v′) ∈
comp(J�0[�1/�]KΞ ')(Δ1). By the definition of J∀�.�0KΞ we know that (v, v′) = (in∀ c, in∀ c

′) for
some c and c′ satisfying that (c, c′) ∈ comp(J�0KΞ,� '[� 7→ �])(Δ1) for all � ∈ T . Now choose
� = J�1KΞ ': Proposition 4.30(2) (substitution) gives that

(g v, g v′) = (c, c′) ∈ comp(J�0[�1/�]KΞ ')(Δ1) ,

as required.
5. If Ξ ∣ Γ ∣= t ∼ t′ : � , then Ξ ∣ Γ ∣= ref t ∼ ref t′ : ref � . Indeed, let ' ∈ T Ξ and

Δ ∈ W and (�, �′) ∈ JΓKΞ 'Δ be given. Recall that Jref tKdom(Γ) � = JtKdom(Γ) � ★ �v. alloc v and
Jref t′Kdom(Γ) �

′ = Jt′Kdom(Γ) �
′★�v. alloc v. By assumption, (JtKdom(Γ) �, Jt′Kdom(Γ) �

′) ∈ comp(J�KΞ ')(Δ).
Therefore, by Proposition 4.33(2), it suffices to show that

(alloc, alloc) ∈ J�KΞ '
Δ→ comp(Jref �KΞ ') .

To see this, let Δ1 ≥ Δ and (v, v′) ∈ J�KΞ 'Δ1 be given; we must show that (alloc v, alloc v′) ∈
comp(Jref �KΞ ')(Δ1). We proceed according to the definition of comp. Let Δ2 ≥ Δ1 and (k, k′) ∈
cont(Jref �KΞ ')(Δ2) and (s, s′) ∈ states(Δ2) be given; we must show that

(alloc v k s, alloc v′ k′ s′) ∈ RAns . (32)
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We know that dom(s) = dom(s′) = dom(Δ2). Let l0 ∈ ℕ0 be the least number such that l0 /∈
dom(Δ2); then

alloc v k s = k �l0 (s[l0 7→ v]) (33)

alloc v′ k′ s′ = k′ �l0 (s′[l0 7→ v′]) . (34)

We now aim to use the assumption that (k, k′) ∈ cont(Jref �KΞ ')(Δ2). Define Δ3 = Δ2[l0 7→
Lam(J�KΞ ')] (where Lam = App−1 is the isomorphism associated with the recursive metric-space
equation.) Clearly Δ3 ≥ Δ2 since l0 /∈ dom(Δ2). Then (�l0 , �l0) ∈ Jref �KΞ 'Δ3 = ref (J�KΞ ')(Δ3)
since for all Δ4 ≥ Δ3 we have

App (Δ4(l0)) = App (Δ3(l0)) = App(Lam(J�KΞ ')) = J�KΞ ' .

Furthermore, (s[l0 7→ v], s′[l0 7→ v′]) ∈ states(Δ3): for l ∈ dom(Δ2) we have

((s[l0 7→ v])(l), (s′[l0 7→ v′])(l)) = (s(l), s′(l)) ∈ App (Δ2(l)) (Δ2)

= App (Δ3(l)) (Δ2)

⊆ App (Δ3(l)) (Δ3) ,

by monotonicity of App (Δ3(l)) ∈ W →mon CURel(V ), and also,

((s[l0 7→ v])(l0), (s′[l0 7→ v′])(l0)) = (v, v′) ∈ J�KΞ 'Δ1

⊆ J�KΞ 'Δ3 ,

by monotonicity of J�KΞ '. All in all, (s[l0 7→ v], s′[l0 7→ v′]) ∈ states(Δ3). Therefore, (33), (34), and
the assumption that (k, k′) ∈ cont(Jref �KΞ ')(Δ2) gives (32), as required.

6. If Ξ ∣ Γ ∣= t ∼ t′ : ref � , then Ξ ∣ Γ ∣= !t ∼ !t′ : � . Indeed, let ' ∈ T Ξ and Δ ∈ W and
(�, �′) ∈ JΓKΞ 'Δ be given. Using exactly the same reasoning as in the previous case, we see that it
suffices to show that

(lookup, lookup) ∈ Jref �KΞ '
Δ→ comp(J�KΞ ') .

Therefore, let Δ1 ≥ Δ and (v, v′) ∈ Jref �KΞ 'Δ1 be given; we must show that (lookup v, lookup v′) ∈
comp(J�KΞ ')(Δ1). According to the definition of Jref �KΞ ' = ref (J�KΞ ') there are two cases: either
v = v′ = �l for some l ∈ dom(Δ1), or v = v′ = �n+1

l for some n ∈ ! and l ∈ dom(Δ1). Assume that
we are in the latter case; the former case in completely similar, but easier.

We proceed according to the definition of comp. Let Δ2 ≥ Δ1 and (k, k′) ∈ cont(J�KΞ ')(Δ2) and
(s, s′) ∈ states(Δ2) be given; we must show that

(lookup v k s, lookup v′ k′ s′) ∈ RAns . (35)

By the definition of ref we have v = v′ = �n+1
l where App(Δ1(l))(Δ2)

n
= J�KΞ 'Δ2. Since (s, s′) ∈

states(Δ2) we know that
(s(l), s′(l)) ∈ App(Δ2(l))(Δ2) .

Since l ∈ dom(Δ1) and Δ2 ≥ Δ1, we have

App(Δ2(l))(Δ2) = App(Δ1(l))(Δ2)
n
= J�KΞ 'Δ2 .

There are therefore two cases: either �n(s(l)) = �n(s′(l)) = ⊥, or else (�n(s(l)), �n(s′(l))) =
(⌊v0⌋, ⌊v′0⌋) where (v0, v

′
0) ∈ J�KΞ 'Δ2. In the first case, the definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (⊥,⊥) ∈ RAns .
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and we are done. In the second case, the definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (k v0 s, k
′ v′0 s

′) . (36)

By assumption, (k, k′) ∈ cont(J�KΞ ')(Δ2). Therefore, by definition of cont , we have (k v0 s, k
′ v′0 s

′) ∈
RAns . From (36) we then conclude (35), and we are done.

Corollary 4.37.

1. If ∅ ∣ ∅ ⊢ t : � is a closed term of type � , then JtK∅ ∅ ∕= error.

2. If ∅ ∣ ∅ ⊢ t : int is a closed term of type int, then JtKp ∕= errorAns .

Proof. 1. The theorem gives that (JtK∅ ∅, JtK∅ ∅) ∈ comp(
q
�
y
∅ ∅)(∅). Now let sinit ∈ S be the empty

store, and let k0 ∈ K be the continuation that always gives the answer 0, i.e., k0 v s = �1 0 for all v and
s. It follows immediately from the definitions that (k0, k0) ∈ cont(J�K∅ ∅)(∅) and that (sinit , sinit) ∈
states(∅). Therefore, (JtK∅ ∅ k0 sinit , JtK∅ ∅ k0 sinit) ∈ RAns . By the definition of RAns we must then
have JtK∅ ∅ k0 sinit ∕= errorAns which implies that JtK∅ ∅ ∕= error.

2. Recall that JtKp = JtK∅ ∅ kinit sinit where sinit ∈ S is the empty store and where

kinit = �v.�s.

{
⌊�1 m⌋ if v = inℤ(m)
errorAns otherwise .

We claim that (kinit , kinit) ∈ cont(JintK∅ ∅)(∅). Indeed, let Δ ∈ W and (v, v′) ∈ (JintK∅ ∅)(Δ) and
(s, s′) ∈ states(Δ) be given. Then v = v′ = inℤ(m) for some m ∈ ℤ, and therefore

(kinit v s, kinit v
′ s′) = (⌊�1 m⌋, ⌊�1 m⌋) ∈ RAns ,

as required. Furthermore, as already argued, (sinit , sinit) ∈ states(∅).
The theorem gives that (JtK∅ ∅, JtK∅ ∅) ∈ comp(

q
�
y
∅ ∅)(∅), which then implies that

(JtKp , JtKp) = (JtK∅ ∅ kinit sinit , JtK∅ ∅ kinit sinit) ∈ RAns .

Therefore JtKp ∕= errorAns by definition of RAns .

5 Examples

The model can be used to prove the equivalences in Section 5 of our earlier work [11]. More specifically,
one can use the model to prove that some equivalences between different functional implementations of
abstract data types are still valid in the presence of general references, and also prove some simple
equivalences involving imperative abstract data types. (See Section 6 for more about extending the
model to account properly for local state.) Here we only sketch two of these examples, as well as a
“non-example”: an equivalence that cannot be shown because of the existence of approximated locations
in the model.

Example 5.1. We use the usual encoding of existential types by means of universal types [14]: ∃�.� =
∀�.(∀�. � → �)→ �. The type

�m = ∃�. (1→ �)× (�→ 1)× (�→ int)

can then be used to model imperative counter modules: the idea is that a value of type �m consists of
some hidden type �, used to represent imperative counters, as well as three operations for creating a new
counter, incrementing a counter, and reading the value of a counter, respectively.
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Consider the following two module implementations, i.e., closed terms of type �m: J = Λ�.�c. c[ref int]I
and J ′ = Λ�.�c. c[ref int]I ′ where

I = (�x. ref(0), �x. x := !x+ 1, �x. !x)
I ′ = (�x. ref(0), �x. x := !x− 1, �x. −(!x)) .

By parametricity reasoning, i.e., by exploiting the universal quantification in the interpretation of uni-
versal types, one can show that ∅ ∣ ∅ ∣= J ∼ J ′ : �m.

Example 5.2. One can alternatively implement an imperative counter module by means of a local ref-
erence and two closures. Consider the type �lr = 1 → ((1 → 1) × (1 → int)) and the two counter
implementations

M =�x : 1. let r = ref 0 in (�y : 1. r := !r + 1, �y : 1. !r)
M ′=�x : 1. let r = ref 0

in (�y : 1. r := !r − 1, �y : 1. −(!r))

where the let . . . in construct is syntactic sugar for a �-redex in the usual way. Both M and M ′ are
closed terms of type �lr. By “store parametricity” reasoning, i.e., by exploiting the universal quantifica-
tion over all larger worlds in the definition of cont, one can show that ∅ ∣ ∅ ∣= M ∼M ′ : �lr.

Example 5.3. Consider the two terms K = �x.2 and K ′ = �x.3 of type ref 0→ int. Given a standard
operational semantics for the language, a simple bisimulation-style argument should suffice to show that
K and K ′ are contextually equivalent: no reference cell can ever contain a value of type 0, and therefore
neither function can ever be applied. However, the equivalence ∅ ∣ ∅ ∣= K ∼ K ′ : ref 0→ int does not
hold. Briefly, the reason is the existence of approximated locations in the model.

6 Related Work

As already mentioned, the metric-space structure on uniform relations over universal domains is well-
known [1, 4, 5, 13, 19]. The inverse-limit method for solving recursive domain equations was first
adapted to metric spaces by America and Rutten [6]; see also Rutten [25]. For a unified account covering
both domains and metric spaces, see Wagner [30].

Semantic (or “approximated”) locations were first introduced in our earlier work [11]. That work
contains an adequacy proof with respect to an operational semantics and an entirely different, quasi-
syntactic interpretation of open types. Here we instead present an in some ways more natural interpre-
tation that results from solving a recursive metric-space equation, thus obtaining a proper universe of
semantic types. Open types are then interpreted in the expected way, i.e., as maps from environments of
semantic types to semantic types.

The technique of solving a metric-space equation in order to build a Kripke-style model, as presented
in this paper, has subsequently been used by Schwinghammer et al. in their model of separation logic for
a language with higher-order store [26], and in a more recent extension [27] (with F. Pottier) that includes
an “anti-frame rule” for local reasoning about state. Furthermore, the technique has been used by the
authors, in ongoing work [10], to construct an operational model of the logic of Schwinghammer et
al. [26]. In other ongoing work, the two first authors and A. Buisse have used the technique to construct
an operational model of concurrent separation logic for a language that allows locks to be stored in the
heap (in the style of Gotsman et al. [17]).

The fundamental circularity between worlds and types in realizability-style possible-worlds models
of polymorphism and general references was observed by Ahmed [2, p. 62] in the setting of operational
semantics (and for unary relations). Rather than solve a recursive equation, her solution is to stratify
worlds and types into different levels, represented by natural numbers. So-called step-indexing is used in
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the definition to ensure that a stratified variant of the fundamental theorem holds. These stratified worlds
and types are somewhat analogous to the approximants of recursive-equation solutions that are employed
in the inverse-limit method. The main advantage in “going to the limit” of the approximations and
working with an actual solution (as we do here) is that approximation information is then not ubiquitous
in definitions and proofs; by analogy, the only “approximation information” in our model is in the
interpretation of references and in the requirement that user-supplied relations are uniform.3

Ahmed et al. [3] have recently (and independently) proposed a step-indexed model of a language
very similar to ours, but in which worlds are defined in a more complicated way: this allows for proofs
of much more advanced equivalences involving local state. As described in the introduction, we have
recently shown that our approach extends to this style of worlds. In future work we plan to investigate
potential advantages of our approach as compared to the one of Ahmed et al. [3]: one advantage could
be the removal of “approximation information” in definitions and equivalence proofs.4 We also plan
to investigate local-state parameters in the style of Bohr and Birkedal [12]. In the present paper, we
instead hope to have presented the fundamental ideas behind Kripke logical relations over recursively
defined sets of worlds as needed for semantic modeling of parametric polymorphism, recursive types,
and general references.

A Concrete descriptions of some metric spaces

Recall that the set T = W →mon CURel(V ) is a subset of the underlying set of the exponential T =
W → CURel(V ) in CBUlt, and as such is given a natural metric by Proposition 4.18. Call that metric
d1 below. In addition, let d2 be the metric on T̂ associated with the isomorphism App : T̂ → 1/2 ⋅ T
obtained from Theorem 4.20. The fact that App is an isomorphism then implies that

d2(�̂, �̂ ′) = 1/2 ⋅ d1(App �̂, App �̂ ′) (37)

for all �̂ and �̂ ′ in T̂ .

Lemma A.1. For Δ,Δ′ ∈ W , we have that Δ
n
= Δ′ if and only if either (1) n = 0, or (2) n > 0 and

dom(Δ) = dom(Δ′) and
App (Δ(l))Δ0

n−1
= App (Δ′(l))Δ0

for all l ∈ dom(Δ) and all Δ0 ∈ W .

(The “n− 1” comes from the “1/2” on the right-hand side of the isomorphism (30).)

Proof. “Only if”: Assume that Δ
n
= Δ′ and that n > 0; we must show that dom(Δ) = dom(Δ′)

and that App (Δ(l))Δ0
n−1
= App (Δ′(l))Δ0 for all l ∈ dom(Δ) and all Δ0 ∈ W . Since d(Δ,Δ′) ≤

2−n < 1, the definition of the metric on W implies that dom(Δ) = dom(Δ′) and that d(Δ,Δ′) =
max{d2(Δ(l),Δ′(l)) ∣ l ∈ dom(Δ)}. Now let l ∈ dom(Δ) and Δ0 ∈ W . First, d2(Δ(l),Δ′(l)) ≤
d(Δ,Δ′) ≤ 2−n, and (37) therefore gives that

d1(App(Δ(l)),App(Δ′(l))) = 2 ⋅ d2(Δ(l),Δ′(l)) ≤ 2−(n−1) .

Then by definition of the metric d1 on T (Proposition 4.18),

d(App(Δ(l))Δ0, App(Δ′(l))(Δ0)) ≤ d1(App(Δ(l)),App(Δ′(l))) ≤ 2−(n−1) ,

i.e., App(Δ(l))Δ0
n−1
= App(Δ′(l))(Δ0), and we are done.

3In future work we plan to perform a more formal comparison.
4For a different approach to relational reasoning without such approximation information, see other recent work [15, 16].
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“If”: The relation Δ
0
= Δ′ holds for any Δ and Δ′ sinceW is 1-bounded. So assume that n > 0,

that dom(Δ) = dom(Δ′), and that App (Δ(l))Δ0
n−1
= App (Δ′(l))Δ0 for all l ∈ dom(Δ) and all

Δ0 ∈ W . Then for every l ∈ dom(Δ) we have d1(App (Δ(l)),App (Δ′(l))) ≤ 2−(n−1) by definition
of d1, and hence

d2(Δ(l),Δ′(l)) = 1/2 ⋅ d1(App Δ(l),App Δ′(l)) ≤ 2−n

by (37). Therefore, d(Δ,Δ′) ≤ 2−n, i.e., Δ
n
= Δ′.

Lemma A.2. Let (A, ($n)n∈!) be a uniform cpo. Abbreviate CURel(A) = CURel(A, ($n)n∈!) and
consider the metrics on CURel(A) andW →mon CURel(A) given by Proposition 4.18.

1. For R,S ∈ CURel(A), we have that R n
= S if and only if $n ∈ R→ S⊥ and $n ∈ S → R⊥.

2. For �, � ′ ∈ W →mon CURel(A), we have that � n
= � ′ if and only if �(Δ0)

n
= � ′(Δ0) for all

Δ0 ∈ W .

3. A function � fromW to CRel(A) belongs toW →mon CURel(A) if and only if it satisfies the
following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ ≤ Δ′, then �(Δ) ⊆ �(Δ′).

(b) If Δ
n
= Δ′, then $n ∈ �(Δ)→ �(Δ′)⊥.

Lemma A.3. Let (D, ($n)n∈!) be a uniform cppo. Abbreviate AURel(D) = AURel(D, ($n)n∈!)
and consider the metrics on AURel(D) andW →mon AURel(D) given by Propositions 4.14 and 4.15.

1. For R,S ∈ AURel(D), we have that R n
= S if and only if $n ∈ R→ S and $n ∈ S → R.

2. For �, �′ ∈ W →mon AURel(D), we have that � n
= �′ if and only if �(Δ0)

n
= �′(Δ0) for all

Δ0 ∈ W .

3. A function � fromW to ARel(D) belongs toW →mon AURel(D) if and only if it satisfies the
following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ ≤ Δ′, then �(Δ) ⊆ �(Δ′).

(b) If Δ
n
= Δ′, then $n ∈ �(Δ)→ �(Δ′).
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