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Abstract

Monoidal categories of acyclic graphs capture the notion of multi-
hole context, pervasive in syntax and semantics. Milner’s bigraphs is
a recent example. We give a method for generalising such categories
to monoidal closed categories of acyclic graphs. The method combines
the Int-construction, lifting traced monoidal categories to compact closed
ones; the recent formulation of sortings for reactive systems; and games
for multiplicative linear logic. The closed categories obtained by our con-
struction captures a notion of higher-order contexts. These encompass
extensions to the traditional notion of context found in recent work on
Milner’s reactive systems and bigraphs. We demonstrate how technical
devices employed in these extensions are in fact intrinsic to higher-order
contexts. Finally, we use the method to construct higher-order bigraphs,
recovering directed bigraphs as a limited instance.

1 Introduction

Contexts lie at the very heart of both the syntax and semantics of computations.
In concurrency theory, processes are studied by observing their interplay with
other processes; their computational context. Sewell’s derivation of transitions
from reactions [31], Milner’s action calculi [23], and Leifer-Milner’s seminal re-
active systems [20] are all based on the observation, that the semantic notion of
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“computational context” is oftentimes simply the syntactic notion of “term con-
text”. That is, the meaning of a process is determined by the interplay between
its reaction rules and its syntactic contexts. Concretely, labelled transitions are
derived from reaction rules by defining that a process p transitions to a process q
with label a context C[−] iff there exist a reaction rule (l, r) and a context D[−]
such that C[p] ≡ D[l] and q ≡ D[r]. Leifer and Milner argued [20] that only
minimal contexts C[−] should be considered, and suggested relative pushouts
(RPOs) and idem pushouts (IPOs) as notions of minimality.

Based on these ideas, Milner’s bigraphs [25, 24] sought to supply a graph-
based semantic foundation for both ubiquitous computing and contemporary
process calculi, by providing terms and term contexts guaranteed to possess
these RPOs. Bigraphs have successfully recovered the semantics of CCS [25],
Petri nets [21], λ-calculus, Mobile Ambients and various π-calculi [17, 9], busi-
ness processes [15], and the fusion calculus [14, 13]. However, the labelled
transitions derived from the reaction rules are rarely as simple as the exist-
ing semantics: the bigraphical transitions systems for the λ-calculus, Mobile
Ambients, and the π-calculi are all infinitely branching.

The bigraphical semantics of the fusion calculus and of business processes
both required attenuation of the usual asymmetry between terms and their
contexts: a term cannot effect a context in which it is inserted. For the fusion
calculus, directed bigraphs [14] admits a succinct representation by allowing not
only contexts to identify names in terms, but also terms to identify names in
contexts. For business processes [15], second-order bigraph contexts enabled the
definition of rule schema parametrised by contexts.

Outside the realm of bigraphs, [11] applies second-order term contexts to
encodings of the λ-calculus as reactive systems. The standard observational
equivalences for lazy and call-by-value reduction strategies are recovered as weak
bisimilarity on reactive systems. In this work, finitely branching transition
systems are obtained by the specification of reduction semantics using second-
order contexts.

Finally, in [27, 28], higher-order contexts are crucial to the systematic deriva-
tion of structural operational semantics for various π-calculus and mobile am-
bients.

These papers all use higher-order contexts with a variety of limitations,
and for a variety of reasons. Inspired by their apparent similarity and by their
demonstrating the usefulness of higher-order contexts, we provide in the present
paper a method for constructing general graphical higher-order contexts. Using
this method, we generalise bigraphs to higher-order bigraphs. In contrast to
(concrete) ordinary and directed bigraphs, however, the category of higher-order
contexts does not in general possess RPOs.

The construction combines the Int-construction [18], the recent formulation
of sortings [3, 4], and games for multiplicative linear logic [1, 16, 26]. The first
step is to embed a symmetric monoidal category of acyclic graphs (i.e., con-
texts) into a traced symmetric monoidal category of cyclic graphs, on which we
can apply the Int-construction to get a higher-order category of cyclic graphs.
The next step, which is our key technical contribution, is the extrication of
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higher-order acyclic graphs from higher-order cyclic graphs. For that, we use a
sorting [3, 4] in combination with games from fully complete models of multi-
plicative linear logic. This approach is a triumph of semantics: Intuitively, the
problem is solved the moment we start thinking about graphs as modelling the
input/output flow of linear functions. But intuition is not enough; we must know
formally what it means to be such an input/output flow. The game semantics
for linear logic tells us that.

The result is a notion of graphical higher-order contexts, which indeed cap-
tures and explains notions of higher-order contexts found in the literature. As
a special case, we get a generalisation of bigraphs to higher-order bigraphs, of
which directed bigraphs fall out as a special case.

Overview of the paper: In Section 2, we introduce our categories of graphs,
and outline the following technical development. In Section 3, we recall and
expand on notions from game semantics. In Section 4, we construct the above-
mentioned refinement. In Section 5, we give our category of higher-order con-
texts and prove that it is symmetric monoidal closed, that it embeds the original
basic category, and that it is, in a sense to be made precise, faithful to the orig-
inal basic category. In Section 6, we give an alternative characterisation of
Milner’s abstract bigraphs, then generalise those to the higher-order setting,
and relate them to directed bigraphs. In Section 8, we analyse the use of
higher-order contexts in [11, 27, 28]. In Section 9, we exemplify the gains in
expressivity afforded by higher-order contexts using the reaction semantics of
mobile ambients. Finally, in Section 10 we discuss open questions and conclude.

2 First-order Trees & Graphs

In this section, we introduce the basic categories of trees and graphs that we
shall later generalise to the higher-order case. Afterwards, we give an in-depth
overview of the technical development.

Note that our category of graphs is not the category of graphs and graph
morphisms known from, e.g., the study of graph rewriting. Rather, it has graphs
as morphisms, like Milner’s place graphs [25], or like “graphs with interfaces”
from borrowed context graph rewriting [12]. We could alternatively have ar-
ranged these graphs as categories of cospans [29].

Definition 1. A graph with an interface is a graph (V +X, E), where (V +X)
are the nodes and E ⊆ (V + X)2 the edges. We call the nodes of V internal
nodes, the nodes of X the interface nodes. We consider such graphs identical if
they differ only in the choice of V : (V +X, E) and (V ′ +X, E) are equivalent if
there exists a bijection V ≃ V ′ such that the obvious extension V +X ≃ V ′+X
is in fact a graph isomorphism. We refer to equivalence classes of graphs with
interfaces as abstract graphs.

We work with abstract graphs for simplicity; to avoid working with the
bicategory of graphs where composition is not strictly associative.
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Notation To avoid littering the presentation with injections of disjoint sums,
we adopt the following conventions. (1) When x ∈ X and there is an obvious
inclusion α : X →֒ X ′, we use x interchangeably as an element of X and as
an element of X ′. (2) When R ⊆ X × X and there is an obvious inclusion
α : X ′ →֒ X , we define R↾X′ = {(x, x′) | (α(x), α(x′)) ∈ R}. These “obvious
inclusions” will invariably be inclusions of sums, e.g., X +Z →֒ X +(Y +Z). In
this case, the first convention dictates that if y ∈ Y , we write also y ∈ X+(Y +Z)
rather than the technically correct but practically noisy inr(inl(y)) ∈ X+(Y +Z).
For a relation R ⊆ X×X , when there is an obvious inclusion X →֒ Y we clearly
also have an obvious (pointwise) inclusion R ⊆ X × X →֒ Y × Y . In this case,
we use R interchangeably as a relation on X × X and Y × Y .

Definition 2. The category G0 of first-order graphs has objects finite sets
and morphisms f : X → Y abstract graphs (V + (X + Y ), E) such that each
x ∈ X has in-degree 0 and each y ∈ Y has out-degree 0. Composition is path-
composition, eliding the nodes in the interface: (V + (X + Y ), E) ◦ (V ′ + (Y +
Z), E′) = ((V + V ′) + (X + Z), E|E′), where E|E′ ⊆ ((V + V ′) + (X + Z))2 is
defined by E|E′ = ((E′◦E)∪E∪E′)↾((V +V ′)+(X+Z))2 . The identity 1X : X → X
is the graph (∅+(X+X), ∆X) where ∆X is the diagonal ∆X = {(x, x) | x ∈ X}.

(Adding the suppressed inclusions should convince you of the utility and
harmlessness of the above conventions.)

Definition 3. Let R0 be the category of finite sets and relations. Notice that
R0 is a sub-category of G0.

Recall that a subcategory C′ →֒ C is wide if the inclusion functor is a
bijection on objects.

Definition 4. The category of first-order trees T0 is the wide sub-category of
G0 which has morphisms f : X → Y equivalence classes of graphs (V +X+Y, E)
s.t. for every node v of f there exists a unique a ∈ X s.t. v has a path to a;
moreover, this path is itself unique.

Connoisseurs of bigraphs will hopefully recognise Milner’s abstract place
graphs [25, 24] sans controls.

Lemma 1. G0 and T0 are both symmetric monoidal with tensor product graph
juxtaposition: unit ∅, object concatenation X ⊗ Y = X + Y , and morphism
concatenation

(V +(X + Y ), E) ⊗ (V ′ + (X ′ + Y ′), E′) =

((V + V ′) + ((X + X ′) + (Y + Y ′)), E ∪ E′) .

G0 is traced with the trace “tying the knot” as follows. Write Z1, Z2 to dis-
tinguish the left (first) and right (second) occurrence of Z in (V + V ′) + ((X +
Z) + (Y + Z)). The trace is ((V + V ′) + (X + Y ), Et) where

Et = ((E ◦ b∗ ◦ E) ∪ E)↾((V +V ′)+(X+Y ))2

where b = E↾Z2×Z1 ◦ E↾Z1×Z2 , and b∗ is the reflexive transitive closure of b.
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Notice that T0 is not closed under this trace. Also notice that this trace
makes R0 a traced subcategory of G0, with the trace on R0 one of the standard
ones of [18].

An alternative characterisation of Et: For a z ∈ Z, write z1, z2 to distinguish
elements of the left (first) and right (second) occurrence of z in (V +V ′)+((X +
Z)+ (Y +Z)). Then (u, v) ∈ Et ⊆ ((V +V ′)+ (X +Y ))2 iff (u, v) ∈ E or there
exists some sequence z0≤i<n over Z s.t. (u, z2

0) ∈ E, (z1
i , z2

i+1) ∈ E for i < n−1,
and (zl

n−1, v) ∈ E.

Definition 5. For a traced monoidal category C, write Int(C) for the Int-
construction applied to C. Following the nomenclature of [13, 14], we call the
category Int(G0) polarised graphs and Int(R0) polarised relations.

Lemma 2. Int(G0) has objects pairs of finite sets A+, A− and morphisms f :
A+, A− → B+, B− graphs (V +A+ +B− +B+ +A−, E) with each u ∈ A+, B−

of in-degree 0 and each v ∈ B+, A− of out-degree 0. The composite f ◦ g of
graphs (V + A+ + B− + B+ + A−, E) and (V ′ + B+ + C− + B+ + C−, E′) is
(V + V ′ + A+ + C− + A+ + C−, E ‖ E′). Here E ‖ E′ is given by

E ‖ E′ = ((E ∪ E′) ◦ b∗ ◦ (E ∪ E′)) ∪ (E ∪ E′) ↾(V +V ′+A++A−+C++C−), (1)

where b = E ↾B−×B+∪ E′ ↾B+×B− .

The composition deserves a comment. The relation b relates nodes u, v
in the shared interface B+, B− if v is reachable from u. In the definition of
E ‖ E′, the subterm (E ∪ E′) ◦ b ◦ (E ∪ E′) says that a u in V , V ′, A+,
or C− is related to anything you can find by taking u across to the shared
interface B+, B− following E or E′, chasing around that interface for a while,
then again following E or E′ to find some v in V , V ′, A− or C+. (Sometimes,
you will end up in the shared interface instead, but because of the outermost
restriction, these “too short trips” will not be visible in the end result.) Finally,
the subterm E ∪E′ at the far right says that if E send some v ∈ A+, V back to
A− without crossing the shared interface, then so does the composite; similarly
for E′. This is the straightforward generalisation of the composition in Int(R0)
as described in [18]. Indeed, Int(R0) is a traced subcategory of Int(G0), and
clearly T0 →֒ G0 →֒ Int(G0) by the standard adding of the empty set for the
negative components of objects.

Overview of the technical development. We are to find a symmetric
monoidal closed category which contains T0 as a sub-category. We would like
to do that by defining a trace for T0 and then applying the Int-construction
of [18]. This approach fails, however, because any potential notion of trace for
T0 that we can think of introduces cycles, thus taking us into G0. Perhaps
unsurprisingly, it appears you cannot have both a trace and acyclicity.

Thus, we proceed as follows. Using that G0 does have a trace, we use the
Int-construction to obtain a compact closed category Int(G0). This category has
morphisms f : A+, A− → B+, B− where f is in fact a morphism f : A+⊗B− →
B+ ⊗ A− of G0. Obviously, because T0 →֒ G0, some of these morphisms f will
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in fact be morphisms of T0. Now, if only we could find a symmetric monoidal
closed sub-category T of Int(G0) such that T0 →֒ T and every morphism of T
were in fact a morphism of T0, we would have found our desired category T of
higher-order contexts.

Alas, we have been unable to find such a subcategory of Int(G0). Instead,
we construct T as a a subcategory of a refinement of Int(G0). Finding such
a refinement is an instance of the following more general problem. Given a
category C and a property P of the morphisms of C, with P not closed under
composition, construct a category X which has as objects a refinement of the
objects of C, and as morphisms the morphisms of C satisfying P . That is, there
must exist a faithful functor F : X → C, surjective on objects, for which the
homsets C(F (a), F (b)) are the morphisms satisfying P . Some of us studied this
problem in the context of bigraphs and reactive systems [3, 4, 10], motivated by
its pervasiveness in applications of bigraphs. In that context, such refinements
are referred to as sortings. The trick is to come up with a refinement of the
objects of C which groups morphisms depending on what other morphisms they
can be safely composed with.

In the present case, we refine the objects A+, A− into the linear types A
(over ⊗, ⊸, I) such that A+ and A− are precisely the postive and negative
occurrences of atoms of the type A. To preserve the property of being acyclic
under composition, we read a graph f : A+ ⊗ B− → B+ ⊗ A− as defining
a dataflow between the input A+, B− and the output A−, B+. If f defines a
valid dataflow for a linear function A ⊸ B, it is a morphism f : A → B. The
property of being a dataflow for a linear function is closed under composition.
To make this intuition precise, we turn to games models of linear logic; exactly
how we will see in Section 3.

When we read a polarised graph as defining a dataflow, the actual structure
of its internal nodes are irrelevant. The only important thing is which nodes in
the interface has paths to which other nodes in the interface. Thus, for each
graph f : A+, A− → B+, B− of Int(G0) we consider the relation imposed by f
on A+ + B− × B+ + A−. The latter is a morphism of Int(R0), and in fact, we
define a functor p : Int(G0) → Int(R0).

Because the dataflow defined by a polarised graph is in fact its image under
p, we can construct the above-mentioned sorting on Int(R0), and obtain the
sought after category of higher-order trees T as a subcategory of the pullback
shown in the following diagram. We call the sorting functor F (for “Flow”)
which is responsible for picking out the valid data flows in Int(R0). We write
also F for the category that is the domain of F .

Int(G0) Int(R0)

FT

p
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That was the overview of the technical development. We conclude this section
by defining the path functor.

Definition 6. The path-functor p : Int(G0) → Int(R0) is the identity on ob-
jects, and takes a graph (V + A+ + A− + B+ + B−, E) to E∗↾A++A−+B++B− .

3 Games & Types

In this section, we introduce a weakening of fair games [16]. We are interested in
games only as means of defining valid dataflows, so we could have used instead
other game models of ⊗, ⊸. Units are needed only to reverse polarity.

We choose fair games for the following property: If σ is a total strategy
for A ⊸ B, then σ↾A and σ↾B are total strategies for A and B, respectively
(Proposition 2 below). Our model dispenses with the requirement of [16] that
the set of maximal positions of a game includes plays where player begins. We
stress that we use these games exclusively to define valid dataflows; we have not
investigated their properties as a model of linear logic.

Definition 7. Fix a denumerable set X of literals. The linear types are the
strings defined by the following grammar.

A, B ::= I | x | A ⊗ B | A ⊸ B, (2)

where x ranges over X . An (occurrence of an) atom of a type A is a path from
the root of the syntax tree for A to a literal. We write |A| for the set of atoms
of A, and A+ and A− for the set of positively and negatively occurring atoms,
respectively. Formally: |I| = ∅, |x| = {⋆}, and |A ⊗ B| = |A ⊸ B| = |A| + |B|.

When A contains no literal x ∈ X more than once, we do not need to
distinguish between literals and atoms. We assume that the set of all possible
atoms is a subset of X .

Notation For sequences s, t, we write the concatenation of s and t simply st.
If s is a sequence over X and X ′ ⊆ X , we write s ↾ X ′ for the subsequence of s
containing only elements from X ′. We write s ↾ X ′, Y ′ rather than s ↾ (X ′∪Y ′).
When sequences are known to be in fact permutations — which will almost
always be the case — we say that x occurs before y in s to mean the obvious:
that there exists possibly empty sequences s′, s′′, s′′′ s.t. s = s′xs′′ys′′′. We
consider sequences ordered under the prefix ordering. Finally, for partial orders
X, Y , we write X ⊑ Y if there exists a monotone map X → Y .

As mentioned, the following notion of game is a weakening of the notion of
fair game from [16].

Definition 8. A game is a triple (M, λ, F ) of

• a set M of at least two moves;

• a labelling function λ : M → {P, O} telling us whether a move is made by
the Player P or the Opponent O; and
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• a non-empty anti-chain F of even-length sequences of alternately labelled
moves, all beginning with an O-move; the maximal plays.

We write λ for the dual to λ: λ(m) = P if λ(m) = O and O otherwise. The
positions or plays of the game are simply the prefixes of the elements of F . A
finite, alternately-labelled sequence of moves is thus a valid position iff it can
be extended to a maximal play.

Given games A, B, the tensor game A⊗B has moves MA + MB, labelling
function [λA, λB ], and maximal plays finite alternately-labelled sequences s over
MA + MB beginning with an O-move such that s ↾ A ∈ FA and s ↾ B ∈ FB. It
is easy to see that in such maximal plays, O decides which sub-game is currently
played: if two consecutive moves mm′ of a play stems from different components
(i.e., one from A, one from B), then m′ is an O-move. The plays of the tensor
game are characterised as follows.

Lemma 3. Let A and B be games, and let s be a finite alternately-labelled
sequence of moves over MA + MB beginning with an O-move. Then s is a play
of A ⊗ B iff s ↾ A ∈ PA and s ↾ B ∈ PB.

Proof. Suppose s is such a sequence (the other direction is trivial). First note
that there exists possibly empty sequences u, v such that (s ↾ A)u ∈ FA and (s ↾

B)v ∈ FB. Assume wlog that the last move of s is in A. If it is a P-move, then
suv is readily seen to be alternately-labelled; clearly suv ∈ FA⊗B. If instead
it is a O-move, then clearly u = mu′ for some P-move m in A. The sequence
smvu is again readily seen to be alternately-labelled; clearly suv ∈ FA⊗B .

The linear implication game A ⊸ B has again moves MA+MB, labelling
function [λA, λB], and maximal plays finite alternately-labelled sequences over
MA + MB beginning with an O-move such that s ↾ A ∈ FA and s ↾ B ∈ FB .
Dually to the tensor game, it is necessarily P who switches components in the
linear implication game. The positions of the linear implication game are
characterised as follows.

Lemma 4. Let A and B be games, and let s be a finite alternately-labelled
sequence of moves over MA + MB beginning with an O-move. Then s is a play
of A ⊸ B iff (1) s ↾ A ∈ PA and s ↾ B ∈ PB and (2) if s ↾ B ∈ FB then also
s ↾ A ∈ FA.

Proof. Suppose first that s ∈ PA⊸B ; we must prove that s satisfies (1) and
(2). For (1) note that because s is a play of A ⊸ B there exists some s ≤ f
such that f is a maximal play of A ⊸ B. But by definition f ↾ A ∈ FA so
s ↾ A ≤ f ↾ A ∈ FA; similarly for s ↾ B. For (2) assume for a contradiction
that s ↾ B ∈ FB but s ↾ A 6∈ FA. Then s = s′ms′′ where m is the last B-move
in s. Because s′m ↾ B = s ↾ B ∈ FB the move m must be a P-move into s′′

must begin with an O-move in A. But only P can switch sub-game, so O has no
moves at s′m. It follows that s′′ must be empty and s′m must itself be maximal
because it cannot be extended. But s′m ↾ A 6∈ FA; contradiction.
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Suppose now that s satisfies (1) and (2). We must show that there exists
a l ∈ FA⊸B with s ≤ l. By (1) there exists u, v s.t. (s ↾ A)u ∈ FA and
(s ↾ B)v ∈ FB . If s ↾ B then by (2) also s ↾ A so s is itself maximal and we’re
done. So suppose s ↾ B 6∈ FB. Assume first s ↾ A ∈ FA. If s ends with an
O-move then sv is easily seen to be alternately-labelled; clearly sv ∈ FA⊸B . If
instead s ends with a P-move, that move must be in B; otherwise s ↾ A has
odd-length and cannot be maximal. Again sv is easily seen to be alternately-
labelled; and clearly sv ∈ FA⊸B . Assume finally that neither s ↾ A ∈ FA

nor s ↾ B ∈ FB . If s ends with an O-move in B, suv is readily verified to
be alternately-labelled, so suv ∈ FA⊸B . If s ends with a P-move in B then
because maximal plays have even length, v = mv′ for some O-move m of B and
v′ nonempty and beginning with a P-move, whence smuv′ can be verified to be
alternately-labelled; clearly smuv′ ∈ FA⊸B . If s ends with a O-move in A, that
is, s = s′m, m ∈ MA, and λG(m) = O, then suv is readily seen to be alternately-
labelled; clearly suv ∈ FA⊸B. Finally, if s ends with a P-move in A, that is,
s = s′m, m ∈ MA, and λG(m) = P, we again find suv alternately-labelled;
clearly suv ∈ FA⊸B .

A strategy is what one would expect. Formally, a P-strategy for a game
G is a non-empty, prefix-closed subset σ ⊆ PG of the plays of G, s.t. for any
even-length s ∈ σ if sm ∈ PG then sm ∈ σ. An O-strategy is like a P-strategy,
except we substitute “odd” for “even”. A total strategy is one which has
an answer to every move the other player might make; that is, a P strategy
is total iff for any odd-length non-maximal s ∈ σ there exists a move m such
the sm ∈ σ. Likewise for O, substituting “even” for “odd”. Notice that the
intersection of a total P-strategy and a total O-strategy is (the prefix-closure
of) a maximum play G.

If A, B, C are games, then strategies σ for A ⊸ B and τ for B ⊸ C can be
composed to form a strategy τ ◦ σ for A ⊸ C. Such a composition essentially
works as follows. First observe that the game A ⊸ C must necessarily start
with a move in C (by definition, every play of every game must start with a move
by O, so every play of A starts with a move by O; but the linear implication
game inverts the labelling function for A). By the same token, play in A ⊸ B
and B ⊸ C must begin in B and C, respectively. Now, τ ◦ σ simply follows τ ;
when τ stipulates a move in B, we use that move as the beginning of a play in
A ⊸ B following σ. From this point on, whenever somebody plays a move in B,
we feed this move into the other strategy. The following Lemma characterises
this notion of composition of strategies at the level of sequences of moves.

Lemma 5. For games A1, A2, A3, define F(A1, A2, A3) to be the set of finite
sequences s of moves from MA1

+ MA2
+ MA3

s.t. for any pair of consecutive
moves mm′ in s, if m ∈ MAi

and m′ ∈ MAj
then |i − j| ≤ 1.

Let σ be a strategy for the game A ⊸ B and τ be a strategy for the game
B ⊸ C. Then τ ◦ σ is defined as follows as a strategy for A ⊸ C.

τ ◦ σ = {s ↾ A, C | s ∈ F(A, B, C) ∧ s ↾ A, B ∈ σ ∧ s ↾ B, C ∈ τ} (3)

Composition preserves totality of strategies.
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Proof. Take S = {s ∈ F(A, B, C) | s ↾ A, B ∈ σ∧s ↾ B, C ∈ τ}. We must prove
that τ ◦σ is a non-empty, prefix-closed subset of PA⊸B, and closed under all one-
move continuations at even length. τ ◦σ is clearly non-empty and prefix-closed.
To see that it is a subset of PA⊸B , suppose s ∈ τ ◦ σ; assume s = s̄ ↾ A, C.
By Lemma 4, it is sufficient to prove that s begins with an O-move, that it is
alternately-labelled, that s ↾ A ∈ PA and s ↾ C ∈ PC , and that if s ↾ C ∈ FC

then also s ↾ A ∈ FA. First, s begins with an O-move. Observe that s̄ cannot
begin with a move of B, because if it did, either s̄ ↾ A, B or s̄ ↾ B, C would
begin with a P-move. It cannot begin with an A-move, because then so would
s̄ ↾ A, B. It follows that it must begin with a C-move which must be an O-
move, because s̄ ↾ B, C ∈ PB⊸C . Next, s is alternately-labelled. Suppose uv
adjacent in s. If u, v both in, say, A, then we have s ↾ A = (s̄ ↾ A, C) ↾ A ∈ PA

whence u, v alternate. So assume wlog u ∈ MA and v ∈ MC . Then there is
some subsequence u, b1, . . . , bn, v of s̄; because s̄ ↾ A, B ∈ PA⊸B the switching
condition yields u an O-move, similarly because s̄ ↾ B, C ∈ PB⊸C the switching
condition yields v a P-move. Thus, s is alternately-labelled. That s ↾ A ∈ PA

and s ↾ C ∈ PC follows from s ↾ A = (s̄ ↾ A, C) ↾ A ∈ PA; similarly for C.
Finally, using Lemma 4 part (2) extensively, if s ↾ C ∈ FC then (s̄ ↾ B, C) ↾

C ∈ FC so also (s̄ ↾ B, C) ↾ B ∈ FB; but then also (s̄ ↾ A, B) ↾ B ∈ FB ,
whence s ↾ A = (s̄ ↾ A, B) ↾ A ∈ FA. Now, we show that τ ◦ σ is closed
under one-move extentions at even-length positions; suppose s ∈ τ ◦ σ has even
length, and suppose wlog that the last move of s is a move of A. We must prove
that for any move m available to O, sm ∈ τ ◦ σ. But this is immediate from
the observation that by the switching condition, O has available only moves of
A. Finally, we prove that composition preserves totality of strategies. Suppose
s ∈ τ ◦ σ is odd-length. Assume wlog that the last move u of s is the last move
of A. If both τ and σ are total then σ must prescribe a response in either A or
B; if it is in A, we are done, so suppose it is a move b1 in B. Then τ prescribes
a response to s̄b ↾ B, C. If this response is in C, we are done. Otherwise, we
have obtained a b2 in B which we feed back to σ. And so forth. Because games
are finite and the game B ⊸ C cannot end with a B-move, this process must
terminate at which point we have obtained the requisite response.

So far, we have closely followed [16]. We now move to our specific application.
First, the atomic game is the game ({!, ?}, [? 7→ O, ! 7→ P], {?!}). We intend
atomic games to model interaction points in interfaces. For instance, the game
on the object {a} will be the atomic game. The play

a
? O
! P

should intuitively be understood as the opponent (a graph with domain {a})
asking for input on a; the player (a graph with codomain {a}) then providing
that input. Next, the unit game is simply the atomic game. We now have
unit, atomic, tensor, and linear implication games; we associate a game with
each type of Definition 7 in the obvious way. From this point on, we shall in
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general conflate types and games, e.g., we shall treat a ⊸ b interchangeably as
a type and as a game. It is instructive to consider the possible maximal plays
of a ⊸ b and a ⊗ b. There are only the following three.

a ⊸ b
?

?
!

!

a ⊗ b
?
!

?
!

a ⊗ b
? O
! P

? O
! P

For the remainder of this section, we establish various properties of these
games that we will need later on. Most importantly, the above-mentioned
Proposition 2.

Definition 9. Games A and B are isomorphic games iff there exists a bijection
γ : MA → MB of the atoms of A and B that commutes with the labelling
functions and preserves and reflects maximal plays.

This notion of isomorphism is the same one you would get from the ob-
vious category of games and game homomorphisms. Observe that γ extends
(pointwise) to a bijection on strategies.

Lemma 6. Let A be a type.

1. Each maximal play of A includes every move of A.

2. There exists a total P- and a total O-strategy for A.

3. Suppose A contains no occurences of the unit I. Then A has moves MA ≃
Σa∈|A|Ma where each Ma is the moves of the atomic game.

4. Suppose A contains no occurences of the unit I, and let s be an alternately-
labelled sequence over MA ≃ Σa∈|A|Ma. Then s ∈ FA iff for each a ∈ |A|
we have s ↾ Ma ∈ Fa.

Proof. Trivial induction.

Both (3), (4) above and the following Proposition generalise straightfor-
wardly to include also types with units. Part (3) justifies the following nota-
tional convention. For a type A, we write the moves of the sub-game associated
with the atom a ∈ |A| simply !a, ?a.

The following Proposition will be useful in proving that various categories are
symmetric monoidal closed. For instance, it is helpful in establishing bijection
between homsets A ⊗ B → C and B → A ⊸ C.

Proposition 1. Let A and B be types containing no occurrences of the unit I.
If there is a bijection γ : |A| ≃ |B| which preserves polarities, then A and B are
isomorphic games.
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Proof. Extend γ to a bijection γ̂ : MA ≃ Σa∈|A|Ma ≃ Σb∈|B|Mb ≃ Mb by taking
γ̂(!a) = !γ(a) and γ̂(?a) = ?γ(a). We must show γ̂ commutes with the labelling
functions and preserves and respects maximal plays. For the labelling functions,
observe that λA(!a) = O iff a occurs positively in A iff γ(a) occurs positively in
B iff λB(!γ(a)) = O iff λB(γ̂(!a)) = O. The remaining three cases are similar.
For the maximum plays, we find using Lemma 6 that s ∈ FA iff for each a ∈ |A|
we have s ↾ Ma ∈ Fa iff for each a ∈ |A| we have γ̂(s) ↾ Mγ(a) ∈ Fγ(a) iff
γ̂(s) ∈ FB .

The following Proposition is crucial to elevating the intuition about graphs-
as-models-of-dataflow to a proof that composition of our higher-order contexts
really are acyclic (proof of Lemma 7).

Proposition 2. Let σ be a total P-strategy for a game G, and let A be a sub-
game of G. If A occurs positively in G then σ ↾ A (where σ ↾ A = {s ↾ A | s ∈
σ}) is a total P-strategy for A; if instead A occurs negatively in G then σ ↾ A
is a total O-strategy for A.

Proof. First note that if s is a play of G then s ↾ A is a play of A (induction
on G). It follows that every s ∈ σ ↾ A is indeed a play of A. Thus, we need
to verify that σ ↾ A is non-empty, prefix-closed, includes all possible moves at
even-length (odd-length) positions, and that it is complete. It is non-empty
because σ is total. If t′ is a prefix of t ∈ σ ↾ A then t is a subsequence of some
s ∈ σ; but σ is prefix-closed, so there must exist a prefix s′ of s s.t. s′ ↾ A = t′.

Before we move on, we make the following observations (both seen by easy
induction). (1) When A occurs positively in G then the polarity of the moves of
A is the same in A and G (i.e., λA = (λG ↾ MA)), and when A occurs negatively
in G, the polarities are opposite (i.e., λA = (λG ↾ MA)). (2) In any play s of G,
the first A-move m in s has λG(m) = O if A occurs positively in G, λG(m) = P

otherwise.
Now suppose that A is a sub-formula of G and consider some sequence

t = t1, . . . , tn ∈ σ ↾ A. Necessarily t = s ↾ A for some s ∈ σ; we may assume
that tn is in fact also the last move of s. Suppose first that A occurs positively
in G and n is even. By the above observations λA(t1) = λG(t1) = O; because n
even and t a play of A we find λA(tn) = P, so also λG(tn) = λA(tn) = P. But
then s has even length, so because σ is a strategy, for every m ∈ MA ⊆ MG

s.t. sm ∈ PG also sm ∈ σ, whence tm ∈ σ ↾ A. If instead n is odd, we must
find a ∈ MA s.t. t1, . . . , tn, a ∈ σ ↾ A. Because σ is total there exists s′ s.t.
ss′ ∈ FG. By Lemma 6 ss′ includes every move of G; thus, there exists a prefix
s′′a of s′ where s′′ contains no move of A. Hence, t1, . . . , tn, a ∈ σ ↾ A.

Suppose now instead that A occurs negatively in G and that n is odd. This
time we find λG(t1) = P so λA(t1) = λG(t1) = O; because n is odd λA(tn) = O

so λG(tn) = λA(tn) = P. Again we have that s has even length, so we find
again that because σ is a strategy, for every m ∈ MA ⊆ MG s.t. sm ∈ PG also
sm ∈ σ, whence tm ∈ σ ↾ A. Finally, if n is even, we observe again that by
totality of σ there exists s′ s.t. ss′ ∈ FG whence s′ has some prefix containing
exactly one move a ∈ MA, so t1, . . . , tn, a ∈ σ ↾ A.
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4 Higher-order Total Functions

We want to view the relations in Int(G0) as descriptions of dataflows. But which
relations R ⊆ A+ + B− × B+ + A− describe valid dataflows? The category of
graph contexts we come from is T0 of trees. The dataflows corresponding to
paths in the graphs must corresponds to paths in trees. This means that the
relation R must be deterministic, as a tree contains at most one path between
any two nodes, and it must be total because every node in a tree has a path to
the root. Thus, we must refine R into a category of total functions.

The sorting F refines the objects A+, A− of Int(G0) into types A with pos-
itive and negative (occurrences of) atoms A+, A−, respectively. In F , there is
a relation R : A → B iff R ⊆ A+ + B− × B+ + A− describes a valid dataflow
for a function A ⊸ B. We use our games to formalise the phrase “describes a
valid dataflow for a function”.

First notice that for a type A, any play of A induces a linear order on the
atoms |A| of A: the order in which !-moves are played. A strategy σ thus defines
a partial order on |A| by taking a ≤ b iff !a is played before !b in every maximal
play of σ.

Definition 10. Let A be a type and let σ be a strategy for A. We define a
partial order ≤σ on |A| by a ≤σ b iff for every maximal s ∈ σ we find !a occuring
before !b.

Similarly, a partial function f : X → Y induces (by its reflexive closure) a
partial order on X + Y . In the sequel, we shall consider both strategies and
such functions partial orderings when doing so is convenient.

A total function f : A+ + B− → B+ + A− will be a morphism f : A → B
of dom(F ) iff there exists a total strategy σ for A ⊸ B s.t. f ⊑ σ. Intuitively,
if f takes some x ∈ A+ + B− to a f(x) ∈ B+ + A−, it means that f when
read as a dataflow takes an input on x and propagates that input to an output
on f(x). The condition that there exists some σ with f ⊑ σ means that input
on f is always available to f before output must be delivered on f(x). We
define dom(F ) and F formally below; first, we prove that composition preserves
totality.

Lemma 7. Let A, B, C be types, let f : A++B− → B++A− and g : B++C− →
C+ + B− be total functions, and let σ, τ be total strategies for A ⊸ B and
B ⊸ C, respectively, with f ⊑ σ and g ⊑ τ . Then (1) g ◦ f , where “◦” is
composition in Int(R0), is a total function, and (2) g ◦ f ⊑ τ ◦ σ.

Proof. (1) Suppose for a contradiction that it is not. Then there exists a se-
quence b1, . . . , bn ∈ |B| s.t. f(b1) = b2, . . . , g(bn) = b1 or g(b1) = b2, . . . , f(bn) =
b1. Assume the former (the latter case is analogous). Because f ⊑ σ and g ⊑ τ ,
we have

b1 ≤σ b2 ≤τ b3 ≤σ · · · ≤τ bn−1 ≤σ bn ≤τ b1 .

But by Proposition 2, σ ↾ B is a total P-strategy for B and τ ↾ B is a total
O-strategy for B, whence their intersection defines a non-empty set of maximal
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plays of B. Each of these plays is a linear order on |B| which respects both ≤σ

and ≤τ ; contradiction.
(2) Consider x, y ∈ |A|+ |B|+ |C| s.t. (g ◦ f)(x) = y. Recall the definition

(3) of τ ◦ σ. Suppose s is a maximal play in τ ◦ σ. There must be some
s′ ∈ F(A, B, C) with s′ ↾ A, B ∈ σ, with s′ ↾ B, C ∈ τ and with s = s′ ↾ A, C.
If f(x) = y then necessarily x, y ∈ |A|; because f ⊑ σ we have x ≤σ y. The
moves !x, !y both occur in s, hence also in s′ and in s ↾ A, B. But s ↾ A, B is a
play of A ⊸ B, hence a prefix of a a maximal such play, so because x ≤σ y we
must have !x occuring before !y in s. The case g(x) = y is symmetric. Suppose
neither f(x) = y nor g(x) = y. Assume x ∈ |A| and y ∈ |C| (the symmetric
case is, well, symmetric). There must exist some sequence b1, . . . , bn ∈ |B| s.t.

f(x) = b1, g(b1) = b2, . . . , f(bn−1) = bn, g(bn) = y . (4)

We must prove that !x, !y both occur in s and in that order. They occur by
maximality of s. By (4), g ⊑ τ and s′ ↾ B, C ∈ τ , we must have !bn

, y occurring
in that order in s′ ↾ B, C; and hence in s. Similarly by (4), f ⊑ σ and s ↾ A, B ∈
σ, we must have !bn−1

, !bn
occurring in that order in s′ ↾ A, B; and hence in s.

And so forth. Altogether, we’ve established that !x, !b1 , . . . , !bn
, !y all occur in s

in that order, whence !x, !y both occur and in that order in s ↾ A, C.

We give the category F at the domain of the sorting.

Definition 11. The category F of higher-order total functions (valid data flows)
has objects A as given by Definition 7; it has morphisms f : A → B whenever
f : A+, A− → B+, B− is a total function of Int(R0), and there exists a total
strategy σ for A ⊸ B s.t. f ⊑ σ; and it has composition as in Int(R0). The
sorting functor takes A to A+, A− ∈ Int(R0); and f : A → B to f : A+, A− →
B+, B− ∈ Int(R0). NB: We write F for both the category and the sorting
functor.

As an example, here are two total functions f : {a}+, ∅ → {x}+, {y}− and
g : {x}+, {y}− → ∅, ∅ of Int(R0); defined by f(a) = x, f(y) = x; and g(x) = y.

x y
g

x y

a
f

Clearly, the composite (g◦f)(a) = ⊥ in Int(R0). In F , however, we have refined
the object {x}+, {y}− into (among others) (x ⊸ y) ⊸ I and y ⊸ x. Only f is a
valid dataflow for (y ⊸ x), whereas only g is a valid dataflow for (x ⊸ y) ⊸ I.
To see this, we must prove that f admits a total strategy for a ⊸ (y ⊸ x), but
not for a ⊸ ((x ⊸ y) ⊸ I); and similarly for g. Let us look at the sub-games
on the object in the middle.
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y ⊸ x
?

?
!

!

(x ⊸ y) ⊸ I
? O

? P
? O
! P

! O
! P

We see that both games have only one maximal play, hence only one total
strategy. The unique total strategy for y ⊸ x must play !y before !x. So that
type can be the codomain of f , which respects that ordering, but not the domain
of g, which does not. Conversely for the unique total strategy for (x ⊸ y) ⊸ I.

5 Higher-order Contexts

Definition 12. Let F ∗ be the pullback of F along p.

Int(G0) Int(R0)

FF ∗

p

The category T →֒ F ∗ of higher-order contexts is the wide subcategory of F ∗

which includes a graph (V + A+ + B− + B+ + A−, E) iff for each v ∈ V there
exists a unique x ∈ B++A− s.t. v has a path to x; and this path is itself unique.

Proposition 3. The category T has objects linear types as in Definition 7; it
has morphisms f : A → B graphs (V + A+ + B− + B+ + A−, E) such that

1. each u ∈ A+, B− has in-degree 0 and each v ∈ B+, A− has out-degree 0;

2. for each u ∈ A+, B−, V there exists a unique v ∈ B+, A− s.t. there is a
path from u to v; moreover, this path is unique;

3. there exists a total strategy σ for A ⊸ B s.t. if u ∈ A++B−, v ∈ B++A−,
and v reachable from u, then in every maximal play of σ, !u occurs before
!v.

Composition is as in Int(G0).

We now return to the requirements from Section 2: T must embed T0, its
morphisms must have underlying morphisms in T0, and it must be symmetric
monoidal closed.

Theorem 1. The following holds.
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1. The category T0 of trees is a full subcategory of the category T of higher-
order contexts, by the assignment (V + (A + B), E) : A → B →֒ (V + A +
∅ + ∅ + B, E) :

⊗

a∈A a →
⊗

b∈B b.

2. Every morphism f : A ⊸ B of T is in fact a morphism f : |A|+ ⊗|B|− →
|B|+ ⊗ |A|− of T0.

3. All of F ∗, F , and T are symmetric monoidal closed.

Proof. 1. The inclusion (11) is the standard inclusion T →֒ G [18]. By Lemma 3,
it is sufficient to prove that there exists a total strategy for

⊗

a∈A a ⊸
⊗

b∈B b
which plays any !a before any !b. By Lemma 6, P has both a total strategy
σ for

⊗

a∈A a and a total strategy τ for
⊗

b∈B b. We stipulate the following
total strategy for P. By the switching condition, we can answer O’s initial move
(which must be some ? in

⊗

b∈B b) by following σ until every move of
⊗

a∈A a
has been played; only then we switch to following τ , which will eventually lead
us having played all moves in

⊗

a∈A a ⊸
⊗

b∈B b. This total strategy clearly
sees every move of

⊗

a∈A a played before it allows any !-move of
⊗

b∈B b.
2. Immediate from Proposition 3.
3. Let A, B be objects of F ∗. Their exponential is A ⊸ B. We define

their evaluation map η : A ⊗ (A ⊸ B) → B as follows. We must give a
graph (V + |A| + |A| + |B| + |B|, E); we will give a graph with no internal
nodes, so V will be empty. The graph η is the graph underlying the morphism
1A ⊗ 1B (up to isomorphisms on the disjoint sums); by Proposition 1 the games
A ⊗ B ⊸ A ⊗ B and A ⊗ (A ⊸ B) ⊸ B theare isomorphic, whence the
duplicated copycat strategy witnessing η : 1A ⊗ 1B being a morphism also
witnesses η : A ⊗ (A ⊸ B) → B being a morphism. If f : A ⊗ B → C is some
graph (V +(|A|+|B|)+|C|, E), its curried counterpart ∆(f) : A → B ⊸ C is the
same graph up to the isomorphism V +(|A|+ |B|)+ |C| ≃ V + |A|+(|B|+ |C|);
again by Proposition 1, the total strategy witnessing that the graph f is a
morphism also witnesses that ∆(f) is. Clearly ∆(f) is the unique graph such
that f = ηA,B ◦ (∆(f)⊗1B). Thus F ∗ is symmetric monoidal closed. Observing
that F is actually a subcategory of F ∗, that is, F →֒ T →֒ F ∗; that every ηA,B

is in fact a morphism of F ; and that both F and T are closed under ∆, we see
that also F, T are symmetric monoidal closed.

Part (2) of this Theorem justifies the name “higher-order contexts” for T :
each morphism in it is built from trees and trees only. The sorting F ∗ → G has
in a sense cut away the morphisms of G0 that are not also morphisms of T0.

We conclude the development of T by remarking that, up to isos in G,
category T0 is the pullback of T → G along the inclusion of G0 into G.

G0 G

TT0

16



We remark that T does not possess RPOs: a counterexample can be found in
Appendix A. We discuss RPOs and the derivation of transitions in Section 10.

6 Higher-order Bigraphs

In this section we give an alternative characterisation of Milner’s bigraphs [25,
24] and construct higher-order bigraphs. We proceed as in the preceding section:
First, we define a traced category of cyclic bigraphs C0 and recover bigraphs B0

as a subcategory B0 →֒ C0. Then, we characterise Int(C0), define a path-functor
p : Int(C0) → Int(R0)× Int(R0), and a sorting F × F → Int(R0)× Int(R0).
Finally, we obtain higher-order bigraphs H as a sub-category of the pullback
(F × F )∗ of the bigraph path-functor q and that sorting.

H

Int(C0) Int(R0)× Int(R0)

F × F(F × F )∗

q

You may think that we are about to labouriously reconstruct the entire devel-
opment of the previous sections. In fact, we are; only not “labouriously”, as
we will be able to characterise bigraphs in terms of the category T0. Once we
have that characterisation, there is really little left to be done. First, Milner’s
notion of signature.

Definition 13. A signature Σ = (K, α) is a set K of controls and a map
α : K → N.

The category T0 →֒ G0 is essentially Milner’s abstract place graphs. We
now define P0 intended to be likewise essentially abstract link graphs (P0 for
pre–link-graphs).

Definition 14. The category P0 of pre–link-graphs is the wide subcategory of
G0 that has morphisms equivalence classes of graphs (V +(X +Y ), E) where V
can be partitioned V = P ∪ H into sets of ports P and hyperedges H s.t. each
p ∈ P has in-degree 0 and out-degree 1, and each h ∈ H has out-degree 0.

Intuitively, E devolves to become the link map. P0 is a subcategory because
composition in G0 preserves V and because in each graph (V + (X + Y ), E) of
G0, each x ∈ X has out-degree 1. By the same reasoning, we have the following
Lemma.

Lemma 8. P0 is symmetric monoidal and traced, with the same tensor and
trace as G0.
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We now define bigraphs B0 and their generalisation C0 to possibly cyclic
bigraphs. The distinction between ordinary and cyclic place graphs comes down
to whether the place component is chosen from G0 (cyclic) or T0 (ordinary).

Definition 15. A pre–cyclic-bigraph comprises:

1. (Place component) A graph (V + (X + Y ), E) which is (a representative
of) a morphism of G0.

2. (Link component) A graph ((P ∪ H) + (X ′ + Y ′), E′) which is (a repre-
sentative of) a morphism of P0.

3. (Glue) A labelling function ℓ : V → K and a glueing relation R ⊆ V ×N×
P . The relation must be functional in both V and P , and must satisfy
that for each v ∈ V and each 0 ≤ i < α(ℓ(v)) there exists p ∈ P with
(v, i, p) ∈ R.

Intuitively, (v, i, p) ∈ R signifies that p is the i’th port of v. Two pre-bigraphs
are equivalent iff their place and link components are (Definition 1) and the
involved bijections commutes with the labelling function ℓ and the glueing
relation R. The category C0 of cyclic bigraphs has the same objects as G0 ×P0;
morphisms equivalence classes of pre–cyclic-bigraphs; and composition as in
G0×P0 with the obvious disjoint sum of labelling functions and glueing relations.
The category B0 of bigraphs is the subcategory B0 →֒ C0 in which the place
component of each morphism is in fact a morphism of T0.

Proposition 4. For a given signature Σ, the category B0 is equivalent to Mil-
ner’s abstract bigraphs over Σ.

Proof. Write A for Milner’s category of abstract bigraphs over Σ. We construct
a functor F : B0 → A which is full, faithful, and surjective. For objects we
define F (X, Y ) = (|X |, Y ). For morphisms, let (f, g, ℓ, R) : X → Y be a
representative. First, the place graph image. Suppose the place component f is
f = (V + (X + Y ), E). We take F p(f, g, ℓ, R) = (V, E, ℓ), that is, we keep the
nodes V , use E as the parent map “as is” up to the isomorphism

E ⊆ (V + X) × (V + Y ) ≃ |X | ⊎ V × V ⊎ |Y | (5)

where, e.g., |X | is considered an ordinal; then ℓ is in fact a control map. Because
f is a forest, E is an acyclic function. Suppose next that the link component g
is g = (P ∪H +(X ′ +Y ′), E′). We take F l(f, g, ℓ, R) = (V, H, ℓ, E′), that is, we
keep the nodes (from the place component), the edges of the link graph is the
hyper-edges H of the link component, ℓ is again a control map, and again E′ is
in fact the link map up to the following isomorphism.

E′ ⊆ (P + X ′) × (H + Y ′) ≃ X ′ ⊎ Σv∈V α(ℓ(v)) × H ⊎ Y ′ (6)

This isomorphism is justified by the observation that P ≃ Σv∈V α(ℓ(v)). Clearly
(f, g, ℓ, R) is equivalent to (f ′, g′, ℓ′, R′) if and only if F (f, g, ℓ, R) is support

18



equivalent to F (f ′, g′, ℓ′, R′). We leave the verification that F commutes with
composition as an exercise to the reader. Thus F is a faithful functor. To
see that it is also full, it is sufficient to note that T0 (Definition 4) and P0

(Definition 14) admit edge-relations sufficiently flexible for any place and link
graph, respectively. But this is immediate by the above comments justifying (5)
and (6). Finally, F is obviously surjective on objects.

Notice the forgetful functor u : C0 → G0 × P0. Using that functor, the
following Lemma is almost immediate.

Lemma 9. C0 is traced symmetric monoidal, with the same tensor and trace
as in G0 × P0.

Proof. It is straightforward to verify the symmetric monoidal structure. For
the trace, it is sufficient to notice that the constituents V , P , and H of the
labelling function and the glueing relation are invariant under the traces of G0

and P0.

Definition 16. Define Int(C0) and Int(u) as follows.

C0 G0 × P0

Int(G0 × P0)Int(C0)
Int(u)

u

Define the (lifted) path-functor q : Int(C0) → Int(R0)× Int(R0) as follows.

q : Int(C0)
Int(u)
−→ Int(G0 × P0) ≃ Int(G0)× Int(P0)

→֒ G × G
p×p
−→ Int(R0)× Int(R0)

Finally, define (F × F )∗ as the pullback of F × F and q.

Int(C0) Int(R0)× Int(R0)

F × F(F × F )∗

q

Lemma 10. The category (F ×F )∗ has object pairs of types. It has morphisms
f : (A, B) → (C, D) comprising the following constituents.

1. (Place component) A (representative of a) morphism f : A → B of F ∗.
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2. (Link component) A (representative of a) morphism g : C → D of F ∗

s.t. g : C+ ⊗ D− → D+ ⊗ C− is a morphism of P0.

3. (Glue) A labelling function ℓ : Vf → K and a glueing relation R ⊆ Vf ×
N × Pg which is functional in both Vf and Pg, and satisfies that for each
v ∈ Vf and each 0 ≤ i < α(ℓ(v)) there exists p ∈ Pg with (v, i, p) ∈ R.

Composition is as in Int(C0).

Proof. Immediate from Definition 15 above, Definition 14, and Lemma 3.

Definition 17 (Higher-order bigraphs, H). H is the wide subcategory of (F ×
F )∗ in which the place components are all (representatives of) morphisms of T .

Theorem 2. H is symmetric monoidal closed, B0 is a subcategory of H, and
every morphism of H is in fact a morphism of B0: every f : A ⊸ B of H is a
morphism f : |A|+ ⊗ |B|− → |B|+ ⊗ |A|− of B0.

Proof sketch. F ∗×F ∗ symmetric monoidal closed follows from Theorem 1, part
(3). Looking at the proof that theorem, we see that the evaluation maps are
all in the wide subcategory F × F →֒ F ∗ × F ∗. H also contains F × F as a
subcategory (with the empty labelling function and the empty glueing relation);
clearly, the extra glueing structure in H relative to F ∗×F ∗ is irrelevant for the
symmetric monoidal closed structure.

B0 →֒ H is immediate from T0 →֒ G, P0 →֒ G and Theorem 1, part (1).

7 Directed bigraphs

In this section, we will show that directed bigraphs can be characterised as
a subcategory of higher-order bigraphs. First, we recall briefly the intuitive
idea behind directed bigraphs: Names are not resources on their own, but only
denote, or give access to, (abstract) resources (represented by “edges”). Names
are exposed on the interfaces of systems, much like “channels”. If a name on an
interface is associated to a resource of the system, then the system is offering the
resource to the outside; on the converse, a name not associated to any resource
can be seen as a formal parameter of the system, that is the system is asking
for an external resource through that name. Thus, we can discern a “resource
request flow” which starts from control ports, goes through names on interfaces,
and eventually terminates in edges.

Definition 18. The category D of directed bigraphs is the subcategory D →֒ H
where all objects (pair of types) are in the following form:

(
⊗

x∈X

x, ((
⊗

y∈Y

y) ⊸ I) ⊗
⊗

z∈Z

z) .

Moreover, no morphism with such a domain links any z to any y.
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Notice that such kind of objects forces the place graph component to be
“ordinary”, i.e., it belongs to T0 (in the sense of Theorem 1). Instead, the
(directed) link graph has a higher-order like structure, but the inputs from
the contexts cannot be mapped back as outputs for the contexts or vice versa.
In other words, the “resource request flow” has always a fixed direction (i.e.,
ascending or descending) and it cannot be inverted.

Proposition 5. For a given signature Σ, the category D is equivalent to Grohmann-
Miculan’s abstract directed bigraphs [14, 13] over Σ.

Proof. Write DB for Grohmann-Miculan’s category of abstract directed bi-
graphs over Σ. We construct a functor F : D → DB which is full, faithful,
and surjective. For objects we define

F ((
⊗

x∈X

x, ((
⊗

y∈Y

y) ⊸ I) ⊗
⊗

z∈Z

z)) = (|X |, (Y, Z)) .

For morphisms, let (f, g, ℓ, R) be a representative. First, the place graph image.
For the fact that it belongs to T0, the proof proceeds as in Proposition 4. Sup-
pose next that the link component g is g = (P ∪H +(Y + +Z−+Z+ +Y −), E′).
We take F l(f, g, ℓ, R) = (V, H, ℓ, E′), that is, we keep the nodes (from the place
component), the edges of the link graph is the hyper-edges H of the link com-
ponent, ℓ is the control map, and E′ is in fact the link map up to the following
isomorphism.

E′ ⊆ (P + Y + + Z−) × (H + Y − + Z+) ≃

Y + ⊎ Z− ⊎ Σv∈V α(ℓ(v)) × H ⊎ Y − ⊎ Z+ (7)

This isomorphism is justified by the observation that P ≃ Σv∈V α(ℓ(v)) and by
the fact that mapping names in Y to names in Z is forbidden by hypothesis
and the vice versa is forbidden by the considered types. Clearly (f, g, ℓ, R)
equivalent to (f ′, g′, ℓ′, R′) iff F (f, g, ℓ, R) support equivalent to F (f ′, g′, ℓ′, R′).
We leave the verification that F commutes with composition as an exercise to
the reader. Thus F is a faithful functor. It is also full for the same arguments
as in Proposition 4 and by the equation (7). Finally, F is obviously surjective
on objects.

8 Applications of Higher-order Contexts

In this section, we briefly analyse recent appearances of higher-order contexts
in the literature. Presently, we trade rigour for readability; in Section 9, we
shall apply the conclusions of this conceptual analysis rigorously when we give
reduction semantics to a fragment of mobile ambients using the graphical higher-
order model we present in subsequent sections.

In [11], Di Gianantonio, Honsell, and Lenisa investigate various encodings
of the λ-calculus as a reactive system. As mentioned above, to recover the
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standard observational equivalences as weak bisimilarity on reactive systems
they crucially rely on the transition systems on these reactive systems being
finitely branching. Such finiteness is at odds with the beta reduction rule

(λx.M)N →β M{N/x}, (8)

which is parametric in M, N . When we take seriously the paradigm that mean-
ing (transitions) is found in the interaction between reaction rules in context,
the term (λx.x) should have infinitely many transitions, namely for each of the
infinitely many N that yields a valid instance (λx.x)N of the above reduction
rule. This difficulty is cleverly overcome by (among other things) extending the
contexts considered to encompass also second-order contexts. Di Gianantonio,
Honsell, and Lenisa then stipulate that each side of the β-reduction rule (8)
above should be read not as a schema of infinitely many terms, but instead as
a single function from contexts to contexts

(λx.M)−N →β M{−N/x}

such that, say, (λx.M)−N takes terms N to the term (λx.M)N . Under this
notion of context, there is a least context enabling β-reduction for (λx.x): it is
the second-order context []−N .

In [27, 28], Rathke and Sobociński give a systematic derivation of the tran-
sition semantics for the π-calculus and mobile ambients, respectively, starting
from reduction semantics. In order to get an inductive transition semantics, they
introduce higher-order contexts: for, e.g., ambients, they stipulate the following
basic transition.

in n.P
in n
−→ λXxY.n[x[P | X ] | Y ] (9)

Notice how the right-hand side fits into a higher-order context, which can put
in a suitable name x and suitable ambients X and Y . This way, Rathke and
Sobociński avoid having to keep the missing parts X, Y, x as part of the label
in n by leaving their instantiation to the eventual insertion of the right-hand
side into a (higher-order) context. (Note that on some level, this is essentially
the same trick as the one employed by Di Gianantonio, Honsell, and Lenisa.)

This device is crucial in obtaining compositionality, as the semantics of larger
terms can be obtained simply by application of the meaning of smaller ones. For
instance, here is the rule defining the interplay of entry and parallel composition.

P
in n
−→ T

P | Q
in n
−→ λX.T (Q | X)

(10)

Here, the application in λX.T (Q | X) allows the insertion of Q under the
ambient x[. . .] present somewhere in T (see (9) above).

Rathke and Sobociński do not explicitly acknowledge their category of terms
and contexts as a higher-order one, and view their use of β-reduction on the
metalevel as a mere technical device [28, p. 467]. We would suggest that this
ingenious use of lambdas is in fact more fundamental: They are working in a
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category of higher-order contexts, and the reason that they arrive at a composi-
tional semantics is that they can define the semantics of composited entities by
composition in that category. In (10) above, the right-hand side λX.T (Q | X)
is in fact the insertion of T into the (higher-order) context λX.[](Q | X)!

9 Mobile Ambients

In this section, we encode a fragment of Mobile Ambients (MA) as a reactive
system on higher-order bigraphs H . We use only the place component and the
labelling function, so you can alternatively think of the model as one on T , only
with labelled graphs. While our fragment is too small to be of independent
interest, it is large enough to demonstrate key benefits of higher-order contexts:
we get ground reaction rules, and we can define reaction rules parameterised by
contexts. We consider the following fragment of MA.

P ::= 0
∣

∣ P | Q
∣

∣ n[ P ]
∣

∣ M.P
M ::= in n

∣

∣ out n
∣

∣ open n

In this fragment we have the standard process constructors: the inactive pro-
cess, parallel composition, a named ambient, and prefixing with a capability.
As usual, we will take terms up to a structural congruence, namely the monoid
laws for |,0. We will let E range over evaluation contexts, defined as any context
where the hole is not under a prefix, and we will write E(P ) for the insertion of
the process P into the evaluation context E.

We model each term constructor with a corresponding control in the signa-
ture (label), and model parallel composition by common parents. For simplicity
of the encoding, we consider, e.g., n[ − ] and m[ − ] to be distinct term con-
structors ([17] demonstrates how to construct an encoding where constructors
are parametric in names). An MA term or context is thus modelled as a graph,
which is somewhat akin to the abstract syntax tree of that term or context.

The standard reduction semantics for MA is obtained by closing the following
rules under evaluation contexts.

n[ in m.P | Q ] | m[ R ] →MA m[ n[ P | Q ] | R ]
n[ m[ out n.P | Q ] | R ] →MA m[ P | Q ] | n[ R ]

open n.P | n[ Q ] →MA P | Q
(11)

The first reaction rule express that a “in m”-capability will instruct the sur-
rounding ambient to enter a sibling ambient named m. The “out n”-capability
instructs the surrounding ambient to exit its parent ambient named n. And
the “open n”-capability provides a way of dissolving the locality of an ambient
named n located at the same level. Observe that these rules are paramet-
ric (non-ground), i.e., to get an instance of the first rule, you have to plug in
processes for P, Q, and R.

It will be convenient to have a term language for the graphs of H . It is
known that a symmetric monoidal closed category has linear λ-calculus as an
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internal language [2, 22], but for the present example, we will just use the
following suggestive notation. For brevity, we consider only the third rule. We
give reaction rules as pairs of morphisms f, g : I → X , where f is the redex,
and g is the reactum.

λP :a, Q:b. open n.P | n[ Q ] −→ λP :a, Q:b. P | Q : c

The redex denotes the graph with nodes open n and n[ ] containing interface
nodes P, Q, respectively, to be instantiated by a context1. The redex and reac-
tum in the reaction rule are both morphisms of I → ((a⊗ b) ⊸ c) as witnessed
by, e.g., the total strategy with the maximal play ?c?b!b?a!a?I !I !c. The rule is
ground (I); and when the context provides two graphs (a⊗b), thus filling in the
parameters, we will get a ground graph (c). In contrast, the obvious reading of
the original parametric rule of (11) is a first-order morphism a ⊗ b → c.

If we derive labelled transitions for the ambient open n.0 by finding contexts
enabling reaction using the standard paramteric first-order reaction rules, we
would find infinitely many transitions of the following form.

open n.0
n[ R ]
−→ 0 | R

Using instead the higher-order reaction rules, we get higher-order labels. For
instance, the ambient open n.0 has the following transition2.

open n.0
λQ:b.n[ Q ]

−→ λQ : b. 0 | Q

This use of higher-order reaction rules was introduced in [11], where it was
instrumental in obtaining a finitely branching transition system.

To illustrate reaction rules parameterised by contexts, we extend MA with
primitives send n.P and recv.Q for communication over location boundaries.
These primitives are idealised versions of similar ones found in higher-order
process calculi with locations [8, 30].

send n.P | n[ E(recv.Q) ] →MA n[ E(P | Q) ] (12)

Here the process P is communicated to a sub-process inside the ambient named
n. This sub-process can reside arbitrary deeply inside the ambient, provided it
is in an active context. Note that we abstract not only over processes P and
Q, but also over a context E. We can model this kind of communication using
a higher-order context, as illustrated in Fig. 1 and denoted by the following
expression.

λQ:b, E:c ⊸ d, P :a. send n.P | n[ E (recv.Q) ] : e
−→ λQ:b, E:c ⊸ d, P :a. n[ E (P | Q) ] : e

1Higher-order evaluation contexts can be defined from first-order evaluation contexts are
using Theorem 1, part 2, or Theorem 2, part 2.

2There are many more transitions; we leave for future work (see next section) to determine
whether, and in what sense, this one is minimal.
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(b ⊗ (c ⊸ d) ⊗ a) ⊸ e

recv n[ ]sendn

(b ⊗ (c ⊸ d) ⊗ a) ⊸ e

n[ ]

Figure 1: The reaction rule (12) as higher-order graphs.

These are morphisms of I → (b⊗ (c ⊸ d)⊗a) ⊸ e; it is straightforward to find
a total strategy witnessing both redex and reactum being morphisms. Here is
one.

I ⊸ (b ⊗ (c ⊸ d) ⊗ a) ⊸ e

? O
? P
! O

? P
! O

? P
? O
! P

! O
? P
! O

! P

We relate the term and graph representations of this reaction rule. In the redex,
the contents of Q (the atom b) goes inside the node recv, which in turn is inside
the hole of E (the atom c). The node recv disappears in the reactum. More
interestingly, in the redex, the contents of P (the atom a) is inside the node
send n which in turn is inside the root of the rule (the atom e). In the reactum,
the contents of P will, in parallel with the contents of Q, be placed inside the
hole of E.

This concludes our examples of higher-order reaction rules. We have seen
how they admit both the replacement of parametric reaction rules with ground
higher-order rules, yielding in turn higher-order labels [11], as well as the defi-
nition of reaction rules parameterised by contexts [8, 15].

10 Conclusion

We have given a method for generalising monoidal categories of acyclic graphs
to monoidal closed such categories. We have applied this method to Milner’s
bigraphs, obtaining higher-order bigraphs. Finally, we have exemplified the ben-
efits of higher-order contexts with the reaction semantics for mobile ambients.
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The obvious next step is to use higher-order contexts for deriving transi-
tions and bisimulation equivalences. Because of [27, 28], we are optimistic that
reactive systems on closed categories may yield good equivalences.

However, as mentioned in Section 5, our category of higher-order contexts
does not in general possess RPOs. Thus, there is a challenge in finding the right
notion of minimal higher-order context. We see three potential lines of attack.
(1) Find sub-categories of T or H which do possess RPOs. We are encouraged
by the example of directed bigraphs [14, 13], which is such a subcategory, and
of second-order contexts of [11], which possesses RPOs but is comprised by
ordered labelled trees (that is, terms). Ideally, such a subcategory would be
symmetric monoidal closed, a property enjoyed by neither of these examples. (2)
Dispense with the restriction to minimal contexts and consider instead saturated
semantics [5, 6, 7]. In saturated semantics one considers all contexts, not just the
minimal ones. Saturated semantics have recovered certain semantics of π-calculi
and Prolog and is thus known to provide good congruences in the first-order
case. However, the only known tractable characterisation of saturated semantics
requires the category in question to possess RPO-like structure. Thus, this line
of attack requires either that we find sub-categories with sufficient structure, or
that we find an alternative characterisation of saturated semantics. (3) Look
for a notion of minimal context particular to the higher-order setting. This
line of work would attempt to generalise the techniques employed in [27, 28],
and, to a lesser extent, [19]. The latter work considers (possibly open) terms
and parametric rewrite rules, generalising the IPO-notion of minimal context to
encompass also a most general parameter. However, since the parameter and
context are treated as two different entities in the labels, the labels can contain
redundancy. We hope to avoid this problem: in our setting, the context provides
both.

Derivations of transitions aside, the present work begets several other ques-
tions; we mention a few. Suppose our initial graphical model (presently T0 or
B0) is known to have a term language (this is the situation for bigraphs). Is
there a canonical extension of this term language to the higher-order extension?
That is, is the method or construction given in the present paper in some sense
a free construction? Is the sorting F a closure sorting [4]? Can we capture
the notion of a valid dataflow using games other than fair games, in particular,
using the games of [26]? (It should be possible, but the present development
falls apart: fair games are apparently the only ones admitting Proposition 2.)
Finally, how does the present work apply to graph-rewriting formalisms other
than bigraphs [29, 12]?
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A Counterexample to RPOs in T

Consider the following span f0, f1:

f0 = ({a, b, e}, {(b, e)}) : e ⊸ I → (a ⊸ b) ⊸ I

f1 = ({c, d, e}, {(c, e), (d, e)}) : e ⊸ I → (c ⊗ d) ⊸ I
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and its relative bound g0, g1:

g0 = ({v} + {a, b}, {(a, b), (v, b)}) : (a ⊸ b) ⊸ I → I

g1 = ({v} + {c, d}, {(v, d)}) : (c ⊗ d) ⊸ I → I.

They are both depicted in Figure 2.
Now, we can construct two RPO candidates: (h0, h1, h) and (h0, h1, h

′), they
are defined as follows (see Figure 2):

h0 = ({a, b, a′, bc, bd}, {(a, a′), (bc, b), (bd, b)}) :

(a ⊸ b) ⊸ I → (a′ ⊸ (bc ⊗ bd)) ⊸ I

h1 = ({c, d, a′, bc, bd}, {(bc, c), (bd, d)}) :

(c ⊗ d) ⊸ I → (a′ ⊸ (bc ⊗ bd)) ⊸ I

h = ({v} + {a′, bc, bd}, {(a′, bc), (v, bd)}) :

(a′ ⊸ (bc ⊗ bd)) ⊸ I → I

h′ = ({v} + {a′, bc, bd}, {(a′, bd), (v, bd)}) :

(a′ ⊸ (bc ⊗ bd)) ⊸ I → I

Let us suppose that there exists another candidate (k0, k1, k) which is the
real RPO. Then there must exist two (unique) mediating maps j, j′, such that

k = h ◦ j k = h′ ◦ j′

h0 = j ◦ k0 = j′ ◦ k0 h1 = j ◦ k1 = j′ ◦ k1 (13)

First of all, notice that the node v belongs to k, and its port has to be connected
to a name w in the inner interface of k, such name is linked to b in k0 and to y
in k1. In this way we ensure that g0 = k ◦ k0 and g1 = k ◦ k1.

Next, notice that the idle name a must be exported in the “middle interface”
of the RPO, otherwise the construct triple, named (t0, t1, t), is not an RPO:

bc bd

a b

t0

bc bd

c d

t1
v

bc bd

t

it is subsumed by (h0, h1, h) using the following unique morphism:

bc bd

a bc bd

t̂

So, call i the exported idle name in k1.
Moreover, the downward names exported in the middle interface are exactly

2 (call them p and q), in fact the number of possible combinations for accessing
the common name e are |{c, d}| × |{b}| = 2. In particular, in k1, one of this
downward names (say p) is linked to c, instead the other one (q) to d. (It is
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easy to find out some counterexamples if these properties do not hold, see the
RPO construction for directed bigraphs.)

Now, to equate k1 with h1, we have to map in j bc to p, bd to q, and i to
a. In practice, we have defined a renaming, which is an iso. Applying the same
reasoning to j′, we obtain another iso.

For absurdity suppose that equations in (13) hold. From the fact that the
RPOs are equal up-to iso, we can derive the absurdity that k is “equal” to h
and h′ at the same time.
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