
Verifying design patterns in Hoare Type Theory

Kasper Svendsen, Alexandre Buisse and Lars Birkedal

IT University Technical Report Series TR-2008-112

ISSN 1600–6100 October 2008

Copyright c© 2008, Kasper Svendsen, Alexandre Buisse and Lars Birkedal

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 97887794918861

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Verifying design patterns in Hoare Type Theory

Kasper Svendsen, Alexandre Buisse and Lars Birkedal

Abstract

In this technical report we document our experiments formally verifying three design patterns in Hoare Type
Theory.

1 Introduction
In [1, 2] Krishnaswami et al. defined a higher-order imperative language, Idealized ML, with an accompanying
higher-order separation logic and used it to specify and informally verify three design patterns. In this technical
report we describe our experiments translating these specifications into the language of Hoare Type Theory (HTT)
and formally verifying the implementations in Ynot [3], the Coq implementation of Hoare Type Theory.

Idealized ML is a program logic with a separate type system and specification language, whereas specifications
are integrated with types in HTT. Formalizing the examples thus requires a small translation. In the case of the
Subject/observer pattern, the integrated types and specifications allows us to give a simple specification, however,
the current type system appears to be too weak to allow us to give an implementation of this specification.

The Coq proof scripts can be downloaded at http://www.itu.dk/people/kasv/patterns.tgz.

2 Subject/observer pattern
The Subject/observer pattern is a well-known design pattern for object-oriented languages. An instance of this
pattern consists of an object called the subject, and a number of objects called observers, which depend on the
internal state of the subject. The subject provides a method for dynamically registering observers, by providing a
callback method, to be called by the subject, whenever the subject’s internal state changes.

The following is a specification of the subject-observer pattern in Idealized ML, for the special case where the

1

internal state of the subject is a natural number [2]:

∃sub : τs × N× seq ((N⇒ prop)× (N→©1))⇒ prop.

∃newsub : N→©τs.
∃register : τs × (N→©1)→©1.
∃broadcast : τs × N→©1.
∀n.{emp} newsub(n) {a : τs.sub(a, n, [])}
and

∀s,m, n.{sub(s,m, [])} broadcast(s, n) {sub(s, n, [])}
and

∀O : N⇒ prop. ∀f : N→©1.
(∀m,n.{O(m)} f(n) {a : 1.O(n)}

implies

∀s, n, os.{sub(s, n, os)} register(s, f) {a : 1. sub(s, n, (O, f) :: os)}
and

(∀s,m, n, os.{sub(s,m, os) ∗ obs(os)} broadcast(s, n) {sub(s, n, os) ∗ obs at(os, n)}
implies

{sub(s,m, (O, f) :: os) ∗ obs((O, f) :: os)}
broadcast(s, n)

{sub(s, n, (O, f) :: os) ∗ obs at((O, f) :: os, n)}))

where

τs ≡ ref N× ref list(N→©1)
obs([]) ≡ emp

obs((O, f) :: os) ≡ (∃i.O(i)) ∗ obs(os)
obs at([], k) ≡ emp

obs at((O, f) :: os, k) ≡ O(k) ∗ obs at(os, k)

The specification asserts the existence of a representation predicate sub(s, n, os), expressing that s is a subject
with internal state n. The list os contains the notification computations currently registered with the subject,
along with a predicate expressing how the state of the given observer depends on the state of the subject. The
specification further asserts the existence of three computations: newsub, for creating a new subject, register,
for registering a callback computation with the subject, and broadcast, for updating the internal state of the
subject.

Intuitively, if os = [(O1, f1), ..., (On, fn)] is the list of currently registered observers of the subject s, such
that each notification computation fi updates observer i’s state in accordance with Oi, when called with the sub-
ject’s new state, then we should be able to conclude that after running broadcast(s,m) the heap should satisfy
sub(s,m, os) ∗ O1(m) ∗ ... ∗ On(m). This intuitive specification translates very naturally into the above speci-
fication, using implication between specifications to express the condition that each notification computation fi

should respect the accompanying predicate Oi in os.

2.1 HTT translation
In this section we discuss two possible translations of the Idealized ML specification into HTT. With the exception
of implication between specifications most of the above specification translates directly into HTT. The first transla-
tion is very direct: implication between specifications is translated into arrow types in HTT. However, the resulting
specification does not capture the Subject/observer pattern. The second translation is a more advanced translation,
making use of HTT’s more expressive types to quantify over lists of ”proper” notification computations, to obtain
a simpler specification.

2

2.1.1 Logical variables

Idealized ML and HTT handle logical variables differently. In Idealized ML the post-condition is expressed only
in terms of the heap at termination and logical variables are expressed by universally quantifying over variables
whose scope extends to both the pre- and post-condition. In HTT, the post-condition is expressed in terms of both
the initial and terminal heap, which allows us to express logical variables by existentially quantifying them in the
pre-condition and universally quantifying them in the post-condition.

We can thus translate an Idealized ML specification,

∀x : τ. {P (x)} comp {a : 1. Q(x)}

into the following HTT type:

comp : {λi : heap. ∃x : τ. P x i} a : 1 {λi : heap. λj : heap. ∀x : τ. P x i→ Q x j}

where i is the initial heap and j is the terminal heap. We will usually abbreviate this type as follows:

comp : {i. ∃x. P x i} a : 1 {i j. ∀x. P x i→ Q x j}

2.1.2 Specification implication

In the Idealized ML specification, implication between specifications is used to ”inductively” build up the specifi-
cation of broadcast, to restrict the quantification of os to lists of pairs, (O, f), such that the notification computa-
tion, f , respects the predicate, O.

In HTT we can express implication between specifications using arrow types. Turning implications into arrow
types, register becomes a function that takes as argument a broadcast function for broadcasting to a list of
observers, os, a predicate, O, and a notification computation, f , respecting O, and returns a computation for
broadcasting to (O, f) :: os:

Πl : loc. Πos : list T. ΠO : N→ Prop.

Πf : (Πm : N.{i. ∃k : N. O k i} a : 1 {i j. ∀k : N. O k i→ O m j}).
Πbroad : (Πn : N. {i. ∃k. (sub (l, k, os) ∗ obs os) i}

r : 1
{i j. ∀k. (sub (l, k, os) ∗ obs os) i→ (sub (l, n, os) ∗ obs at (os, n)) j}).

Πn : N. {i. ∃k. (sub (l, k, (O, f) :: os) ∗ obs ((O, f) :: os)) i}
r : 1

{i j. ∀k. (sub (l, k, (O, f) :: os) ∗ obs ((O, f) :: os)) i →
(sub (l, n, (O, f) :: os) ∗ obs at ((O, f) :: os, n)) j}

Since O is free in the type of f we take T to be the following dependent sum type:

T ≡ ΣO : N→ Prop.

(Πm : N. {i. ∃k : N. O k i} a : 1 {i j. ∀k : N. O k i→ O m j})

In the implementation of the Idealized ML specification, a list is maintained containing the currently registered
notification computations; register adds the notification computations it is called with to this list, and broadcast
iterates through the list, calling each notification computation.

To give an implementation of the above HTT type, we do not need to maintain a list of registered notification
computations, as register can simply return a computation that runs the given broadcast computation followed
by the new notification computation. Thus, the sub predicate does not need to take the list of registered notification
computations as an argument and we obtain the following HTT type for the entire Idealized ML specification:

S1 ≡ Σα : Type. Σsub : α× N→ Prop.

Πn : N.{i. emp i} a : α {i j. emp i→ sub (a, n) j} × /* newsub */

Πl : loc. bspec(l, []) × /* broadcast */

Πl : loc. Πos : list T. P it : T. Πbroad : bspec(l, os). bspec(l, t :: os) /* register */

3

where

bspec(l : loc, os : list T) ≡
Πn : N. {i. ∃k. (sub (l, k) ∗ obs os) i}
r : 1
{i j. ∀k. (sub (l, k) ∗ obs os) i→ (sub (l, n) ∗ obs at (os, n)) j}

This is clearly not a specification of the Subject/observer pattern, as the currently registered notification com-
putations are no longer part of the subject’s state, but have to be passed around manually between observers.

2.1.3 Quantifying over notification computations

In [1], Krishnaswami et al. give an alternative specification for the Subject/observer pattern, where the restriction
to proper notification computations is moved into the sub predicate. This results in a simpler specification for
broadcast, as the specification no longer has to be built up ”inductively”, using implication between specifications:

∀s, i, os, k.
{sub(s, i, os) ∗ obs(os)} broadcast(s, k) {a : 1. sub(s, k, os) ∗ obs at(os, k)}

Since os is universally quantified, an implementation of the above specification could for instance take sub(s, i, os) =
notify(os) ∧ ..., where

notify([]) ≡ True
notify((O, f) :: l) ≡ (∀m,n. {O(m)} f(n) {a : 1. O(n)} valid) ∧ notify(l)

to restrict the quantification to ”proper” notification computations.
The above notify predicate does not translate directly into HTT, as HTT does not have an assertion of the

form S valid, to express that the specification S holds. However, since the type T defined above is the type of
pairs of predicate and notification computations, such that the notification computation respects the accompanying
predicate, we can simply let os quantify over list T :

Πa : α. Πm : N.
{i. ∃n : N, os : list T. (sub (a, n, os) ∗ obs os) i}
r : 1

{i j. ∀n : N, os : list T. (sub (a, n, os) ∗ obs os) i→ (sub (a,m, os) ∗ obs at (os,m)) j}

We can thus express the Subject/observer pattern, where the currently registered notification computations are a
part of the subject’s state with the following HTT type:

S2 ≡ Σα : Type. Σsub : α× N× list T → Prop.

Πn : N. {i. emp i}a : α{i j. sub (a, n, []) j} × /* newsub */

Πa : α. Πt : T. /* register */

{i. ∃n : N, os : list T.sub (a, n, os) i}
r : 1
{i j. ∀n : N, os : list T. sub (a, n, os) i→ sub (a, n, t :: os) j} ×

Πa : α. Πm : N. /* broadcast */

{i. ∃n : N, os : list T. (sub (a, n, os) ∗ obs os) i}
r : 1
{i j. ∀n : N, os : list T. (sub (a, n, os) ∗ obs os) i

→ (sub (a,m, os) ∗ obs at (os,m)) j}

This specification still differs slightly from the Idealized ML version in its handling of the O predicate. In the
Idealized ML version register takes the notification computation as argument and the specification allows us to
choose any O predicate that the notification computation respects, when deriving the specification for broadcast.
In the HTT version, the O predicate has to be given as an argument along with the notification computation to
register.

4

2.2 Ynot implementation
In the version of HTT presented in [4], dependent sums are predicative, i.e., for Σx : A.B to be a monotype, bothA
andB have to be a monotypes. Since the type of heaps, heap, is defined as a subset of the type N×Σα : mono.α
and mono is not a monotype, it follows that the T type defined above is not a monotype either and that values of
type T cannot be stored in the heap.

In the implementation given in [1], a list of registered notification computations is stored in the heap. Since
types and specifications are separate in Idealized ML, the type of these computations can be very weak, N→©1,
because the specification language allows us to express that if these are proper notification computations then the
broadcast computation will do a broadcast when performed. Since types and specifications are integrated in HTT,
these notification computations have to be stored with a much stronger type, as the broadcast computation must
be able to infer from their type that they are proper notification computations when it retrieves them from the heap.
Since values of type T cannot be stored in the heap, it is unclear whether this is possible in the predicative version
of HTT.

Since Ynot is based on the predicative version of HTT [4], the same holds for Ynot: trying to store a value of
type T in the heap causes a universe inconsistency error.

The impredicative version of HTT [5] has an impredicative sum type, ΣTx : A.B, which is a monotype if B
is. Hence, in the impredicative version of HTT, we can store values of type T , by using impredicative sums. We
conjecture that the implementation in [1] has the type S2 in impredicative HTT.

For the other HTT specification of the functional Subject/observer pattern, S1, we do not have to store the
notification computations in the heap: register simply returns a new broadcast computation, which runs the old
broadcast computation followed by the given notification computation. We have formally verified that this gives
an implementation of the type S1 in Ynot.

The Subject/observer pattern thus provides an example of a potential weakness in the predicative version of
HTT and suggests that future work should include an implementation of impredicative HTT.

3 Flyweight
The Flyweight pattern is a design pattern used for reducing memory consumption, by caching objects. A Flyweight
for a given class consists of an object table and a method, new, for constructing objects of the given class. The
new method checks the object table to see if any objects of the given class has already been constructed with the
given parameters, in which case it returns the object in the table, and otherwise creates a new object and inserts it
into the table.

Krishnaswami et al. give the following specification for a Flyweight factory for constructing Flyweights for
caching pairs of characters and fonts.

∃make flyweight :
font→©((char →©ref (char × font)) × (ref (char × font)→©(char × font))).
∀f. {emp}make flyweight(f) {a. ∃I : Prop. I ∧ Flyweight(I, fst a, snd a, f) valid}

where

Flyweight(I : Prop, newchar : char →©ref (char × font),
getdata : ref (char × font)→©(char × font), f : font) ≡

∃glyph : ref char × char × font→ Prop.

∀c, S. {I ∧ chars(S)} newchar(c) {a : ref (char × font). I ∧ chars({(a, (c, f))} ∪ S)}
and

∀l, c, f, P. {glyph(l, c, f) ∧ P} getdata(l) {a : char × font. glyph(l, c, f) ∧ P ∧ a = (c, f)}
and

{∀l, l′, c, c′. I ∧ glyph(l, c, f) ∧ glyph(l′, c′, f ′)→ (l = l′ ↔ (c = c′ ∧ f = f ′))}

5

and

chars(∅) ≡ >
chars({(l, (c, f))} ∪ S) ≡ glyph(l, c, f) ∧ chars(S)

Since Idealized ML is not an object oriented language and therefore cannot return a reference to an object, the
new computation just returns a reference to the character and font pair. The Flyweight further defines a getdata
computation, which returns the actual character and font for a given reference, to simulate an object method.

3.1 HTT translation
Besides Hoare triples, Idealized ML’s specification language contains specifications of the form {P}, for asserting
that P is true. In the above specification this is used to express that calling getdata with the same character
multiple times, produces the same reference. In HTT we can express that an arbitrary proposition P is true by
returning an element of the subset type, {x : 1 | P}, where x is not free in P .

The assertion language of Idealized ML also contains an expression for asserting that a given specification
holds. In the above example this is used in the post-condition ofmake flyweight, to assert that the code returned
implements a Flyweight. In HTT, we can express the same by simply giving a more precise type for the return
value of the make flyweight computation.

We have further generalized the specification, such that the computation can generate a Flyweight for simulated
objects consisting of a value of an arbitrary monotype. The Flyweight factory computation therefore also has to
take as an argument, a function, αeq , for deciding propositional equality between α values.

The rest of the specification can be translated almost directly into HTT, however, we have made a few changes,
to simplify the formal verification of the implementation in Ynot.

• In the specification of newchar, instead of using a set to associate arguments with objects, we have used a
partial function (i.e., a total function from α to option loc).

• In the above specification the predicate I has to specify the representation of both the object table and the
simulated objects. We have split I into two predicates, table and refs, and changed the precondition of
newchar to the HTT equivalent of table(...) ∗ (refs(...) ∧ chars(S)), to make it explicit that the object
table and the simulated objects are in separate subheaps, to simplify verification.

The final HTT type of the Flyweight factory thus looks as follows:

Πα : mono. Παeq : (Πx : α. Πy : α. {z : 1 | x = y}+ {z : 1 | x 6= y}).
{i. emp i}
r : Σtable : (α→ option loc)→ heap→ Prop.

Σrefs : (α→ option loc)→ heap→ Prop.

Σobjat : loc→ α→ heap→ Prop.

Σprf1 : {x : 1 | ∀h, l, l′, a, a′, f. objat l a h ∧ objat l′ a′ h ∧ refs f h→ (l = l′ ↔ a = a′)}.
Πa : α. /* new */

{i. ∃f. (table f ∗ (λh. allobjat(α, objat, f, h) ∧ refs f h)) i}
l : loc

{i j. ∀f. (table f ∗ (λh. allobjat(α, objat, f, h) ∧ refs f h)) i→
((∀l′. f a = Some l′ → l = l′) ∧
(table f [a 7→ l] ∗ (λh. allobjat(α, objat, f [a 7→ l], h) ∧ refs f [a 7→ l] h)) j)} ×

Πl : loc. /* get */

{i. ∃a : α, objat l a i} r : α {i j. ∀a : α, objat l a i→ (i = j ∧ r = a)}
{i j. ((fst r) [] ∗ (λh. allobjat(α, fst (snd (snd r)), [], h) ∧ (fst (snd r)) [] h)) j}

where

allobjat(α, objat, f, h) ≡ ∀l : loc, o : α. f o = Some l→ (objat l o ∗ (λh. True)) h

and [] ≡ (λx. None).

6

3.2 Ynot implementation
In the case of the Flyweight pattern, we were able to formally verify that the implementation given in [1] has the
above HTT type in Ynot.

The implementation given in [1] assumes the existence of an implementation of a table data-structure with the
following Idealized ML specification:

∃table : At × (B →fin C)→ Prop.

∃newtable : 1→© At.

∃update : At ×B × C →© 1.
∃lookup : At ×B →©(option C).
{emp} newtable() {a : At : table(a, [])}
and

∀t, f, b, c. {table(t, f)} update(t, b, c) {a : 1. table(t, f [b 7→ c])}
and

∀t, b, f. {table(t, f)} lookup(t, b) {a : option C. table(t, f) ∧
((b ∈ dom(f) ∧ a = Some f(b)) ∨ (b 6∈ dom(f) ∧ a = None))}

For the formalization in Ynot we found it necessary to use a table implementation with a slightly stronger
specification: In particular, f ′ = f [b 7→ c] should satisfy that,

f ′ x =

{
c if b = x

f x if b 6= x

where b = x denotes propositional equality. To define such an f ′, we need a function for deciding proposi-
tional equality on B values. Similarly, to define the update and lookup computations, we need a computation
or function for deciding propositional equality on B values. We further had to extend the specification with two
preciseness properties, prf1 and prf2 in the HTT type below, to make the proofs go through. At the moment it
is unclear whether these preciseness properties were truly needed to prove that the Flyweight implementation had
the expected HTT type or whether they are a consequence of the current Ynot implementation. Section 5 contains
a discussion of the preciseness issues we encountered with the Ynot formalization.

Πα : mono. Παeq : (Πx : α. Πy : α. {z : 1 | x = y}+ {z : 1 | x 6= y}).
Σtable : loc→ (α→ option loc)→ heap→ Prop.

Σprf1 : {x : 1 | ∀l : loc, precise (λh. ∃f : obj → option loc, table l f h)}.
Σprf2 : {x : 1 | ∀l, f, f ′, h. table l f h ∧ table l f ′ h→ f = f ′}.
{i. emp i} r : loc {i j. table r (λx. None) j} × /* newtable */

Πt : loc. Πk : α. /* lookup */

{i. ∃f : (α→ option loc). table t f i}
r : option loc
{i j. ∀f : (α→ option loc). table t f i→ (i = j ∧ r = f k} ×

Πt : loc. Πk : α. Πv : loc. /* update */

{i. ∃f : (α→ option loc). table t f i}
r : 1
{i j. ∀f : (α→ option loc). table t f i→ table t f [k 7→ Some v] j}

where

precise(P) ≡ ∀h, h1,m1, h2,m2 : heap. splits h h1 m1 → splits h h2 m2 →
P h1 → P h2 → (h1 = h2 ∧m1 = m2)

where splits h h1 h2 iff h1 and h2 are disjoint and h is the union of h1 and h2.

7

4 Iterators
The Iterator pattern is a design pattern used to provide a uniform interface for enumerating elements in a collection.
Instead of manipulating a collection directly, one uses an iterator, which provides a computation, next, which
produces the next element in the collection. The instance of the Iterator pattern we consider further provides two
ways of constructing new iterators from old ones: A filter iterator, Filter p i, which returns the elements of the
underlying iterator i that satisfies the predicate p, and a map iterator, Map2 f i1 i2, which applies the function f
to the elemenets of two underlying iterators i1 and i2.

If a destructive operation is performed on an underlying collection of an iterator, the iterator will be considered
to be in an invalid state. We will thus forbid such operations, but still allow non-destructive ones, such as querying
for the size of the collection.

Figure 1 contains the Idealized ML specification of the instance of the iterators pattern from [1].

4.1 HTT translation and Ynot implementation
The translation of the this specification into HTT is straightforward, with some very minor modifications, such as
letting S be a list instead of a finite subset.

Similarly, the formal verification in Ynot of the implementation of the above specification given in [1] is
straightforward, with the exception of the Map2 iterator. Since the next computation has to perform two recur-
sive calls to next on two subheaps of the initial heap in the case of the Map2 iterator, we have to prove some
preciseness properties about iter predicate, to get the proof to go through. This is explained in greater detail in
Section 5. Without the Map2 iterator, we have formally verified that the implementation given in [1] has the
expected HTT type, however, so far we have not been able to prove the required preciseness properties to finish
the formal proof with the Map2 iterator.

5 Logical Variables and preciseness
As previously mentioned, in carrying out the formalization of the Flyweight implementation and the Iterators
implementation in Ynot, we encountered some issues with preciseness. More specifically, that we often had to
prove preciseness for a predicate to complete the proof, where the same proof could have been completed on paper
in the impredicative version of HTT (which also uses unary post-conditions), without proving preciseness.

To illustrate the problem, assume that we have an implementation, add, of the following HTT type:

Πl : loc. {i. ∃n. inv l n i} r : 1 {i j. ∀n. inv l n i→ inv l (n+ 1) j}

where inv(l, n, i) holds iff i is the singleton heap with n stored at location l. Then we should clearly we able to
prove that the computation,

add2 = λl1. λl2. add l1; add l2

has the type,

T = Πl1 : loc. Πl2 : loc.
{i. ∃n1, n2. (inv l1 n1 ∗ inv l2 n2) i}
r : 1
{i j. ∀n1, n2. (inv l1 n1 ∗ inv l2 n2) i→ (inv l1 (n1 + 1) ∗ inv l2 (n2 + 1)) m}

without having to prove any preciseness properties about inv (or unfolding the definition of inv). In the current
version of Ynot, if we use the nextvc tactic, which is an important part of the automation provided by Ynot for
simplifying proof obligations, then we cannot prove that add2 has the desired type, without a preciseness property
about inv, such as:

∀l : loc. precise(λh. ∃n : N. inv l n h)

However, without the nextvc tactic the proof goes through without having to prove preciseness and the same
holds when doing a paper proof using the proof rules of the impredicative version of HTT.

To prove that add2 has the type T , using nextvc, we have to prove the precondition of add l1 and add l2
holds, under the assumption that we have a heap i for which (inv l1 n1 ∗ inv l2 n2) holds. By the assumption

8

Ac = ref list N.
Ai = Coll of ref Ac | Filter of ((N→ bool)×Ai) |Map2 of ((N× N→ N)×Ai ×Ai).

∃ coll : Ac × seq N× Prop⇒ Prop.

∃ iter : Ai × Pfin(Ac × seq N× Prop)× seq N⇒ Prop.

∃newcoll : 1→©Ac.

∃ size : Ac →©N.
∃ add : Ac × N→©1.

∃newiter : Ac →©Ai.

∃ filter : (N→ bool)×Ai →©Ai.

∃map2 : (N× N→ N)×Ai ×Ai →©Ai.

∃next : Ai →©(option N).

{emp}newcoll() {a : Ac.∃P.coll(a, P, ε)}.
and

∀ c : Ac, xs : seq N, P : Prop,
{coll(c, xs, P)} size(c) {a : N, coll(c, xs, P) ∧ a = |xs|}.

and

∀ c : Ac, x : N, xs : seq N, P : Prop,
{coll(c, xs, P)} add(c, x) {a : 1.∃, Q.coll(c, x :: xs,Q)}.

and

∀ c : Ac, xs : seq N, P : Prop,
{coll(c, xs, P)}newiter(c) {a : Ai.coll(c, xs, P) ∗ iter(a, {(c, xs, P)}, xs)}.

and

∀ p : N→ bool, i : Ai, S : Pfin(Ac × seq N× Prop), xs : seq N,
{iter(i, S, xs)} filter(p, i) {a : Ai.iter(a, S, filter p xs)}.

and

∀ (f : N× N→ N), (i i′ : Ai), (S S′ : Pfin(Ac × seq N× Prop)), (xs xs′ : seq N),
{iter(i, S, xs) ∗ iter(i′, S′, xs′) ∧ S ∩ S′ = ∅}map2(f, i, i′)
{a : Ai.iter(a, S ∪ S′,map f (zip xs xs′))}.

and

∀ i : Ai, S : Pfin(Ac × seq N× Prop),
{colls(S) ∗ iter(i, S, ε)}next(i) {a : option N.colls(S) ∗ iter(i, S, ε) ∧ a = None}.

and

∀ i : Ai, S : Pfin(Ac × seq N× Prop), x : N, xs : seq N,
{colls(S) ∗ iter(i, S, x :: xs)}next(i) {a : option N.colls(S) ∗ iter(i, S, xs) ∧ a = Some x}.

Figure 1: The Idealized ML specification given in [1] of the Iterators pattern.

9

about i, we know that i can be split into two disjoint subheaps i1 and i2, for which inv l1 n1 and inv l2 n2 holds,
respectively. i1 can be used to prove the precondition of add l1 and i2 to prove the precondition of add l2. Then
we have to prove the post-condition in T ,

∀n1, n2. (inv l1 n1 ∗ inv l2 n2) i→ (inv l1 (n1 + 1) ∗ inv l2 (n2 + 1)) m

under the assumption that the post-condition of add l1 hold, instantiated with i1 as initial heap and m1 as final
heap, and the post-condition of add l2 instantiated with i2 and m2, where m splits into the two disjoint subheaps
m1 and m2.

Hence, we have to prove that (inv l1 (n′
1 + 1) ∗ inv l2 (n′

2 + 1)) holds for m under the further assumption
that (inv l1 n′

1 ∗ inv l2 n′
2) holds for i. Since the post-condition of add l1 has already been instantiated with i1

as initial heap, we need a preciseness property about the inv predicate to be able to conclude that the subheap of
i for which inv l1 n′

1 holds is i1, to be able to use the post-condition of add l1 with the new assumptions. The
assumption that inv l1 n1 holds for i1 allows us to prove that inv l1 (n1 + 1) holds for m1, but this is not very
useful unless we know that n1 = n′

1, which also requires a preciseness property about the inv predicate, to prove.
It is unclear whether the preciseness problem encountered with the Map2 Iterator is a limitation of binary

post-conditions in general or the current Ynot implementation, as we have been unable to finish the proof with
and without nextvc for Map2 (without nextvc the proof became too long for us to finish by hand).

Acknowledgements
We thank Bastien Maubert for his assistance with conducting some of the experiments in Ynot during his time as
an intern at the IT University of Copenhagen.

References
[1] Neelakantan R. Krishnaswami and Jonathan Aldrich. Verifying object-oriented patterns with higher-order

separation logic.

[2] Neelakantan R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Modular verification of the subject-
observer pattern via higher-order separation logic.

[3] A. Nanevski, G. Morrisett, A. Shinnar, P. Goverau, and L. Birkedal. Ynot: Dependent types for imperative
programs. In Proceedings of ICFP 2008, Sep 2008.

[4] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separation in hoare type theory.
In Proceedings of ICFP’06, 2006.

[5] R.L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A Realizability Model of Impredicative Hoare
Type Theory. In Proceedings of ESOP 2008, 2008.

10

