
Matching of Bigraphs

Lars Birkedal
Troels Christoffer Damgaard
Arne John Glenstrup
Robin Milner

IT University Technical Report Series TR-2006-88

ISSN 1600–6100 June 2006

Copyright c© 2006, Lars Birkedal
Troels Christoffer Damgaard
Arne John Glenstrup
Robin Milner

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-132-4

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Matching of Bigraphs

Lars Birkedal
Troels Christoffer Damgaard

Arne John Glenstrup
Robin Milner

Abstract
We analyze the matching problem for bigraphs. In particular, we present a sound and complete inductive charac-

terization of matching of binding bigraphs. Our results pave the way for a provably correct matching algorithm, as
needed for an implementation of bigraphical reactive systems.

1 Introduction

Over the last decade, a theory of bigraphical reactive systems has been developed [9, 13, 15]. Bigraphical reactive
systems (BRSs) provide a graphical model of computation in which both locality and connectivity are prominent. In
essence, abigraphconsists of aplace graph; a forest, whose nodes represent a variety of computationalobjects, and a
link graph, which is a hyper graph connecting ports of the nodes. Bigraphs can be reconfigured by means ofreaction
rules. Loosely speaking, abigraphical reactive systemconsists of set of bigraphs and a set of reaction rules, which
can be used to reconfigure the set of bigraphs. BRSs have been developed with principally two aims in mind: (1) to be
able to model directly important aspects of ubiquitous systems by focusing on mobile connectivity (the link graph) and
mobile locality (the place graph), and (2) to provide a unification of existing theories by developing a general theory,
in which many existing calculi for concurrency and mobilitymay be represented, with a uniform behavioural theory.
The latter is achieved by representing the dynamics of bigraphs by an abstract definition of reaction rules from which
a labelled transition system may be derived in such a way thatan associated bisimulation relation is a congruence
relation. The unification has recovered existing behavioural theories for theπ-calculus [9], the ambient calculus [8],
and has contributed to that for Petri nets [12]. Thus the evaluation of the second aim has so far been encouraging.
In [3], Birkedal et al. initiate an evaluation of the first aim, in particular it is shown how to give bigraphical models of
context-aware systems.

As suggested and argued in [9, 1, 3] it would be very useful to have an implementation of the dynamics of bigraph-
ical reactive systems to allow experimentation and simulation. In the Bigraphical Programming Languages research
project at the IT University, we are working towards such an implementation. The core problem of implementing
the dynamics of bigraphical reactive systems is thematching problem, that is, to determine for a given bigraph and
reaction rule whether and how the reaction rule can be applied to rewrite the bigraph. The topic of the present paper is
to analyze the matching problem.

In Figure 1 we show several bigraphs. Consider the bigraph nameda. It is intended to model two buildings, one
belonging to a corporation and one belonging to a consultancy group. Inside the buildings are laptops with data nested
inside folders. The nesting structure depicts the place graph. Links are used to name the buildings and, moreover,
to model which folders can be shared between the corporationand the consultancy group and inside the corporation.
Thus the laptop shown in the middle is intended to belong to a consultant working for the corporation — the consultant
has folders with data belonging to the consultancy group (the link shown to the left) and folders with data belonging
to the corporation (the link shown to the right). The fact that folders belonging to the corporation should not leave the
corporation is expressed by linking those folders to a so-called binding port on the corporation building, indicated by
the circle.

The abstract semantic definition of matching, as defined in the theory of bigraphs [9], is roughly as follows (omit-
ting many details): Given a reaction rule with redexR and reactumR′ (with R andR′ both bigraphs), and a bigraph

1

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Figure 1: Example of a ground agenta = C ◦ (idz ⊗ R) ◦ d. Reaction ruleR → R′ copies data between connected
folders.

2

A (the agent to be rewritten), ifA = C ◦ (R⊗ idZ) ◦ d, then it can be rewritten toC ◦ (R′ ⊗ idZ) ◦ d. Here◦ denotes
composition of bigraphs andZ is the set of names ofd. In other words, if the reaction rulematchesA, in the sense
thatA can be decomposed into a contextC, redexR and a parameterd, thenA can be rewritten.

Consider again the example in Figure 1. There is a reaction rule expressed by the redexR and the reactumR′; the
intention of the reaction rule is to allow copying of data between connected folders in the same nesting hierarchy (note
the link in R between the two folders and the so-called local namey). The agenta can be written as a composition
of C, R andd — formally, a = C ◦ (R ⊗ idz) ◦ d. Composition works by (1) plugging the roots ofR andd into the
holes (aka sites) ofC respectivelyR; (2) fusing together the connections between folder andz (in d) andz and folder
(in C), removing the namez in the process; (3) fusing together the connection between the local namey and the two
folders inR and the namey and the bound port inC, removing the namey in the process. Note the use ofidz in the
compositiona = C ◦ (R ⊗ idz) ◦ d; it allows a namez from the parameterd to be “passed through” the redex and be
attached to something in the contextC. The reactumR′ contains a copy of the site numbered1 in R, expressing that
data is copied between the shared folders. The sites numbered 0 and2 in R allow the reaction rule to apply also when
the laptops contain other folders than the two that are connected. Thusa can be rewritten using the reaction rule to
another agenta′ like a but with two data items in the rightmost laptop (the agenta′ is not shown in Figure 1).

In the present paper we provide aninductive characterizationof whenA = C ◦ (R⊗ idZ) ◦ d holds, by induction
on A andR (the input to a matching algorithm). It is a precise characterization in the sense that it is both sound and
complete with respect to the abstract definition. This provides a detailed analysis of the matching problem, and paves
the way for developing andproving correctan actual matching algorithm (which, givenA andR, must findC, d,
andZ such thatA = C ◦ (R ⊗ idZ) ◦ d holds). We further include a discussion of how one may derivematching
algorithms from our inductive characterization. We will report on our work on an actual implementation of matching
in a subsequent paper.

Our inductive characterization is based on normal form theorems for bigraphs [13, 5], which express how general
bigraphs may be decomposed into a composition of simpler graphs. The normal form theorems and also the inductive
characterization we present here is based on so-calleddiscretedecompositions of bigraphs. Discrete bigraphs are
bigraphs with a simple form of linkage. To a large extent, this allows us to analyze matching of a general bigraph by
considering its link graph and place graph separately.

Of course, the matching problem is closely related to the NP-complete graph embedding problem. Thus we
analyze the embedding problem for a restricted class of graphs, and our inductive characterization makes good use of
the algebraic presentation of such graphs [13, 5]. One hopesthat matching implementations will be efficient in practice
since redices typically are small. Furthermore, sorting bigraphs [4] could be a source of early search elimination.

The remainder of this paper is organized as follows. In Section 2 give an informal description of binding bigraphs.
The main contribution of this paper is in Section 3, where we present our inductive characterization of matching.
Section 4 discusses how the inductive characterization mayensure a correct and efficient algorithm for matching. In
the final sections we discuss related work and conclude.

For lack of space, most proofs [2] have been omitted from thisextended abstract.

2 Binding Bigraphs

Here we present bigraphs informally; for a formal definition, see [10, 5].

2.1 Concrete Bigraphs

A concrete binding bigraphG consists of aplace graphGP and alink graphGL. The place graph is an ordered list
of trees indicatinglocation, with rootsr0, . . . , rn, nodesv0, . . . , vk, and a number of special leavess0, . . . , sm called
sites, while the link graph is a general graph over the node setv0, . . . , vk extended withinner namesx0, . . . , xl, and
equipped with hyper edges, indicatingconnectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 2. Alink is a hyper
edge of the link graph, either aninternal edgee or anamey. Names and inner names can beglobalor local, the latter
being located at a specific root or site, respectively. In Figure 2,y0 is located atr0, indicated by a small ring, andx0

andx2 are located ats2, indicated by writing them within the site. Global names likey1 andy2 are drawn anywhere at

3

BigraphG : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e′

v0

v1

v2 v3

e

X = {x0, x1, x2}
Y = {y0, y1, y2}

Place graphGP : 3 → 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graphGL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e

e′

Figure 2: Example bigraph illustrated by nesting and as place and link graph.

the top, while global inner names likex1 are drawn anywhere at the bottom. A link, including internaledges likee′ in
the figure, can be located with onebinder (the ring), in which case it is abound link,otherwise it isfree. However, a
bound link must satisfy thescope rule, a simple structural requirement that all points of the linklie within its location
(in the place graph), except for the binder itself. This preventsy2 ande in the example from being bound.

2.2 Controls

Every nodev has acontrol K which determines a binding and free arity, indicated byv : K. In the example of
Figure 2, we could havevi : Ki, i = 0, 1, 2, 3, whereK0 : 0 → 1, K1 : 0 → 2, K2 : 0 → 3, K3 : 1 → 2. The arities
determine the number of bound and freeportsof the node, to which bound and free links, respectively, areconnected.
Ports and inner names are collectively referred to aspoints.

2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edgesare the basis of bigraph theory [10], our prime interest
is in abstract bigraphs,equivalence classes of concrete bigraphs that differ only in the names of nodes and internal
edges. Abstract bigraphs are illustrated with their node controls, as shown in Figure 1. In what follows, “bigraph” will
thus mean “abstract bigraph.”

2.4 Interfaces

Every bigraphG has twointerfacesI andJ , writtenG : I → J , whereI is theinner faceandJ theouter face. An
interface is a triple〈m,~X, X〉, wherem is thewidth (the number of sites or roots),X the entire set of local and global
names, and~X indicates the locations of each local name, cf. Figure 2. We letε = 〈0, [], {}〉; whenm = 1 the interface
is prime,and if allx ∈ X are located by~X, the interface islocal.

A bigraphG : I → J is calledground,or anagent, if I = ε, prime if I is local andJ prime, and awiring if
m = n = 0, wherem andn are the widths ofI andJ , respectively. ForI = 〈m,~X, X〉, bigraphidI : I → I consists
of m roots, each rootri containing just one sitesi, and a link graph linking each inner namex ∈ X to namex.

2.5 Discrete and Regular Bigraphs

We say that a bigraph isdiscreteiff every free link is a name and has exactly one point. The virtue of discrete bigraphs
is that any connectivity by internal edges must be bound, andnode ports can be accessed individually by the names of
the outer face. In Figure 1, onlyR, R′ andd are discrete, because the free internal edges ofA andC have two points.
Further, a bigraph isname-discreteiff it is discrete and every bound link is either an edge, or (if it is an outer name)
has exactly one point. Note that name-discrete implies discrete.

4

A bigraph isregular if, for all rootsri′ andrj′ , and all sitessi andsj wheresi is a descendant ofri′ andsj of rj′ ,
if i ≤ j theni′ ≤ j′. The bigraphs in the figures are all regular, the permutationin Table 1 is not. The virtue of regular
bigraphs is that certain permutations can be avoided when composing them from basic bigraphs.

2.6 Tensor Product, Parallel Product, and Composition

For bigraphsG1 andG2 that share no names or inner names, we can make thetensor productG1 ⊗G2 by juxtaposing
their place graphs, constructing the union of their link graphs, and increasing the indexes of sites inG2 by the number
of sites ofG1. For instance, bigraphd of Figure 1 is a tensor product of four primes. We write

⊗n
i Gi for the iterated

tensorG0 ⊗ · · · ⊗ Gn−1.
Theparallel productG1 ||G2 is like the tensor product, except global names can be shared: if y is shared, all points

of y in G1 andG2 become the points ofy in G1 || G2.
We cancomposebigraphsG2 : I → I ′ andG1 : I ′ → J , yielding bigraphG1 ◦ G2 : I → J , by “plugging in”

the roots ofG2 into the sites ofG1, eliminating both, and connecting names ofG2 with inner names ofG1—as in
Figure 1, whereA = C ◦ (idz ⊗R)◦d. In the following, we will omit the ‘◦’, and simply writeG1G2 for composition,
letting it bind tighter than tensor product.

2.7 Active, Passive and Atomic Controls

In addition to arity, each control is assigned akind, eitheratomic, active or passive, and describe nodes according
to their control kinds. We require that atomic nodes containno nodes except sites; any site being a descendant of a
passive node ispassive, otherwise it isactive. If all sites of a bigraphG are active,G is active.

For Figure 1 we could haveData : atomic(0 → 0), Folder : passive(0 → 1), Laptop : active(0 → 0), Building :
active(1 → 1).

2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connectivity. To model alsodynamics,we
introducebigraphical reactive systems(BRS) as a collection ofrules. Each ruleR →% R′ consists of a regularredex
R : I → J , a regularreactumR′ : I ′ → J , and aninstantiation%, mapping each site ofR′ to a site ofR. Interfaces
I = 〈m,~X, X〉 andI ′ = 〈m′, ~X ′, X ′〉 must be local, and are related byX ′

i = X%(i). We illustrate% by a ‘i := j’, as
shown in Figure 1, whenever%(i) = j 6= i. Given an instantiation% and a discrete bigraphd = d0 ⊗ · · · ⊗ dk with
primedi’s, we let%(d) = d%(0) ⊗ · · · ⊗ d%(k), i.e., by copying, discarding and reordering parts ofd.

Given an agenta, a matchof redexR is a decompositiona = C(idZ ⊗ R)d, with active contextC, discrete
parameterd, and some set of namesZ. Dynamics is achieved by transforminga into a new agenta′ = C(idZ ⊗R′)d′,
whered′ = %(d)—an example is shown in Figure 1. This definition of a match is as in [9], except that we here also
requireR to be regular. This restriction to regular redexesR (and to discrete parametersd) does not limit the set of
possible reactions. We restrict attention to regularR’s because it simplifies the inductive characterization of matching
by allowing us to omit trivial permutations.

2.9 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation:] denotes union of sets required to be disjoint; we write{~Y } for
Y0] · · ·] Yn−1 when~Y = Y0, . . . Yn−1, and similarly{~y} for {y0, . . . , yn−1}. For interfaces, we writeX to mean
〈0, [], X〉, 〈X〉 to mean〈1, [{}], X〉 and(X) to mean〈1, [X], X〉.

Any bigraph can be constructed by applying composition, tensor product and abstraction to a set of basic bigraphs,
shown in Table 1 [5]. Given a primeP , the abstraction operation localises a subset of its outer names. Note that the
scope rule is necessarily respected since the inner face of aprimeP is required to be local, so all points ofP are
located within its root. The abstraction operator is denoted by (·)· that reaches as far right as possible.

For a renamingα : X → Y , we write pαq to mean(id1 ⊗ α)pXq, and whenσ : U → Y , we let σ̂ =
(Y)(σ ⊗ id1)pUq.

5

Notation Example

Merge mergen : n → 1 merge3 =
0 1 2

Concretion pXq : (X) → 〈X〉 p{z1, z2}q =
0

z1

z1

z2

z2

Abstraction (Y)P
: I → 〈1, [Y], Z] Y 〉 ({y2})({y1})p{y1, y2, z}q =

0

y1

y1

y2

y2

z

z

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =

x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} =
x1 x2 x3

Wiring
ω

(/Z ⊗ α)σ
: X → Y

(/{z2, z4} ⊗ [y1, y2]/[z1, z3])
[z1, z2, z3, z4] /
[{}, {x1, x2}, {x4, x5}, {x6}]

=

y1

x1 x2 x4

y2

x5 x6

Ion
K~y(~X)

: ({~X}) → 〈{~y}〉
K[y1,y2]([{x1},{x2,x3},{}]) =

K

y1 y2

x1x2x3

Permutation
π

{i 7→ j, . . .}
: m → m {0 7→ 2, 1 7→ 0, 2 7→ 1} =

1 2 0

Table 1: Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

6

As an example, the bigraph of Figure 2 can be written
G = (ω ⊗ (({y0})y0/Y pY q) ⊗ p{}q) (((Y)P1) ⊗ P2 ⊗ y2/x1) , where
ω = (/e ⊗ id{y1,y2})[y1, y2, e]/[{y1}, {y2, y

′
2, y

′′
2}, {e, e

′}], Y = {y0, y
′
0, y

′′
0}

P1 = (id{y0,y1,y′

2
,e} ⊗ merge2)

(
(id{y0,e} ⊗ K0[y′

0
])K1[y0,e] ⊗ K2[y′′

0
,y1,y′

2
] merge0

)

P2 = (id{e′,y′′

2
} ⊗ merge2)(K3[e′,y′′

2
]([{x0,x2}]) ⊗ p{}q),

and for Figure 1 we havea = (id{consultancy,corporation} ⊗ /z) (p1 || p2), where

p1 = (idz ⊗ Building[consultancy]([{}])Laptop)Folder[z]Datamerge0

p2 = (idz ⊗ Building[corporation]([{y1,y2}]))({y1, y2})(id{z,y1,y2} ⊗ merge2) (p′2 ⊗ p′′2)

p′2 = (id{z,y1} ⊗ Laptopmerge2)(Folder[z]Datamerge0 ⊗ Folder[y1]Datamerge0)
p′′2 = (idy2

⊗ Laptop)Folder[y2]Datamerge0

3 Inductive Characterization of Matching

In this section we present our inductive characterization of matching. To ease the presentation we shall disregard the
requirement that the context in a match must be active (it is straightforward to extend the following presentation to
include the active requirement).

3.1 Preliminaries

In this subsection we introduce useful notation and establish some propositions about how one may decompose bi-
graphs. To simplify notation we shall simply writeid for identity bigraphs, without a subscript showing the interface,
when it is clear from the context what interface is intended.

The following propositions express how bigraphs may be decomposed into simpler constitutent components. The
proofs follow easily from the normal form theorem in [5]. Note thatω, α, σ andπ range over wirings, renamings,
substitutions and permutations, cf. Table 1.

Proposition 3.1 Any bigraphG can be decomposed into a composition of the following form

G = (ω ⊗ id)(D ⊗ idY),

whereD is discrete and with local innerface. Any other decomposition ofG on this form takes the formG = (ω′ ⊗
id)(D′ ⊗ idY), whereω′ = ω(α ⊗ idY) andD′ = (α−1 ⊗ id)D, for suitableα.

Proposition 3.2 Any discrete bigraphD of widthn with local innerface can be decomposed such that

D =
(n⊗

i

(σ̂i ⊗ id)Pi

)
π,

where thePi’s are name-discrete and prime. Any other decomposition on this form ofD takes the form
(⊗n

i (σ̂′
i ⊗

id)P ′
i

)
π′, where, for somêαi, ρi, for all i, P ′

i = (α̂i
−1 ⊗ id)Piρi (

⊗n
i ρi)π

′ = π, andσ̂′
i = σ̂iα̂i.

For primes and molecules, the normal form can be found inloc. cit.
One can decompose binding ionsK

~y(~X) into K~y(~u)

⊗n
i (ui)/(Xi). Such decompositions will be useful because

of the following proposition, which is a corollary of Theorem 1, item 1, in [5] (specialized to free discrete ions).

Proposition 3.3 Any free discrete moleculeM : I → ({~y}] Z) can be decomposed as

M = (K~y(~u) ⊗ idZ)P,

whereP is a discrete prime. Any other decomposition ofM on this form, has the form(K~y(~x) ⊗ idZ)P ′, where there
exists auniqueα̂, given byui 7→ xi, such thatK~y(~u)α̂ = K~y(~x) andP = (α̂ ⊗ idZ)P ′.

7

3.2 Matching Sentences

We now define matching sentences and rules for deriving validmatching sentences.

Definition 3.4 Amatching sentenceis a 7-place relation among wirings and bigraphs, writtenωa, ωR, ωC ` a, R ↪→C, d,
satisfying thatωa, ωR, ωC are wirings, anda, R, C, d are discrete bigraphs,R andC have local inner faces, andR
is regular.

Definition 3.5 A matching sentenceωa, ωR, ωC ` a, R ↪→C, d, whereωR : U → Y , C has global outer namesV ,
andd has global outer namesZ, is valid, denotedωa, ωR, ωC � a, R ↪→C, d, iff

(id ⊗ ωa)a = (id ⊗ ωC)(C ⊗ idY ⊗ idZ)(ωR ⊗ id)(R ⊗ idZ)d.

Note that for a valid sentenceωa, ωR, ωC ` a, R ↪→C, d, if we let a′ = (id⊗ωa)a, C′ = (id⊗ωC)(C ⊗ idY ⊗ idZ),
and R′ = (ωR ⊗ id)R, thena′ = C′(R′ ⊗ idZ)d. Conversely, if, for generala′, C′, R′, d we have a match
a′ = C′(R′ ⊗ idZ)d, then by Proposition 3.1, we can decomposea′, C′, andR′ and obtain a corresponding valid
sentence. Thus valid sentences precisely capture the abstract definition of matching.

3.3 Rules for Matching

PERM
ωa, ωR, ωC ` a,

Nm

i Pπ(i) ↪→C, (π ⊗ id)d

ωa, ωR, ωC ` a,
Nm

i Pi ↪→Cπ, d

PAR
ωa, ωR, ωC || ω ` a, R ↪→C, d ωb, ωS, ωD || ω ` b, S ↪→D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω ` a ⊗ b, R ⊗ S ↪→C ⊗ D, d ⊗ e

LSUB
σa ⊗ ωa, ωR, σC ⊗ ωC ` p,R ↪→P, d σa : Z → W σC : U → W

ωa, ωR, ωC ` (cσa ⊗ id)(Z)p, R ↪→(cσC ⊗ id)(U)P, d

MERGE
ωa, ωR, ωC ` a, R ↪→C, d

ωa, ωR, ωC ` (merge ⊗id)a, R ↪→(merge ⊗id)C, d

ION

ωa, ωR, ωC ` (
Nn

i (vi)/(Xi) ⊗ id)p, R ↪→(
Nn

i (vi)/(Zi) ⊗ id)P, d

α = ~y/~u σy : {~y} →

σy || ωa, ωR, σyα || ωC ` (K~y(~X) ⊗ id)p,R ↪→(K~u(~Z) ⊗ id)P, d

SWITCH
ωa, idε, ωC(σR ⊗ ωR ⊗ id) ` p, id ↪→P, d σR : W → U

ωa, ωR, ωC ` p, (cσR ⊗ id)(W)P ↪→pUq, d

PRIME-AXIOM
ω, idε, ω(α−1 ⊗ id) ` p, id ↪→pαq, p

WIRING-AXIOM
y,XR/∅, y/(XR] Xd) ` idε, idε ↪→ idε, Xd/∅

CLOSE

{~yi} = Y {~Zi} = Z σZ
R : U → Z

(
Nm

i yi/Xi) ⊗ (
Nl

i zi/Xi+m) ⊗ σa,

(
Nm

i yi/Yi) ⊗ idU ⊗ σC
R, (

Nl

i zi/Zi)σ
Z
R ⊗ σC ⊗ idY ` a, R ↪→C, d

(
Nm

i /yi yi/Xi) ⊗ (
Nl

i /zi zi/Xi+m) ⊗ σa,

(
Nm

i /yi yi/Yi) ⊗ σZ
R ⊗ σC

R, (
Nl

i /zi zi/Zi) ⊗ σC ` a, R ↪→C, d

Figure 3: Rules for matching binding bigraphs

8

In Figure 3 we presenwitht a set of rules for inferring matching sentences. In the premises of the rulesPERM and
ION, and in the conclusion of rulesMERGE, ION, andSWITCH we require theid’s to have width0 (hence be link graph
identities). This determines them entirely from the context.

We now explain the rules.
ThePERM rule simply pushes a permutation on the inside of the contextthrough the redex, permuting the discrete

primes, and producing a pushed-through permutationπ, depending onπ and the innerface of the redex, as stated in
the Push-Through Lemma [5].

ThePAR rule explains how to match a product, given two valid matches, whichsharesome context wiringω if the
two parts of the redex share a (necessarily global) name, cf.Figure 4.

K L

xw1y1 y2w2 z

a b

ωa ωb

YC = {w}
YD = {w, z}

x y1 y2 z

x y1 y2

w

w

ω

z

C⊗idYC
idYD

⊗D

ωC ωD

K L

xw1y1 y2w2 z

R S

ωR ωS

Figure 4: Matching a product using thePAR rule

The LSUB rule allows us to match any discrete prime (c.f. Proposition3.2) by matching an underlyingfree
(name)discrete prime with the wiring of agent and context extended with the underlying global substitutionsσa and
σC. In other words, this rule expresses that we can match a bigraph with local names by matching the corresponding
free bigraph (forgetting that the names are local) and then remember to make the correct names local again.

The MERGE rule simply states that to match bigraphs with an outer mergeand a globalid, we must be able to
match the underlying bigraphs.

The ION rule works intuitively by splitting up a binding ion into a free, discrete ion and an underlying local
substitution. For any given match of discrete primes, we cancompose with ionsK

~y(~X) or K
~n(~Z), if we extend the

wirings of agents and contexts with isomorphic wiring on theouter names~y and~n; stated in the rule by requiring
that we extend withσy andσyα (whereα = ~y/~n). For example, if we seek to match the agenta = (id ⊗ K

~y(~X))p

yielding a contextC = (id ⊗ K
~u(~Z))P , then it suffices to consider matching ofa′ = (~v)/(~X)p yielding a context

C′ = (~v)/(~Z), as illustrated in Figure 5.

K

y1 y2

y′
1 y′

2

σy

p
x1x2x3x4

a

K

u1 u2

y′
1 y′

2

σyα

P

z1z2z3z4

C

v1 v2 v3

p
x1x2x3x4

a′

v1 v2 v3

P

z1z2z3z4

C′

Figure 5: Matching ion agenta yielding contextC by matchinga′ yielding contextC′

Given an agent and considering an inference tree operationally bottom up, the rules specify how to decompose the
agent whileconstructingthe corresponding context (cf. e.g. theION rule). At the point where the root of the redex is
matched, theSWITCH rule is applied, switching the redex into context position,so that further decomposition of the

9

agentchecksthat the redex matches. Thus, when inferring a match, every rule exceptSWITCH can be used in two
modes: one where the agent and redex are given, resulting in acontext and parameter; and one where the agent and
context are given, resulting in a parameter.

The PRIME-AXIOM andWIRING-AXIOM axioms are our base cases and are intuitively clear (the latter is used to
match bigraphs of zero width).

TheCLOSErule allows us to infer a match foropenbigraphs and “close” this match by replacing names in wirings
with edges, taking care to split multi-closures appropriately. For example, the agenta in Figure 6 is matched by
matching agenta′ and then closing the namesy, z1 andz2. So internal agent edges matched by internal redex edges

a R C

K1 K2 L1 L2 M1 M2 K1 K2 L1

z

L2 M1 M2

z

K1 K2 L1 L2 M1 M2

y z2z1

K1 K2 L1

y u1 u2

L2 M1 M2

z2

u1

z1

u2y

y

a′ R′ C′

Figure 6: Matching closed links within and between redex andcontext

are namedyi, and edges matched by internal context edges are namedzi.

Theorem 3.6 The rules for matching in Figure 3 are sound, i.e., any matching sentence that can be derived is valid.

Proof: Straightforward, but tedious, standard algebraic manipulations.
The completeness theorem will be proved by induction on the size of valid sentences, which is defined as follows.

Definition 3.7 The size of a matching sentenceωa, ωR, ωC ` a, R ↪→C, d is the number of ions ina.

The following lemmas express how a valid sentence may be derived by applications of inference rules to valid
sentences of lesser or equal size. The proofs proceed by firstdecomposing the components of the given valid sentence,
then defining the components of the valid sentence(s) claimed to exist and, finally, verifying that (1) the sentences
claimed to exist really are valid and (2) that the given sentence can indeed be derived as claimed. The decompositions
are obtained via Propositions 3.1, 3.2, and 3.3, and the verifications proceed using lemmas found in [5] (in particular,
the “push-through-lemma,” which expresses how we can push apermutation “through” a product of primes, permuting
the order in which they appear in the product, and producing apermutation that reorders the sites in the primes to
preserve the inner face).

Lemma 3.8 Every valid sentenceωa, ωR, ωC � a, R ↪→C, d is provable using theCLOSE and thePERM rule on a
valid sentence, of equal size, of the formσ′

a, σ′
R, σ′

C � a, S ↪→
⊗n

i Pi, e.

Lemma 3.9 Every valid sentenceσa, σR, σC � a, R ↪→Q⊗
⊗n

i Pi, d, withP andPi prime and discrete, is provable
using thePAR rule on valid sentences, of lesser or equal size, of the formσP

a , σP
R, σP

C || σS
C � p, S ↪→P, e and

σC
a , σC

R, σC
C || σS

C � a′, R′ ↪→
⊗n

i Pi, e
′.

Lemma 3.10 Every valid sentenceσa, σR, σC � a, R ↪→ idε, d is provable using thePAR andWIRING-AXIOM .

Lemma 3.11 Every valid sentenceωa, ωR, ωC � p, R ↪→P, d, with p andP prime and discrete, is provable using the
LSUB rule on a valid sentence, of lesser or equal size, of the formω′

a, ω′
R, ω′

C � p′, R ↪→P ′, d, wherep′ andP ′ are
discrete free primes.

10

Lemma 3.12 Every valid sentenceσa, σR, σC � p, R ↪→P, d, with p and P discrete and free primes, is provable
usingMERGE, PAR (iterated), andSWITCH rules on valid sentences, each of lesser or equal size, and each on one of
two forms:

• σ′
a, σ′

R, σ′
C � pN , id ↪→PN , e, wherepn andPN are free discrete primes,

• σ′
a, σ′

R, σ′
C � m, S ↪→M, e, wherem andM are free discrete molecules.

Lemma 3.13 Every valid sentenceσa, σR, σC � m, R ↪→M, d, with m andM free discrete molecules, is provable
using theION rule on a valid sentenceσ′

a, σ′
R, σ′

C � p, R ↪→P, d, of lesser size, wherep andP are discrete primes.

Lemma 3.14 Every valid sentenceσa, σR, σC � p, id ↪→P, e, with p andP free discrete primes, is provable using
the MERGE and PAR (iterated) rules on valid sentences of equal or lesser size,which are either instances of rule
PRIME-AXIOM or of the formσ′

a, σ′
r, σ

′
M � m, R ↪→M, d.

Theorem 3.15 The rules for matching in Figure 3 are complete, i.e., any valid matching sentence can be derived from
the rules.

Proof: By induction on the size of a sentence. By the lemmas above, wehave that all valid sentences with sizen
can be derived from valid sentences of the formσa, σR, σC � m, R ↪→M, d, with m andM free discrete molecules,
of size less than or equal ton. By Lemma 3.13, these can be derived from sentences of size less thann.

4 Towards Algorithms for Matching

The completeness theorem tells us that we can find all valid matching sentences by applications of the rules for
matching. Thus the rules for matching define an algorithm formatching, for instance easily expressed in Prolog,
which simply operates by searching for inference trees using the rules.

Although we can (e.g. in prolog) base a matching algorithm directly upon the matching rules, we do not claim
that an efficient matching algorithm has to be so based. We have introduced matching rules for a dual purpose: first,
to characterise matching structurally and inductively in order to understand it; second, to provide a point from which
to begin the search for truly efficient matching algorithms,and to verify them. This rigorous approach to matching is
justified, in our view, because matching will be the workhorse of any implementation of bigraph dynamics, exactly as
matching is the workhorse of evaluation in functional languages such as Standard ML.

In practice, one is, of course, interested in minimizing unnecessary blind search, and thus, e.g., only search for
inference trees of a certain form. Indeed, one can show that it suffices to consider so-callednormal inference trees,
which put restrictions on the order in which the inference rules are applied (such as, e.g., always concluding with the
CLOSE rule). We shall not include a formal definition of normal inference trees here, but rather discuss some of the
possibilities for defining normal inference trees. We first remark that to retain completeness, any definition of normal
inference must, of course, ensure no loss of provability. Looking at the formulations of the lemmas leading up to the
completeness theorem, we see that there are indeed several possibilities for the definition of normal inference tree. For
example, from Lemma 3.8 we see that we are free to conclude each inference tree withCLOSEand thenPERM or vice
versa. Further, in several rules we are allowed to propagateclosed links, even thoughCLOSE intuitively makes that
unnecessary. We have chosen to leave this freedom in the rulesystem and instead comment on how we couldextend
the set of rules to allow even more freedom in chosing our definition of normal inference tree. This is important when
thinking about implementations, as each definition of normal inference tree corresponds to a different algorithmic
approach to matching.

One may say that the current set of rules naturally give rise to normal inferences that are a mix between matching
the link graph “lazily”or “eagerly”. Instead of theCLOSE rule, one could have amended thePAR andION rules (those
with || in the conclusion) such that they would also handle matchingof closures. This would have allowed true “by
need” link-matching. Conversely, one could have amended the CLOSE to also compare substitutions, allowing us to
consider matching of discrete bigraphs up to renaming isos on their outerfaces. If we amended theLSUB andSWITCH

rules to work accordingly, this would actually preclude theneed of for the wiringsωa, ωR, ωC in matching sentences.
It seems, though, that the tedious complexity added into these rules would mean that we would gain little in removing

11

complexity from the rules as a whole. Anyhow, these changes would allow us to define a variant of normal inferences,
which would be “strict” in the link graph, in that we would immediately be able to reject possible matches based on
the link graph (instead of the place graph).

Another possibility would be to add a ruleGLOB, allowing us to match all wiring stemming from asingleprime as
global wiring. This idea seems to indicate that matching inlocal bigraphs [14] (where there is no global linkage but
instead multilocated names) could be handled similarly, byrecasting the rules to work on local links and just locating
names at all roots where they occur.

4.1 Representations of Graphs

An implementation of matching must, of course, represent bigraphs in some way. One possibility is to represent bi-
graphs directly by place and link graphs, and then implementthe normal form lemmas, which express how bigraphs
may be decomposed into simpler bigraphs; then matching can proceed by induction on the decomposed graph. In
general, however, the “decomposition functions” returnsetsof possible decompositions, because normal forms are
only unique up to certain permutations. (For example,merge(M1 ⊗ M2) = merge(M2 ⊗ M1).) A matching im-
plementation needs to explore all the possible decompositions. This can be made explicit formally, by phrasing the
inductive characterization of matching not on bigraphs buton bigraphicalexpressions(syntax), as defined in [13, 5].
Doing so forces us to add an inference rule, which allows one to replace any expression in a matching sentence
ωa, ωR, ωC ` a, R ↪→C, d, saya, by another, saya′, that is provably equal via the axioms for equality in [5]. Doing
so clearly yields a complete set of rules on bigraphical expressions. When defining normal inference trees for these,
one seeks, of course, to restrict the application of the equality axioms. The definition of normal inference trees will
thenformally explicateall the possibilities that a matching algorithm need to explore. We have worked out a definition
of normal inference tree for matching of place graphexpressionsand proved it complete. Based on that experience, we
believe it should not be too hard to work out a suitable definition of normal inference tree binding bigraph expressions
and prove it complete.

5 Conclusion and Related Work

We have presented a sound and complete inductive characterization of matching for binding bigraphs. We are currently
working toward an implementation of matching based upon thecharacterization.

Bigraphical reactive systems are related to graph transformations systems; see [6] for a recent comprehensive
overview of graph transformation systems. In particular, bigraph matching is strongly related to the general graph
pattern matching (GPM) problem, so general GPM algorithms might be applicable [18, 7, 11, 21]. Due to the special
structure of bigraphs, general GPM algorithms are expectedto be inefficient, although some GPM tools [20] use
heuristic search strategies that might be able to discover and exploit bigraph structure. A special aspect of bigraphs is
that we may match a set of subtrees with a single node (site) inthe redex, and match multiple redex roots in different
places within the agent. Fu [7] handles such wildcard nodes and multiple patterns, but directly applying his algorithm
is not straightforward, as he attacks the problem of tree isomorphism of rooted graphs unfolded to finite unbounded
depths. The subtree isomorphism problem [16, 19, 17] is simpler than GPM, but applying it directly to the place
graphs of bigraphs would not exploit the constraints imposed by the link graphs. Rather, efficient implementations of
bigraph matching should be derived from the initial implementation by experimenting with different normal inference
tree definitions, and combining it with subtree isomorphismalgorithms. The inductive characterization provided here
will make it easier to prove the actual algorithm correct.

6 Acknowledgments
This work was funded in part by the Danish Research Agency (grant no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

12

References
[1] Birkedal, L., Bigraphical Programming Languages—a LaCoMoCo research project, in: Second UK UbiNet Workshop, Cambridge, 2004,

position Paper.

[2] Birkedal, L., T. C. Damgaard, A. J. Glenstrup and R. Milner, Matching of bigraphs — proofs of soundness and completeness, available on
request.

[3] Birkedal, L., S. Debois, E. Elsborg, T. Hildebrandt and H. Niss,Bigraphical Models of Context-aware Systems, in: FOSSACS ‘06: Proceedings
of 9th International Conference on Foundations of SoftwareScience and Computation Structures, LNCS3921(2006).

[4] Birkedal, L., S. Debois and T. Hildebrandt,Sortings for reactive systems, Technical Report 84, IT University of Copenhagen (2006), iSBN
87-7949-124-3.

[5] Damgaard, T. C. and L. Birkedal,Axiomatizing binding bigraphs (revised), Technical Report TR-2005-71, IT University of Copenhagen
(2005).

[6] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,” Monographs in Theoretical Computer
Science. An EATCS Series, Springer, 2006.

[7] Fu, J. J.,Directed graph pattern matching and topological embedding, Journal of Algorithms22 (1997), pp. 372–391.

[8] Jensen, O. H., “Mobile Processes in Bigraphs,” Ph.D. thesis, Univ. of Cambridge (2005), forthcoming.

[9] Jensen, O. H. and R. Milner,Bigraphs and mobile processes (revised), Technical Report 580, University of Cambridge (2004).

[10] Jensen, O. H. and R. Milner,Bigraphs and mobile processes (revised), Technical Report UCAM-CL-TR-580, University of Cambridge –
Computer Laboratory (2004), iSSN 1476-2986.

[11] Larrosa, J. and G. Valiente,Constraint satisfaction algorithms for graph pattern matching, Mathematical Structures in Computer Science12
(2002), pp. 403–422.

[12] Leifer, J. J. and R. Milner,Transition systems, link graphs and Petri nets, Technical Report 598, University of Cambridge (2004).

[13] Milner, R.,Axioms for bigraphical structure, Technical Report 581, University of Cambridge (2004).

[14] Milner, R.,Bigraphs whose names have multiple locality, Technical Report UCAM-CL-TR-603, University of Cambridge, Computer Labo-
ratory (2004).
URL http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf

[15] Milner, R.,Pure bigraphs, Technical Report 614, University of Cambridge (2005).

[16] Selkow, S. M.,The tree-to-tree editing problem, Information Processing Letters6 (1977), pp. 184–186.

[17] Shamir, R. and D. Tsur,Faster subtree isomorphism, Journal of Algorithms33 (1999), pp. 267–280.

[18] Ullman, J. D.,An algorithm for subgraph isomorphism, Journal of the ACM23 (1976), pp. 31–42.

[19] Valiente, G., “Algorithms on Trees and Graphs,” Springer, Berlin, 2002.

[20] Varró, G., D. Varró and K. Friedl,Adaptive graph pattern matching for model transformationsusing model-sensitive search plans, in: G. Kar-
sai and G. Taentzer, editors,GraMot 2005, International Workshop on Graph and Model Transformations, Electronic Notes in Theoretical
Computer Science, 2005.
URL http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/gramot05_vvf.pdf

[21] Zündorf, A., Graph pattern matching in PROGRES, in: J. Cuny, H. Ehrig, G. Engels and G. Rozenberg, editors,Proceedings of the 5th
International Workshop on Graph-Grammars and their Application to Computer Science, LNCS1073(1996), pp. 454–468.

13

http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/gramot05_vvf.pdf

	Introduction
	Binding Bigraphs
	Concrete Bigraphs
	Controls
	Abstract Bigraphs
	Interfaces
	Discrete and Regular Bigraphs
	Tensor Product, Parallel Product, and Composition
	Active, Passive and Atomic Controls
	Bigraphical Reactive Systems
	Notation, Basic Bigraphs, and Abstraction

	Inductive Characterization of Matching
	Preliminaries
	Matching Sentences
	Rules for Matching

	Towards Algorithms for Matching
	Representations of Graphs

	Conclusion and Related Work
	Acknowledgments

