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Matching of Bigraphs

Lars Birkedal
Troels Christoffer Damgaard
Arne John Glenstrup
Robin Milner

Abstract
We analyze the matching problem for bigraphs. In particul@rpresent a sound and complete inductive charac-
terization of matching of binding bigraphs. Our resultse#tve way for a provably correct matching algorithm, as
needed for an implementation of bigraphical reactive syste

1 Introduction

Over the last decade, a theory of bigraphical reactive systeas been developdd [9)] 13] 15]. Bigraphical reactive
systems (BRSs) provide a graphical model of computationtirtlvboth locality and connectivity are prominent. In
essence, higraphconsists of glace grapha forest, whose nodes represent a variety of computatidnetts, and a
link graph, which is a hyper graph connecting ports of the nodes. Bligajan be reconfigured by meangexdction
rules Loosely speaking, higraphical reactive systemonsists of set of bigraphs and a set of reaction rules, which
can be used to reconfigure the set of bigraphs. BRSs have beeloged with principally two aims in mind: (1) to be
able to model directly important aspects of ubiquitouseyst by focusing on mobile connectivity (the link graph) and
mobile locality (the place graph), and (2) to provide a uatifien of existing theories by developing a general theory,
in which many existing calculi for concurrency and mobilihay be represented, with a uniform behavioural theory.
The latter is achieved by representing the dynamics of pligdoy an abstract definition of reaction rules from which
a labelled transition system may be derived in such a wayahatssociated bisimulation relation is a congruence
relation. The unification has recovered existing behawbtleories for ther-calculus[[9], the ambient calculus [8],
and has contributed to that for Petri néisi[12]. Thus theuatan of the second aim has so far been encouraging.
In [3], Birkedal et al. initiate an evaluation of the first gim particular it is shown how to give bigraphical models of
context-aware systems.

As suggested and arguedlin([®/ 11, 3] it would be very usefulteetan implementation of the dynamics of bigraph-
ical reactive systems to allow experimentation and sinuatin the Bigraphical Programming Languages research
project at the IT University, we are working towards such mplementation. The core problem of implementing
the dynamics of bigraphical reactive systems isttieching problemthat is, to determine for a given bigraph and
reaction rule whether and how the reaction rule can be apfieswrite the bigraph. The topic of the present paper is
to analyze the matching problem.

In Figure[l we show several bigraphs. Consider the bigrapteda. It is intended to model two buildings, one
belonging to a corporation and one belonging to a consujtgraup. Inside the buildings are laptops with data nested
inside folders. The nesting structure depicts the placphgrdinks are used to name the buildings and, moreover,
to model which folders can be shared between the corporatidrthe consultancy group and inside the corporation.
Thus the laptop shown in the middle is intended to belong nawltant working for the corporation — the consultant
has folders with data belonging to the consultancy groug l{ttk shown to the left) and folders with data belonging
to the corporation (the link shown to the right). The factttfidders belonging to the corporation should not leave the
corporation is expressed by linking those folders to a sleddinding port on the corporation building, indicated by
the circle.

The abstract semantic definition of matching, as definedarittbory of bigraphs]9], is roughly as follows (omit-
ting many details): Given a reaction rule with red&and reactunz’ (with R and R’ both bigraphs), and a bigraph
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Figure 1: Example of a ground agent= C o (id, ® R) o d. Reaction ruleR — R’ copies data between connected
folders.



A (the agent to be rewritten), 4 = C' o (R ® idz) o d, then it can be rewritten t6' o (R’ ® idz) o d. Hereo denotes
composition of bigraphs and is the set of names af. In other words, if the reaction rulmatchesA, in the sense
that A can be decomposed into a contéxtredexk and a parametet, then A can be rewritten.

Consider again the example in Figlife 1. There is a reactierespressed by the redékand the reactunk’; the
intention of the reaction rule is to allow copying of datavee¢n connected folders in the same nesting hierarchy (note
the link in R between the two folders and the so-called local ngnerhe agent: can be written as a composition
of C, R andd — formally,a = C o (R ® id,) o d. Composition works by (1) plugging the roots Bfandd into the
holes (aka sites) af’ respectivelyR; (2) fusing together the connections between folderafid d) andz and folder
(in C), removing the name in the process; (3) fusing together the connection betwetocal namey and the two
folders in R and the namg and the bound port id’, removing the namg in the process. Note the useidf in the
compositiorn = C o (R ® id,) o d; it allows a name: from the parametet to be “passed through” the redex and be
attached to something in the conté€xt The reactumz’ contains a copy of the site numberkth R, expressing that
data is copied between the shared folders. The sites nuthbared2 in R allow the reaction rule to apply also when
the laptops contain other folders than the two that are atiede Thusa can be rewritten using the reaction rule to
another agent’ like a but with two data items in the rightmost laptop (the agéns not shown in FigurEl1).

In the present paper we provide imductive characterizatioof whenA = C' o (R ® idz) o d holds, by induction
on A andR (the input to a matching algorithm). It is a precise chandzation in the sense that it is both sound and
complete with respect to the abstract definition. This ptesia detailed analysis of the matching problem, and paves
the way for developing angroving correctan actual matching algorithm (which, givehand R, must findC, d,
andZ such thatd = C o (R ® idz) o d holds). We further include a discussion of how one may danatching
algorithms from our inductive characterization. We wilpogt on our work on an actual implementation of matching
in a subsequent paper.

Our inductive characterization is based on normal formtbes for bigraph< [13.5], which express how general
bigraphs may be decomposed into a composition of simplgrhgralrhe normal form theorems and also the inductive
characterization we present here is based on so-cditetletedecompositions of bigraphs. Discrete bigraphs are
bigraphs with a simple form of linkage. To a large extents tillows us to analyze matching of a general bigraph by
considering its link graph and place graph separately.

Of course, the matching problem is closely related to thechiplete graph embedding problem. Thus we
analyze the embedding problem for a restricted class ofhgramd our inductive characterization makes good use of
the algebraic presentation of such grajhs[[l3, 5]. One hbpematching implementations will be efficient in practice
since redices typically are small. Furthermore, sortirggdgphs[[4] could be a source of early search elimination.

The remainder of this paper is organized as follows. In $aligive an informal description of binding bigraphs.
The main contribution of this paper is in Sectidn 3, where wesent our inductive characterization of matching.
Sectior# discusses how the inductive characterizationenaure a correct and efficient algorithm for matching. In
the final sections we discuss related work and conclude.

For lack of space, most proofs [2] have been omitted fromdkisnded abstract.

2 Binding Bigraphs

Here we present bigraphs informally; for a formal definitisae [10.5].

2.1 Concrete Bigraphs

A concrete binding bigrapti’ consists of glace graphGF and alink graphGL. The place graph is an ordered list
of trees indicatindocation with rootsrq, ..., r,, nodesu, ..., v, and a number of special leaves . . ., s, called
sites while the link graph is a general graph over the nodesget. . , v, extended withinner namesz, . .., ;, and
equipped with hyper edges, indicatiognnectivity

We usually illustrate the place graph by nesting nodes, awslin the upper part of Figuid 2. knk is a hyper
edge of the link graph, either amternal edge: or anamey. Names and inner names cangddebal or local, the latter
being located at a specific root or site, respectively. I,y is located at-, indicated by a small ring, anch
andz. are located at,, indicated by writing them within the site. Global name®lik andy, are drawn anywhere at



Place graplG? : 3 — 2 Link graphGY : X — Y

BigraphG : (3, [{}, {}, {=o, z2}], X) — (2, [{yo}, {}],Y)  roots: o o names. vo 1 Y2
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Figure 2: Example bigraph illustrated by nesting and asegpard link graph.

the top, while global inner names likg are drawn anywhere at the bottom. A link, including intereddes likee” in
the figure, can be located with obender (the ring), in which case it is bound link,otherwise it isfree However, a
bound link must satisfy thecope rulea simple structural requirement that all points of the ligkwithin its location
(in the place graph), except for the binder itself. This pregy, ande in the example from being bound.

2.2 Controls

Every nodev has acontrol K which determines a binding and free arity, indicatediby K. In the example of
Figurel2, we could have; : K;,i = 0,1,2,3,whereKg: 0 —1,K; : 0 — 2, K> : 0 — 3, K3 : 1 — 2. The arities
determine the number of bound and fpemts of the node, to which bound and free links, respectivelycarmected.
Ports and inner names are collectively referred tpants

2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal egigethe basis of bigraph theofy [10], our prime interest
is in abstract bigraphsequivalence classes of concrete bigraphs that differ anthé names of nodes and internal
edges. Abstract bigraphs are illustrated with their noderods, as shown in Figufg 1. In what follows, “bigraph” will
thus mean “abstract bigraph.”

2.4 Interfaces

Every bigraphG has twointerfacesl and.J, written G : I — J, wherel is theinner faceandJ the outer face An
interface is a triplém, X, X'), wherem is thewidth (the number of sites or roots, the entire set of local and global
names, anc indicates the locations of each local name, cf. Fi§iire 2.ate+ (0, [], {}); whenm = 1 the interface
is prime,and if allz € X are located b)X', the interface isocal.

A bigraphG : I — J is calledground,or anagent if I = ¢, primeif I is local andJ prime, and awiring if
m = n = 0, wherem andn are the widths of and.J, respectively. Fof = (m, X, X), bigraphid; : I — I consists
of m roots, each root; containing just one site;, and a link graph linking each inner namec X to namer.

2.5 Discrete and Regular Bigraphs

We say that a bigraph discreteiff every free link is a name and has exactly one point. Thaueiof discrete bigraphs

is that any connectivity by internal edges must be bound paxleé ports can be accessed individually by the names of
the outer face. In Figulld 1, onlg, R’ andd are discrete, because the free internal edgesaridC have two points.
Further, a bigraph imame-discretdf it is discrete and every bound link is either an edge, bit(is an outer name)
has exactly one point. Note that name-discrete impliegelisc



A bigraph isregularif, for all rootsr;; andr;/, and all sites;; ands; wheres; is a descendant ef. ands; of r;,
if i < jtheni’ < j’. The bigraphs in the figures are all regular, the permutatidable[] is not. The virtue of regular
bigraphs is that certain permutations can be avoided wheiposing them from basic bigraphs.

2.6 Tensor Product, Parallel Product, and Composition

For bigraphs7; andG, that share no names or inner names, we can makemiser productz; ® G4 by juxtaposing
their place graphs, constructing the union of their linkpdys, and increasing the indexes of site&finby the number
of sites of G . For instance, bigrapth of Figurel is a tensor product of four primes. We wi@8' G; for the iterated
tensorGy ® -+ - @ Gp—1.

Theparallel productG, || G- is like the tensor product, except global names can be shi&irgds shared, all points
of y in G; andG2 become the points af in G, || Ga.

We cancomposebigraphsG, : I — I’ andG; : I’ — J, yielding bigraphG; o G2 : I — J, by “plugging in”
the roots ofGs into the sites of7, eliminating both, and connecting names(af with inner names ofy;—as in
Figurel, whered = C o (id, ® R) od. In the following, we will omit the &', and simply writeG; G5 for composition,
letting it bind tighter than tensor product.

2.7 Active, Passive and Atomic Controls

In addition to arity, each control is assigne#tiad, eitheratomic, active or passive, and describe nodes according
to their control kinds. We require that atomic nodes contaimodes except sites; any site being a descendant of a
passive node ipassiveotherwise it isactive If all sites of a bigraplZ are active(7 is active

For Figurdl we could hav@ata : atomic(0 — 0), Folder : passive(0 — 1), Laptop : active(0 — 0), Building :
active(1 — 1).

2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of contegality and connectivity. To model algynamicswe
introducebigraphical reactive system{RS) as a collection afules. Each ruleR —¢ R’ consists of a regulaedex
R : I — J,aregulareactumR’ : I’ — J, and aninstantiationp, mapping each site a®’ to a site ofRR. Interfaces
I={mX,X)andI' = (m/, )?’,X’> must be local, and are related &Y = X,;). We illustratep by a ‘i := j', as
shown in Figurgll, wheneveli) = j # i. Given an instantiatiop and a discrete bigraph= dy ® - - - ® dj, with
primed;’s, we leto(d) = dy) ® - - - ® dy), i.€., by copying, discarding and reordering partgd.of

Given an agent, a matchof redexR is a decompositiom = C(idz ® R)d, with active context’, discrete
parameted, and some set of namé&s Dynamics is achieved by transformingnto a new ageni’ = C(idz ® R')d’,
whered’ = p(d)—an example is shown in Figuké 1. This definition of a matctsiingd9], except that we here also
requireR to be regular. This restriction to regular redexegand to discrete parametefsdoes not limit the set of
possible reactions. We restrict attention to regiitarbecause it simplifies the inductive characterization afehing
by allowing us to omit trivial permutations.

2.9 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation: denotes union of sets required to be disjoint; we W{f’e} for
Yo WY, ; whenY = Yo,...Y,—1, and similarly{g} for {yo,...,yn—1}. For interfaces, we writ& to mean
(0,]], X), (X) tomean(1, [{}], X) and(X) to mean(1, [ X], X).

Any bigraph can be constructed by applying compositiorséeproduct and abstraction to a set of basic bigraphs,
shown in Tabl€[]5]. Given a primB, the abstraction operation localises a subset of its oaeres. Note that the
scope rule is necessarily respected since the inner facgpofmg P is required to be local, so all points &f are
located within its root. The abstraction operator is deddig(-)- that reaches as far right as possible.

For a renamingy : X — Y, we write"a™ to mean(id; ® «)" X", and wheno : U — Y, we letg =
(Y)(o®id)) U™,



Notation Example

012
. .
Merge merge,, :n — 1 merges = D D Dj
iz T TTTT
. 0 l
Concretion "X 7:(X) — (X) {21, 22} =! |
. l
Yiy2
()P o JIL
N | |
Abstraction 77" (1,[Y], ZwY) {2 D {1, 92, 237 = |
Y1 Y2 ys
Substitution 7/X : X —Y  [y1,y2, ysl/[{x1, 22}, {}, {z3}] =
o 1 T2 I3
Y1 Y2 Y3
Renaming #/%:X —Y [y1,y2,ys]/[x1, 22, 23] =
Oé,ﬂ T1 T2 I3
Closure /XX —{} J{z1, w2, 23} = &y
B (/Z® a)o (/{z2,2a} ® [y1, y2]/[21, 23]) b
Wll’lng X oY [Z17Z27Z37
w : (0, e (onmsd mel] 0, D) &
Y1y
K {
lon vx) . K o1} fm =
L (X)) = () [y1,v2l({z1} {z2,23},{}]) |
. {ZH],} _\1 \2 HO :
Pe;mutatlon:m_)m {02,102 1} = ‘O O O

Table 1: Basic bigraphs, the abstraction operation, andblas ranging over bigraphs.



As an example, the bigraph of Figdide 2 can be written

G = (W (({yhy/YTY) @ {})(Y)P1)® P, ®y2/x1), where
w = (/e@idyy, y,1) 1 v2.el/{unt {2, v5. 95} {e €'} Y ={vo, w0, 50
Pro= (idgyy g .p.e) ® merges) ((idgyo,ep @ Kopy) Kipyo,e] @ Kapyy g .1) merge)
P = (Id{e’,yé’} b2 mergeQ)(K3[e’,y§’]([{wo,m2}]) ® I‘{}ﬁ)’
and for Flgur{ll we have = (id{consultancy,corporatwn} ® /Z) (pl || p2)' where
p1 = (id; ® Building[consuiancy] (1} LaPtop)Folder|, Data merge,
b2 = (Idz ® BUilding[corporatiun]([{m,yg} )({ylv yQ})(Id{Z,UlﬂJz} ® mergeQ) (p2 ® pg)
py = (idg.,,,} ® Laptop mergeQ)(FoIder[z] Datamerge, ® Folder},,Data merge,)
py; = (idy, ® Laptop)Foldery,,;Data merge,

3 Inductive Characterization of Matching

In this section we present our inductive characterizatiomatching. To ease the presentation we shall disregard the
requirement that the context in a match must be active (itréghtforward to extend the following presentation to
include the active requirement).

3.1 Preliminaries

In this subsection we introduce useful notation and esthtdome propositions about how one may decompose bi-
graphs. To simplify notation we shall simply wriigfor identity bigraphs, without a subscript showing the ifdee,
when it is clear from the context what interface is intended.

The following propositions express how bigraphs may be dguzsed into simpler constitutent components. The
proofs follow easily from the normal form theorem [d [5]. NMdhatw, o, c andw range over wirings, renamings,
substitutions and permutations, cf. Talble 1.

Proposition 3.1 Any bigraphG can be decomposed into a composition of the following form
G=(w®id)(D®idy),

whereD is discrete and with local innerface. Any other decompositfG on this form takes the for¥ = (v’ ®
id)(D' ® idy ), wherew’ = w(a ® idy) and D’ = (o' ® id) D, for suitablea.

Proposition 3.2 Any discrete bigraptD of widthn with local innerface can be decomposed such that

D = ()@ ®id)P),
where theP;’s are name-discrete and prime. Any other decompositiorh@nform of D takes the forn( ®?(c?z’- ®
id)P{)w’, where, for somev;, p;, forall i, P/ = (o?i_l ®id)Pip; (Qy pi)m' =, ando, = 7,a;.

For primes and molecules, the normal form can be fourdancit.
One can decompose binding |0Ks.( into Kz @5 (ui)/(X;). Such decompositions will be useful because
of the following proposition, which is a corollary of Theonel, item 1, in[[5] (specialized to free discrete ions).

Proposition 3.3 Any free discrete molecul® : I — ({7} W Z) can be decomposed as
M = (Kg(g) ®idz)P,

whereP is a discrete prime. Any other decompositioniéfon this form, has the forK;z) ® idz) P’, where there
exists auniquea, given byu; — x;, such thatk'y ;& = Ky andP = (& ® idz) P'.



3.2 Matching Sentences

We now define matching sentences and rules for deriving waditthing sentences.

Definition 3.4 Amatching sentends a 7-place relation among wirings and bigraphs, written wr,wc F a, R— C, d,
satisfying thatw,, wr, wc are wirings, ands, R, C, d are discrete bigraphsiz andC' have local inner faces, ani
is regular.

Definition 3.5 A matching sentence,, wr,wc - a, R— C,d, wherewr : U — Y, C has global outer nameg,
andd has global outer nameg, is valid, denotedv,, wr,wc F a, R — C, d, iff

([d@wa)a = (id@we)(C®idy ®idz)(wr @id)(R®idz)d.

Note that for a valid sentencg,, wr,wc + a, R— C, d, if we leta’ = (ild ® wa)a, C' = (id ® wc)(C Ridy Ridz),
andR' = (wr ® id)R, thena’ = C'(R’ ® idz)d. Conversely, if, for generad’, C’, R, d we have a match
a’ = C'(R’' ®idz)d, then by Propositioh 31, we can decompa&eC’, and R’ and obtain a corresponding valid
sentence. Thus valid sentences precisely capture theabdéfinition of matching.

3.3 Rules for Matching

Wa,wr,wc F a, Q" Pr;)— C, (T ®@id)d

PERM
Wa,wr,wc Fa, ;" Pi— Cr,d

Wa,wR,wc |wka, R—C,d Wh,ws,wp ||wkFb,S— D, e

PAR
Wa | wb,wr |ws,wc |wp [wFa®b,R®S—CR®D,d®e

Oa @ Wa,wr,0c Qwc Fp,R—-P,d o0a:Z—->W oc:U—-W

Lsue wa,or, G F (02 ®1d)(Z)p, R—(66 @id)(U)P,d

Wa,wr,wc Fa, R— C,d
MERGE

Wa, wR, wc F (merge ®id)a, R — (merge ®id)C, d

wa, wr,wec - (Q; (vi)/(Xi) @ id)p, R—(Q; (vi)/(Zi) ®id)P,d
a=g/u oy:{y}—
oy | wa,wr, oy | we F (K g) ®@id)p, R— (K 7 ®id)P,d

ION

Wa, ide,wc(or @ wr ® id) F p,id — P,d or: W —=U

SWITCH ——
wa,wr,wc F p, (or ®id)(W)P—"U",d

PRIME-AXIOM

w,ide, w(a ! ®id) F p,id —="a7, p

WIRING-AXIOM

Yy, Xr/0,y/(Xr W Xa) Fide, ide —ide, Xa /0

giy=Y {Z}=2 ok U—Z
(R 4i/X:) @ (Q; 2/ Xitm) @ 0a,
(®" y:/Y:) ®idu @ oR, (R 2:/Z:)0f ® oc ®idy Fa, R—C,d
(® Jyiyi/Xi) ® (R /2i 2/ Xism) @ 0a,
(" /yi i/ Vi) © ok @ oR, () /2 21/ %) @ oc - a, R—C.d

CLOSE

Figure 3: Rules for matching binding bigraphs



In Figurel3 we presenwitht a set of rules for inferring matghéentences. In the premises of the rilesm and
ION, and in the conclusion of rule8eRGE, ION, andswITCH we require theéd’s to have width) (hence be link graph
identities). This determines them entirely from the cohtex

We now explain the rules.

ThepPERMrule simply pushes a permutation on the inside of the conitegtigh the redex, permuting the discrete
primes, and producing a pushed-through permutatiolepending onr and the innerface of the redex, as stated in
the Push-Through Lemm@al[5].

ThePAR rule explains how to match a product, given two valid matchdsch sharesome context wiringy if the
two parts of the redex share a (necessarily global) namEjguire[4.

w le— w
a — Wh wc AT WD

xrW1Y1 Yaws2 z x Y w Y2 z

L0 Y coite| Gl |

Yo = {w} w
Yg = {w,z} " /\

Figure 4: Matching a product using ther rule

The LsuB rule allows us to match any discrete prime (c.f. Proposiiaf) by matching an underlyinfyee
(name)discrete prime with the wiring of agent and contex¢rsted with the underlying global substitutions and
oc. In other words, this rule expresses that we can match agigréth local names by matching the corresponding
free bigraph (forgetting that the names are local) and tkerember to make the correct names local again.

The MERGE rule simply states that to match bigraphs with an outer margka globald, we must be able to
match the underlying bigraphs.

The 10N rule works intuitively by splitting up a binding ion into aefe, discrete ion and an underlying local
substitution. For any given match of discrete primes, weaampose with ionsKg(X) or Kﬁ(z), if we extend the
wirings of agents and contexts with isomorphic wiring on theer nameg/ and#; stated in the rule by requiring
that we extend witlyy, andoya (wherea = ¢/7). For example, if we seek to match the agent (id ® Kﬂ()?))p
yielding a contextC' = (id ® Kﬁ(Z))P' then it suffices to consider matching@f = (4)/(X)p yielding a context

C’' = (v)/(Z), asillustrated in Figurig 5.

Figure 5: Matching ion agentyielding contextC' by matchingz’ yielding contexiC’

Given an agent and considering an inference tree operdsidiedtom up, the rules specify how to decompose the
agent whileconstructingthe corresponding context (cf. e.g. ttmn rule). At the point where the root of the redex is
matched, theswITCH rule is applied, switching the redex into context positisa that further decomposition of the



agentchecksthat the redex matches. Thus, when inferring a match, ewdeyaxceptswITCH can be used in two
modes: one where the agent and redex are given, resultingantaxt and parameter; and one where the agent and
context are given, resulting in a parameter.

The PRIME-AXIOM andWIRING-AXIOM axioms are our base cases and are intuitively clear (they liatused to
match bigraphs of zero width).

ThecLosErule allows us to infer a match fapenbigraphs and “close” this match by replacing names in wging
with edges, taking care to split multi-closures approghiat For example, the ageatin Figure[® is matched by
matching agent’ and then closing the namgsz; andz,. So internal agent edges matched by internal redex edges

:’ CQJ& (‘Q‘j‘

LKy Ko L Ly My My,

' K1 Ky Ly Ly My My,

Figure 6: Matching closed links within and between redex @mtext

are named;, and edges matched by internal context edges are named
Theorem 3.6 The rules for matching in Figuild 3 are sound, i.e., any matglsientence that can be derived is valid.

Proof: Straightforward, but tedious, standard algebraic maaiputs.
The completeness theorem will be proved by induction onitteecf valid sentences, which is defined as follows.

Definition 3.7 The size of a matching sentengg wr,wc F a, R— C, d is the number of ions in.

The following lemmas express how a valid sentence may beetkhy applications of inference rules to valid
sentences of lesser or equal size. The proofs proceed bgdiremposing the components of the given valid sentence,
then defining the components of the valid sentence(s) cthimexist and, finally, verifying that (1) the sentences
claimed to exist really are valid and (2) that the given sectecan indeed be derived as claimed. The decompositions
are obtained via PropositiohsBLT.13.2, 3.3, and thécagions proceed using lemmas found[ih [5] (in particular,
the “push-through-lemma,” which expresses how we can ppshrautation “through” a product of primes, permuting
the order in which they appear in the product, and producipgranutation that reorders the sites in the primes to
preserve the inner face).

Lemma 3.8 Every valid sentence,, wr,wc E a, R— C,d is provable using theLose and thepERM rule on a
valid sentence, of equal size, of the farfnog, o F a, S — Q. P, e.

Lemma 3.9 Every valid sentence,, or,oc F a, R— Q ® ®? P;, d, with P and P; prime and discrete, is provable
using thePAR rule on valid sentences, of lesser or equal size, of the fofmol, oL || 0 F p,S— P,e and
08, 05,06 | o0& Fd R — Q] P.e.

Lemma 3.10 Every valid sentence,, or, oc F a, R — id., d is provable using theAR andWIRING-AXIOM .

Lemma 3.11 Every valid sentence,, wr, wc F p, R— P, d, with p and P prime and discrete, is provable using the
LsuB rule on a valid sentence, of lesser or equal size, of the fofm’},, w;, E p’, R— P’,d, wherep’ and P’ are
discrete free primes.
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Lemma 3.12 Every valid sentence,,or,occ F p, R— P, d, with p and P discrete and free primes, is provable
USINgMERGE, PAR (iterated), andswITCH rules on valid sentences, each of lesser or equal size, acld@aone of
two forms:

e 0,0, 00 FpY, id— PN e, wherep™ and PV are free discrete primes,
o 0,,0n, 0, Fm,S— M, e, wherem and M are free discrete molecules.

Lemma 3.13 Every valid sentence,, or,oc F m, R— M, d, withm and M free discrete molecules, is provable
using theloN rule on a valid sentence,, o, o F p, R— P, d, of lesser size, whegeand P are discrete primes.

Lemma 3.14 Every valid sentence,, or,oc F p,id — P, e, with p and P free discrete primes, is provable using
the MERGE and PAR (iterated) rules on valid sentences of equal or lesser siggch are either instances of rule
PRIME-AXIOM or of the formo?,, 0., o', E m, R— M,d.

Theorem 3.15 The rules for matching in Figuid 3 are complete, i.e., anydmalatching sentence can be derived from
the rules.

Proof: By induction on the size of a sentence. By the lemmas abovaawe that all valid sentences with size
can be derived from valid sentences of the ferfior, oc E m, R— M, d, with m and M free discrete molecules,
of size less than or equal to By Lemmd3IB, these can be derived from sentences of sigéHam.

4 Towards Algorithms for Matching

The completeness theorem tells us that we can find all valitthirey sentences by applications of the rules for
matching. Thus the rules for matching define an algorithmnfiatching, for instance easily expressed in Prolog,
which simply operates by searching for inference treesgutsia rules.

Although we can (e.g. in prolog) base a matching algorithraadiy upon the matching rules, we do not claim
that an efficient matching algorithm has to be so based. We imnoduced matching rules for a dual purpose: first,
to characterise matching structurally and inductivelyrider to understand it; second, to provide a point from which
to begin the search for truly efficient matching algorithansg to verify them. This rigorous approach to matching is
justified, in our view, because matching will be the workleos§any implementation of bigraph dynamics, exactly as
matching is the workhorse of evaluation in functional laages such as Standard ML.

In practice, one is, of course, interested in minimizing ecessary blind search, and thus, e.g., only search for
inference trees of a certain form. Indeed, one can showtisaffices to consider so-callewbrmal inference tregs
which put restrictions on the order in which the inferendesware applied (such as, e.g., always concluding with the
cLosErule). We shall not include a formal definition of normal irdace trees here, but rather discuss some of the
possibilities for defining normal inference trees. We fieshark that to retain completeness, any definition of normal
inference must, of course, ensure no loss of provabilityKilg at the formulations of the lemmas leading up to the
completeness theorem, we see that there are indeed sevesdlifities for the definition of normal inference treerFo
example, from Lemm@E3.8 we see that we are free to concludeiefzrence tree witltLoSEand therPERM or vice
versa. Further, in several rules we are allowed to propadased links, even thougbLOSE intuitively makes that
unnecessary. We have chosen to leave this freedom in theystem and instead comment on how we caxtbnd
the set of rules to allow even more freedom in chosing our diefinof normal inference tree. This is important when
thinking about implementations, as each definition of ndrimf@rence tree corresponds to a different algorithmic
approach to matching.

One may say that the current set of rules naturally give asetmal inferences that are a mix between matching
the link graph “lazily”or “eagerly”. Instead of theLosErule, one could have amended ther andION rules (those
with || in the conclusion) such that they would also handle matchingosures. This would have allowed true “by
need” link-matching. Conversely, one could have amendedtioSE to also compare substitutions, allowing us to
consider matching of discrete bigraphs up to renaming isdb@ir outerfaces. If we amended theus andswITCH
rules to work accordingly, this would actually preclude tieed of for the wiringss,, wr, we in matching sentences.

It seems, though, that the tedious complexity added inteetiheles would mean that we would gain little in removing
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complexity from the rules as a whole. Anyhow, these changagdallow us to define a variant of normal inferences,
which would be “strict” in the link graph, in that we would imediately be able to reject possible matches based on
the link graph (instead of the place graph).

Another possibility would be to add a rute 0B, allowing us to match all wiring stemming fronsingleprime as
global wiring. This idea seems to indicate that matchintpoal bigraphsi[14] (where there is no global linkage but
instead multilocated names) could be handled similarlygwmasting the rules to work on local links and just locating
names at all roots where they occur.

4.1 Representations of Graphs

An implementation of matching must, of course, represegrapihs in some way. One possibility is to represent bi-
graphs directly by place and link graphs, and then implerttenhormal form lemmas, which express how bigraphs
may be decomposed into simpler bigraphs; then matching careed by induction on the decomposed graph. In
general, however, the “decomposition functions” retsetsof possible decompositions, because normal forms are
only unique up to certain permutations. (For examplerge(M; ® Ms) = merge(Ms ® Mj).) A matching im-
plementation needs to explore all the possible decompasitiThis can be made explicit formally, by phrasing the
inductive characterization of matching not on bigraphsdsubigraphicakxpressiongsyntax), as defined in_[18] 5].
Doing so forces us to add an inference rule, which allows oneplace any expression in a matching sentence
wa, wR,wc F a, R— C,d, saya, by another, say’, that is provably equal via the axioms for equality[ih [5]. iDg

so clearly yields a complete set of rules on bigraphical essions. When defining normal inference trees for these,
one seeks, of course, to restrict the application of the léguwexioms. The definition of normal inference trees will
thenformally explicateall the possibilities that a matching algorithm need to expl We have worked out a definition
of normal inference tree for matching of place grappressionand proved it complete. Based on that experience, we
believe it should not be too hard to work out a suitable dédinibf normal inference tree binding bigraph expressions
and prove it complete.

5 Conclusion and Related Work

We have presented a sound and complete inductive chamatten of matching for binding bigraphs. We are currently
working toward an implementation of matching based uporctsacterization.

Bigraphical reactive systems are related to graph trameftions systems; segl [6] for a recent comprehensive
overview of graph transformation systems. In particulégrdph matching is strongly related to the general graph
pattern matching (GPM) problem, so general GPM algorithrghtrbe applicable [18.]7, 1L, R1]. Due to the special
structure of bigraphs, general GPM algorithms are expettidat inefficient, although some GPM tools[20] use
heuristic search strategies that might be able to discowe@eaploit bigraph structure. A special aspect of bigraghs i
that we may match a set of subtrees with a single node (siteginedex, and match multiple redex roots in different
places within the agent. FUI[7] handles such wildcard noddswultiple patterns, but directly applying his algorithm
is not straightforward, as he attacks the problem of trem@phism of rooted graphs unfolded to finite unbounded
depths. The subtree isomorphism problénd [16,[19, 17] is leinthan GPM, but applying it directly to the place
graphs of bigraphs would not exploit the constraints imgdsethe link graphs. Rather, efficient implementations of
bigraph matching should be derived from the initial impletaion by experimenting with different normal inference
tree definitions, and combining it with subtree isomorphégorithms. The inductive characterization provided here
will make it easier to prove the actual algorithm correct.
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