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BI Hyperdoctrines, Higher-Order Separation
Logic, and Abstraction

Bodil Biering, Lars Birkedal?, and Noah Torp-Smith?

Department of Theoretical Computer Science, IT University of Copenhagen
{biering, birkedal, noah}@itu.dk

Abstract. We present a simple extension of separation logic which makes
the specification language higher-order, in the sense that quantification
over predicates and higher types is possible. The fact that this is a useful
extension is illustrated via examples; specifically we demonstrate that ex-
istential and universal quantification correspond to abstract data types
and parametric data types, respectively. We also illustrate that the se-
mantics we give is an instance of a general notion, namely that of a BI
hyperdoctrine, of models for predicate BI.

1 Introduction

Variants of the recent formalism of separation logic [26, 11] have been used to
prove correct many interesting algorithms involving pointers, both in sequential
and concurrent settings [16, 28, 4]. It is a Hoare-style program logic, and its main
advantage over traditional program logics is that it facilitates local reasoning.

The force of separation logic comes from both its language of assertions –
which is a variant of propositional BI [22] – and its language of specifications, or
Hoare triples. In the present paper, we extend both of these. First, we introduce
an assertion language which is a variant of higher-order predicate BI. The exten-
sion from the traditional assertion language of separation logic is simply that we
allow function types and have a type Prop of proposition, and we allow quantifi-
cation over variables of this type. Thus the assertion language is higher-order,
in the usual sense that it allows quantification over predicates. Next, we give a
specification logic for a simple second-order programming language in which it is
also possible to quantify over variables of any type. We provide models for both
the new assertion language and the specification logic, and provide inference
rules for deriving valid specifications. It turns out that it is technically straight-
forward to do so; we believe that this serves to emphasize that our notion of
higher-order predicate BI is the correct one for separation logic.

Next we consider the effectiveness of higher-order separation logic and argue,
with the use of several examples, that it is quite effective. In particular, we show
that higher-order separation logic can be used in a natural way to model data ab-
straction, via existential quantification over predicates corresponding to abstract
resource invariants; we do so by means of a worked example, which involves two
? Partially supported by Danish Technical Research Council Grant 56-00-0309.
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implementations of abstract priority queues. This way of reasoning about data
abstraction is more natural than the recently suggested abstract predicates of
Parkinson and Bierman [20], for providing modular proofs of programs using
abstract data types. Moreover, we show that, using universal quantification over
predicates, we may prove correct polymorphic operations on polymorphic data
types, e.g., reversing a list of elements described by some arbitrary predicate. For
this to be useful, however, it is clear that a higher-order programming language
would be preferable (such that one could program many more useful polymor-
phic operations, e.g., the map function for lists) — we have chosen to stick with
the simpler second-order language here to communicate more easily the ideas of
higher-order separation logic.

Having introduced higher-order separation logic and a semantics thereof, we
show that our semantics is in fact an instance of a general concept. Part of the
pointer model of separation logic, namely that given by heaps (but not stacks)
has been related to propositional BI. We show how the correspondence may be
taken further, in the sense that our notion of predicate BI corresponds to all
of the pointer model (including stacks). We also introduce the notion of a BI
hyperdoctrine, a simple extension of Lawvere’s notion of a hyperdoctrine [13] and
show that it soundly models predicate BI. We also show that our semantics is
an instance of this general semantics.

It should be noted that we consider a different notion of higher-order pred-
icate BI than that of [22, 23], which has a BI structure on contexts. However,
we believe that our notion of higher-order predicate BI with its class of BI
hyperdoctrine models is the right one for separation logic (Pym aimed to model
mulitiplicative quantifiers; separation logic only uses additive quantifiers); the
correspondence mentioned above serves to illustrate this claim. We also give
some applications of the extension of the assertion language of separation lan-
guage to higher-order.

Before proceeding with the technical development we give an intuitive jus-
tification of the use of BI hyperdoctrines to model higher-order predicate BI.
A powerful way of obtaining models of BI is by means of functor categories
(presheaves), using Day’s construction to obtain a doubly-closed structure on
the functor category [24]. Such functor categories can be used to model propo-
sitional BI in two different senses: In the first sense, one models provability,
entailment between propositions, and it works because the lattice of subobjects
of the terminal object in such functor categories form a BI algebra (a doubly
cartesian closed preorder). In the second sense, one models proofs, and it works
because the whole functor category is doubly cartesian closed. Here we seek
models of provability of predicate BI. Since the considered functor categories are
toposes and hence model higher-order predicate logic, one might think that a
straightforward extension is possible. But, alas, it is not the case. In general,
for this to work, every lattice of subobjects (for any object, not only for the
terminal object) should be a BI algebra and, moreover, to model substitution
correctly the BI algebra structure should be preserved by pulling back along any
morphism. We show that this can only be the case if the BI algebra structure is
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trivial, that is, coincides with the cartesian structure (see Theorem 3). Our the-
orem holds for any topos, not just for the functor categories considered earlier.
Hence we need to consider a wider class of models for predicate BI than just
toposes and this justifies the notion of a BI hyperdoctrine. The intuitive reason
that BI hyperdoctrines work, is that predicates are not required to be modeled
by subobjects, they can be something more general. Another important point
of BI hyperdoctrines is that they are easy to come by: given any complete BI
algebra B, we can define a canonical BI hyperdoctrine in which predicates are
modeled as B-valued functions; we explain this in detail in Example 2.

The rest of the paper is organized as follows. In Section 2 we give the syntax
and semantics of both the assertion language and the specification language of
higher-order separation logic. This includes the definition of a simple program-
ming language which has heap manipulation constructs and simple procedures,
and its operational semantics. In Section 3, we give rules for deriving sound spec-
ifications, which constitue a specification logic for our programming language.
We explain these rules at an intuitive level and show soundness of them with re-
spect to the semantics we gave in Section 2. In Section 4 we give several examples
which illustrate that higher-order separation logic is indeed useful. In particular,
we show how existential quantification may be used to reason about data ab-
straction inasmuch as it can be used to show representation independence of two
implementations of an abstract priority queue. We also illustrate how universal
quantification of the specification language can be used to model polymorphic
types. In Section 5, we first recall Lawvere’s notion of a hyperdoctrine [13] and
straightforwardly extend it to the notion of BI hyperdoctrines, and we show that
this soundly models predicate BI and that the semantics of assertions we have
given is an instance of a BI hyperdoctrine. In Section 6 we discuss applications
of the extension of the assertion language to higher-order, and in particular we
show how one can use the higher-order logic to give logical characterizations of
interesting classes of assertions. In the last sections we give pointers to related
and future work, and conclude.

2 Syntax and Semantics

We give syntax for several judgements, and semantics for most of them.

2.1 Syntax

Types are generated by the grammar

τ ::= Int | Prop | τ × τ | τ → τ | · · · .

The “· · · ” is used to indicate that we may add more base types to the system
without complications. For now, the core system is the one indicated.
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Terms There is a judgment ∆ ` t:τ , where ∆ is a list of variable assignments
x:τ to distinct variables, and the judgment states that the free variables of t
are included in ∆, and that the term t is well-formed and of type τ in ∆. The
judgment is defined by

` n:Int

∆,x:τ ` x:τ
∆ ` t:Int ∆ ` t′:Int

∆ ` t⊗ t′:Int
where ⊗ ∈ {+,−,×}

∆ ` t:Int ∆ ` t′:Int
∆ ` tC t′:Prop

where C ∈ {=,≤}

` >:Prop

` ⊥:Prop

` emp:Prop

∆ ` t:Int ∆ ` t′:Int
∆ ` t 7→ t′:Prop

∆ ` ϕ:Prop ∆ ` ϕ′:Prop

∆ ` ϕ � ϕ′:Prop
where � ∈ {∨,∧,→,−−∗, ∗}

∆,x:τ ` ϕ:Prop

∆ ` \x. ϕ:Prop
where \ ∈ {∀,∃}

∆,x:τ ` t:τ ′

∆ ` (λx:τ. t):τ → τ ′

∆ ` t:τ ′ → τ ∆ ` t′:τ ′
∆ ` tt′:τ

We also allow weakening and exchange in contexts. We assume that all the
contexts are well-formed, so, for example, in the second rule above, we implicitly
assume that x /∈ ∆.

Programming Language The programming language uses a restricted set of terms
of type Int, which we refer to as expressions, and it also uses booleans, which
consists of a restricted (and heap-independent) set of terms of type Prop. We
use E and B to range over these, and they are generated by the grammars:

E ::= n | x | E + E | E − E | E × E | null
B ::= E = E | E ≤ E | B ∧B | · · ·

Formally, booleans have type Prop in our system, but we will sometimes write
B : Bool if they can be generated from this grammar.

The syntax of the programming language is given by the following grammar.
Here, k ranges over function names, and x ranges over program variables.
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c ::= skip
| x := ki(E1, . . . , Emi

)
| newvar x; c
| x := E
| x := [E]
| [E] := E′

| x := cons(E1, . . . , Em)
| dispose(E)
| if B then c else c fi
| while B do c od
| c; c
| let k1(x1, . . . , xm1) = c1

...
kn(x1, . . . , xmn

) = cn
in c end

| return e

There are some restrictions on the programs, and we call a program well-
formed if it meets these restrictions. We could express the restrictions formally
with a bunch of auxiliary grammars, but we will refrain from that here. The
restrictions include:

– There is always a return at the end of a function body.
– A function name is declared at most once in a let.
– There are the right number of parameters in function calls.
– In each nesting of newvar declarations, each variable is declared at most

once.
– Function bodies do not modify non-local variables other than ret.

Function Specifications There is a judgment

∆ ` γ:FSpec

stating that γ is a well-formed function specification in the context ∆. Function
specifications are used to record assumptions about functions used in programs.
The judgment is given by

∆ ` P :Prop ∆ ` Q:Prop

∆ ` {P} k {Q}:FSpec

∆ ` γ:FSpec ∆ ` γ′:FSpec

∆ ` γ ∧ γ′:FSpec

∆,x:τ ` γ:FSpec

∆ ` \x:τ. γ:FSpec
where \ ∈ {∃,∀}

The set of free variables for a function specification is defined as the free variables
in the assertions occurring in it.
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Specifications We give syntax for commands and specifications. There is a judg-
ment

∆;Π ` c:comm, (1)

which asserts that the program c is well-formed in the context ∆ and semantic
function environment Π. A semantic function environment maps function names
k to pairs (x̄, c), where x̄ is a vector of integer variables and c is a command from
the programming language. Such an environment is well-formed if the function
bodies only modify local variables (and ret, by the return command):

Π ok iff ∀(x, c) ∈ cod(Π). Modifies(c) = ∅.

We omit the definition of the judgment (1) here.
The specifications of higher-order separation logic is given by a judgment

∆;Π ` δ:Spec,

which asserts that δ is a well-formed specification in the context ∆ and semantic
function environment Π. This judgment is given by

∆;Π ` c:comm ∆ ` P :Prop ∆ ` Q:Prop

∆;Π ` {P} c {Q}:Spec

∆;Π ` δ:Spec ∆;Π ` δ′:Spec

∆;Π ` δ ∧ δ′:Spec

∆,x:τ ;Π ` δ:Spec

∆;Π ` \x:τ. δ:Spec
\ ∈ {∃,∀}

The set FV (δ) of free variables of a specification δ is the set of free varibles
in the assertions and the modified variables in the commands occurring in the
specification. The set Mod(δ) of modified variables of δ is the set of modified
variables in the commands occurring in δ.

2.2 Semantics

Semantics of Types The semantics of types is a set, and it is given by

[[Prop]] = P(H)
[[Int]] = Z

[[τ × τ ′]] = [[τ ]]× [[τ ′]]
[[τ → τ ′]] = [[τ ]] ⇒ [[τ ′]]

When more base types are added, one of course has to specify the semantics of
them.

Semantics of Terms The semantics [[∆ ` t:τ ]] is a map

[[∆]]
[[t]] // [[τ ]],
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where [[∆]] is the product of the τi for xi:τi ∈ ∆. Although elements of [[∆]]
are tuples (v1, . . . , vn), we will treat them as maps from variables in ∆ to
values. Hence, if ∆ = x1:τ1, . . . , xn:τn and η = (v1, . . . , vn) ∈ [[∆]], we will
write η(xi) instead of πi(η) for the value vi. For this correspondence, we will
also use other notation. If x:τ /∈ ∆, v ∈ [[τ ]], and η = (v1, . . . , vn) ∈ [[∆]],
we write η[x→v] for the tuple (v1, . . . , vn, v) ∈ [[∆,x:τ ]]. We also use the nota-
tion for updates in η. If xi:τi ∈ ∆, vi ∈ [[τi]], and η = (v1, . . . , vn) ∈ [[∆]],
we write η[xi→vi] for the tuple (v1, . . . , vi, . . . , , vn, v) ∈ [[∆]]. Finally we use
the notation η − x to “remove a component from a tuple”: If xi:τi ∈ ∆ =
x1:τ1, . . . , xn:τn and η = (v1, . . . , vi, . . . , vn) ∈ [[∆]], we write η− xi for the tuple
(v1, . . . , vi−1, vi+1, . . . , vn) ∈ [[x1:τ1, . . . xi−1:τi−1, xi+1:τi+1, . . . xn:τn]].

The semantics is defined in a standard way; we give the most important
clauses here.

[[∆ ` n:Int]]η = n

[[∆,x:τ ` x:τ ]]η = η(x)

[[∆ ` tC t′:Prop]]η =
{
H if [[∆ ` t:Int]]η C [[∆ ` t′:Int]]η
∅ if ¬([[∆ ` t:Int]]η C [[∆ ` t′:Int]]η) ,where C ∈ {=,≤}

[[∆ ` emp:Prop]]η = {[]}

[[∆ ` ϕ ∗ ϕ′:Prop]]η =
{
h | ∃h0, h1. h0#h1 ∧ h = h0 ∪ h1∧

h0 ∈ [[∆ ` ϕ]]η ∧ h1 ∈ [[∆ ` ϕ′]]η

}
[[∆ ` ϕ −−∗ ϕ′:Prop]]η =

⋃
W, with W ∗ [[∆ ` ϕ:Prop]]η ⊆ [[∆ ` ϕ′:Prop]]η

[[∆ ` ∃x:τ. ϕ:Prop]]η =
⋃

v∈[[τ ]][[∆,x:τ ` ϕ:Prop]]η[x→v]

[[∆ ` ∀x:τ. ϕ:Prop]]η =
⋂

v∈[[τ ]][[∆,x:τ ` ϕ:Prop]]η[x→v]

This semantics uses the fact that P(H) is a boolean BI-agebra [3] to give the
semantics of the BI connectives (∗,−−∗) of the logic. See Sec. 5.3 for more details.

The expected substitution lemma holds:

Lemma 1. Suppose ∆ ` t:τ and ∆,x:τ ` t′:τ ′. Then for all η ∈ [[∆]],

[[∆ ` t′[t/x]]]η = [[∆,x:τ ` t′]]η[x→v],

where v = [[∆ ` t:τ ]]η.

Remark 1. The traditional way of giving semantics of assertions is via a forcing
relation

s, h 
 ϕ, (2)

which asserts that the assertion ϕ holds in the state (s, h) (where the free vari-
ables of ϕ are included in the domain of the stack s). The grammar of assertions
and the definition of the forcing relation (2) is completely standard, and different
variants may be found in numerous papers, e.g., [4, 17, 8]. There is a tight con-
nection between these two forms of semantics, since it is not hard to see that if
ϕ has free variables x1, . . . , xn, and if v1, . . . , vn are values of the corresponding
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types (in “traditional” separation logic, there is only one type), then

h ∈ [[ϕ]](v1, . . . , vn) in our semantics
iff

[x1 → v1, . . . , xn → vn] , h 
 ϕ in the traditional semantics.

Operational Semantics of the Programming Language The operational semantics
of the programming language is given by a judgment

(Π, c, η, h) ⇓ (η′, h′).

The proviso here is that η ∈ ∆ for some ∆ in which ∆;Π ` c:comm holds, and
it intuitively says that the state (η, h) is transformed to the state (η′, h′) by the
program c. The judgment is the same as in [20] and it is given by the clauses
in Fig. 1. We have occasionally used ∆ for the domain of η below. For example,
in the second rule (for assignment), the precondition is that [[∆ ` E:Int]]η = n.
What is meant is just that E is a term of type Int in any context that contains
the variables in η.

We say that (Π, c, η, h) is safe if (Π, c, η, h) 6⇓ wrong. A configuration may
either terminate in a state (η′, h′), diverge, or go wrong.

Note that, since this semantics is the same as the operational semantics of
the language in [20], the properties needed to prove the frame rule, namely safety
monotonicity and the frame property, are valid for all programs of the language.
As a reminder, we state these properties here.

Safety Monotonicity. For all well-formed semantic function environments Π,
programs c, stacks η, and heaps h, if (Π, c, η, h) is safe, then for all heaps h′ that
are disjoint from h, (Π, c, η, h ∪ h′) is also safe.

The Frame Property. For all well-formed semantic function environments Π,
programs c, stacks η, and heaps h, if (Π, c, η, h) is safe and h′ is disjoint from h,
then (Π, c, η, h ∪ h′) ⇓ (η′, h′′), implies that there is h0 such that h′′ = h0 ∪ h′
and (Π, c, η, h) ⇓ (η′, h0).

2.3 Program Logic Judgments

A list Γ of function specifications where the function names are distinct, is called
an environment. We will give the definition of the jugdment

∆;Γ |= δ:Spec,

which states that in the context ∆, given the assumptions about functions
recorded in Γ , the specification δ holds. This judgment is defined in several
straightforward steps, and it is basically the same as the corresponding judg-
ment in [20].

As the first step, we give the semantics of a triple, relative to a context and
a semantic function environment. The semantics of [[∆,Π ` δ:Spec]] is a map
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(Π, skip, η, h) ⇓ (η, h)

[[∆ ` E:Int]]η = n

(Π,x := E, η, h) ⇓ (η[x→n], h)

[[∆ ` E:Int]]η = n

(Π, return E, η, h) ⇓ (η[ret→n], h)

[[∆ ` E:Int]]η = n n ∈ dom(h) h(n) = n′

(Π,x := [E], η, h) ⇓ (η[x→n′], h)

[[∆ ` E:Int]]η = n [[∆ ` E′:Int]]η = n′ n ∈ dom(h)

(Π, [E] := E′, η, h) ⇓ (η, h[n→n′])

[[∆ ` E:Int]]η = n n ∈ dom(h)

(Π,dispose(E), η, h) ⇓ (η, h− {n})
[[∆ ` E:Int]]η = n n /∈ dom(h)

(Π,x := [E], η, h) ⇓ wrong

[[∆ ` E:Int]]η = n n /∈ dom(h)

(Π, [E] := E′, η, h) ⇓ wrong

[[∆ ` E:Int]]η = n n /∈ dom(h)

(Π,dispose(E), η, h) ⇓ wrong

{n, n+ 1, . . . , n+m}⊥dom(h) ([[∆ ` Ei:Int]]η = ni)i=0,...,m

(Π,x := cons(E0, . . . , Em), η, h) ⇓ (η[x→n], h[n+i→ni]i=0,...,m
)

(Π, c1, η, h) ⇓ (η′, h′) (Π, c2, η
′, h′) ⇓ (η′′, h′′)

(Π, c1; c2, η, h) ⇓ (η′′, h′′)

[[∆ ` B:Bool]]η = false (Π, c1, η, h) ⇓ (η′, h′)

(Π, if B then c0 else c1 fi) ⇓ (η′, h′)

[[∆ ` B:Bool]]η = true (Π, c0, η, h) ⇓ (η′, h′)

(Π, if B then c0 else c1 fi) ⇓ (η′, h′)

[[∆ ` B:Bool]]η = false

(Π,while B do c od, η, h) ⇓ (η, h)

[[∆ ` B:Bool]]η = true (Π, c;while B do c od, η, h) ⇓ (η′, h′)

(Π,while B do c od, η, h) ⇓ (η′, h′)

Π(k) = ((x1, . . . , xm), ck)
([[∆ ` Ei:Int]]η = ni)i=1,...,m

(Π, ck, [xi → ni], h) ⇓ (η′, h′)

(Π,x = k(E1, . . . , Em), η, h) ⇓ (η[x→η′(ret)], h
′)

(Π, c, η[x→null], h) ⇓ (η′, h′) η(x) = v

(Π,newvar x; c, η, h) ⇓ (η′[x→v], h
′)

(Π ∪ (k1 → ((x1, . . . , xn1), c1), . . . , kn → ((x1, . . . , xnk ), cn)), c, η, h) ⇓ (η′, h′)

(Π, let k1(x1, . . . , xn1) = c1, . . . , kn(x1, . . . , xnn) = cn in c, η, h) ⇓ (η′, h′)

Fig. 1. Operational Semantics of the Programming Language
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from [[∆]] to the domain {true, false}, and it is given by (we omit some obvious
type annotations here):

[[∆,Π ` {P} c {Q}]] iff ∀h ∈ [[∆ ` P ]]η.
− (Π, c, η, h) is safe, and
− (Π, c, η, h) ⇓ (η′, h′) implies h′ ∈ [[∆ ` Q]]η′

[[∆,Π ` δ ∧ δ′]]η iff [[∆,Π ` δ]]η and [[∆,Π ` δ′]]η
[[∆,Π ` ∃x:τ. δ]]η iff [[∆,Π ` δ]]η[x→v] for some v ∈ [[τ ]]
[[∆,Π ` ∀x:τ. δ]]η iff [[∆,Π ` δ]]η[x→v] for all v ∈ [[τ ]].

We call ∆,Π ` δ valid and write ∆,Π |= δ iff [[∆,Π ` δ]]η = true for all
η ∈ [[∆]].

There is a substitution lemma for this semantics, which we will need later.

Lemma 2. Let δ be a specification, x:τ a variable, and ∆ ` t:τ a term. Further,
let η ∈ [[∆]], and Π be well-formed. Then,

[[∆;Π ` δ[t/x]]]η iff [[∆,x:τ ;Π ` δ]]η[x→v],

where v = [[∆ ` t:τ ]]η.

There is a similar semantics for function specifications. This semantics is a
map

[[∆,Π ` γ:FSpec]] : [[∆]] → {true, false},
and it is given in the same way as the same map for specifications. The only
difference is the base case, which is given by

[[∆;Π ` {P} k {Q}]]η iff [[∆′;Π ` {P} cm {Q}]]η
where Π(k) = ((x1, . . . , xnm), cm),

where ∆′ is ∆ with those xi added (with type Int) that are not there.
For this semantics, we also have a substitution lemma, which resembles that

of Lemma 2.

Lemma 3. Let γ be a specification, x:τ a variable, and ∆ ` t:τ a term. Further,
let η ∈ [[∆]], and Π be well-formed. Then,

[[∆;Π ` γ[t/x]]]η iff [[∆,x:τ ;Π ` γ]]η[x→v],

where v = [[∆ ` t:τ ]]η.

As mentioned, an environment is a list of function specifications. The seman-
tics of an environment is given componentwise:

[[∆,Π ` Γ ]]η iff [[∆,Π ` γ]]η for all γ ∈ Γ.

Lemma 4. Let ∆ ` t:τ be a term, η ∈ [[∆]], and Γ an environment. Then,

[[∆;Π ` Γ [t/x]]]η iff [[∆,x:τ ;Π ` Γ ]]η[x→v],

where v = [[∆ ` t : τ ]]η.
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Finally, we arrive at the semantics of specifications, relative to a context and
an environment.

∆;Γ |= δ iff for all well-formed Π and all η ∈ [[∆]],
[[∆;Π ` Γ ]]η implies [[∆;Π ` δ]]η.

The relevant substitution lemma for this semantics is:

Lemma 5. Let ∆ ` t:τ be a term. Then

∆,x:τ ;Γ |= δ implies ∆;Γ [t/x] |= δ[t/x].

3 Program Logic

We define a judgment
∆;Γ ` δ,

for deriving valid specifications. The complete set of rules is given in Fig. 2. We
first explain some of the rules at an intuitive level, and then we show soundness.

3.1 Explanation of Rules

The first two rules are the usual rules for skip and assignment from Hoare logic.
The rule for return is similar to the rule for assignment, since return simply
amounts to an assignment to the special variable ret.

The rule
{P} k(x̄) {Q} ∈ Γ

∆;Γ ` {P [Ē/x̄]} y = k(Ē) {Q[Ē, y/x̄, ret]}

for function call says that in order to call a function, we have to make sure that
the precondition for the function is satisfied. This precondition is recorded in
the environment, along with the corresponding postcondition.

The next four rules which involve the heap-manipulating constructs of the
programming language, are the standard rules of separation logic, adapted to
our setting. Note that the specifications are “tight” in the sense that they only
mention the heap cells that are actually manipulated by the commands. For
example, the rule

∆;Γ ` {emp ∧ x = m}x := cons(Ē){x 7→ Ē[m/x]}

for cons produces a new cell when run in an empty heap. Note that this does
not mean that cons can only be executed in an empty heap. The last rule of
the system,

∆;Γ ` {P} c {Q}
∆;Γ ` {P ∗ P ′} c {Q ∗ P ′}

Mod(c) ∩ FV (P ′) = ∅,

called the frame rule, implies that one can infer a global specification from a
local specification like the one for cons. Hence, we can execute cons in any
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∆;Γ ` {P}skip{P} ∆;Γ ` {P [E/x]} x := E {P}
x 6∈ FV (E)

∆;Γ ` {P [E/ret]} return E {P}
{P} k(x̄) {Q} ∈ Γ

∆;Γ ` {P [Ē/x̄]} y = k(Ē) {Q[Ē, y/x̄, ret]}

∆;Γ ` {emp ∧ x = m}x := cons(Ē){x 7→ Ē[m/x]}

∆;Γ ` {E 7→ −}dispose(E){emp}

∆;Γ ` {E 7→ n ∧ x = m}x := [E]{E[m/x] 7→ n ∧ x = n}

∆;Γ ` {∆;Γ ` E 7→ −}[E] := E′{E 7→ E′}
∆;Γ ` {P1} c1 {Q1}

...
∆;Γ ` {Pn} cn {Qn}

∆;Γ, {P1} k1 {Q1}, · · · , {Pn} kn {Qn} ` {P} c {Q}
∆;Γ ` {P} let k1(x̄1) = c1, . . . , kn(x̄n) = cn in c {Q}

∆;Γ ` {P} c1 {P ′} ∆;Γ ` {P ′} c2 {Q}
∆;Γ ` {P} c1; c2 {Q}

∆,x:Int;Γ ` {P ∧ x = nil} c {Q}
∆;Γ ` {P} newvar x in c end {Q}

x /∈ FV (P )

∆;Γ ` {P ∧B} c1{Q} ∆;Γ ` {P ∧ ¬B} c2{Q}
{P} if B then c1 else c2 fi {Q}

∆;Γ ` {P ∧B} c {P}
∆;Γ ` {P} while B do c od {P ∧ ¬B}

∆;Γ ` {P} c {Q}
∆,∆′;Γ ` {P} c {Q} ∆ ∩∆′ = ∅

∆,∆′;Γ ` {P} c {Q}
∆;Γ ` {P} c {Q} ∆′ disjoint from ∆,P, c,Q, Γ

∆ ` P ⇒ P ′ ∆;Γ ` {P ′} c {Q′} ∆ ` Q′ ⇒ Q

∆;Γ ` {P} c {Q}
∆,x:τ ;Γ, γ ` δ
∆;Γ,∃x:τ. γ ` δ x 6∈ FV (Γ ) ∪Mod(δ)

∆,x:τ ;Γ ` δ
∆;Γ ` ∀x:τ. δ x 6∈ FV (Γ ) ∪Mod(δ)

∆;Γ ` {P} c {Q}
∆;Γ ` {P ∗ P ′} c {Q ∗ P ′}

Mod(c) ∩ FV (P ′) = ∅

Fig. 2. Program Logic
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heap, described by the predicate P (not containing x), by the following instance
of the frame rule:

∆;Γ ` {emp ∧ x = m}x := cons(Ē){x 7→ Ē[m/x]}
∆;Γ ` {P ∧ x = m}x := cons(Ē){P ∗ (x 7→ Ē[m/x])}

.

The rule

∆;Γ ` {P1} c1 {Q1}
...

∆;Γ ` {Pn} cn {Qn}
∆;Γ, {P1} k1 {Q1}, · · · , {Pn} kn {Qn} ` {P} c {Q}
∆;Γ ` {P} let k1(x̄1) = c1, . . . , kn(x̄n) = cn in c {Q}

for function definitions is the usual one from Hoare logic with procedures [9].
The rules for while and if -then-else are also standard. The next two rules are
structural and allow certain straightforward manipulations of contexts. The rule
of consequence is also standard. Finally, the rules

∆,x:τ ;Γ, γ ` δ
∆;Γ,∃x:τ. γ ` δ x 6∈ FV (Γ ) ∪Mod(δ)

∆,x:τ ;Γ ` δ
∆;Γ ` ∀x:τ. δ x 6∈ FV (Γ ) ∪Mod(δ)

are straightforward adaptations of standard rules of higher-order logic. They will
be used later for reasoning about data abstraction and parametricity. Note that
in both of the rules, x /∈ Mod(δ). Often, x will denote an “abstract value”, which
should not be part of the specification one wants to show in the end, as we shall
see later.

3.2 Soundness

Theorem 1. If a specification
∆;Γ ` δ

can be derived from the rules in Fig. 2, then it is valid.

Proof. For each rule of form
∆;Γ ` δ
∆′;Γ ′ ` δ′

,
(3)

this is checked by showing that ∆′;Γ ′ |= δ′, under the assumption that ∆;Γ |= δ.
For axioms of the form

∆;Γ ` δ
,

the proof obligation is to show that ∆;Γ |= δ. We only show soundness for some
of the rules here.
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Consider the rule for skip:

∆;Γ ` {P} skip {P}

Although trivial, we show the soundness of this rule here, to exercise the defini-
tions. Let Π be a well-formed semantic function environment. It suffices to show
that

[[∆;Π ` {P} skip {P}]]η

for all η ∈ [[∆]]. Let h ∈ [[P ]]η. Then,

(Π, skip, η, h) ⇓ (η, h),

and clearly, h ∈ [[P ]]η, so this rule is sound.
Soundness of the rule for assignment

∆;Γ ` {P [E/x]} x := E {P}

depends, as usual, on the substitution Lemma 1.
The rule for return

∆;Γ ` {P [E/ret]} return E {P}

is essentially just an instance of the assignment rule.
Now consider the rule for function call:

{P} ki(x1, . . . , xni
) {Q} ∈ Γ

∆,Γ ` {P [E1/x1 · · ·Eni/xni ]} y = ki(E1, . . . , Eni) {Q[E1/x1 · · ·Eni/xni , y/ret]}

To show soundness, suppose {P} ki(x1, . . . , xni) {Q} ∈ Γ . Let η ∈ [[∆]], and let
Π be a well-formed semantic function environment such that [[∆;Π |= Γ ]]η. In
particular,

[[∆;Π ` {P} ki(x1, . . . , xni
) {Q}]]η,

so if Π(ki) = ((x1, . . . , xni
), ci), then [[∆;Π ` {P} ci {Q}]]η. Now, suppose

h ∈ [[P [E1/x1 · · ·Eni
/xni

]]]η = [[P ]]η[x1→v1,··· ,xni
→vni

],

where vj = [[∆ ` Ej :Int]]η for j = 1, . . . , ni (we’ve used the substitution lemma
here). This means that if

(Π, ci, η[x1→v1,··· ,xni
→vni

], h) ⇓ (η′, h′),

then h′ ∈ [[Q]]η′. Since Π is well-formed, ci does not modify any variables, so η′

is of the form
η′ = η[x1→v1,··· ,xni

→vni
,ret→η′(ret)],

and by the substitution lemma, h′ ∈ [[Q[E1/x1 · · ·Eni
/xni

, η′(ret)/ret]]]η. By
the operational semantics for function calls,

(Π, y = ki(E1, . . . , Eni
), η, h) ⇓ (η[y → η′(ret)], h′),
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and thus, the rule holds.
We now turn to the first rule for existentials:

∆,x:τ ;Γ, γ ` δ
∆;Γ,∃x:τ. γ ` δ x /∈Mod(δ) ∪ FV (Γ )

Suppose that for all well-formed Π and η ∈ [[∆,x:τ ]],

[[∆,x:τ ;Π ` Γ, γ]]η implies[[∆,x:τ ;Π ` δ]]η,

and let [[∆;Π ` Γ ]]η and [[∆;Π ` ∃x:τ. γ]]η. This means [[∆;Π ` γ]]η[x→v] for
some v ∈ [[τ ]]. Since x /∈ FV (Γ ), we also have [[∆;Π ` Γ ]]η[x→v]. This implies
[[∆;Π ` δ]]η[x→v], and since x /∈Mod(δ), we have [[∆;Π ` δ]]η (we use an obvious
property of specifications that do not contain variables).

The other rule for existentials is
∆;Γ,∃x:τ. γ ` δ
∆, x:τ ;Γ, γ ` δ x /∈Mod(δ) ∪ FV (Γ ).

For soundness, first suppose that τ is inhabited and that for all well-formed
Π and η ∈ [[∆]],

[[∆;Π ` Γ,∃x:τ. γ]]η implies [[∆;Π ` δ]]η,

and suppose [[∆,x:τ ;Π ` Γ, γ]]η. Since τ is inhabited, this means

[[∆,x:τ ;Π ` Γ, γ]]η[x→η(x)],

and since x /∈ FV (Γ ), this implies

[[∆,x:τ ;Π ` Γ,∃x:τ. γ]]η,

and thus, [[∆;Π ` δ]]η, as desired. If τ is an empty type, one can make an easy
case analysis on whether x occurs in γ or not.

Soundness of the downards rule for universals is easy. For soundness of the
upwards rule:

∆;Γ ` ∀x:τ. δ
∆, x:τ ;Γ ` δ x 6∈ FV (Γ ) ∪Mod(δ),

suppose that for all wellformed Π and η ∈ [[∆]],

[[∆;Π ` Γ ]]η implies [[∆;π ` ∀x:τ. δ]]η,

and let η′ ∈ [[∆,x:τ ]]. Suppose [[∆,x:τ ;Π ` Γ ]]η′. Since /∈ FV (Γ ), we get

[[∆;Π ` Γ ]]η′ − x,

and this implies

[[∆,x:τ ;Π ` δ]](η′ − x)[x→v] for all v ∈ [[τ ]].

This means, in particular, that

[[∆,x:τ ;Π ` δ]]η′[x→η′(x)],

which shows the desired result. ut
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3.3 A Derived Rule

There is an important rule for abstract function definitions that can be derived
from the rules in Fig. 2. The rule is

∆ ` P̂ :τ
∆;Γ ` {P1[P̂ /x]} c1 {Q1[P̂ /x]}

...
∆;Γ ` {Pn[P̂ /x]} cn {Qn[P̂ /x]}

∆;Γ,∃x:τ.({P1}k1{Q1} ∧ · · · ∧ {Pn}kn{Qn}) ` {P} c {Q}
∆;Γ ` {P} let k1(x̄1) = c1, . . . , k1(x̄n) = cn in c end {Q}

x 6∈ FV ({P} c {Q}),

(4)
and it could easily be generalized to more variables than x, and more predicates
P̂ , but for presentational purposes, we have just presented it with one variable.

We show how this rule can be derived; for brevity, we just do it for n = 1,
and we suppose there are no parameters. The proof of the more general case is
essentially the same as for this case. First, we have the following instance of the
function definition rule

∆;Γ ` {P1[P̂ /x]} c1 {Q1[P̂ /x]}
∆;Γ, {P1[P̂ /x]} k1 {Q1[P̂ /x]} ` {P} c {Q}

∆;Γ ` {P} let k1 = c1 in c {Q}
.

The rule for existentials gives us that

∆;Γ,∃x:τ. {P1} k1 {Q1} ` {P} c {Q}
∆,x:τ ;Γ, {P1} k1 {Q1} ` {P} c {Q}

,

so we need to establish

∆;Γ, {P1[P̂ /x]} k1 {Q1[P̂ /x]} ` {P} c {Q}

given that
∆,x:τ ;Γ, {P1} k1 {Q1} ` {P} c {Q}.

But this follows from Lemma 5, since x is not free in {P} c {Q}.

4 Examples

We show an example of data abstraction and how it can be handled using our pro-
gram logic. The example involves two implementations of a priority queue, and
the intention is, of course, that client programs which use these implementations
should be unaware of and unable to exploit details of which implementation is
used. Data abstraction is modelled via existential quantification over predicates,
corresponding to the slogan that “abstract types have existential type” [14].
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In this section, we first define an abstract priority queue, and use abstract
operations in several client programs to demonstrate uses of abstract operations
and their specifications. We then show two implementations of the abstract
module, and prove that have specifications that make application of the abstract
function definition rule (4) possible.

4.1 Reasoning with an Abstract Priority Queue

Priority queues are used frequently in programming, for example in scheduling
algorithms for processes in operating systems [27]. They consist of pairs (p, v),
where v is a value that is stored, and p is the priority associated with v. In such
a structure, one can then enqueue such pairs and extract an element with the
highest priority. For simplicity, we assume that the values are integers. Here is
a simple grammar for such a structure.

Q ::= ε | (p, v) ∪Q.

There are some operations we will need on such queues. They use the axiom of
choice, and are defined by

MaxPri(ε) = −1
MaxPri((p, v) ∪Q) = Max(p,MaxPri(Q))
MaxPair(Q) = choose({(p, v) ∈ Q | p = MaxPri(Q)}).

Note that MaxPair is a nondeterministic operation. We will assume a base type
PriQ whose values are priority queues, and an operation Set which, given a prior-
ity queue, returns the multiset of pairs occuring in it. These types and operations
will only be used in the logic, not in programs. Also, we could have encoded the
type PriQ in our higher-order logic, but for simplicity, we just introduce it in the
logic here.

We now discuss how we would reason about client code which uses a com-
pletely abstract priority queue. First, since client programs cannot modify ab-
stract values, there should be a predicate stating that there is a “handle” to a
priority queue. Hence, we introduce the predicate

repr(q,Q),

which asserts that the integer denoted by q is a handle to the priority queue
Q – but it does not say anything about Q is represented. This will be used as
an abstract predicate in our proofs (and thus play the role of P̂ when we apply
the abstract function definition rule (4)). Given this predicate, the following are
reasonable specifications for the various operations on a priority queue.

Creating a Queue There should be an operation which enables a client pro-
gram to create a priority queue. Its specification is

{emp} createqueue() {repr(ret, ε)},

which merely says that upon creation of a queue, we return a handle to an
empty priority queue.
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Enqueing There should be an operation for storing elements in a queue. The
specification is

{repr(q,Q)} enqueue(q, (p, v)) {repr(q, (p, v) ∪Q)}.

Dequeing There should be an operation for dequeing. We need to take care
that we do not dequeue from an empty queue, and hence the specification is

{repr(q,Q) ∧Q 6= ε}
dequeue(q)

{∃Q′, p, v. repr(q,Q′) ∧Q = (p, v) ∪Q′ ∧ (p, v) = MaxPair(Q) ∧ ret = v}.

Disposing a Queue When done with a priority queue, we should be able to
dispose it. Hence the specification

{repr(q,Q)} disposequeue(q) {emp}.

4.2 Sample Programs

We consider examples of client programs that use priority queues, along with
their specifications.

The first program creates a queue, enqueues some elements, and dequeues
again. We use Q′′ as a shorthand for 〈(2, 42), (4, 17)〉.

{emp}
q = createqueue();

{repr(q, ε)}
enqueue(q, (4, 17));

{repr(q, (4, 17) ∪ ε)}
enqueue(q, (2, 42));

{repr(q,Q′′)}
{repr(q,Q′′) ∧Q′′ 6= ε}
y := dequeue();

{∃Q′, p, v. repr(q,Q′) ∧Q′′ = Q′ ∪ (p, v) ∧ (p, v) = MaxElt(Q′′) ∧ y = v}
⇓
{repr(q, 〈(2, 42)〉) ∧ y = 17}

disposequeue(q)
{emp ∧ y = 17}.

The implication in the middle of this derivation uses the rule of consequence. We
will henceforth implicitly use this kind of implications in proofs. That is, given
a nonempty abstract priority queue Q, if we know that MaxPair(Q) = (p, v)
and that Q′ = Q \ (p, v) (such that Q = Q′ ∪ (p, v)), we will use the following
specification for dequeue:

{repr(q,Q) ∧Q 6= ε}
dequeue()

{repr(q,Q′) ∧ ret = v}.
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Here is another basic program (and its specification) which, however, uses
two queues. In the second step, we use the specification for createqueue and
the frame rule.

{emp}
q1 = createqueue();

{repr(q1, ε)}
enqueue(q1, (3, 7));

{repr(q1, 〈(3, 7)〉)}
q2 = createqueue();

{repr(q1, 〈(3, 7)〉) ∗ repr(q2, ε)}
enqueue(q1, (7, 3));

{repr(q1, 〈(3, 7), (7, 3)〉) ∗ repr(q2, ε)}
enqueue(q2, (4, 13));

{repr(q1, 〈(3, 7), (7, 3)〉) ∗ repr(q2, 〈(4, 13)〉)}
y1 := dequeue(q1);

{repr(q1, 〈(3, 7)〉) ∗ repr(q2, 〈(4, 13)〉) ∧ y1 = 3}
y2 := dequeue(q2);

{repr(q1, 〈(3, 7)〉) ∗ repr(q2, ε) ∧ y1 = 3 ∧ y2 = 13}
disposequeue(q1);
disposequeue(q2);

{emp ∧ y1 = 3 ∧ y2 = 13}

This example serves to illustrate that our notion of modularity is not static,
as is the case in [19] In the setting of that paper, it is not possible to give
arguments to function calls – one has to initialize variables that are laid out
in the specification of each module. This implies that it is not possible have
multiple instances of the same data structure (this was also noted in [20]).

It is also illustrative to demonstrate that erroneous programs cannot have a
specification in our system. We show two such examples. In the first example,
we try to call dequeue on an empty queue.

{emp}
q = createqueue()

{repr(q, ε)}
y = dequeue(q)

{???}

Since the precondition for dequeue is that there is a non-empty queue rep-
resented, there is no assertion that we can put in place of ??? in this derivation.
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In the second erroneous program, we try to dequeue from a queue that has
been disposed.

{emp}
q = createqueue();

{repr(q, ε)}
enqueue(q, (4, 42));

{repr(q, 〈4, 42〉)}
disposequeue(q);

{emp}
y = dequeue(q)

{???}

Since the precondition for dequeue is that there is a non-empty queue rep-
resented (and this is not implied by emp), there is no assertion that we can
put in place of ??? in this derivation. It might be that in some implementations
of a priority queue, the disposequeue operation is just a no-op, and thus the
dequeue would make sense operationally. But allowing this in our system would
amount to exposing the implementation to the client program, which contradicts
the principle of encapsulation in data abstraction. This is even more evident in
the program

{emp}
q = createqueue();

{repr(q, ε)}
newvar x;x := [q]

{???}.

In most implementations of priority queues, q denotes a pointer to a data struc-
ture in the heap which in some sense “represents” the priority queue Q, and
therefore, it would make operational sense to dereference q. But, the abstract
interface to the queue does not mention any heap cells, and therefore, there is no
assertion we can fill in for ???. This is fine, since disallowing client programs to
dereference handles is in harmony with the priciples of data abstraction, which
we are addressing here.

Note that the priority queues we use here do not involve any ownership
transfer [19], since the priority queues only hold simple data values (integers).
We could have chosen to implement queues where ownership of heap cells transfer
back and forth between clients and modules. Although this would certainly be
interesting, we believe that the core ideas are presented via the examples at
hand.

4.3 Implementations of Priority Queues

In this section, we give two concrete implementations of priority queues. We first
present the implementations and then discuss how the implementations can be
used to reason about data abstraction in our framework. One implementation
uses a sorted, singly-linked list, whereas the other uses an unsorted doubly linked
list.
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Sorted, Singly-linked Lists Singly-linked lists (or rather, singly-linked list
segments) are introduced in Reynolds’ introductory paper on separation logic [26].
The idea is that the predicate

slist(α, i, j)

asserts that the finite sequence α = (p0, v0), . . . , (pn, vn) of priority / value pairs
(Reynolds just uses sequences of integers) is represented in the heap in a singly
linked list. It is defined by induction on the length of α.

slist(ε, i, j) def= emp ∧ i = j

slist((p, v) · α, i, j) def= ∃k. i 7→ p, v, k ∗ slist(α, k, j).

We have shown programs that implement the abstract priority queue with
sorted singly linked lists in Appendix A (we have overloaded the dispose op-
eration a little bit, to dispose several heap cells). With a sorted list, the only
non-trivial operations are to enqueue an element and to dispose a queue (since
we do not require the queue to be empty when we dispose it). Here is a brief
explanation of each of the programs.

The slistcreate program simply initializes an empty slist (it needs only return
null). The implementation of slistEnque first finds the appopriate position in the
list to insert the new element to keep the list sorted (this is what is going on in
the while loop), and then inserts the element. Since the list is sorted according
to priorities, we always deque the first element of the list, so it is relatively easy
to implement slistDeque. Finally, to dispose a queue amounts to dispose an slist.

One can prove the specifications shown in Figure 3 for these implementations,
using the proof rules from Section 3 plus the lemmas from [26] about the slist
predicate, and some obvious implications regarding sorted sequences. In our
proofs, we use certain assertions and operations on sequences, which are easy to
encode in higher-order logic. The predicate sorted(α) is true iff the sequence α
is sorted (in decreasing order) according to priorities. For a nonempty sequence
α = (p0, v0), . . . , (pn, vn), Max(α) is a pair from α with the highest priority –
note that this is non-deterministic. Finally, for a sequence α, we define Set(α)
to be the multiset of pairs occurring in α.

The hard part is to show correctness of slistEnque, which is the most com-
plicated program in this implementation. For the diligent reader who wants to
verify the specifications, there are some basic facts and an invariant of the while
loop of slistEnque that was used in our proof in Appendix C.

Doubly-linked Lists Doubly linked lists are also introduced in [26]. The pred-
icate

dlist(α, i, i′, j, j′)

asserts that the sequence α is represented in the heap by a doubly linked list
segment from i to j′. It is defined by induction on the length of α:

dlist(ε, i, i′, j, j′) def= emp ∧ i = j ∧ i′ = j′

dlist((p, v) · α, i, j, i′, j′) def= ∃k. i 7→ (p, v, k, i′) ∗ dlist(α, k, i, j, j′)
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{emp}
slistcreate

{slist(ε, ret, null)}

{slist(α, q, null) ∧ sorted(α)}
slistEnque(q, (p, v))

{∃α′. slist(α′, q, null) ∧ sorted(α′) ∧ Set(α′) = Set(α) ] (p, v)}

{slist(α, q, null) ∧ sorted(α) ∧ α 6= ε}
slistDeque(q)
∃p, v, α′. slist(α′, q, null) ∧ Set(α) = Set(α′) ] (p, v)∧
(p, v) = Max(α) ∧ ret = v

ff

{slist(α, q, null)}
slistDispose(q)

{emp}

Fig. 3. Specifications for slist-implementation of Priority Queues

We implement priority queues by doubly linked lists. In contrast to our imple-
mentation with singly linked lists, this implementation does not keep the list
sorted. Consequently, the tricky part is to dequeue, whereas enqueing is easy.
The implementations are shown in Appendix B. We use the handle q to point
to a cell containing the values i, i′, j, j′ that determine the “boundaries” of the
list, for technical reasons.

Here is a brief explanation to each of the programs in this implementation.
The dlistcreate program just initializes an empty doubly linked list by storing
nulls in the heap. To enqueue, we just insert at the front of the doubly linked
list, since we do not keep the list sorted. The tricky part in this implementation
is to dequeue, since we have to find the correct element of the list and take it
out of the list. This is done in dlistDeque; in the while loop we traverse the list
and find an element with the highest priority, and then we take it out of the list.
This is done a little differently according to the position of the element in the
list.

One can prove the specifications shown in Fig. 4 for these implementations
of the priority queue operations. The proofs of these specifications use the same
assertions and operations regarding sequences as the proofs about the slist repre-
sentation. Most of the proofs are straightforward. As mentioned, the tricky part
of this implementation is dlistDeque, and the proof of that program is correspond-
ingly the trickiest one. The diligent reader who wishes to verify the specifications
in Fig. 4 may find some hints in Appendix D.



Higher-order Separation Logic 23

{emp}
dlistcreate

{∃i, i′, j, j′. q 7→ i, i′, j, j′ ∗ dlist(ε, i, i′, j, j′)}

{∃i, i′, j, j′. q 7→ i, i′, j, j′ ∗ dlist(α, i, i′, j, j′)}
dlistEnque(q, (p, v))

{∃i, i′, j, j′. q 7→ i, i′, j, j′ ∗ dlist((p, v) · α, i, i′, j, j′)}

{∃i, i′, j, j′. q 7→ i, i′, j, j′ ∗ dlist(α, i, i′, j, j′) ∧ α 6= ε}
dlistDeque(q)
∃i, i′, j, j′, p, v, α′. dlist(α′, i, i′, j, j′) ∧ Set(α) = Set(α′) ] (p, v) ∧
(p, v) = Max(α) ∧ ret = v

ff

{∃i, i′, j, j′. q 7→ i, i′, j, j′ ∗ dlist(α, i, i′, j, j′)}
dlistDispose(q)

{emp}

Fig. 4. Specifications for dlist-implementation of Priority Queues

4.4 Representation Independence

We now argue that our system may be used to reason about independence of
the representation of data using the examples from Sec. 4.3. Intuitively, a client
program should not be able to distinguish between the two implementations of
a priority queue we have given; here we justify this intuition.

Consider the two programs

c1 ≡
let

createqueue() = slistcreate
enqueue(q, (p, v)) = slistEnque(q, (p, v))
dequeue(q) = slistDeque(q)
disposequeue(q) = slistDispose(q)

in c end

and
c2 ≡
let

createqueue() = dlistcreate
enqueue(q, (p, v)) = dlistEnque(q, (p, v))
dequeue(q) = dlistDeque(q)
disposequeue(q) = dlistDispose(q)

in c end,

where c is a program that uses priority queues, for example the ones in Section
4.2. Intuitively, it should not matter which implementation we use, so that any
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specification we can show for one program, we should be able to show for the
other. Consider the abstract function definition rule from Section 3.3, which can
be used to verify such programs. We spell out how we can use the work we have
already done to apply this rule.

In the setting with singly linked lists, we can instantiate P̂ in the rule with
the predicate P̂slist:(PriQ× Int) ⇒ Prop defined by

P̂slist ≡ λ(Q, q). ∃α. sorted(α) ∧ Set(α) = Set(Q) ∧ slist(α, q, null).

Using the specifications mentioned in Section 4.3, it is not hard to show the
following specifications.

{emp}
slistcreate

{P̂slist(q, ε)}

{P̂ slist(q,Q)}
slistEnque(q, (p, v))

{P̂slist(q,Q ] (p, v))}

{P̂slist(q,Q) ∧Q 6= ε}
slistDeque(q)

{∃Q′, p, v. P̂slist(q,Q′) ∧ Set(Q) = Set(Q′) ] (p, v) ∧ (p, v) = MaxElt(Q) ∧ ret = v}

{P̂slist(q,Q)}
slistDeque(q)

{emp}.

Similarly, if we define the predicate P̂dlist:(PriQ× Int) ⇒ Prop by

P̂dlist(Q, q) ≡ λ(Q, q). ∃i, i′, j, j′, α. q 7→ i, i′, j, j′∗dlist(α, i, i′, j, j′)∧Set(α) = Set(Q),
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we can use the work in Section 4.3 to prove the specifications

{emp}
dlistcreate()

{P̂dlist(ε, q)}

{P̂dlist(Q, q)}
dlistEnque(q, (p, v))

{P̂dlist(Q ∪ (p, v), q)}

{P̂dlist(q,Q) ∧Q 6= ε}
dlistDeque(q)

{∃Q′, p, v, α. P̂dlist(q,Q′) ∧Q = Q′ ∪ (p, v) ∧ (p, v) = MaxElt(Q) ∧ ret = v}

{P̂dlist(q,Q)}
dlistDispose(q)

{emp}.

The proofs of the programs in Section 4.2 which use the abstract predicate
can be fitted into our framework. For example, the first of those programs has
the specification

∆;Γ ` {emp} c {emp ∧ y = 2},

where ∆ is the context q:Int, y:Int, repr:(PriQ × Int) ⇒ Prop and Γ is the envi-
ronment containing the abstract functions listed at the end of Section 4.1:

{emp} createqueue() {repr(ret, ε)},
{repr(q,Q)} enqueue(q, (v, p)) {repr(q, (v, p) ∪Q)},
{repr(q,Q) ∧Q 6= ε}

dequeue(q)
{∃Q′, p, v. repr(q,Q′) ∧Q = (p, v) ∪Q′ ∧ (p, v) = MaxElt(Q) ∧ ret = v},
{repr(q,Q)} disposequeue(q) {emp}.

According to the rule (4) in Section 3.3, we can then derive the specification

q, : Int, y:Int; ∅ ` {emp} c̃ {emp ∧ y = 2},

where c̃ is replaced by either c1 or c2. We note that the proof of the client program
is independent of the implementation of the module it uses. This is the sense in
which we can use our system to reason about representation independence.

4.5 Polymorphic Types via Universal Quantification

We now show that universally quantified predicates may be used to prove correct
polymorphic operations on polymorphic data types.

The queue module example from [19] is parametric in a predicate P at the
meta-level. We show that in higher-order separation logic, the parametricity
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may be expressed in the logic. To this end, consider the following version of the
parametric list predicate from [19].

list(P, β, i) =
{
i = null ∧ emp if β = ε
∃j. i 7→ x, j ∗ P (x) ∗ list(P, β′, j) if β = 〈x〉 · β′

The predicate P is required to hold for each element of the sequence β involved.
Different instantiations of P yield different versions of the list, with different
amounts of data stored in the list. If P ≡ emp, plain values are stored (and no
ownership transfer to the queue module in [19]), and if P ≡ x 7→ −,−, addresses
of cells are stored in the queue (and ownership of the cells is tranferred in and
out of the queue [19]).

Returning to higher-order separation logic, the definition of list may be for-
malized with

i:Int, β:seqInt, P :PropInt ` list(P, β, i):Prop.

Here we have used a type seqInt of sequences of integers, which is easily definable
in higher-order separation logic, and the definition of list(P, β, i) can be given
by induction on β in the logic, in the same sense as the slist and dlist predicates
from Section 4.3.

j := ;
while i 6= do k := [i+ 1];

[i+ 1] := j;
j := i;
i := k

od

Fig. 5. The list reversal program listRev

Suppose listRev is the list reversal program in Fig. 5 (taken from the intro-
duction of [26]). Then one can easily show the specification

{list(P, β, i)} listRev {list(P, β†, i)},

where β† is the reverse of the sequence β. By the introduction rule for universal
quantification we obtain the specification

β:seqInt ` ∀P :PropInt. {list(P, β, i)} listRev {list(P, β†, i)},

which expresses that listRev is parametric in the sense that it, roughly speaking,
reverses singly-linked lists of any type.

Thus we have one parametric correctness proof of a specification for listRev,
which may then be used to prove correct different applications of listRev (to
lists of different types).
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For such parametric operations on polymorphic data types to be more useful,
one would of course prefer a higher-order programming language instead of the
first-order language considered here. Then one could, e.g., program the usual
map function on lists, and provide a single parametric correctness proof for it.
In future work we will show how to make use of higher-order separation logic
for a higher-order language, specifically by extending the separation-logic typing
discipline for idealized algol recently introduced in joint work with Yang [5].

4.6 Invariance

In this subsection we briefly consider an example, suggested to us by John
Reynolds, which demontrates that one may use universal quantification to spec-
ify that a command does not modify its input state. We disregard stacks here
since they are not important for the argument.

Suppose that our intention is to specify that some command c takes any heap
h described by a prediate q, and produces a heap (we assume for simplicity that c
terminates), which is an extension of h. We might attempt to use a specification
of the form:

{q} c {q′ ∗ q}. (5)

This does not work, however, unless q is strictly exact [26] (for example, if q is
∃β:seqInt. list(β, i), then c may delete some elements from the list in the input
heap h).

Instead, we may use the specification

∀p:Prop.{q ∧ p} c {q′ ∗ p}, (6)

as we see by the following argument. Predicate q describes a set of heaps [[q]]. For
each h ∈ [[q]], let ph = {h}. Suppose c terminates in heap h′. Then h′ = h1∗h, for
some h1. That is, the heap h is invariant under the execution of c, as intended.

Note that (6) is stronger than (5): by instantiation p with q in (6) we get (5).
Thus if we wish to prove (5), then we may prove something stronger (6), which
may be easier to prove (c.f., strengthening an induction hypothetis), and then
derive the desired.

This illustrates that we can use universal quantification to express invariance
of commands.

4.7 Predicates via Fixed Points

Recall the slist predicate from the priority queue example above. It is required
to satisfy the following recursive equation:

slist = λ(x, s).(x = null ∧ emp) ∨ (∃p, v, k. x 7→ p, v, k ∗ slist(k, s)).

Solutions to such equations are definable in higher-order separation logic. Indeed,
we may define both minimal and maximal fixed points for any monotone operator
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on predicates, using standard encodings of fixed points. To wit, consider for
notational simplicity an arbitrary predicate

q:Prop ` ϕ(q):Prop

satisfying that q only occurs positively in ϕ. Then

µq.ϕ(q) = ∀q.(ϕ(q) → q) → q

is the least fixed point for ϕ in the obvious sense that ϕ(µq.ϕ(q)) → µq.ϕ(q) and
∀p.(ϕ(p) → p) → (µq.ϕ(q) → p) holds in the logic. Likewise,

νq.ϕ(q) = ∃q.(q → ϕ(q)) ∧ q

is the maximal fixed point for ϕ.

5 General Semantics for Higher-order BI

The sematics from Section 2.2 of the assertion language (higher-order predicate
BI) is an instance of a general concept, which we introduce in this section.

Part of the pointer model of separation logic, namely that given by heaps
(but not stacks), has been related to propositional BI, the logic of bunched
implications introduced by O’Hearn and Pym [15]. Here we show how the cor-
respondence may be extended to a precise correspondence between all of the
pointer model (including stacks) and our notion of predicate BI. We introduce
the notion of a BI hyperdoctrine, a simple extension of Lawvere’s notion of hyper-
doctrine [13], and show that it soundly models predicate BI.

We first introduce Lawvere’s notion of a hyperdoctrine [13] and briefly recall
how it can be used to model intuitionistic and classical first- and higher-order
predicate logic (see, for example, [21] and [12] for more explanations). We then
define the notion of a BI hyperdoctrine, which is a straightforward extension of
the standard notion of hyperdoctrine, and explain how it can be used to model
predicate BI logic.

5.1 Hyperdoctrines

A first-order hyperdoctrine is a categorical structure tailored to model first-order
predicate logic with equality. The structure has a base category C for modeling
the types and terms, and a C-indexed category P for modeling formulas.

Definition 1 (First-order hyperdoctrines). Let C be a category with fi-
nite products. A first-order hyperdoctrine P over C is a contravariant functor
P:Cop → Poset from C into the category of partially ordered sets and monotone
functions, with the following properties.

1. For each object X, the partially ordered set P(X) is a Heyting algebra.
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2. For each morphism f : X → Y in C, the monotone function P(f) : P(Y ) →
P(X) is a Heyting algebra homomorphism.

3. For each diagonal morphism ∆X : X → X × X in C, the left adjoint to
P(∆X) at the top element > ∈ P(X) exists. In other words, there is an
element =X of P(X ×X) satisfying that for all A ∈ P(X ×X),

> ≤ P(∆X)(A) iff =X≤ A.

4. For each product projection π : Γ × X → Γ in C, the monotone function
P(π) : P(Γ ) → P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint
(∀X)Γ :

A ≤ P(π)(A′) if and only if (∃X)Γ (A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ (A).

Moreover, these adjoints are natural in Γ , i.e., given s : Γ → Γ ′ in C, we
have

P(Γ ′ ×X)
P(s×idX) //

(∃X)Γ ′

��

P(Γ ×X)

(∃X)Γ

��

P(Γ ′ ×X)
P(s×idX) //

(∀X)Γ ′

��

P(Γ ×X)

(∀X)Γ

��
P(Γ ′)

P(s)
// P(Γ ) P(Γ ′)

P(s)
// P(Γ ).

The elements of P(X), where X ranges over objects of C, will be referred to
as P-predicates.

Interpretation of first-order logic in a first-order hyperdoctrine. Given a (first-
order) signature with types X, function symbols f : X1, . . . , Xn → X, and
relation symbols R ⊂ X1, . . . , Xn, a structure for the signature in a first-order
hyperdoctrine P over C assigns an object [[X]] in C to each type, a morphism
[[f ]] : [[X1]]×· · ·× [[Xn]] → [[X]] to each function symbol, and a P-predicate [[R]] ∈
P([[X1]] × · · · × [[Xn]]) to each relation symbol. Any term t over the signature,
with free variables in Γ = {x1:X1, . . . , xn:Xn} and of type X say, is interpreted
as a morphism [[t]] : [[Γ ]] → [[X]], where [[Γ ]] = [[X1]] × · · · × [[Xn]], by induction
on the structure of t (in the standard manner in which terms are interpreted in
categories).

Each formula ϕ with free variables in Γ is interpreted as a P-predicate
[[ϕ]] ∈ P([[Γ ]]) by induction on the structure of ϕ using the properties given
in Definition 1. For atomic formulas R(t1, . . . , tn), the interpretation is given by
P(〈[[t1]], . . . , [[tn]]〉)([[R]]). In particular, the atomic formula t =X t′ is interpreted
by the P-predicate P(〈[[t]], [[t′]]〉)(=[[X]]). The interpretation of other formulas is
given by structural induction. Assume ϕ,ϕ′ are formulas with free variables in
Γ and that ψ is a formula with free variables in Γ ∪ {x:X}. Then,

[[>]] = >H

[[⊥]] = ⊥H

[[ϕ ∧ ϕ′]] = [[ϕ]] ∧H [[ϕ′]]
[[ϕ ∨ ϕ′]] = [[ϕ]] ∨H [[ϕ′]]
[[ϕ→ ϕ′]] = [[ϕ]] →H [[ϕ′]]

[[∀x:X.ψ]] = (∀[[X]])[[Γ ]]([[ψ]]) ∈ P([[Γ ]])
[[∃x:X.ψ]] = (∃[[X]])[[Γ ]]([[ψ]]) ∈ P([[Γ ]]),
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where ∧H ,∨H , etc., is the Heyting algebra structure on P([[Γ ]]).
We say that a formula ϕ with free variables in Γ is satisfied if [[ϕ]] is the

top element of P([[Γ ]]). This notion of satisfaction is sound for intuitionistic
predicate logic, in the sense that all provable formulas are satisfied. Moreover,
it is complete in the sense that a formula is provable if it is satisfied in all
structures in first-order hyperdoctrines. A first-order hyperdoctrine P is sound
for classical predicate logic in case all the fibres P(X) are Boolean algebras and
all the reindexing functions P(f) are Boolean algebra homomorphisms.

Definition 2 (Hyperdoctrines). A (general) hyperdoctrine is a first-order
hyperdoctrine with the following additional properties: C is cartesian closed, and
there is a Heyting algebra H and a natural bijection ΘX : Obj(P(X)) ' C(X,H).

A hyperdoctrine is sound for higher-order intuitionistic predicate logic: the
Heyting algebra H is used to interpret the type Prop of propositions and higher
types (e.g., PropX , the type for predicates over X), are interpreted by exponen-
tials in C. The natural bijection ΘX is used to interpret substitution of formulas
in formulas: Suppose ϕ is a formula with a free variable q of type Prop and with
remaining free variables in Γ , and that ψ is a formula with free variables in Γ .
Then [[ψ]] ∈ P([[Γ ]]), [[ϕ]] ∈ P([[Γ ]]×H), and ϕ[ψ/q] (ϕ with ψ substituted in for
q) is interpreted by P(〈id, Θ([[ψ]])〉)([[ϕ]]). For more details see, e.g., [21].

Again it is the case that a hyperdoctrine P is sound for classical higher-
order predicate logic in case all the fibres P(X) are Boolean algebras and all the
reindexing functions P(f) are Boolean algebra homomorphisms.

Example 1 (Canonical hyperdoctrine over a topos). Let E be a topos. It is well-
known that E models higher-order predicate logic, by interpreting types as ob-
jects in E , terms as morphisms in E and predicates as subobjects in E . The topos
E induces a canonical E-indexed hyperdoctrine SubE : Eop → Poset, which maps
an objectX in E to the poset of subobjects ofX in E and a morphisms f : X → Y
to the pullback functor f∗ : Sub(Y ) → Sub(X). Then the standard interpreta-
tion of predicate logic in E coincides with the interpretation of predicate logic
in the hyperdoctrine SubE . Compared to the standard interpretation in toposes,
however, hyperdoctrines allow that predicates are not always modeled by sub-
objects but can come from some other universe. This means that hyperdoctrines
describe a wider class of models than toposes do.

5.2 BI Hyperdoctrines

Recall that a Heyting algebra is a bi-cartesian closed partial order, i.e., a partial
order, which, when considered as a category, is cartesian closed (>, ∧, →) and
has finite coproducts (⊥, ∨). Further recall that a BI algebra is a Heyting algebra,
which has an additional symmetric monoidal closed structure (I, ∗, −−∗) [22].

We now present a straightforward extension of (first-order) hyperdoctrines,
which models first and higher-order predicate BI.

Definition 3 (BI Hyperdoctrines).
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– A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in case
all the fibres P(X) are BI algebras and all the reindexing functions P(f) are
BI algebra homomorphisms.

– A BI hyperdoctrine is a first-order BI hyperdoctrine with the additional prop-
erties that C is cartesian closed, and there is a BI algebra B and a natural
bijection ΘX : Obj(P(X)) ' C(X,B).

First-order predicate BI is first-order predicate logic with equality, extended
with formulas I, ϕ ∗ ψ, ϕ −−∗ ψ satisfying the following rules (in any context Γ
including the free variables of the formulas):

(ϕ ∗ ψ) ∗ θ `Γ ϕ ∗ (ψ ∗ θ) ϕ ∗ (ψ ∗ θ) `Γ (ϕ ∗ ψ) ∗ θ `Γ ϕ↔ ϕ ∗ I

ϕ ∗ ψ `Γ ψ ∗ ϕ
ϕ `Γ ψ θ `Γ ω

ϕ ∗ θ `Γ ψ ∗ ω
ϕ ∗ ψ `Γ θ

ϕ `Γ ψ −−∗ θ

Our notion of predicate BI should not be confused with the one presented
in [22]; the latter seeks to also include a BI structure on contexts but we do not
attempt to do that here, since that is not what is used in separation logic. In
particular, weakening at the level of variables is always allowed:

ϕ `Γ ψ

ϕ `Γ∪{x:X} ψ
.

We can interpret first-order predicate BI in a first-order BI hyperdoctrine simply
by extending the interpretation of first-order logic in first-order hyperdoctrine
given above by:

[[I]] = IB
[[ϕ ∗ ψ]] = [[ϕ]] ∗B [[ψ]]
[[ϕ −−∗ ψ]] = [[ϕ]] −−∗B [[ψ]],

where IB , ∗B and −−∗B is the monoidal closed structure in the BI algebra P([[Γ ]]).
We then have:

Theorem 2. The interpretation of first-order predicate BI given above is sound
and complete.

Likewise, BI hyperdoctrines form sound and complete models for higher-order
predicate BI. Of course, a (first-order) BI hyperdoctrine is sound for classical
BI in case all the fibres P(X) are Boolean BI algebras and all the reindexing
functions P(f) are Boolean BI algebra homomorphisms. Here is a canonical
example of a BI hyperdoctrine.

Example 2 (BI hyperdoctrine over a complete BI algebra). Let B be a complete
BI algebra, i.e., it has all joins and meets. It determines a BI hyperdoctrine over
the category Set as follows. For each set X, let P(X) = BX , the set of functions
from X to B, ordered pointwise. Given f : X → Y , P(f) : BY → BX is the BI
algebra homomorphism given by composition with f . For example if s, t ∈ P(Y ),
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i.e., s, t : Y → B, then P(f)(s) = s ◦ f : X → B and s ∗ t is defined pointwise as
(s ∗ t)(y) = s(y) ∗ t(y). Equality predicates =X in BX×X are given by

=X (x, x′) def=
{
> if x = x′

⊥ if x 6= x′
,

where > and ⊥ are the greatest and least elements of B, respectively. The quan-
tifiers use set-indexed joins (

∨
) and meets (

∧
). Specifically, given A ∈ BΓ×X

one has

(∃X)Γ (A) def= λi ∈ Γ.
∨

x∈X

A(i, x) (∀X)Γ (A) def= λi ∈ Γ.
∧

x∈X

A(i, x)

in BΓ . The conditions in Definition 2 are trivially satisfied (Θ is the identity).

There are plenty of examples of complete BI algebras: for any Grothendieck
topos E with an additional symmetric monoidal closed structure, SubE(1) is a
complete BI algebra, and for any monoidal category C such that the monoid is
cover preserving w.r.t. the Grothendieck topology J , SubSh(C,J)(1) is a complete
BI algebra [2, 24].

The following theorem shows that to get interesting models of higher-order
predicate BI, it does not suffice to consider BI hyperdoctrines arising as the
canoncial hyperdoctrine over a topos (as in Example 1). Indeed this is the reason
for introducing the more general BI hyperdoctrines.

Theorem 3. Let E be a topos and suppose SubE : Eop → Poset is a BI hyper-
doctrine. Then the BI structure on each lattice SubE(X) is trivial, i.e., for all
ϕ,ψ ∈ SubE(X), ϕ ∗ ψ ↔ ϕ ∧ ψ.

Proof. Let E be a topos and suppose that SubE : Eop → Poset is a BI hyper-
doctrine. Let X be an object of E and let ϕ,ψ, ψ′ ∈ SubE(X). Furthermore let
Y be the domain of the mono ϕ, and notice that the lattice SubE(Y ) can be
characterized by

SubE(Y ) = {ψ ∧ ϕ | ψ ∈ SubE(X)}. (7)

Also notice that the order on SubE(Y ) is inherited from SubE(X), i.e.,

For all χ, χ′ ∈ SubE(Y ), χ `Y χ′ iff χ `X χ′. (8)

Since ∧ is modeled by pullback which by assumption preserves ∗, we have the
following equations in SubE(Y ) (and therefore also in SubE(X)):

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ′) ↔ ϕ ∧ (ψ ∗X ψ′) (9)

and
(ϕ ∧ ψ) −−∗Y (ϕ ∧ ψ′) ↔ ϕ ∧ (ψ −−∗X ψ′). (10)

By assumption, SubE(Y ) forms a BI algebra with connectives ∗Y ,−−∗Y and IY , so
using the characterization of subobjects of Y given in (7), we get the following
rule for each χ ∈ SubE(X):

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ′) `Y χ ∧ ϕ
ϕ ∧ ψ `Y (ϕ ∧ ψ′) −−∗Y (χ ∧ ϕ)
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Using (8), (9), and (10) we deduce

ϕ ∧ (ψ ∗X ψ′) `X χ ∧ ϕ
ϕ ∧ ψ `X ϕ ∧ (ψ′ −−∗X χ)

for all ϕ,ψ, ψ′, χ ∈ SubE(X), which implies

ϕ ∧ (ψ ∗X ψ′) `X χ ∧ ϕ
ϕ ∧ ψ `X ψ′ −−∗X χ

(ϕ ∧ ψ) ∗X ψ′ `X χ (11)

Inserting ϕ ∧ (ψ ∗X ψ′) for χ into (11) we get

ϕ ∧ (ψ ∗X ψ′) `X ϕ ∧ (ψ ∗X ψ′)

(ϕ ∧ ψ) ∗X ψ′ `X ϕ ∧ (ψ ∗X ψ′). (12)

Since the entailment above the line in (12) always holds, we have

(ϕ ∧ ψ) ∗X ψ′ `X ϕ ∧ (ψ ∗X ψ′).

This gives us projections for ∗X by letting ψ be >:

(ϕ ∗X ψ′) a`X (ϕ ∧ >) ∗X ψ′ `X ϕ ∧ (> ∗X ψ′) `X ϕ.

Now, let χ be the subobject (ϕ ∧ ψ) ∗X ψ′, then χ ↔ χ ∧ ϕ because we have
projections for ∗X . Using (11) downwards-up, we get

(ϕ ∧ ψ) ∗X ψ′ `X (ϕ ∧ ψ) ∗X ψ′

ϕ ∧ (ψ ∗X ψ′) `X (ϕ ∧ ψ) ∗X ψ′ (13)

By (12) and (13) we conclude that for all ϕ,ψ, ψ′ ∈ SubE(X),

ϕ ∧ (ψ ∗X ψ′) ↔ (ϕ ∧ ψ) ∗X ψ′. (14)

We already noted that we have projections for ∗X , so > ∗X IX `X IX which
means that > ↔ IX . Let ψ be > in (14), then ϕ ∧ (> ∗X ψ′) ↔ (ϕ ∧ >) ∗X ψ′

and so ϕ ∧ ψ′ ↔ ϕ ∗X ψ′, as claimed. ut

In fact, it is possible to make a slight strengthening of Theorem 3. We say that
a logic has full subset types [12] if the following conditions are satisfied.

– For each formula ϕ(x1, . . . , xn), there is a type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}.
– For a term N of type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}, in a context Γ ,there

is a term o(N) of type τ1 × · · · × τn in Γ .
– The rule

Γ, y:{x:X | ϕ} | θ[o(y)/x] ` ψ[o(y)/x]

Γ, x:X | θ, ϕ ` ψ (15)

is valid.



34 Biering, Birkedal, Torp-Smith

One can then show

Theorem 4. If our notion of predicate BI has full subset types, then for all
formulas ϕ,ψ in a context Γ , we have

ϕ ∧ ψ a`Γ ϕ ∗ ψ.

The proof may be found in Appendix E.

Corollary 1. Any BI hyperdoctrine which satisfies the rules for full subset types
is trivial.

Note that the BI hyperdoctrine we use to model separation logic (the standard
pointer model) satisfies all of the above except the downward direction of (15).
When this is the case, we say that the logic has subset types, but not full subset
types [12].

5.3 The Pointer Model as a BI Hyperdoctrine

We now show how the semantics of assertions from Section 2.2 is an instance of
the general framework we have described.

Let (H⊥, ∗) be the discretely ordered set of heaps with a bottom element
added to represent undefined, and let ∗ : H⊥×H⊥ → H⊥ be the total extension
of ∗ : H ×H ⇀ H satisfying ⊥ ∗ h = h ∗ ⊥ = ⊥, for all h ∈ H⊥. This defines a
partially ordered commutative monoid with the empty heap {} as the unit for ∗.
The powerset of H, P(H) (without ⊥) is a complete Boolean BI algebra, ordered
by inclusion and with monoidal closed structure given by (for U, V ∈ P(H)):

– I is {∅}
– U ∗ V := {h ∗ h′ | h ∈ U ∧ h′ ∈ V } \ {⊥}
– U −−∗ V :=

⋃
{W ⊆ H | (W ∗ U) ⊆ V }.

It can easily be verified directly that this defines a complete Boolean BI algebra;
it also follows from more abstract arguments in [24, 2].

Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra
P(H) as in Example 2. To show that the interpretation of separation logic in this
BI hyperdoctrine exactly corresponds to the standard pointer model presented
above we spell out the interpretation of separation logic in S.

A term t in a context Γ = {x1:τ1, . . . , xn:τn} is interpreted as a morphism
between sets. For example,

– [[xi:τ1]] = πi,
– [[n]] is the map [[n]] : [[Γ ]] → {∗} → Z which sends the unique element of the

one-point set {∗} to n,
– [[t0± t1]] = [[t0]]± [[t1]] : [[Γ ]] → Z×Z → Z, where [[ti]] : [[Γ ]] → Z, for i = 0, 1.

The interpretation of a formula ϕ in a context Γ = {x1:τ1, . . . , xn:τn} is given
inductively. Let I = [[Γ ]] and write v for elements of I. Then ϕ is interpreted as
an element of P(I). The interpretation is given in Fig. 6.

Now it is easy to verify by structural induction on formulas ϕ that the inter-
pretation given in the BI hyperdoctrine S corresponds exactly to the semantics
of terms of type Prop given in Section 2.2, in the sense given by
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[[t1 7→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v), ∅ otherwise
[[>]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[ϕ ∧ ψ]](v) = [[ϕ]](v) ∩ [[ψ]](v)
[[ϕ ∨ ψ]](v) = [[ϕ]](v) ∪ [[ψ]](v)
[[ϕ→ ψ]](v) = {h | h ∈ [[ϕ]](v) implies h ∈ [[ψ]](v)}
[[ϕ ∗ ψ]](v) = [[ϕ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[ϕ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[ϕ −−∗ ψ]](v) = [[ϕ]](v) −−∗ [[ψ]](v)

= {h | [[ϕ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x:τ.ϕ]](v) =

T
vx∈[[τ ]]([[ϕ]](vx, v))

[[∃x:τ.ϕ]](v) =
S

vx∈[[τ ]]([[ϕ]](vx, v))

Fig. 6. Semantics of Assertions in the Hyperdoctrine S

Theorem 5. Let the predicate ∆ ` ϕ : Prop have free variables in the context
∆ = x1:τ1, . . . , xn:τn, and let (v1, . . . , vn) ∈ [[τ1 × . . .× τn]]. Then,

[[ϕ]](v1, . . . , vn) = [[ϕ]](x1→v1,...,xn→vn),

where the semantics on the left is the one in Fig. 6 and the semantics on the
right is the semantics from Section 2.2.

As a consequence, we of course obtain the well-known result that separation
logic is sound for classical first-order BI. The correspondence also shows that it
is sensible to extend separation logic to higher-order since the BI hyperdoctrine
S soundly models higher-order BI. One can also obtain a correspondence like
that of Theorem 5 for other versions of separation logic.

An intuitionistic model. Consider again the set of heaps (H⊥, ∗) with an added
bottom ⊥, as above. We now define the order by

h1 w h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1). h1(x) = h2(x).

Let I be the set of sieves on H, i.e., downwards closed subsets of H, ordered
by inclusion. This is a complete BI algebra, as can be verified directly or by an
abstract argument [2, 24]. Now let T be the BI hyperdoctrine induced by the
complete BI algebra I as in Example 2. The interpretation of predicate BI in
this BI hyperdoctrine corresponds exactly to the intuitionistic pointer model of
separation logic, which is presented using a forcing style semantics in [11].

The permissions model. It is also possible to fit the permissions model of sepa-
ration logic from [7] into the framework presented here. The main point is that
the set of heaps, which in that model map locations to values and permissions,
has a binary operation ∗, which makes (H⊥, ∗) a partially ordered commutative
monoid.
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Remark 2. The correspondences between separation logic and BI hyperdoctrines
given above illustrate that what matters for the interpretation of separation logic
is the choice of BI algebra. Indeed, the main relevance of the topos-theoretic
constructions in [24] for models of separation logic is that they can be used to
construct suitable BI-algebras (as subobject lattices in categories of sheaves).

6 Other Applications of Higher-order BI

We have shown above that it is completely natural and straightforward to in-
terpret first-order predicate BI in first-order BI-hyperdoctrines and that the
standard pointer model of separation logic corresponds to a particular case of
BI-hyperdoctrine. Based on this correspondence, in this section we draw some
further consequences for separation logic.

6.1 Formalizing Separation Logic

The strength of separation logic has been demonstrated in numerous papers
before. In the early days of separation logic, it was shown that it could handle
simple programs for copying trees, deleting lists, etc. The first proof of a more
realistic program appeared in Yang’s thesis [28], in which he showed correctness
of the Schorr-Waite graph marking algorithm. Later, a proof of correctness of
Cheney’s garbage collection algorithm was published in [4], and other examples
of correctness proofs of non-trivial algorithms may be found in [6]. In all of
these papers, different simple extensions of core separation logic were used. For
example, Yang used lists and binary trees as parts of his term language, and
Birkedal et. al. introduced expression forms for finite sets and relations. It would
seem that it is a weakness of separation logic that one has to come up with
suitable extensions of it every time one has to prove a new program correct. In
particular, it would make machine-verifiable formalizations of such proofs more
burdensome and dubious if one would have to alter the underlying logic for every
new proof.

The right way to look at these “extensions” is that they are really trivial
definitional extensions of one and the same logic, namely the internal logic of
the classical BI hyperdoctrine S presented in Section 5. The internal language
of a BI hyperdoctrine P over C is formed as follows: to each object of C one
associates a type, to each morphism of C one associates a function symbol, and
to each predicate in P(X) one associates a relation symbol. The terms and
formulas over this signature (considered as a higher-order signature [12]) form
the internal language of the BI hyperdoctrine. There is an obvious structure for
this language in P.

Let 2 = {⊥,>} be a two-element set (the subobject classifier of Set). There
is a canonical map ι : 2 → P(H) that maps ⊥ to {} (the bottom element of the
BI algebra P(H)) and > to H (the top element of P(H)).

Definition 4. Let ϕ be an S-predicate over a set X, i.e., a function ϕ : X →
P(H). Call ϕ pure if ϕ factors through ι.



Higher-order Separation Logic 37

Thus ϕ : X → P(H) is pure if there exists a map χϕ : X → 2 such that

X
ϕ //

χϕ
��>

>>
>>

>>
> P(H)

2
ι

==zzzzzzzz

commutes. This corresponds to the notion of pure predicate traditionally used
in separation logic [26].

The sub-logic of pure predicates is simply the standard classical higher-order
logic of Set, and thus it is sound for classical higher-order logic. Hence one can
use classical higher-order logic for defining lists, trees, finite sets and relations
in the standard manner using pure predicates and prove the standard properties
of these structures, as needed for the proofs presented in the papers referred
to above. In particular, notice that recursive definitions of predicates, which in
[28, 4, 6] are defined at the meta level, can be defined inside the higher-order
logic itself. For machine verification one would thus only need to formalize one
and the same logic, namely a sufficient fragment of the internal logic of the
BI hyperdoctrine (with obvious syntactic rules for when a formula is pure).
The internal logic itself is “too big” (it can have class-many types and function
symbols, e.g.); hence the need for a fragment thereof, say classical higher-order
logic with natural numbers.

6.2 Logical Characterizations of Classes of Assertions

Different classes of assertions, precise, monotone, and pure, were introduced
in [26], and it was noted that special axioms for these classes of assertions are
valid. Such special axioms were further exploited in [4], where pure assertions
were moved in and out of the scope of iterated separating conjunctions, and
in [19], where precise assertions were crucially used to verify soundness of the
hypothetical frame rule. The different classes of assertions were defined seman-
tically and the special axioms were also validated using the semantics. We now
show how the higher-order features of higher-order separation logic may be used
to logically characterize the classes of assertions and logically prove the proper-
ties earlier taken as axioms. This is, of course, important for machine verification,
since it means that the special classes of assertions and their properties can be
expressed in the logic.

To simplify notation we just present the characterizations for closed asser-
tions, the extension to open assertions is straightforward. Recall that closed
assertions are interpreted in S as functions from 1 to P(H), i.e., as subsets of
H.

In the proofs below, we use assertions which describe heaps in a canonical
way. Since a heap h has finite domain, there is a unique (up to permutation)
way to write an assertion ph ≡ l1 7→ n1 ∗ . . . ∗ lk 7→ nk such that [[ph]] = {h}.
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Precise assertions. The traditional definition of a precise assertion is semantic,
in that an assertion q is precise if, and only if, for all states (s, h), there is at most
one subheap h0 of h such that (s, h0) 
 q. The following proposition logically
characterizes closed precise assertions (at the semantic level, this characterization
of precise predicates was mentioned in [18]).

Proposition 1. The closed assertion q is precise if, and only if, the assertion

∀p1, p2 : Prop. (p1 ∗ q) ∧ (p2 ∗ q) (p1 ∧ p2) ∗ q (16)

is valid in the BI hyperdoctrine S.

Proof. The “only-if” direction is trivial, so we focus on the other implication.
Thus suppose (16) holds for q, and let h be a heap with two different subheaps
h1, h2 for which hi ∈ [[q]]. Let p1, p2 be canonical assertions that describe the
heaps h \ h1 and h \ h2, respectively. Then h ∈ [[(p1 ∗ q) ∧ (p2 ∗ p)]], so h ∈
[[(p1 ∧ p2) ∗ q]], whence there is a subheap h′ ⊆ h with h′ ∈ [[p1 ∧ p2]]. This is a
contradiction. ut

One can verify properties that hold for precise assertions in the logic without
using semantical arguments. For example, one can show that q1 ∗ q2 is precise if
q1 and q2 are by the following logical argument: Suppose (16) holds for q1, q2.
Then,

(p1 ∗ (q1 ∗ q2)) ∧ (p2 ∗ (q1 ∗ q2)) ⇒ ((p1 ∗ q1) ∗ q2) ∧ ((p2 ∗ q1) ∗ q2))
⇒ ((p1 ∗ q1) ∧ (p2 ∗ q1)) ∗ q2 ⇒ ((p1 ∧ p2) ∗ q1) ∗ q2
⇒ (p1 ∧ p2) ∗ (q1 ∗ q2),

as desired.

Monotone assertions. A closed assertion q is defined to be monotone if, and only
if, whenever h ∈ [[q]] then also h′ ∈ [[q]], for all extensions h′ ⊇ h.

Proposition 2. The closed assertion q is monotone if, and only if, the assertion
∀p:Prop. p ∗ q → q is valid in the BI hyperdoctrine S.

This is also easy to verify, and again, one can show the usual rules for monotone
assertions in the logic (without semantical arguments) using this characteriza-
tion.

Pure assertions. Recall from above that an assertion q is pure iff its interpre-
tation factors through 2. Thus a closed assertion is pure iff its interpretation is
either ∅ or H.

Proposition 3. The closed assertion q is pure if, and only if, the assertion

∀p1, p2:Prop. (q ∧ p1) ∗ p2 ↔ q ∧ (p1 ∗ p2) (17)

is valid in the BI hyperdoctrine S.
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Proof. Again, the interesting direction here is the “if” implication. Hence, sup-
pose (17) holds for the assertion q, and that h ∈ [[q]]. For any heap h0, we must
then show that h0 ∈ [[q]]. This is done via the verification of two claims.
Fact 1: For all h′ ⊆ h, h′ ∈ [[q]]. Proof: Let p1 be a canonical description of h′, and
p2 a canonical description of h\h′. Then h ∈ [[q∧ (p1 ∗p2)]], so h ∈ [[(q∧p1)∗p2]].
This means that there is a split h1 ∗ h2 = h with h1 ∈ [[q ∧ p1]] and h2 ∈ [[p2]].
But then, h2 = h \ h′, so h1 = h′, and thus, h′ ∈ [[q]].
Fact 2: For all h′ ⊇ h, h′ ∈ [[q]]. Proof: Let p1 and p2 be canonical descriptions
of h and h′ \ h, respectively. Then, h′ ∈ [[(q ∧ p1) ∗ p2]], so h′ ∈ [[q ∧ (p1 ∗ p2)]],
and in particular, h′ ∈ [[q]], as desired.

Using Facts 1 and 2, we deduce h ∈ [[q]] ⇒ ∅ ∈ [[q]] ⇒ h0 ∈ [[q]].

7 Related Work

There are references to related work throughout this paper. Here, we give point-
ers to some more related work.

As mentioned, Parkinson and Bierman propsed a system for reasoning about
data abstraction [20], in which they introduce a notion of “abstract predicates”.
We believe our approach is more straightforward and natural, as we have already
argued. Even before that, Reddy gave a semantics for objects and classes in [25],
in which he also uses the slogan that data abstraction should be modeled via
existential quantification. The main difference from that work compared to the
present is that Reddy does not consider a programming language with heap
manipulating constructs, but which is higher-order. Also, Reddy uses a more
sophisticated type system than ours, and types are interpreted relationally. It is
ongoing work to give a relational interpretation to a higher-order programming
language with heap-manipulating constructs.

Kohei Honda’s group has numerous papers on higher-order imperative lan-
guages [1, 10]. The similarities between their work and the present is that both
seek to reason about equivalence of programs in programming languages with
pointers. Their work is, however, not restricted to our programming language
with simple procedures. The main differences include: (i) Their logic does not
include a ∗ connective; instead they use predicate logic with equality to keep
track of aliasing. This makes local reasoning harder. (ii) The interpretation of
triples is not “tight” in their work. For example, the triple

{true} [x] := 4 {true}

is valid in the setting of Honda et al., but not in separation logic. (iii) One of
the goal of Honda et al.’s work is to show observational equivalence. Although
intriguing, we do not aim to answer such questions in the present work. See the
long version of [1] for an extensive comparison of their work to separation logic.

8 Conclusion

We have extended the assertion language and specification language of separation
logic to higher-order and given a model for it. Further, we have argued that this
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is a useful extension. In particular, we have shown that we can prove correct
programs that use abstract data types with with internal (hidden) resorces, and
illustrated that universal quantification over predicates can be used to reason
about polymorphic data types. Further, we have introduced the notion of a BI
hyperdoctrine and we showed that our semantics is an instance of this general
concept, inasmuch as our interpretation of predicates coincides with the standard
interpretation of predicates in a hyperdoctrine. We also showed that the general
concept of hyperdoctrines is needed, since one cannot hope to get interesting
models of predicate BI by extending the standard interpretation of predicate
logic in toposes.

Acknowledgements The authors wish to thank Carsten Butz and the anony-
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comments and insights.
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A Implementation Using slists

Creating a Queue with slists:

slistcreate
def
=

return null

Enqueing with slists:

slistEnque(q, (p, v))
def
=

newvar, ptemp, temppri, temp, found, new;
ptemp := null;
if (q = null)
q := cons(p, v, null)

else
temppri := [q];
if (p ≥ temppri)
q := cons(p, v, q)

else
ptemp := q;
temp := [q + 2];
found := false;
while (temp 6= null ∧ found = false)

temppri := [temp];
if (p ≥ temppri)

found := true
else

ptemp := temp;
temp := [ptemp + 2]

fi
od;
new := cons(p, v, temp);
[ptemp + 2] := new

fi
fi

Dequeing with slists:

slistDeque(q)
def
=

newvar temp, maxVal;
temp := q;
maxVal := [q + 1];
q := [q + 2];
dispose(temp, temp + 1, temp + 2);
return maxVal
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Disposing a with slist-queue:

slistDispose(q)
def
=

newvar temp;
while (q 6= null) do

temp := q;
q := [q + 2];
dispose(temp, temp + 1, temp + 2)

od

B Implementation Using dlists

Creating a Queue with dlists:

dlistcreate
def
=

q := cons(null, null, null, null);
return q

Enqueing with dlists:

dlistEnque(q)
def
=

newvar i, i′, j, j′, temp;
i := [q]; i′ := [q + 1]; j := [q + 2]; j′ := [q + 3];
if (i = j)
i := cons(p, v, j, i′);
j′ := i

else
temp := cons(p, v, i, i′);
[i+ 3] := temp;
i := temp

fi;
[q] := i; [q + 1] := i′; [q + 2] := j; [q + 3] := j′
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Dequeing with dlists

dlistDeque(q)
def
=

newvar i, i′, j, j′, max, maxP, maxVal, temp, tempP, temp0, temp1;
i := [q]; i′ := [q + 1]; j := [q + 2]; j′ := [q + 3];
max := i;
maxP := [i];
temp := [i+ 2];
while (temp 6= j) do

tempP := [temp];
if (tempP > maxP)

max := temp;
maxP := tempP

else
skip

fi;
temp := [temp + 2]

od;
maxVal := [max + 1];
if (max = i)

if (max = j′)
dispose(max);
i := j; i′ := j′

else
temp := i;
i := [i+ 2];
[i+ 3] := i;
dispose(max,max + 1,max + 2,max + 3)

fi
else

if (max = j′)
j′ := [j′ + 3];
[j′ + 2] := j;
dispose(max,max + 1,max + 2,max + 3)

else
temp0 := [max + 2];
temp1 := [max + 3];
[temp0 + 3] := temp1;
[temp1 + 2] := temp0;
dispose(max,max + 1,max + 2,max + 3)

fi;
fi;
[q] := i; [q + 1] := i′; [q + 2] := j; [q + 3] := j′

return maxVal
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Disposing with dlist-queue:

dlistDispose(q)
def
=

newvar i, j, temp;
i := [q]; j := [q + 2];
while (i 6= j)

temp := i;
i := [temp + 2];
dispose(temp, temp + 1, temp + 2, temp + 3)

od;
dispose(q, q + 1, q + 2, q + 3)

C Hints for Proof of slistEnque

An invariant of the while loop in slistEnque is

∃β, β′, p′, v′.
slist(β, i, ptemp) ∗ ptemp 7→ (p′, v′, temp) ∗ slist(β′, temp, j) ∧
((found ∧ sorted(β · (p′, v′) · (p, v) · β′)) ∨ p′ > p) ∧
α = β · (p′, v′) · β′ ∧ sorted(α)

Here are some properties about the slist predicate that we used in the proof.

slist(α, i, null) ∧ i 6= j ⇒ ∃α′, p, v, k. α = (p, v) · α′ ∧ i 7→ (p, v, k) ∗ slist(α′, k, j)
k 7→ (p, v, i) ∗ slist(α, i, j) ⇒ slist((p, v) · α, k, j)
slist(α, i, k) ∗ k 7→ (p, v, j) ⇒ slist(α · (p, v), i, j)

D Hints for Proof of dlistDeque

An invariant of the while loop in this program is

∃i, i′, j, j′. q 7→ (i, i′, j, j′) ∗
(∃β, β′, β′′, ptemp, pmax.

dlist(β, i, i′,max, pmax) ∗
dlist(β′,max, pmax, temp, ptemp) ∗
dlist(β′′, temp, ptemp, j, j′) ∧
α = β · β′ · β′′ ∧ β′ 6= ε ∧maxP = Max(β · β′) = head(β′)).

The cell containing the “boundary values” for the slist need not appear in most
of the proof but can be “framed in” via the frame rule.

The following basic properties about the dlist predicate have been used in
our proof of the dlist implementation of priority queues. Some of these are also
listed in [26].
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dlist(α, i, i′, j, j′) ∧ i 6= j ⇒ dlist(α, i, i′, j, j′) ∧ α 6= ε
dlist(α, i, i′, j, j′) ∧ α 6= ε⇒
∃p, v, k, α′. α = (p, v) · α′ ∧ i 7→ (p, v, k, i′) ∗ dlist(α′, k, i, j, j′)

i = i′ ∧ j = j′ ∧ emp ⇒ dlist(ε, i, i′, j, j′)
dlist(α, i, i′, k, k′) ∗ dlist(α′, k, k′, j, j′) ⇒ dlist(α · α′, i, i′, j, j′)

E Proof of Theorem 4

For a term t with y:Y ` t(y):X we add the following abbreviation

∃t. ϕ(y)
def
= ∃y:Y. t(y) = x ∧ ϕ(y)

The following rule can be deduced

x:X | ∃t. ϕ(y) ` ψ(x)

y:Y | ϕ(y) ` ϕ[t(y)/x]
.

In particular for y:{x:X | ϕ} ` o(y):X we have

x:X | ∃o. θ(y) ` ψ(x)

y:Y | θ(y) ` ϕ[o(y)/x]
.

Let ϕ,ψ, ψ′, χ be formulas in a context {x:X} (for simplicity we just assume one
free variable, the general case is similar). First we show that

x:X | ϕ ∧ ψ a` ∃o. ψ[o(y)/x]. (18)

This is done by

x:X | ∃o. ψ[o(y)/x] ` ∃o. ψ[o(y)/x]

y:{x:X | ϕ} | ψ[o(y)/x] ` (∃o. ψ[o(y)/x])[o(y)/x]

x:X | ψ ∧ ϕ ` ∃o. ψ[o(y)/x]
,

where the last derivation is the rule for full subset types. For the other direction,
consider

y:{x:X | ϕ} | ψ[o(y)/x] ` ψ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ψ

and
x:X | ϕ ∧ ψ ` ϕ

y:{x:X | ϕ} | ψ[o(y)/x] ` ϕ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ϕ
,

which imply x:X | ∃o. ψ[o(y)/x] ` ϕ ∧ ψ. We also need the following

y:{x:X | ϕ} | χ[o(y)/x] ` ψ[o(y)/x]

x:X | ∃o. χ[o(y)/x] ` ∃o. ψ[o(y)/x]
.

(19)
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which is shown by

y:{x:X | ϕ} | χ[o(y)/x] ` ψ[o(y)/x]

x:X | χ ∧ ϕ ` ψ
x:X | χ ∧ ϕ ` ψ ∧ ϕ

x:X | ∃o. χ[o(y)/x] ` ∃o. ψ[o(y)/x]
,

where the last derivation follows from (18). We then have

y:{x:X | ϕ} | ψ[o(y)/x] ∗ ψ′[o(y)/x] ` χ[o(y)/x]

y:{x:X | ϕ} | ψ[o(y)/x] ` ψ′[o(y)/x] −−∗ χ[o(y)/x]
,

i.e.,

y:{x:X | ϕ} | ψ[o(y)/x] ` (ψ′ −−∗ χ)[o(y)/x]
= .

y:{x:X | ϕ} | (ψ ∗ ψ′)[o(y)/x] ` χ[o(y)/x]

By (19) we then get

x:X | ∃o. (ψ ∗ ψ′)[o(y)/x] ` ∃o. χ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ∃o. (ψ′ −−∗ χ)[o(y)/x]
,

which by 18 gives us
x:X | ϕ ∧ (ψ ∗ ψ′) ` ϕ ∧ χ
x:X | ϕ ∧ ψ ` ϕ ∧ (ψ′ −−∗ χ)

.

This entails the following

x:X | ϕ ∧ (ψ ∗ ψ′) ` χ
x:X | ϕ ∧ (ψ ∗ ψ′) ` χ ∧ ϕ
x:X | ϕ ∧ ψ ` ϕ ∧ (ψ′ −−∗ χ)

x:X | ϕ ∧ ψ ` ψ′ −−∗ χ
x:X | (ϕ ∧ ψ) ∗ ψ′ ` χ

.

Letting χ be (ϕ ∧ ψ) ∗ ψ′ respectively ϕ ∧ (ψ ∗ ψ′) we read off the equivalence
x:X | ϕ ∧ (ψ ∗ ψ′) a` (ϕ ∧ ψ) ∗ ψ′. Now, let ϕ and ψ be I and ψ′ be >;
this gives I ∧ (I ∗ >) a` (I ∧ I) ∗ >, that is, I a` >, which in return yields
ϕ ∧ (> ∗ ψ′) a` (ϕ ∧ >) ∗ ψ′, i.e., ϕ ∧ ψ′ a` ϕ ∗ ψ′. ut


