
Modelling Recursion and Probabilistic Choice in Guarded
Type Theory
PHILIPP STASSEN, Aarhus University, Denmark

RASMUS EJLERS MØGELBERG, IT University of Copenhagen, Denmark

MAAIKE ANNEBET ZWART, IT University of Copenhagen, Denmark

ALEJANDRO AGUIRRE, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

Constructive type theory combines logic and programming in one language. This is useful both for reasoning

about programs written in type theory, as well as for reasoning about other programming languages inside

type theory. It is well-known that it is challenging to extend these applications to languages with recursion

and computational effects such as probabilistic choice, because these features are not easily represented in

constructive type theory.

We show how to define and reason about FPC⊕ , a programming language with probabilistic choice and

recursive types, in guarded type theory. We use higher inductive types to represent finite distributions and

guarded recursion to model recursion. We define both operational and denotational semantics of FPC⊕ , as
well as a relation between the two. The relation can be used to prove adequacy, but we also show how to use

it to reason about programs up to contextual equivalence.

CCS Concepts: • Theory of computation→ Type theory; Denotational semantics; Operational seman-
tics; Probabilistic computation.

Additional Key Words and Phrases: Probabilistic Programming Languages, Type Theory, Guarded Recursion,

Recursive Types

ACM Reference Format:
Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal. 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory. Proc. ACM Program. Lang. 9, POPL,
Article 48 (January 2025), 29 pages. https://doi.org/10.1145/3704884

1 Introduction
Traditionally, modelling and reasoning about programming languages is done using either opera-

tional or denotational techniques. Denotational semantics provides mathematical abstractions that

are used to see beyond the details of the operational implementation, to describe principles common

to many different languages, and to provide modular building blocks that can be extended to settings

with more language features. On the other hand, denotational semantics can easily become very

sophisticated mathematically, and modelling combinations of recursion and other features such as

probabilistic sampling and higher-order store can be difficult. Operational techniques are often

Authors’ Contact Information: Philipp Stassen, Aarhus University, Aarhus, Denmark, stassen@cs.au.dk; Rasmus Ejlers

Møgelberg, IT University of Copenhagen, Copenhagen, Denmark, mogel@itu.dk; Maaike Annebet Zwart, IT University of

Copenhagen, Copenhagen, Denmark, mazw@itu.dk; Alejandro Aguirre, Aarhus University, Aarhus, Denmark, alejandro@

cs.au.dk; Lars Birkedal, Aarhus University, Aarhus, Denmark, birkedal@cs.au.dk.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART48

https://doi.org/10.1145/3704884

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-4600-777X
HTTPS://ORCID.ORG/0000-0003-0386-4376
HTTPS://ORCID.ORG/0000-0002-0257-1574
HTTPS://ORCID.ORG/0000-0001-6746-2734
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3704884
https://orcid.org/0000-0003-4600-777X
https://orcid.org/0000-0003-0386-4376
https://orcid.org/0000-0003-0386-4376
https://orcid.org/0000-0002-0257-1574
https://orcid.org/0000-0001-6746-2734
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3704884
https://creativecommons.org/licenses/by/4.0/

48:2 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

more direct and flexible, and are usually easier to implement in proof assistants, but reasoning

requires constructing complex operational models and logics.

Synthetic guarded domain theory (SGDT) provides an alternative approach to both denotational

and operational semantics. The idea is to work in an expressive meta-language with guarded

recursion in the sense of Nakano [32], and to use recursion on the meta-level to model recursion

on the object level. The specific meta-language used in this paper is Clocked Cubical Type Theory

(CCTT) [26]. It includes a modal type-operator ⊲𝜅 , indexed by a so-called clock 𝜅 (see Section 2), to

describe data that is available one time step from now. It is possible to define elements by guarded

recursion by means of a fixed point combinator fix𝜅 : (⊲𝜅𝐴 → 𝐴) → 𝐴. By applying the fixed

point combinator to an operator on a universe one can obtain solutions to guarded recursive type

equations [8]. For example, one can define a guarded delay monad 𝐿𝜅 , which maps a type 𝐴 to

𝐿𝜅𝐴 satisfying 𝐿𝜅𝐴 ≃ 𝐴 + ⊲𝜅 (𝐿𝜅𝐴). This guarded delay monad has been used to model recursive

computations, both in operational semantics, as well as in denotational semantics, which simply

models function types of the object language using the Kleisli functions of the metalanguage:

J𝐴→ 𝐵K ≜ J𝐴K→ 𝐿𝜅J𝐵K. Guarded recursion is then also used for reasoning about the model, in

particular to establish a relation between syntax and semantics to prove adequacy. These results

were originally proved for the simply typed lambda calculus extended with recursive terms [33]

and recursive types [29], but have been recently extended to cover also languages with general

store and polymorphism [36].

SGDT has several of the benefits listed for operational and denotational techniques above: the

models can be described at a high level of abstraction, and once one is familiar with programming

in the meta-language, the mathematical knowledge required for constructing the models is limited.

The main reason for both of these is that recursion and other tools needed for constructing and

reasoning about these models, are build into the meta-language, so the mathematical difficulties

appear on the next meta-level. Moreover, since metalanguages such as CCTT are dependent type

theories, these results can potentially be directly implemented in proof assistants. For example,

CCTT has been implemented
1
as an experimental extension of Cubical Agda [41]. Finally, the

denotational semantics of the language can be seen as a shallow embedding of the object language, so

one can potentially also use the meta-language as a language for both programming and reasoning.

In this paper we show how to extend SGDT to model probabilistic programming languages, i.e.,

languages that include commands that generate random values by sampling from a probability

distribution. It is well known that it is challenging to develop semantic models for reasoning about

higher-order probabilistic programming languages that include recursion, even in a classical meta-

theory. Nonetheless, a plethora of denotational approaches have been investigated in recent years,

[15, 16, 21, 24, 40]. Other operational-based approaches to reason about probabilistic programs

have also been shown to scale to rich languages with a variety of features, using techniques such

as logical relations [9, 14, 23, 43, 45], or bisimulations [13, 27].

Precisely, we show how to develop operational and denotational semantics of FPC⊕2, a call-by-
value higher-order probabilistic programming language with recursive types, in CCTT, and prove

that the denotational semantics is adequate with respect to the operational semantics. We also

show how to use these results for reasoning about FPC⊕ programs in CCTT. One of the challenges

for doing so is that most of the previously developed theory for probabilistic languages relies on

classical reasoning, which is not available in CCTT. For example, many types used in our model do

not have decidable equality, and as a consequence, even the finite distribution monad D cannot be

defined in the standard classical way. Fortunately, CCTT not only models guarded recursion but

1
https://github.com/agda/guarded

2
The name derives from Plotkin’s Fixed Point Calculus (FPC) [17, 35]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:3

also higher-inductive types (HITs), which we use to define D: on a set 𝐴, D𝐴 is the free convex

algebra [22], that is, a set D𝐴 together with a binary operation ⊕𝑝 , indexed by a rational number

𝑝 , satisfying the natural equational theory (idempotency, associativity, and commutativity). Using a

HIT to represent distributions allows us to use the equational properties of the meta-language level

when reasoning about the semantics of FPC⊕ , and it provides us with a useful induction principle

for proving propositions ranging over D𝐴.

To model the combination of recursion and probabilistic choice,we use the guarded convex delay
monad which we denote by D𝜅

. On a type 𝐴, D𝜅𝐴 ≃ D(𝐴 + ⊲𝜅 (D𝜅𝐴)). Intuitively, this means that

a computation of type 𝐴 will be a distribution over values of 𝐴 (immediately available) and delayed

computations of type𝐴. Quantifying over clocks gives the convex delaymonad D∀𝐴 ≜ ∀𝜅.D𝜅𝐴which

is a coinductive solution to the equation D∀𝐴 ≃ D(𝐴 + D∀𝐴). Both operational and denotational

semantics are defined usingD𝜅
because it allows for guarded recursive definitions. These definitions

can then be clock quantified to give elements ofD∀, which has the benefit that steps can be eliminated,

because ⊲𝜅 does not get in the way.

As our main result, we define a logical relation, relating the denotational and operational

semantics, and prove that it is sound with respect to contextual refinement. Traditionally, defining a

logical relation relating denotational and operational semantics for a language with recursive types

is non-trivial, see, e.g., [34]. Here we use the guarded type theory to define the logical relation by

guarded recursion. As usual, the logical relation is divided into a relation for values and a relation

for computations. Since computations compute to distributions, the challenge here lies in defining

the relation for computations in terms of the relation for values. Earlier work on operationally-

based logical relations [2, 9] used bi-orthogonality to reduce the problem to relating termination

probabilities for computations of ground type. Here, we follow the approach of the recent article [20],

which uses couplings [6, 28, 38, 42] to lift relations on values to relations on distributions. Note

that the development in [20] relies on classical logic (in particular, the composition of couplings,

the so-called bind lemma, relies on the axiom of choice) and thus does not apply here. Instead, we

define a novel constructive notion of lifting of relations R : 𝐴→ 𝐵 → Prop to relations on convex

delay algebras R 𝜅
: D𝜅𝐴 → D∀𝐵 → Prop by guarded recursion. We establish a series of basic

results for this, including a version of the important bind lemma that allows us to compose these

liftings in proofs.

Finally, we use the semantics and the logical relation to prove contextual refinement of examples

that combine probabilistic choice and recursion. The examples illustrate yet another benefit of the

denotational semantics: Since fewer steps are needed in the denotational semantics than in the

operational semantics, using this for reasoning makes the arguments less cluttered by steps than a

direct relation between syntax and syntax would.

Contributions.

(1) To the best of our knowledge, we present the first constructive type theoretic account of

operational and denotational semantics of FPC⊕ .
(2) We develop the theory of the finite distributionmonad in cubical type theory, andwe introduce

the convex delay monad in CCTT, and develop the basic theory for it.

(3) We develop the basic constructive theory of couplings for convex delay algebras and use it to

define a logical relation, relating denotational and operational semantics.

(4) We demonstrate how to use the semantics to reason about examples that combine probabilistic

choice and recursion.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:4 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Γ ⊢ 𝜅 : clock ∈ Γ
Γ, 𝛼 : 𝜅 ⊢

Γ ⊢ 𝑡 : ⊲ (𝛼 :𝜅).𝐴 Γ, 𝛽 : 𝜅, Γ′ ⊢
Γ, 𝛽 : 𝜅, Γ′ ⊢ 𝑡 [𝛽] : 𝐴 [𝛽/𝛼]

Γ, 𝛼 : 𝜅 ⊢ 𝑡 : 𝐴
Γ ⊢ 𝜆(𝛼 :𝜅).𝑡 : ⊲ (𝛼 :𝜅).𝐴

Γ, 𝜅 : clock ⊢ 𝑡 : 𝐴
Γ ⊢ Λ𝜅.𝑡 : ∀𝜅.𝐴

Γ ⊢ 𝑡 : ∀𝜅.𝐴 Γ ⊢ 𝜅′ : clock
Γ ⊢ 𝑡 [𝜅′] : 𝐴[𝜅′/𝜅]

Γ ⊢ 𝑡 : ⊲𝜅𝐴→ 𝐴

Γ ⊢ dfix𝜅 𝑡 : ⊲𝜅𝐴

Γ ⊢ 𝑡 : ⊲𝜅𝐴→ 𝐴

Γ ⊢ pfix𝜅 𝑡 : ⊲ (𝛼 :𝜅).(dfix𝜅𝑡) [𝛼] =𝐴 𝑡 (dfix𝜅𝑡)

Fig. 1. Selected typing rules for Clocked Cubical Type Theory.

2 Clocked Cubical Type Theory
We will work in Clocked Cubical Type Theory (CCTT) [26], an extension of Cubical Type The-

ory [12] with guarded recursion. At present, CCTT is the only existing type theory containing all

constructions needed for this paper. We will not describe CCTT in detail, but only describe the

properties we need, with the hope of making the paper more accessible, and so that the results can

be reused in other (future) type theories with the same properties.

2.1 Basic Properties and HITs
CCTT has an infinite hierarchy of (Tarski style) universes (U𝑖), as well as identity types satisfying

the standard rules and function extensionality. Precisely, CCTT, being based on Cubical Type

Theory, has a path type as primitive, rather than an identity type in the traditional sense. However,

the differences between the two are inessential to this work. We will write 𝑎 =𝐴 𝑏, or just 𝑎 = 𝑏,

for the identity type associated with terms 𝑎, 𝑏 : 𝐴 of the same type. Following conventions from

homotopy type theory [39], we say that a type 𝐴 is a (homotopy) proposition if for any 𝑥,𝑦 : 𝐴,

the type 𝑥 = 𝑦 is contractible, and that it is a (homotopy) set if for any 𝑥,𝑦 : 𝐴, the type 𝑥 = 𝑦

is a proposition. We write Prop𝑖 , and Set𝑖 for the subuniverses of U𝑖 of propositions and sets

respectively, often omitting the universe level 𝑖 . We write 𝐴 ≃ 𝐵 for the type of equivalences from

𝐴 to 𝐵. We shall mostly use this in the case where 𝐴 and 𝐵 are sets, and in that case, an equivalence

is simply given by the standard notion of isomorphism of sets as phrased inside type theory using

propositional equality. All types used represent to syntax, as well as the denotation of all types,

are sets. Likewise all relations are valued in Prop. These choices simplify reasoning, as no higher

dimensional structure needs to be accounted for. The only types used that are not sets are the

universes Set and U.
CCTT also has higher inductive types (HITs), and we will use these to construct propositional

truncation, set truncation and the finite distributions monad (see section 3). In particular, this

means that one can express ordinary propositional logic with operators ∧,∨, ∃,∀ on Prop, using the
encodings of ∃ and∨ defined using propositional truncation [39]. Recall in particular the elimination

principles for ∃: When proving a proposition𝜓 assuming ∃(𝑥 : 𝑋).𝜙 (𝑥) we may assume we have an

𝑥 in hand satisfying 𝜙 (𝑥), but we cannot do that when mapping from ∃(𝑥 : 𝑋).𝜙 (𝑥) to an arbitrary

type. We will also need inductive types to represent the type N of natural numbers, as well as types

and terms of the language FPC⊕ described in section 5. These are all captured by the schema for

higher inductive types in CCTT [26].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:5

2.2 Guarded Recursion
Guarded recursion uses a modal operator ⊲ (pronounced ‘later’) to describe data that is available

one time step from now. In multiclocked guarded recursion, ⊲ is indexed by a clock 𝜅. Clocks can

be variables of the pretype clock or they can be the clock constant 𝜅0. Clocks can be universally

quantified in the type ∀𝜅.𝐴, with rules similar to Π-types, including a functional extensionality

principle. The modality ⊲ is a Fitch-style modality [7, 11], in the sense that introduction and

elimination for ⊲ is by abstraction and application to ticks, i.e., assumptions of the form 𝛼 : 𝜅, to

be thought of as evidence that time has ticked on clock 𝜅. Because ticks can occur in terms, they

can also occur in types, and the type ⊲ (𝛼 : 𝜅).𝐴 binds 𝛼 in 𝐴. When 𝛼 does not occur in 𝐴 we

simply write ⊲𝜅𝐴 for ⊲ (𝛼 :𝜅).𝐴. The rules for tick abstraction and application that we shall use in

this paper are presented in Figure 1. In the figure, the notation Γ ⊢ means that Γ is a well-formed

context. Note that the rule for tick application assumes that 𝛽 (or anything occurring after that in

the context) does not already occur in 𝑡 . This is to avoid terms of the type ⊲𝜅 ⊲𝜅 𝐴→ ⊲𝜅𝐴 merging

two time steps into one. We will sometimes use the notation

next𝜅 ≜ 𝜆𝑥.𝜆(𝛼 :𝜅).𝑥 : 𝐴→ ⊲𝜅𝐴. (1)

The rules presented in Figure 1 are special cases of those of CCTT. The general rules allow

certain ‘timeless’ assumptions in Γ′ to occur in 𝑡 in the tick application rule. This allows typing of

an extensionality principle for ⊲ of type

(𝑥 =⊲𝜅𝐴 𝑦) ≃ ⊲ (𝛼 :𝜅).(𝑥 [𝛼] =𝐴 𝑦 [𝛼]). (2)

In this paper we shall simply take this as an axiom. Intuitively, (2) states that 𝑥 and 𝑦 are equal,

if the elements they deliver in the next time step are equal. One consequence of this is that ⊲

preserves the property of being a set or a proposition. Other omitted rules for ticks allow typing of

a tick-irrelevance axiom

tirr𝜅 : Π(𝑥 : ⊲𝜅𝐴).⊲ (𝛼 :𝜅) .⊲ (𝛽 :𝜅).(𝑥 [𝛼]) =𝐴 (𝑥 [𝛽]) . (3)

stating that all ticks are propositionally equal (although they should not be considered judgementally

equal [4]).

The fixed point combinator dfix allows for defining and programming with guarded recursive

types. Define fix𝜅 : (⊲𝜅𝐴→ 𝐴) → 𝐴 as fix𝜅 𝑓 = 𝑓 (dfix𝜅 𝑓). Then one can prove that

fix𝜅𝑡 = 𝑡 (𝜆(𝛼 :𝜅).fix𝜅𝑡). (4)

Applying the fix point operator to maps on a universe, as in [8], one can define guarded recursive
types such as the guarded delay monad 𝐿𝜅 mapping a type 𝐴 to 𝐿𝜅𝐴 satisfying

𝐿𝜅𝐴 ≃ 𝐴 + ⊲𝜅 (𝐿𝜅𝐴). (5)

In this paper, we will not spell out how such guarded recursive types are defined as fixed points,

but just give the defining guarded recursive equation. Intuitively, the reason this is well defined is

that 𝐿𝜅𝐴 only occurs under a ⊲ on the right-hand side of (5), which allows the recursive equation to

be phrased as a map ⊲𝜅U → U. One can also use fix to program with 𝐿𝜅 defining, e.g., the diverging

computation as ⊥ = fix(𝜆𝑥 .inr(𝑥)) (leaving the type equivalence between 𝐿𝜅𝐴 and its unfolding

implicit). In this case (4) specialises to ⊥ = inr(𝜆(𝛼 :𝜅).⊥).

2.3 Coinductive Types
Coinductive types can be represented by quantifying over clocks in guarded recursive types [3]. For

example, the type 𝐿𝐴 ≜ ∀𝜅.𝐿𝜅𝐴 defines a coinductive solution to 𝐿𝐴 ≃ 𝐴 + 𝐿𝐴 in CCTT, provided

𝐴 is clock-irrelevant, meaning that the canonical map 𝐴→ ∀𝜅.𝐴 is an equivalence. More generally,

one can prove that any functor 𝐹 : U → U (in the naive sense of having a functorial action

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:6 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

(𝐴→ 𝐵) → 𝐹𝐴→ 𝐹𝐵) commuting with clock quantification in the sense that 𝐹 (∀𝜅.𝑋) ≃ ∀𝜅.𝐹 (𝑋)
via the canonical map, has a final coalgebra defined as 𝜈 (𝐹) ≜ ∀𝜅.𝜈𝜅 (𝐹), where 𝜈𝜅 (𝐹) ≃ 𝐹 (⊲𝜅 (𝜈𝜅 (𝐹))
is defined using fix. This encoding also works for indexed coinductive types. The correctness of the

encoding of coinductive types can be proved in CCTT, and relies on the type equivalence

∀𝜅.𝐴 ≃ ∀𝜅. ⊲𝜅𝐴.

For the encoding to be useful, one needs a large collection of clock-irrelevant types and functors

commuting with clock quantification. We will need that N is clock-irrelevant, and that clock

quantification commutes with sums in the sense that ∀𝜅.(𝐴 + 𝐵) ≃ (∀𝜅.𝐴) + (∀𝜅.𝐵). Both of these

can be proved in CCTT using the notion of induction under clocks for higher inductive types [26].

Note also that all propositions 𝑃 are clock-irrelevant, because the clock constant 𝜅0 can be used to

define a map (∀𝜅.𝑃) → 𝑃 . The following lemma can be used to prove types clock irrelevant.

Lemma 2.1. Suppose 𝑖 : 𝐴→ 𝐵 is injective in the sense of the existence of a map Π𝑥,𝑦 : 𝐴.(𝑖 (𝑥) =
𝑖 (𝑦)) → 𝑥 = 𝑦, and suppose 𝐵 is clock irrelevant. Then also 𝐴 is clock-irrelevant.

For the rest of the paper, we work informally in CCTT.

3 Finite Distributions
In the previous section we saw the definition of the guarded delay monad 𝐿𝜅 (Equation 5), which

models non-terminating computations. In this section, we introduce the distribution monad D,

which models finite probability distributions. These two monads will be combined to form the

guarded convex delay monad in the next section.

To construct the distribution monad D, we first need some infrastructure to reason about

probabilities. We will assume types representing the open rational interval (0, 1) and closed rational
interval [0, 1], and we assume that we have the operations product, division of smaller numbers by

larger numbers, and inversion (1− (−)). We also need that (0, 1) is a set with decidable equality, and

that (0, 1) is clock irrelevant. In practice, there are several ways of specifying (0, 1), for example

as a type of pairs (𝑛,𝑑), of mutually prime, positive natural numbers satisfying 𝑛 < 𝑑 , and [0, 1]
can be obtained, e.g., by just adding two points to (0, 1). For this encoding, clock irrelevance of

(0, 1) follows from the embedding into N × N and Lemma 2.1. However, for this paper the specific

implementation is irrelevant, so we leave this open.

Then, we need to find the right representation of probability distributions in type theory. In

classical presentations of probability theory, a finite distribution on a set 𝐴 is a finite map into

[0, 1], whose values sum to 1. In type theory, this would be represented by a subtype of 𝐴→ [0, 1],
which would need some notion of finite support, as well as a definition of the functorial action ofD.

Especially the latter is difficult to do: Given a map 𝑓 : 𝐴→ 𝐵, then D(𝑓) : D(𝐴) → D(𝐵) should
map a probability distribution 𝜇 to the distribution which, for each 𝑏 : 𝐵, sums the probabilities 𝜇 (𝑎)
for each 𝑎 such that 𝑓 (𝑎) = 𝑏. To define this, we would need decidable equality on 𝐵 to compute

for which 𝑎 the equality 𝑓 (𝑎) = 𝑏 holds, which is too restrictive. Another approach could be to

use lists of key-value pairs, but this requires a quotient to obtain the correct notion of equality of

distributions, which would make it very hard to work with in practice.

Here we instead choose to represent D as the free monad for the theory of convex algebras,

which is known to generate the finite distribution monad [22]. The operation ⊕ in the definition

below should be thought of as a convex sum: 𝑥 ⊕𝑝 𝑦 = 𝑝 · 𝑥 + (1 − 𝑝) · 𝑦.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:7

Definition 3.1 (Convex Algebra). A convex algebra is a set 𝐴 together with an operation ⊕ :

(0, 1) → 𝐴→ 𝐴→ 𝐴, such that

𝜇 ⊕𝑝 𝜇 = 𝜇 (idem)

𝜇 ⊕𝑝 𝜈 = 𝜈 ⊕1−𝑝 𝜇 (comm)(
𝜇1 ⊕𝑝 𝜇2

)
⊕𝑞 𝜇3 = 𝜇1 ⊕𝑝𝑞

(
𝜇2 ⊕𝑞−𝑝𝑞

1−𝑝𝑞
𝜇3

)
(assoc)

A map 𝑓 : 𝐴→ 𝐵 between convex algebras𝐴 and 𝐵 is a homomorphism if 𝑓 (𝜇 ⊕𝑝 𝜈) = 𝑓 (𝜇) ⊕𝑝 𝑓 (𝜈)
holds for all 𝜇, 𝜈, 𝑝 .

Definition 3.2. Let D(𝐴) be the higher inductive type defined using two constructors

𝛿 : 𝐴→ D(𝐴) ⊕ : (0, 1) → D(𝐴) → D(𝐴) → D(𝐴),
and equations (paths) for idempotency, commutativity and associativity as in the definition of

convex algebra, plus an equation for set truncation.

One advantage of HITs is that they come with an easy induction principle. For D(𝐴), it is as
follows: If 𝜙 (𝑥) is a proposition for all 𝑥 : D(𝐴) and 𝜙 (𝛿 (𝑎)) holds for all 𝑎, and moreover, 𝜙 (𝜇)
and 𝜙 (𝜈) implies 𝜙 (𝜇 ⊕𝑝 𝜈) for all 𝜇, 𝜈, 𝑝 , then 𝜙 (𝑥) holds for all 𝑥 . We will use this proof technique

in numerous places throughout this paper. Similarly, the recursion principle for D(𝐴) states that
to define a map 𝑓 from D(𝐴) into a set 𝐵, it suffices to define the cases of 𝑓 (𝛿 (𝑥)) and 𝑓 (𝑥 ⊕𝑝 𝑦),
the latter using 𝑓 (𝑥) and 𝑓 (𝑦), in such a way that the convex algebra equations are respected. The

recursion principle implies the following.

Proposition 3.3. D(𝐴) is the free convex algebra on 𝐴, in the sense that for any convex algebra
𝐵, and function 𝑓 : 𝐴→ 𝐵, there exists a unique homomorphism of convex algebras 𝑓 : D(𝐴) → 𝐵

satisfying 𝑓 = 𝑓 ◦ 𝛿 . As a consequence, D(−) forms a monad on the category of sets.

Now that we have a type D(𝐴) of probability distributions over a set 𝐴, we would like to reason

about these distributions. In particular, we would like to know when two distributions are equal.

For that, we use the following trick: we first relate probability distributions on finite sets to the

classical probability distributions on these sets (that is, to functions into [0, 1] with finite support).

Then, we use functoriality of D to generalise to arbitrary sets 𝐴.

Define the Bishop finite sets in the standard way by induction on 𝑛 as Fin(0) = 0 and Fin(𝑛+1) =
Fin(𝑛) + 1, where the + on the right hand side refers to sum of types. For these sets, we can relate

D to its classical definition. First, we use that if any set 𝐴 has decidable equality, we can associate

a probability function 𝑓𝜇 : 𝐴→ [0, 1] to a distribution 𝜇 by induction, using 𝑓𝛿 (𝑥) (𝑦) = 1 if 𝑥 = 𝑦

and 𝑓𝛿 (𝑥) (𝑦) = 0 else. This gives us an equivalence of types:

Lemma 3.4. D(Fin(𝑛)) ≃ Σ(𝑓 : Fin(𝑛) → [0, 1]).sum(𝑓) = 1

Here, sum is the sum of the values of 𝑓 , defined by induction on 𝑛. Note that the right hand side

of this equivalence indeed captures the classical definition of probability distributions over Fin(𝑛).
We use Lemma 3.4 to reason about equality for probability distributions as follows.

Example 3.5. The isomorphism of Lemma 3.4 allows us to prove equations of distributions by

first mapping to the right hand side of the isomorphism and then using functional extensionality.

Consider, for example, the equation

(𝑎 ⊕𝑝 𝑏) ⊕𝑝 (𝑐 ⊕𝑝 𝑎) = (𝑏 ⊕ 1

2

𝑐) ⊕2𝑝 (1−𝑝) 𝑎,
where 𝑎, 𝑏, 𝑐 : D(𝐴) for some 𝐴. In the case where 𝐴 = Fin(3) and 𝑎 = 𝛿 (0), 𝑏 = 𝛿 (1), 𝑐 = 𝛿 (2), we
can prove this by noting that both the left and right-hand sides of the equation correspond to the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:8 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

map 𝑓 (0) = 𝑝2 + (1 − 𝑝)2 = 1 + 2𝑝2 − 2𝑝 = 1 − 2𝑝 (1 − 𝑝), 𝑓 (1) = 𝑓 (2) = 𝑝 (1 − 𝑝). Finally, the case
of general 𝐴, 𝑎, 𝑏, 𝑐 follows from applying functoriality to the canonical map Fin(3) → D𝐴.

Lastly, the guarded convex delay monad in the next section will be defined as a distribution on a

sum type. To reason about such distributions, we will frequently use the fact that any distribution

𝜇 : D(𝐴 + 𝐵) on a sum type can be written uniquely as a convex sum of two subdistributions: One

on 𝐴 and one on 𝐵. In the classical setting where a distribution is a map with finite support this is

trivial: The two subdistributions are simply the normalised restrictions of the distribution map to

𝐴 and 𝐵 respectively. In the constructive type theoretic setting the proof requires a bit more work,

so we mention this as a separate theorem.

Theorem 3.6. For all sets 𝐴 and 𝐵, the map

D(𝐴) + D(𝐵) + D(𝐴) × (0, 1) × D(𝐵) → D(𝐴 + 𝐵),
defined by

𝑓 (in1 (𝜇)) ≜ D(inl) (𝜇)
𝑓 (in2 (𝜇)) ≜ D(inr) (𝜇)

𝑓 (in3 (𝜇, 𝑝, 𝜈)) ≜ (D(inl) (𝜇)) ⊕𝑝 (D(inr) (𝜈)),
is an equivalence of types.

4 Convex Delay Algebras
In this section, we define the guarded convex delay monad D𝜅

and the convex delay monad D∀

modelling the combination of probabilistic choice and recursion. We first recall the notion of delay

algebra (sometimes called a lifting or a ⊲𝜅-algebra [33]) and define a notion of convex delay algebra.

Definition 4.1 (Convex Delay Algebra). A (𝜅-)delay algebra is a set 𝐴 together with a map

step𝜅 : ⊲𝜅𝐴→ 𝐴. A delay algebra homomorphism is a map 𝑓 : 𝐴 → 𝐵 such that 𝑓 (step𝜅 (𝑎)) =
step𝜅 (𝜆(𝛼 :𝜅).𝑓 (𝑎 [𝛼])) for all 𝑎 : ⊲𝜅𝐴. A convex delay algebra is a set 𝐴 with both a delay algebra

structure and a convex algebra structure, and a homomorphism of these is a map respecting both

structures.

Defining the functorial action of ⊲𝜅 as ⊲𝜅 (𝑓) (𝑎) ≜ 𝜆(𝛼 :𝜅).𝑓 (𝑎 [𝛼]), the requirement for 𝑓 being

a delay algebra homomorphism can be expressed as the following commutative diagram

⊲𝜅𝐴 ⊲𝜅𝐵

𝐴 𝐵

⊲𝜅 (𝑓)

step𝜅 step𝜅

𝑓

Recall the guarded delay monad 𝐿𝜅 satisfying 𝐿𝜅𝐴 ≃ 𝐴 + ⊲𝜅 (𝐿𝜅𝐴). The type 𝐿𝜅𝐴 is easily seen to

be the free guarded delay algebra on a set 𝐴. Similarly, define the guarded convex delay monad as

the guarded recursive type

D𝜅𝐴 ≃ D(𝐴 + ⊲𝜅 (D𝜅𝐴)) .
Again, this can be constructed formally as a fixed point on a universe (assuming 𝐴 lives in the same

universe), but we shall not spell this out here. We show that it is a free convex delay algebra. First

define the convex delay algebra structure (step𝜅 , ⊕𝜅) on D𝜅𝐴 and the inclusion 𝛿𝜅 : 𝐴→ D𝜅𝐴 by

step𝜅 (𝑎) = 𝛿 (inr(𝑎)) 𝜇 ⊕𝜅𝑝 𝜈 = 𝜇 ⊕𝑝 𝜈 𝛿𝜅𝑎 = 𝛿 (inl(𝑎))
where the convex algebra structure on the right-hand sides of the equations above refers to those

of D.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:9

Proposition 4.2. D𝜅𝐴 is the free convex delay algebra structure on𝐴, for any set𝐴. As a consequence
D𝜅 defines a monad on the category of sets.

Proof. Suppose 𝑓 : 𝐴 → 𝐵 and that 𝐵 is a convex delay algebra. We define the extension

𝑓 : D𝜅𝐴→ 𝐵 by guarded recursion, so suppose we are given 𝑔 : ⊲𝜅 (D𝜅𝐴→ 𝐵) and define

𝑓 (step𝜅 (𝑎)) = step𝜅 (𝜆(𝛼 :𝜅).𝑔 [𝛼] (𝑎 [𝛼]))

𝑓 (𝛿𝜅 (𝑎)) = 𝑓 (𝑎)

𝑓 (𝜇 ⊕𝜅𝑝 𝜈) = 𝑓 (𝜇) ⊕𝑝 𝑓 (𝜈).

Note that these cases define 𝑓 by induction onD and +. Unfolding the guarded recursive definition
using (4) gives

𝑓 (step𝜅 (𝑎)) = step𝜅 (𝜆(𝛼 :𝜅).𝑓 (𝑎 [𝛼])).
so that 𝑓 is a homomorphism of convex delay algebras. For uniqueness, suppose 𝑔 is another

homomorphism extending 𝑓 . We show that 𝑔 = 𝑓 by guarded recursion and function extensionality.

So suppose we are given 𝑝 : ⊲𝜅 (Π(𝑥 : D𝜅𝐴) (𝑔(𝑎) = 𝑓 (𝑎))). Then, for any 𝑎 : ⊲𝜅 (D𝜅𝐴), the term
𝜆(𝛼 :𝜅).𝑝 [𝛼] (𝑎 [𝛼]) proves

⊲ (𝛼 :𝜅).(𝑔(𝑎 [𝛼]) = 𝑓 (𝑎 [𝛼])),
which by (2) is equivalent to 𝜆(𝛼 :𝜅).𝑔(𝑎 [𝛼]) = 𝜆(𝛼 :𝜅) .𝑓 (𝑎 [𝛼]). Then,

𝑔(step𝜅 (𝑎)) = step𝜅 (𝜆(𝛼 :𝜅).𝑔(𝑎 [𝛼]))

= step𝜅 (𝜆(𝛼 :𝜅).𝑓 (𝑎 [𝛼]))

= 𝑓 (step𝜅 (𝑎)) .

The rest of the proof that 𝑔(𝑎) = 𝑓 (𝑎), for all 𝑎, then follows by HIT induction on D.

In terms of category theory, we have shown that D𝜅
is left adjoint to the forgetful functor from

convex delay algebras to the category of sets. It therefore defines a monad on the category of

sets. □

We will often write 𝑡 >>=𝜅 𝑓 for 𝑓 (𝑡) where 𝑓 is the unique extension of 𝑓 to a convex delay

algebra homomorphism.

Example 4.3. The type D𝜅𝐴 can be thought of as a type of probabilistic processes returning

values in 𝐴. Define, for example, a geometric process with probability 𝑝 : (0, 1) as geo𝜅𝑝 0 where
geo𝜅𝑝 : N→ D𝜅N

geo𝜅𝑝 𝑛 ≜ (𝛿𝜅𝑛) ⊕𝑝 step𝜅 (𝜆(𝛼 :𝜅) .geo𝜅𝑝 (𝑛 + 1))
Note that this gives

geo𝜅𝑝 (0) = (𝛿𝜅0) ⊕𝑝 step𝜅 (𝜆(𝛼 :𝜅).geo𝜅𝑝 (1))

= (𝛿𝜅0) ⊕𝑝
(
step𝜅𝜆(𝛼 :𝜅).

(
(𝛿𝜅1) ⊕𝑝 (step𝜅𝜆(𝛼 :𝜅).geo𝜅𝑝 (2))

))
= . . .

The modal delay ⊲𝜅 in the definition of D𝜅𝐴 prevents us from accessing values computed later,

thereby also preventing us from, e.g., computing probabilities of ‘termination in 𝑛 steps’ as elements

of [0, 1]. Such operations should instead be defined on the convex delay monad D∀. This monad is

defined in terms of D𝜅
by quantifying over clocks:

D∀𝐴 ≜ ∀𝜅.D𝜅𝐴.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:10 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Proposition 4.4. If 𝐴 is clock-irrelevant then D∀𝐴 is the final coalgebra for the functor 𝐹 (𝑋) =
D(𝐴 + 𝑋).

Proof. We must show that 𝐹 commutes with clock quantification, and this reduces easily to

showing that D commutes with clock quantification. The latter can be either proved directly by

using the same technique as for the similar result for the finite powerset functor [26], or by referring

to [31, Proposition 14], which states that any free model monad for a theory with finite arities

commutes with clock quantification. □

Remark 1. From now on, whenever we look at a type D∀𝐴, we assume 𝐴 to be clock-irrelevant.

In particular, D∀𝐴 ≃ D(𝐴 + D∀𝐴), and so D∀ carries a convex algebra structure (𝛿∀, ⊕∀) as well
as a map step∀ : D∀𝐴 → D∀𝐴 defined by step∀(𝑥) = 𝛿 (inr(𝑥)). Define also 𝛿∀ : 𝐴 → D∀𝐴 as

𝛿∀𝑥 ≜ 𝛿 (inl𝑥).

Example 4.5. The geometric process can be defined as an element of N → D∀N as geo𝑝 𝑛 ≜
Λ𝜅.geo𝜅𝑝 𝑛. This satisfies the equations

geo𝑝 0 = (𝛿∀0) ⊕∀𝑝 step∀(geo𝑝 (1))
= (𝛿∀0) ⊕𝑝 step∀((𝛿∀1) ⊕𝑝 step∀(geo𝑝 (2)))
= . . .

Lemma 4.6. D∀ carries a monad structure whose unit is 𝛿∀ and where the Kleisli extension 𝑓 : D∀𝐴→
D∀𝐵 of a map 𝑓 : 𝐴→ D∀𝐵 satisfies

𝑓 (step∀𝑥) = step∀(𝑓 (𝑥)) 𝑓 (𝜇 ⊕∀𝑝 𝜈) = 𝑓 (𝜇) ⊕∀𝑝 𝑓 (𝜈)) .

Proof. This is a consequence of [31, Lemma 16]. □

4.1 Probability of Termination
Unfolding the type equivalence D∀𝐴 ≃ D(𝐴 + D∀𝐴) we can define maps out of D∀𝐴 by cases. For

example, we can define the probability of immediate termination PT0 : D∀𝐴→ [0, 1], as:
PT0 (𝛿∀𝑎) = 1

PT0 (step∀𝑑) = 0

PT0 (𝑥 ⊕∀𝑝 𝑦) = 𝑝 · PT0 (𝑥) + (1 − 𝑝) · PT0 (𝑦).

Likewise, we define a function run : D∀𝐴→ D∀𝐴 that runs a computation for one step, eliminating

a single level of step∀ operations:

run(𝛿∀𝑎) = 𝛿∀𝑎 run(step∀𝑑) = 𝑑 run(𝑥 ⊕∀𝑝 𝑦) = (run𝑥) ⊕∀𝑝 (run𝑦).
We can hence compute the probability of termination in 𝑛 steps, by first running a computation for

𝑛 steps, and then computing the probability of immediate termination of the result:

PT𝑛 (𝑥) = PT0 (run𝑛𝑥).
For example, running the geometric process for one step gives:

run(geo𝑝 0) = (𝛿∀0) ⊕𝑝 ((𝛿∀1) ⊕𝑝 step∀(geo𝑝 (2))),

so PT1 (geo𝑝 0) = 𝑝 + (1 − 𝑝)𝑝 = 2𝑝 − 𝑝2.
We will later prove (Lemma 4.14) that PT(.) (𝜇) : N → [0, 1] is monotone for all 𝜇. Intuitively,

the probability of termination for 𝜇 is the limit of this sequence. The following definition gives a

simple way of comparing such limits, without introducing real numbers to our type theory.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:11

Definition 4.7. Let 𝑓 , 𝑔 : N→ [0, 1] be monotone. Write 𝑓 ≤lim 𝑔 for the following proposition:

for every 𝑛 : N and every rational 𝜀 > 0 there exists𝑚 : N such that 𝑓 (𝑛) ≤ 𝑔(𝑚) + 𝜖 . We write

𝑓 =lim 𝑔 for the conjunction 𝑓 ≤lim 𝑔 and 𝑔 ≤lim 𝑓 .

It is easy to show that the relation ≤lim is reflexive and transitive and thus =lim is an equivalence

relation. Furthermore, ≤lim is closed under pointwise convex sums.

Lemma 4.8. Let 𝑓1, 𝑔1, 𝑓2, 𝑔2 : N→ [0, 1] be monotone and let 𝑝 ∈ (0, 1). If 𝑓1 ≤lim 𝑔1 and 𝑓2 ≤lim 𝑔2,
then 𝑝 · 𝑓1 + (1 − 𝑝) · 𝑓2 ≤lim 𝑝 · 𝑔1 + (1 − 𝑝) · 𝑔2.

4.2 Step Reductions
Rather than eliminating a full level of step∀ operations with run, it is sometimes useful to allow

different branches to run for a different number of steps. We capture this in the step reduction
relation{. This is the reflexive, transitive, and convex closure of the one-step reduction relation:

Definition 4.9. Define the step reduction relation{: D∀𝐴 → D∀𝐴 → Prop inductively by the

following rules

𝜈 { 𝜈 step∀𝜈 { 𝜈

𝜈 { 𝜈 ′ 𝜈 ′ { 𝜈 ′′

𝜈 { 𝜈 ′′
𝜈1 { 𝜈 ′

1
𝜈2 { 𝜈 ′

2

𝜈1 ⊕∀𝑝 𝜈2 { 𝜈 ′
1
⊕∀𝑝 𝜈 ′2

Remark 2. CCTT lacks higher inductive families as primitive, but the special case of the step reduc-
tion relation can be represented by defining a fuelled version{𝑛 by induction on 𝑛, and existentially
quantifying 𝑛.

The step reduction relation{ is closely related to run.

Lemma 4.10. Let 𝜈, 𝜈 ′ : D∀𝐴. Then:
(1) For all 𝑛 : N, 𝜈 { run𝑛𝜈 .
(2) If 𝜈 { 𝜈 ′ then, for all 𝑛 : N, run𝑛𝜈 { run𝑛𝜈 ′.
(3) If 𝜈 { 𝜈 ′ then there exists an 𝑛 : N such that 𝜈 ′ { run𝑛𝜈.

Proof. The first two facts are proven by induction on 𝑛, the last by induction on{. □

Unlike run, the relation{ can execute different branches of a probabilistic computation for a

different number of steps, as illustrated in the following example.

Example 4.11. Consider: 𝜈 = (step∀(𝛿∀𝑎)) ⊕∀𝑝 (step∀(step∀(𝛿∀𝑏))). Then run removes step∀ opera-
tions from both branches.

run(𝜈) = (𝛿∀𝑎) ⊕∀𝑝 (step∀(𝛿∀𝑏))
run2 (𝜈) = (𝛿∀𝑎) ⊕∀𝑝 (𝛿∀𝑏)
run𝑛 (𝜈) = (𝛿∀𝑎) ⊕∀𝑝 (𝛿∀𝑏) for 𝑛 ≥ 2.

As per Lemma 4.10, we have 𝜈 { (run𝑛𝜈), for each 𝑛 : N, as well as:

𝜈 { (𝛿∀𝑎) ⊕∀𝑝 (step∀(step∀(𝛿∀𝑏)))
𝜈 { (step∀(𝛿∀𝑎)) ⊕∀𝑝 (step∀(𝛿∀𝑏))
𝜈 { (step∀(𝛿∀𝑎)) ⊕∀𝑝 (𝛿∀𝑏).

We will use this flexibility in running different branches for a different number of steps in both our

proofs and examples, such as in the proof of Lemma 7.9.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:12 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

The step reduction relation is confluent, since we can always match two probabilistic processes

that stem from the same parent process by running all branches long enough.

Corollary 4.12 (Confluence).

Let 𝜈, 𝜈1, 𝜈2 : D∀𝐴.
If both 𝜈 { 𝜈1 and 𝜈 { 𝜈2,
then there is a 𝜈 ′ : D∀ such that 𝜈1 { 𝜈 ′ and 𝜈2 { 𝜈 ′.

𝑣

𝑣1

𝑣2

𝑣 ′

Proof. We apply Lemma 4.10.3, giving us an 𝑛1 and 𝑛2 such that 𝜈1 { run𝑛1𝜈 and 𝜈2 { run𝑛2𝜈 .

Taking 𝑁 = max(𝑛1, 𝑛2) then gives the confluence via Lemma 4.10.1. □

We mention two more useful properties of step reductions. Firstly, the bind operation preserves

the{ relation, which follows by an easy induction on{.

Lemma 4.13. If 𝑓 : 𝐴→ D∀(𝐵), and 𝜈, 𝜈 ′ : D∀𝐴 such that 𝜈 { 𝜈 ′. Then also 𝑓 (𝜈) { 𝑓 (𝜈 ′).

Secondly, the probability of termination is monotone with respect to 𝑛, and along step reductions:

Lemma 4.14. For 𝜈, 𝜈 ′ : D∀𝐴, we have:
(1) For all 𝑛,𝑚 : N such that 𝑛 ≤ 𝑚: PT𝑛 (𝜈) ≤ PT𝑚 (𝜈).
(2) If 𝜈 { 𝜈 ′ then for all 𝑛 : N: PT𝑛 (𝜈) ≤ PT𝑛 (𝜈 ′).
(3) If 𝜈 { 𝜈 ′ then PT(.) (𝜈) =lim PT(.) (𝜈 ′).

Proof. The first statement is by induction on 𝑛 and case analysis for 𝜈 , the second statement by

induction on 𝑛 and{. The third statement follows by induction on{, the properties of ≤lim and

monotonicity of PT(.) (−) (i.e. the first statement of this lemma). □

4.3 Approximate Step Reductions
The monads D𝜅

and D∀ model the fact that at any point in time we might not have complete

information about a probability distribution, with more information coming in at every time step.

The relations run and{ process the incoming information and give new probability distributions

that are future variants of the original (delayed) distribution, after a finite number of unfoldings.

However, it is often useful to talk about what happens in the limit, after infinitely many unfoldings.

For this purpose we introduce the relation{≈. Intuitively, 𝑣 {≈ 𝑣 ′ holds if we can get arbitrarily

close to 𝑣 ′ by applying sufficiently many unfoldings to 𝑣 .

Definition 4.15. Define the approximate step reduction relation {≈: D∀𝐴 → D∀𝐴 → Prop as:

𝜈 {≈ 𝜈 ′ if for all 𝑝 ∈ (0, 1) there is a 𝜈 ′′ : D∀𝐴 such that 𝜈 { 𝜈 ′ ⊕∀𝑝 𝜈 ′′.

Example 4.16. The approximate step reduction relation{≈ allows us to talk about limits con-

structively. For example, say ℎ𝑥 is a hesitant point distribution ℎ𝑥 , if ℎ𝑥 { 𝛿∀(𝑥) ⊕∀𝑞ℎ𝑥 . For instance,
ℎ𝑥 = Λ𝜅.(fix𝜅 (𝜆𝑦.𝛿𝜅 (𝑥) ⊕𝜅𝑞 step𝜅𝑦)) satisfies this, but we will see another example in section 9.1.

In the limit, ℎ𝑥 should be the same distribution as the normal point distribution 𝛿∀(𝑥). Indeed,
ℎ𝑥 {

≈ 𝛿∀(𝑥).
To prove this, we need to show that for all 𝑝 ∈ (0, 1) there is a 𝜈 such that ℎ𝑥 { 𝛿∀(𝑥) ⊕∀𝑝 𝜈 . Let,
for any natural number 𝑛, 𝑞𝑛 =

∑𝑛
𝑖=0 𝑞(1 − 𝑞)𝑖 , then by applying transitivity of{ 𝑛 times:

ℎ𝑥 { 𝛿∀(𝑥) ⊕∀𝑞𝑛 ℎ𝑥 .
If we choose 𝑛 such that 𝑞𝑛 ≥ 𝑝 , then we can write

𝛿∀(𝑥) ⊕∀𝑞𝑛 ℎ𝑥 = 𝛿∀(𝑥) ⊕∀𝑝 (𝛿∀(𝑥) ⊕∀𝑞𝑛−𝑝
1−𝑝

ℎ𝑥).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:13

𝑥 : 𝜎 ∈ Γ ⊢ Γ
Γ ⊢ 𝑥 : 𝜎

⊢ Γ
Γ ⊢ ⟨⟩ : 1

𝑛 : N ⊢ Γ
Γ ⊢ 𝑛 : Nat

Γ ⊢ 𝐿 : Nat Γ ⊢ 𝑀 : 𝜎 Γ ⊢ 𝑁 : 𝜎

Γ ⊢ ifz(𝐿,𝑀, 𝑁) : 𝜎

Γ ⊢ 𝑀 : Nat

Γ ⊢ suc𝑀 : Nat

Γ ⊢ 𝑀 : 𝜎

Γ ⊢ inl𝑀 : 𝜎 + 𝜏
Γ ⊢ 𝐿 : 𝜎 + 𝜎′ Γ, 𝑥 : 𝜎 ⊢ 𝑀 : 𝜏 Γ, 𝑦 : 𝜎′ ⊢ 𝑁 : 𝜏

Γ ⊢ case(𝐿, 𝑥 .𝑀,𝑦.𝑁) : 𝜏

Γ ⊢ 𝑀 : 𝜎 Γ ⊢ 𝑁 : 𝜏

Γ ⊢ ⟨𝑀, 𝑁 ⟩ : 𝜎 × 𝜏
Γ ⊢ 𝑀 : 𝜎 × 𝜏
Γ ⊢ fst𝑀 : 𝜎

Γ, (𝑥 : 𝜎) ⊢ 𝑀 : 𝜏

Γ ⊢ lam 𝑥 .𝑀 : 𝜎 → 𝜏

Γ ⊢ 𝑁 : 𝜎 → 𝜏 Γ ⊢ 𝑀 : 𝜎

Γ ⊢ 𝑁𝑀 : 𝜏

Γ ⊢ 𝑀 : 𝜏 [𝜇𝑋 .𝜏/𝑋]
Γ ⊢ fold𝑀 : 𝜇𝑋 .𝜏

Γ ⊢ 𝑀 : 𝜇𝑋 .𝜏

Γ ⊢ unfold𝑀 : 𝜏 [𝜇𝑋 .𝜏/𝑋]
Γ ⊢ 𝑀 : 𝜎 Γ ⊢ 𝑁 : 𝜎 𝑝 : (0, 1)

Γ ⊢ choice𝑝 (𝑀, 𝑁) : 𝜎

Fig. 2. Typing rules for FPC⊕ . Rules for pred , inr , snd omitted.

Then choosing 𝜈 = 𝛿∀(𝑥) ⊕∀𝑞𝑛−𝑝
1−𝑝

ℎ𝑥 gives ℎ𝑥 { 𝛿∀(𝑥) ⊕∀𝑝 𝜈 , which is what we needed to show.

We again prove some useful properties of{≈ that we need in future proofs. We start with the

defining properties of the step reductions. These also hold for approximate step reductions:

Lemma 4.17. The relation{≈ is reflexive and transitive. Furthermore, step∀𝜈 {≈ 𝜈 , and{≈ is
preserved by sums: if 𝜈1 {≈ 𝜈 ′1 and 𝜈2 {

≈ 𝜈 ′
2
, then for all 𝑝 ∈ (0, 1), 𝜈1 ⊕∀𝑝 𝜈2 {≈ 𝜈 ′1 ⊕∀𝑝 𝜈 ′2.

The bind operation also preserves approximate step reductions, which follows directly from the

fact that the bind operation preserves{.

Lemma 4.18. If 𝑓 : 𝐴→ D∀(𝐵), and 𝜈, 𝜈 ′ : D∀𝐴 such that 𝜈 {≈ 𝜈 ′. Then also 𝑓 (𝜈) {≈ 𝑓 (𝜈 ′).

Step reductions are also approximate step reductions, and approximately reducing step reductions

just results in further approximate reductions, as does step reducing an approximate step reduction.

Lemma 4.19. Let 𝜈, 𝜈1, 𝜈2 : D∀𝐴. Then:
(1) If 𝜈 { 𝜈1, then 𝜈 {≈ 𝜈1.
(2) If 𝜈 { 𝜈1 and 𝜈1 {≈ 𝜈2, then 𝜈 {≈ 𝜈2.
(3) If 𝜈 {≈ 𝜈1 and 𝜈1 { 𝜈2, then 𝜈 {≈ 𝜈2.

Finally we show that approximate step reductions preserve limit probabilities of termination:

Lemma 4.20. Let 𝜈1, 𝜈2 : D∀𝐴. If 𝜈1 {≈ 𝜈2 then PT(.) (𝜈1) =lim PT(.) (𝜈2).

5 Probabilistic FPC
In this section we define the language FPC⊕ , its typing rules, and operational semantics in CCTT.

FPC⊕ is the extension of simply typed lambda calculus with recursive types and probabilistic choice.

The typing rules of FPC⊕ are presented in Figure 2. In typing judgements, Γ is assumed to be a

variable context and all types (which include recursive types of the form 𝜇𝑋 .𝜏) are closed.

We assume a given representation of terms and types of FPC⊕ within CCTT. For example, as

inductive types with the notion of closedness defined as decidable properties on these types. We

will also assume that terms are annotated with enough types so that one can deduce the type of

subterms from terms. This allows the evaluation function and the denotational semantics to be

defined by induction on terms rather than typing judgement derivations. It also means the typing

judgement Γ ⊢ 𝑀 : 𝜎 is decidable. We write Ty for the type of closed types, and TmΓ
𝜎 for the type of

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:14 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

eval𝜅 (𝑉) ≜ 𝛿𝜅𝑉

eval𝜅 (suc𝑀) ≜ D𝜅 (suc) (eval𝜅𝑀)
eval𝜅 (inl𝑀) ≜ D𝜅 (inl) (eval𝜅𝑀)

eval𝜅 (ifz(𝐿,𝑀, 𝑁)) ≜ eval𝜅𝐿 >>=𝜅

{
0 ↦→ eval𝜅 (𝑀)
𝑛 + 1 ↦→ eval𝜅 (𝑁)

eval𝜅 (fst𝑀) ≜ (eval𝜅𝑀) >>=𝜅 𝜆⟨𝑉 ,𝑊 ⟩.𝛿𝜅𝑉
eval𝜅 ⟨𝑀, 𝑁 ⟩ ≜ eval𝜅𝑀 >>=𝜅 𝜆𝑉 .eval𝜅𝑁 >>=𝜅 𝜆𝑊 .𝛿𝜅 ⟨𝑉 ,𝑊 ⟩

eval𝜅 (case(𝐿, 𝑥 .𝑀,𝑦.𝑁)) ≜ eval𝜅 (𝐿) >>=𝜅
{
inl𝑉 ↦→ step𝜅 (𝜆(𝛼 :𝜅).eval𝜅 (𝑀 [𝑉 /𝑥]))
inr𝑉 ↦→ step𝜅 (𝜆(𝛼 :𝜅).eval𝜅 (𝑁 [𝑉 /𝑦]))

eval𝜅 (𝑀 𝑁) ≜ eval𝜅 (𝑀) >>=𝜅 𝜆(lam 𝑥 .𝑀 ′). eval𝜅 (𝑁)
>>=𝜅 𝜆𝑉 .step𝜅 (𝜆(𝛼 :𝜅).eval𝜅 (𝑀 ′ [𝑉 /𝑥]))

eval𝜅 (fold𝑀) ≜ D𝜅 (fold) (eval𝜅 (𝑀))
eval𝜅 (unfold𝑀) ≜ eval𝜅𝑀 >>=𝜅 𝜆(fold𝑉) .step𝜅 (𝜆(𝛼 :𝜅).𝛿𝜅𝑉)

eval𝜅 (choice𝑝 (𝑀, 𝑁)) ≜ (eval𝜅𝑀) ⊕𝜅𝑝 (eval𝜅𝑁)

Fig. 3. The evaluation function eval𝜅 . Rules for pred , inr , snd omitted.

terms 𝑀 satisfying Γ ⊢ 𝑀 : 𝜎 , constructed as a subtype of the type of all terms. For empty Γ we

write simply Tm𝜎 . We write Val𝜎 for the set of closed values of type 𝜎 , as captured by the grammar

𝑉 ,𝑊 := ⟨⟩ | 𝑛 | lam 𝑥 .𝑀 | fold𝑉 | ⟨𝑉 ,𝑊 ⟩ | inl𝑉 | inr𝑉

The operational semantics is given by a function eval𝜅 of type

eval𝜅 : {𝜎 : Ty} → Tm𝜎 → D𝜅 (Val𝜎), (6)

associating to a term𝑀 with type 𝜎 an element of the free guarded convex delay algebra over Val𝜎 .
The corresponding element of the coinductive convex delay algebra can be defined as

eval(𝑀) ≜ Λ𝜅.eval𝜅 (𝑀) : D∀(Val𝜎).

The function eval𝜅 is defined by an outer guarded recursion and an inner induction on terms.

In other words, by first assuming given a term of type ⊲𝜅 ({𝜎 : Ty} → Tm𝜎 → D𝜅 (Val𝜎)), then
defining eval𝜅 (𝑀) by induction on𝑀 . The cases are given in Figure 3. The figure overloads names

of some term constructors to functions of values, e.g. inl : Val𝜎 → Val𝜎+𝜏 mapping 𝑉 to inl𝑉 , and

pred, suc : ValNat → ValNat defined using ValNat ≃ N. The figure also uses pattern matching within

bindings, e.g. in the case of function application, where we use that all values of function type are

of the form lam 𝑥 .𝑀 ′ for some𝑀 ′.
In the cases of case(𝐿, 𝑥 .𝑀,𝑦.𝑁) and 𝑀 𝑁 the recursive calls to eval𝜅 are under step𝜅 and so

can be justified by guarded recursion. This is necessary, because they are not instantiated at a

structurally smaller term. The case for unfold𝑀 also introduces a computation step using step𝜅 .
While this is not strictly necessary to define the operational semantics, we introduce it to simulate

the steps of the denotational semantics defined in Section 6. This simplifies the proof of Theorem 6.1.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:15

Example 5.1. Define the fixed point combinator · ⊢ Y : ((𝜎 → 𝜏) → (𝜎 → 𝜏)) → 𝜎 → 𝜏 by

Y ≜ lam 𝑓 .lam 𝑧.𝑒𝑓 (fold 𝑒𝑓)𝑧, where
𝑒𝑓 : (𝜇𝑋 .(𝑋 → 𝜎 → 𝜏)) → 𝜎 → 𝜏

𝑒𝑓 ≜ lam 𝑦.let 𝑦′ = unfold𝑦 in 𝑓 (lam 𝑥 .𝑦′𝑦𝑥)
Here, 𝑦 : 𝜇𝑋 .(𝑋 → 𝜎 → 𝜏), 𝑦′ : (𝜇𝑋 .(𝑋 → 𝜎 → 𝜏)) → 𝜎 → 𝜏 and lam 𝑥 .𝑦′𝑦𝑥 : 𝜎 → 𝜏 .

Then, for any values · ⊢ 𝑓 : (𝜎 → 𝜏) → 𝜎 → 𝜏 and · ⊢ 𝑉 : 𝜎 ,

eval𝜅 ((Y𝑓) (𝑉)) = (Δ𝜅)4 (eval𝜅 ((𝑓 (Y𝑓)) (𝑉)))
where Δ𝜅 ≜ (step𝜅 ◦ next𝜅).

Contextual Refinement. Two terms𝑀, 𝑁 are contextually equivalent if for any closing context

𝐶 [−] of ground type the terms 𝐶 [𝑀] and 𝐶 [𝑁] have the same observational behaviour. Here, the

only observable behaviour we consider is the probability of termination for programs of type 1,

which, for a closed term𝑀 should be the limit of the sequence PT𝑛 (eval𝑀).

Definition 5.2 (Contextual Refinement). Let Γ ⊢ 𝑀, 𝑁 : 𝜏 be terms. We say that 𝑀 contextually
refines 𝑁 if for any closing context of unit type 𝐶 : (Γ ⊢ 𝜎) ⇒ (· ⊢ 1), PT(.) (eval(𝐶 [𝑀])) ≤lim
PT(.) (eval(𝐶 [𝑁])). In this case, write𝑀 ⪯Ctx 𝑁 . We say that𝑀 and 𝑁 are contextually equivalent

(𝑀 ≡Ctx 𝑁) if𝑀 ⪯Ctx 𝑁 and 𝑁 ⪯Ctx 𝑀 .

Definition 5.2 should be read as defining a predicate on 𝑀 and 𝑁 in CCTT, i.e., a function

TmΓ
𝜎 → TmΓ

𝜎 → Prop. The notion of closing context 𝐶 : (Γ ⊢ 𝜎) ⇒ (· ⊢ 1) is a special case of a
typing judgement on contexts 𝐶 : (Γ ⊢ 𝜎) ⇒ (Δ ⊢ 𝜏) defined in a standard way. Note that 𝐶 [−]
may capture free variables in𝑀 .

6 Denotational Semantics
We now define a denotational semantics for FPC⊕ . The semantics is based on two ideas: (i) we use

guarded recursion to interpret recursive types, inspired by [29], and (ii) we use the guarded convex

delay monad to interpret effectful computations, similarly to how monads are used to interpret

effectful languages in standard denotational semantics. Specifically we define two functions

J−K𝜅 : Ty→ Set

J−K𝜅− : {Γ : Ctx} → {𝜎 : Ty} → TmΓ
𝜎 → JΓK𝜅 → D𝜅J𝜎K𝜅

which interpret types and terms, respectively, see Figure 4. Note that by using guarded recursion

to interpret types, it suffices to define the denotation of closed types.

The interpretation of terms is defined by induction on terms. Note that all syntactic values are

interpreted as semantic values in the sense that we can define a map

J−KVal,𝜅 : {𝜎 : Ty} → Val𝜎 → J𝜎K𝜅

satisfying J𝑉 K𝜅 = 𝛿𝜅 (J𝑉 KVal,𝜅) for all 𝑉 . Note also that the denotational semantics only steps when

unfolding from a recursive type. As a consequence, the denotational semantics is much less cluttered

by steps than the operational semantics, which makes it simpler to use for reasoning. Despite the

fewer steps, the two semantics refine each other. In particular we have the theorem below, which

we will prove using the techniques we develop in later sections:

Theorem 6.1. For any well-typed closed expression · ⊢ 𝑀 : 1 we have that

PT(.) (eval𝑀) =lim PT(.) (J𝑀K)
where J𝑀K ≜ Λ𝜅.J𝑀K𝜅

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:16 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Interpretation of types

JNatK𝜅 ≜ N J𝜎 × 𝜏K𝜅 ≜ J𝜎K𝜅 × J𝜏K𝜅 J𝜎 → 𝜏K𝜅 ≜ J𝜎K𝜅 → D𝜅J𝜏K𝜅

J1K𝜅 ≜ 1 J𝜎 + 𝜏K𝜅 ≜ J𝜎K𝜅 + J𝜏K𝜅 J𝜇𝑋 .𝜏K𝜅 ≜ ⊲𝜅J𝜏 [𝜇𝑋 .𝜏/𝑋]K𝜅

Interpretation of terms

J⟨⟩K𝜅𝜌 ≜ 𝛿𝜅 (★) J𝑛K𝜅𝜌 ≜ 𝛿𝜅 (𝑛) J𝑥K𝜅𝜌 ≜ 𝛿𝜅 (𝜌 (𝑥))

Jsuc𝑀K𝜅𝜌 ≜ D𝜅 (suc)
(
JΓ ⊢ 𝑀 : NatK𝜅𝜌

)
Jifz(𝑡, 𝑀, 𝑁)K𝜅𝜌 ≜ J𝐿K𝜅𝜌 >>=𝜅

{
0 ↦→ J𝑀K𝜅𝜌
𝑛 + 1 ↦→ J𝑁 K𝜅𝜌

Jlam 𝑥 .𝑀K𝜅𝜌 ≜ 𝛿𝜅
(
𝜆(𝑣 : J𝜎KVal,𝜅𝜌).J𝑀K𝜅𝜌.𝑥 ↦→𝑣

)
J𝑀 𝑁 K𝜅𝜌 ≜ J𝑀K𝜅𝜌 >>=𝜅 𝜆𝑓 .J𝑁 K𝜅𝜌 >>=𝜅 𝜆𝑣 .𝑓 𝑣

J⟨𝑀, 𝑁 ⟩K𝜅𝜌 ≜ J𝑀K𝜅𝜌 >>=𝜅 𝜆𝑣.

(
J𝑁 K𝜅𝜌 >>=𝜅 𝜆𝑤.𝛿𝜅 (𝑣,𝑤)

)
Jfst𝑀K𝜅𝜌 ≜ D𝜅 (pr

1
)
(
J𝑀K𝜅𝜌

)
Jinl𝑀K𝜅𝜌 ≜ D𝜅 (inl)

(
J𝑀K𝜅𝜌

)
Jcase(𝐿, 𝑥 .𝑀,𝑦.𝑁)K𝜅𝜌 ≜ J𝐿K𝜅𝜌 >>=𝜅

{
inl 𝑣 ↦→ J𝑀K𝜅𝜌.𝑥 ↦→𝑣

inr 𝑣 ↦→ J𝑁 K𝜅𝜌.𝑦 ↦→𝑣

Jfold𝑀K𝜅𝜌 ≜ D𝜅 (next𝜅) (J𝑀K𝜅𝜌)
Junfold𝑀K𝜅𝜌 ≜ J𝑀K𝜅𝜌 >>=𝜅 𝜆𝑣.step𝜅 (𝜆(𝛼 :𝜅).𝛿𝜅 (𝑣 [𝛼]))

Jchoice𝑝 (𝑀, 𝑁)K𝜅𝜌 ≜ J𝑀K𝜅𝜌 ⊕𝜅𝑝 J𝑁 K𝜅𝜌

Fig. 4. Denotational semantics for FPC⊕ . Rules for pred , inr , snd omitted.

The denotational semantics satisfies the following substitution lemma:

Lemma 6.2 (Substitution Lemma). For any well-typed term Γ.(𝑥 : 𝜎) ⊢ 𝑀 : 𝜏 as well as every
well typed value Γ ⊢ 𝑉 : 𝜎 we have

J𝑀 [𝑉 /𝑥]K𝜅𝜌 = J𝑀K𝜅
𝜌.𝑥 ↦→J𝑉 KVal,𝜅𝜌

The following example presents a useful equality toworkwith denotational semantics of recursive

functions defined via a fixed point combinator:

Example 6.3. Recall the fixed point operator Y from Example 5.1. The denotational semantics

satisfies the following equations

J(lam 𝑦.𝑀) 𝑥K𝜅𝑥 ↦→𝑣 = J𝑀K𝜅𝑦 ↦→𝑣 (7)

JY𝑓 𝑥K𝜅𝑥 ↦→𝑣 = (step𝜅 ◦ next𝜅) (J𝑓 (Y𝑓) 𝑥K𝜅𝑥 ↦→𝑣) (8)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:17

for any value 𝑓 and semantic value 𝑣 , and where 𝑥 does not appear free in 𝑀 . By applying the

substitution lemma, we also get

J(lam 𝑦.𝑀)𝑉 K𝜅 = J𝑀 [𝑉 /𝑥]K𝜅

JY𝑓 𝑉 K𝜅 = (step𝜅 ◦ next𝜅) (J𝑓 (Y𝑓)𝑉 K𝜅)

7 Couplings and Lifting Relations
Our next goal is to define a logical relation between the syntax and semantics and use it to

reason about contextual equivalence of FPC⊕ terms. This is done by defining a value relation (of

type J𝜎K𝜅 → Val𝜎 → Prop) and an expression relation (of type D𝜅J𝜎K𝜅 → D∀(Val𝜎) → Prop)
by mutual recursion. We start by defining a relational lifting [25] operation mapping a relation

R : 𝐴→ 𝐵 → Prop on values to a relation R 𝜅
: D𝜅𝐴→ D∀𝐵 → Prop on computations. This will

be used to define the expression relation as the relational lifting of the value relation. As opposed

to standard lifting constructions, that consider the same monad on both sides of the relation, there

is an asymmetry in the type of R 𝜅
. The reason is that the logical relation will be defined by

guarded recursion in the first argument, while using arbitrarily deep unfoldings of the term on

the right-hand side. This section defines the relational lifting construction and proves its basic

properties.

The first step is lifting a relation R over 𝐴 × 𝐵 to a relation over D𝐴 × D𝐵. Recall the notion of

R -coupling [6, 28], which achieves this precise end:

Definition 7.1. Let R : 𝐴 → 𝐵 → Prop, and let 𝜇 : D𝐴,𝜈 : D𝐵 be finite distributions. An R -

coupling between 𝜇 and 𝜈 is a distribution on the total space of R , i.e., 𝜌 : D(Σ(𝑎 :𝐴), (𝑏 :𝐵).𝑎 R 𝑏),
whose marginals are 𝜇 and 𝜈 :

D(pr
1
) (𝜌) = 𝜇 D(pr

2
) (𝜌) = 𝜈,

where pr
1
and pr

2
are the projection maps 𝐴

pr
1←−− 𝐴 × 𝐵

pr
2−−→ 𝐵. We write Cpl R (𝜇, 𝜈) for the type of

R -couplings between 𝜇 and 𝜈 .

In other words, an R -coupling is a joint distribution over𝐴×𝐵 with the property that R always

holds for any pair of values sampled from it. Our definition of 𝜇 R 𝜅
𝜈 will generalise this idea for

pairs of computations, whose final values might become available at different times. Recall that by

Theorem 3.6 a distribution 𝜇 : D𝜅𝐴 ≃ D(𝐴 + ⊲𝜅 (D𝜅𝐴)) must be either a distribution of values, one

of delayed computations or a convex combination of the two. The relation 𝜇 R 𝜅
𝜈 should then hold

if (1) the values available in 𝜇 now can be matched by 𝜈 after possibly some computation steps,

and (2) the delayed computation part of 𝜇 can be matched later, in a guarded recursive step. The

matching of values is done via an R -coupling, and the computation steps are interpreted using{≈.
We choose{≈ over the more straightforward{ to allow the matching values for 𝜇 to be delivered

in the limit of an infinite sequence of computation steps. By choosing{≈, we just require that any
fraction of it can be delivered in finite time. In the following definition, we leave the inclusions

D(inl) and D(inr) implicit and simply write, e.g., 𝜇 : D𝐴 for the first case mentioned above.

Definition 7.2 (Lifting of Relations). Given a relation R : 𝐴 → 𝐵 → Prop we define its lift

R 𝜅
: D𝜅𝐴→ D∀𝐵 → Prop as: 𝜇 R 𝜅

𝜈 if one of the following three options is true:

(1) 𝜇 : D𝐴, there is a 𝜈 ′ : D𝐵 such that 𝜈 {≈ 𝜈 ′, and there is a 𝜌 : Cpl R (𝜇, 𝜈 ′).
(2) 𝜇 : D(⊲𝜅D𝜅𝐴) and ⊲𝜅 (𝛼 : 𝜅) (((𝜁𝜅 (𝜇)) [𝛼]) R 𝜅

𝜈),
where 𝜁𝜅 : D(⊲𝜅D𝜅𝐴) → ⊲𝜅D𝜅𝐴 is defined as

𝜁𝜅 (𝛿 (𝑥)) ≜ 𝑥 𝜁𝜅 (𝜇 ⊕𝑝 𝜈) ≜ 𝜆(𝛼 :𝜅).𝜁𝜅 (𝜇) [𝛼] ⊕𝜅𝑝 𝜁𝜅 (𝜈) [𝛼]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:18 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

(3) There exist 𝜇1 : D𝐴, 𝜇2 : D(⊲𝜅D𝜅𝐴), and 𝑝 ∈ (0, 1) such that 𝜇 = 𝜇1 ⊕𝑝 𝜇2, there exist

𝜈1, 𝜈2 : D∀𝐵 such that 𝜈 {≈ 𝜈1 ⊕∀𝑝 𝜈2, and 𝜇1 R
𝜅
𝜈1 and 𝜇2 R

𝜅
𝜈2.

We then define R : D∀𝐴→ D∀𝐵 → Prop as:

𝜇 R 𝜈 ≜ ∀𝜅.(𝜇 [𝜅] R 𝜅
𝜈).

The following is a consequence of the encoding of coinductive types using guarded recursion.

Lemma 7.3. If 𝐴 is clock irrelevant, then R is the coinductive solution to the equation that 𝜇 R 𝜈

if and only if one of the following:
(1) 𝜇 : D𝐴, there is a 𝜈 ′ : D𝐵 such that 𝜈 {≈ 𝜈 ′, and there is a 𝜌 : Cpl R (𝜇, 𝜈 ′).
(2) 𝜇 : D(D∀𝐴) and run(𝜇) R 𝜈 .
(3) There exist 𝜇1 : D𝐴, 𝜇2 : D(D∀𝐴), and 𝑝 : (0, 1) such that 𝜇 = 𝜇1 ⊕𝑝 𝜇2, there exist 𝜈1, 𝜈2 : D∀𝐵

such that 𝜈 {≈ 𝜈1 ⊕∀𝑝 𝜈2, and 𝜇1 R 𝜈1 and 𝜇2 R 𝜈2.

The following lemma allows us to use existence of a lifting to prove an inequality between

probabilities of termination, which will be useful when reasoning about contextual refinement

Lemma 7.4. Let 𝜇, 𝜈 : D∀1, and let eq
1
: 1→ 1→ Prop be the identity relation, relating the unique

element to itself. Then,
𝜇 eq

1
𝜈 ⇒ PT(.) (𝜇) ≤lim PT(.) (𝜈).

In the remainder of this section, we will prove some useful reasoning principles for working with

R 𝜅
at a more abstract level, without the need for unfolding the definition. These are summarized

in Figure 5, where the double bar indicates that the rule is bidirectional.

𝜈 { 𝜈 ′ 𝜇 R 𝜅
𝜈

𝜇 R 𝜅
𝜈 ′

𝜈 { 𝜈 ′ 𝜇 R 𝜅
𝜈 ′

𝜇 R 𝜅
𝜈

𝜈 {≈ 𝜈 ′ 𝜇 R 𝜅
𝜈 ′

𝜇 R 𝜅
𝜈

(step𝜅𝜇1) ⊕𝜅𝑝 (step𝜅𝜇2) R
𝜅
𝜈

step𝜅 (𝜆(𝛼 :𝜅).(𝜇1 [𝛼]) ⊕𝜅𝑝 (𝜇2 [𝛼])) R
𝜅
𝜈

===
𝜇 R 𝜅

step∀(𝜈1 ⊕∀𝑝 𝜈2)

𝜇 R 𝜅 (step∀(𝜈1)) ⊕∀𝑝 (step∀(𝜈2))
===

𝜇1 R
𝜅
𝜈1 𝜇2 R

𝜅
𝜈2

(𝜇1 ⊕𝜅𝑝 𝜇2) R
𝜅 (𝜈1 ⊕∀𝑝 𝜈2)

𝜇 R 𝜅
𝜈 ∀𝑎, 𝑏.𝑎 R 𝑏 → 𝑓 (𝑎) S𝜅 𝑔(𝑏)

𝑓 (𝜇) S𝜅 𝑔(𝜈)

Fig. 5. Reasoning principles for R 𝜅

First we show that R 𝜅
is invariant with respect to{ and{≈-reductions on its second argument.

Lemma 7.5. If 𝜈 { 𝜈 ′ then 𝜇 R 𝜅
𝜈 iff 𝜇 R 𝜅

𝜈 ′. In particular 𝜇 R 𝜅 (step∀𝜈) iff 𝜇 R 𝜅
𝜈 .

Proof. Left to right follows from Lemma 4.10, and right to left is by Lemma 4.19. □

Lemma 7.6. If 𝜈 {≈ 𝜈 ′ and 𝜇 R 𝜅
𝜈 ′, then also 𝜇 R 𝜅

𝜈 .

Proof. This follows from transitivity of{≈. □

The lemma below allows us to commute computation steps with probabilistic choices on either

side of a lifted relation:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:19

Lemma 7.7. Let R : 𝐴→ 𝐵 → Prop.

(1) If 𝜇1, 𝜇2 : ⊲𝜅D𝜅𝐴, 𝜈 : D∀𝐵 then

(step𝜅𝜇1) ⊕𝜅𝑝 (step𝜅𝜇2) R
𝜅
𝜈 iff step𝜅 (𝜆(𝛼 :𝜅).(𝜇1 [𝛼]) ⊕𝜅𝑝 (𝜇2 [𝛼])) R

𝜅
𝜈.

(2) If 𝜇 : D𝜅𝐴 and 𝜈1, 𝜈2 : D∀𝐵 then 𝜇 R 𝜅
step∀(𝜈1 ⊕∀𝑝 𝜈2) iff 𝜇 R 𝜅 (step∀(𝜈1)) ⊕∀𝑝 (step∀(𝜈2)).

Proof. The first statement follows from applying Definition 7.2(2). The second statement follows

from Lemma 7.5. □

Liftings are a useful technique to reason about computations because of the way they interact

with choice, and with the monad structures of D𝜅
and D∀. First, liftings are closed under choice

operators, which allows us to construct them by parts:

Lemma 7.8. Let R : 𝐴 → 𝐵 → Prop, and suppose that 𝜇1 R
𝜅
𝜈1 and 𝜇2 R

𝜅
𝜈2. Then also

(𝜇1 ⊕𝜅𝑝 𝜇2) R
𝜅 (𝜈1 ⊕∀𝑝 𝜈2).

Proof (sketch). There are 9 cases to consider, one for each of the possible combinations of

cases for 𝜇1 R
𝜅
𝜈1 and 𝜇2 R

𝜅
𝜈2. The proof for each of these cases follows quite directly from the

assumptions that we get from 𝜇1 R
𝜅
𝜈1 and 𝜇2 R

𝜅
𝜈2, after some rewriting of terms using the

axioms of convex algebras. For example, if 𝜇1 : D𝐴 and for 𝜇2 there exist 𝜇21 : D𝐴, 𝜇22 : D(⊲𝜅D𝜅𝐴)
such that 𝜇2 = 𝜇21 ⊕𝑝′ 𝜇22, then:

𝜇1 ⊕𝜅𝑝 𝜇2 = 𝜇1 ⊕𝜅𝑝 (𝜇21 ⊕𝜅𝑝′ 𝜇22) = (𝜇1 ⊕𝜅 𝑝

𝑝+(1−𝑝)𝑝′
𝜇21) ⊕𝜅𝑝+(1−𝑝)𝑝′ 𝜇22,

where 𝜇1 ⊕𝜅 𝑝

𝑝+(1−𝑝)𝑝′
𝜇21 : D𝐴 and 𝜇22 : D(⊲𝜅D𝜅𝐴). We can then combine information coming from

the assumptions 𝜇1 R
𝜅
𝜈1 and 𝜇2 R

𝜅
𝜈2 using the same probabilities as above to reach the desired

conclusion. □

Second, we can prove a bind lemma, that allows us to sequence computations related by liftings.

This lemma will be crucial e.g. in the proof of the fundamental lemma in the following section.

Lemma 7.9 (Bind Lemma). Let R : 𝐴→ 𝐵 → Prop and S : 𝐴′ → 𝐵′ → Prop.

(1) If 𝑓 : 𝐴 → D𝜅𝐴′ and 𝑔 : 𝐵 → D∀𝐵′ satisfy 𝑓 (𝑎) S𝜅 𝑔(𝑏) whenever 𝑎 R 𝑏, then for all 𝜇 : D𝐴

and 𝜈 : D𝐵, if there is a 𝜌 : Cpl R (𝜇, 𝜈), then 𝑓 (𝜇) S𝜅 𝑔(𝜈).
(2) If 𝑓 : 𝐴→ D𝜅𝐴′ and 𝑔 : 𝐵 → D∀𝐵′ satisfy 𝑓 (𝑎) S𝜅 𝑔(𝑏) whenever 𝑎 R 𝑏, then for all 𝜇 : D𝜅𝐴

and 𝜈 : D∀𝐵 satisfying 𝜇 R 𝜅
𝜈 , also 𝑓 (𝜇) S𝜅 𝑔(𝜈).

Proof (sketch). The first statement is by induction on the coupling 𝜌 : Cpl R (𝜇, 𝜈).
For the second statement, suppose that 𝜇 R 𝜅

𝜈 . By the definition of R 𝜅
, there are three cases to

consider. We only show the first case here. The second case is by guarded recursion, and the third

case follows from the first and second cases.

For the first case, we assume that 𝜇 : D𝐴, that there exist 𝜈1 : D𝐵 such that 𝜈 {≈ 𝜈1, and that

there exists a 𝜌 : Cpl R (𝜇, 𝜈1). What we want is to show that 𝑓 (𝜇) S𝜅 𝑔(𝜈).
Notice that since the {≈ relation is preserved by homomorphisms (Lemma 4.18), 𝜈 {≈ 𝜈1

implies 𝑔(𝜈) {≈ 𝑔(𝜈1). By Lemma 7.6 it is therefore enough to show that 𝑓 (𝜇) S𝜅 𝑔(𝜈1), which
follows directly from the first statement of this lemma.

□

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:20 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Value relation

𝑛 ⪯𝜅,ValNat 𝑛 ★ ⪯𝜅,Val
1

⟨⟩
𝑣 ⪯𝜅,Val𝜎 𝑉 𝑤 ⪯𝜅,Val𝜏 𝑊

(𝑣,𝑤) ⪯𝜅,Val𝜎×𝜏 ⟨𝑉 ,𝑊 ⟩
𝑣 ⪯𝜅,Val𝜎 𝑉

inl 𝑣 ⪯𝜅,Val𝜎+𝜏 inl𝑉

𝑣 ⪯𝜅,Val𝜏 𝑉

inr 𝑣 ⪯𝜅,Val𝜎+𝜏 inr𝑉

∀𝑤,𝑉 .𝑤 ⪯𝜅,Val𝜎 𝑉 → 𝑣 (𝑤) ⪯𝜅,Tm𝜏 eval(𝑀 [𝑉 /𝑥])
𝑣 ⪯𝜅,Val𝜎→𝜏 lam 𝑥 .𝑀

⊲(𝛼 : 𝜅).(𝑣 [𝛼] ⪯𝜅,Val
𝜏 [𝜇𝑋 .𝜏/𝑋] 𝑉)

𝑣 ⪯𝜅,Val
𝜇𝑋 .𝜏

fold𝑉

Expression relation

𝜇 ⪯𝜅,Tm𝜎 𝑑 ≜ 𝜇 ⪯𝜅,Val𝜎

𝜅

𝑑

Fig. 6. Logical Relation.

8 Relating Syntax and Semantics
In this section we prove that our denotational semantics is adequate with respect to the operational

semantics. The overall approach is standard in that we define type-indexed logical relations between

semantic denotations and terms of the operational semantics, and we define both value relations

and expression (aka term or computation) relations:

⪯𝜅,Val𝜎 : J𝜎K𝜅 → Val𝜎 → Prop

⪯𝜅,Tm𝜎 : D𝜅J𝜎K𝜅 → D∀(Val𝜎) → Prop

There are two things to note, however. The first is that traditionally it is tricky to define such

logical relations for a programming language with recursive types; see, e.g., [34]. Here we follow

[29] and simply use guarded recursion (and induction on types), see Figure 6. Notice in particular

the case for recursive types, where guarded recursion is used. The second point to note is that

the definition of the term relation is novel: it is defined as the lifting (in the sense of the previous

section) of the value relation. This allows us to use the reasoning principles associated with lifting

(e.g., Lemmas 7.5,7.8 and 7.9) in proofs and examples.

We extend the expression relation to open terms in the standard way by using related environ-

ments and closing substitutions:

Definition 8.1. For𝑀, 𝑁 : TmΓ
𝜎 we define

𝑀 ⪯𝜅,Γ𝜎 𝑁 ≜
(
∀𝜌, 𝛿 .(𝜌 ⪯𝜅,ValΓ 𝛿) → J𝑀K𝜅𝜌 ⪯𝜅,Tm𝜎 eval(𝑁 [𝛿])

)
Here 𝛿 is a closing substitution for Γ and 𝜌 : JΓK𝜅 an environment, and 𝜌 ⪯𝜅,ValΓ 𝛿 denotes that for

every variable 𝑥 of Γ the corresponding semantic and syntactic value in 𝜌 and 𝛿 are related.

One can now show that the logical relation is a congruence and that it is reflexive (the fundamental

lemma holds). Both these are proved by induction on 𝐶 and𝑀 respectively.

Lemma 8.2 (Congruence Lemma). For any terms 𝑀, 𝑁 : TmΓ
𝜎 and every context 𝐶 : (Γ ⊢ 𝜎) ⇒

(Δ ⊢ 𝜏) we get that
𝑀 ⪯𝜅,Γ𝜎 𝑁 → 𝐶 [𝑀] ⪯𝜅,Δ𝜏 𝐶 [𝑁]

Lemma 8.3 (Fundamental Lemma). For all𝑀 : TmΓ
𝜎 we have that𝑀 ⪯𝜅,Γ𝜎 𝑀.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:21

To prove soundness of the logical relation for contextual equivalence, it only remains to relate it to

termination probability at the unit type. To begin, we use our logical relation to prove Theorem 6.1

presented in Section 6:

Proof of Theorem 6.1. Recall that our goal is to show that PT(.) (eval𝑀) =lim PT(.) (J𝑀K) for
any 𝑀 : Tm1. One direction follows directly from Lemma 8.3: Since ∀𝜅.J𝑀K𝜅 ⪯𝜅,Tm

1
eval𝑀 , by

Lemma 7.4 also PT(.) (J𝑀K) ≤lim PT(.) (eval𝑀). For the other direction, we define an alternative

denotational semantics L−M, which agrees with J−K on types and most terms, but which uses the

same steps as the operational semantics, so for example,

L𝑀𝑁 M𝜅𝜌 ≜ L𝑀M𝜅𝜌 >>=𝜅 𝜆𝑓 .L𝑁 M𝜅𝜌 >>=𝜅 𝜆𝑣 .step𝜅 (𝜆(𝛼 :𝜅).𝑓 𝑣)
and similarly for the interpretation of elimination for sum types. Since the steps agree, it is easy to

show the following soundness result for L−M: For any well typed closed term · ⊢ 𝑀 : 𝜎 we have

D𝜅
(
L−MVal,𝜅

)
(eval𝜅𝑀) ≡ L𝑀M𝜅

and as a consequence PT(.) (eval𝑀) = PT(.) (L𝑀M). Finally, we construct a logical relation on the

denotation of types to show that PT(.) (L𝑀M) ≤lim PT(.) (J𝑀K). □

As a consequence, the logical relation implies relatedness of the termination probabilities.

Corollary 8.4. For any𝑀, 𝑁 : Tm1 we have that

(∀𝜅.J𝑀K𝜅 ⪯𝜅,Tm
1

eval(𝑁)) → PT(.) (eval(𝑀)) ≤lim PT(.) (eval(𝑁))
Proof. By Lemma 7.4, PT(.) (J𝑀K) ≤lim PT(.) (eval(𝑁)), so the result follows by Theorem 6.1. □

Combining this with the Congruence Lemma, we get that the logical relation is sound with

respect to contextual refinement:

Theorem 8.5. For any terms Γ ⊢ 𝑀 : 𝜎 and Γ ⊢ 𝑁 : 𝜎 we have

(∀𝜅.𝑀 ⪯𝜅,Γ𝜎 𝑁) → 𝑀 ⪯Ctx 𝑁
As a corollary, we obtain computational adequacy (using the notation J𝑀K ≜ Λ𝜅.J𝑀K𝜅):

Theorem 8.6 (Adeqacy). Let𝑀, 𝑁 be terms of the same type. If J𝑀K = J𝑁 K then𝑀 ≡Ctx 𝑁 .

Proof. By Lemma 8.3 we have ∀𝜅.𝑁 ⪯𝜅,Γ𝜎 𝑁 , since 𝜅 is free in the statement of the lemma. So,

since J𝑀K = J𝑁 K also ∀𝜅.𝑀 ⪯𝜅,Γ𝜎 𝑁 . By Theorem 8.5 also𝑀 ⪯Ctx 𝑁 . We conclude by symmetry. □

9 Examples
We now give a series of examples to illustrate how Theorem 8.5 can be used for reasoning about

FPC⊕ . All the examples presented are variants of similar examples in the literature [1, 9]. Our

point is to show how these examples can be done in constructive type theory, and to illustrate the

simplicity of these in our abstract viewpoint. We choose to work directly with the logical relation

⪯𝜅,Γ𝜎 between syntax and semantics. An alternative could be to use a relation on denotational

semantics, as the one used in the proof of Theorem 6.1. One could have also defined a relation

directly from syntax to syntax, but the additional steps in the operational semantics would have

cluttered the proofs. We return to this point in Remark 3.

We start by showing that the reduction relation{ is contained in contextual equivalence.

Theorem 9.1. Let𝑀 and 𝑁 be closed terms of the same type 𝜎 .
(1) If eval𝑀 { eval𝑁 , then𝑀 ≡Ctx 𝑁 .
(2) If eval𝑀 {≈ eval𝑁 , then 𝑁 ⪯Ctx 𝑀 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:22 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Proof. For (1), by Lemma 7.5, 𝜇 ⪯𝜅,Val𝜎 eval𝑀 if and only if 𝜇 ⪯𝜅,Val𝜎 eval𝑁 . By Lemma 8.3

∀𝜅.J𝑀K𝜅 ⪯𝜅,Val𝜎 eval𝑀 , so ∀𝜅.J𝑀K𝜅 ⪯𝜅,Val𝜎 eval𝑁 , and so by Theorem 8.5 also 𝑀 ⪯Ctx 𝑁 . The

other way is similar. The second statement is proved similarly using Lemma 7.6. □

For example, since eval(Y𝑓 𝑉) { eval(𝑓 (Y𝑓)𝑉), also Y𝑓 𝑉 ≡Ctx 𝑓 (Y𝑓)𝑉 . Similarly, since

eval((lam 𝑥 .𝑀)𝑉) = step∀(eval(𝑀 [𝑉 /𝑥])) { eval(𝑀 [𝑉 /𝑥])
eval(unfold (fold𝑉)) = step∀(𝑉) { 𝑉

for closed values𝑉 and lam 𝑥 .𝑀 , we get the usual call-by-value 𝛽 rules up to contextual equivalence.

9.1 A Hesitant Identity Function
For any type 𝜎 and rational number 𝑝 : (0, 1), define the hesitant identity function hidp : 𝜎 → 𝜎 as

hidp ≜ lam 𝑧.Yhid′p 𝑧 where

hid′p ≜ lam 𝑓 .lam 𝑥 .choice𝑝 (𝑥, 𝑓 𝑥)

Given an 𝑥 , hidp makes a probabilistic choice between immediately returning 𝑥 and calling itself

recursively. We will show that hidp ≡Ctx id, starting with id ⪯Ctx hidp.
Since hidp is a value, it suffices to show that

𝛿𝜅 (𝑣) ⪯𝜅,Tm𝜎 eval(hidp𝑉) (9)

for all 𝑣,𝑉 satisfying 𝑣 ⪯𝜅,Val𝜎 𝑉 . Now, eval(hidp𝑉) { eval(Yhid′p𝑉), and by definition of Y,
Yhid′p reduces in one step to a value, which we shall simply write𝑊hid,p for. To prove (9) it therefore

suffices to prove

𝛿𝜅 (𝑣) ⪯𝜅,Tm𝜎 eval(𝑊hid,p𝑉) (10)

Since the reduction eval(Yhid′p𝑉) { eval(hid′p (Yhid′p)𝑉) factors through𝑊hid,p𝑉 it follows that

eval(𝑊hid,p𝑉) { eval(hid′p (Yhid′p)𝑉)
{ eval(hid′p𝑊hid,p𝑉)
{ eval(choice𝑝 (𝑉 ,𝑊hid,p𝑉))
= 𝛿∀𝑉 ⊕∀𝑝 eval(𝑊hid,p𝑉)

By Example 4.16 then eval(𝑊hid,p𝑉) {≈ 𝛿∀𝑉 , so that (10) follows from Lemma 7.6.

To prove hidp ⪯Ctx id, since hidp is a value, it suffices to show that

JhidpKVal,𝜅 (𝑣) ⪯𝜅,Tm𝜎 𝛿∀(𝑉) (11)

for all 𝑣,𝑉 satisfying 𝑣 ⪯𝜅,Val𝜎 𝑉 . Using (8) we compute

JhidpKVal,𝜅 (𝑣) = JY(hid′p) 𝑧K𝜅𝑧 ↦→𝑣

= Δ𝜅Jhid′p (Y(hid′p)) 𝑧K𝜅𝑧 ↦→𝑣

= Δ𝜅Jchoice𝑝 (𝑥, 𝑓 𝑥)K𝜅
𝑥 ↦→𝑣,𝑓 ↦→J𝑊hid,pKVal,𝜅

= Δ𝜅 (𝛿𝜅𝑣 ⊕𝜅𝑝 JhidpKVal,𝜅 (𝑣))

so that (11) is equivalent to

⊲𝜅 (𝛿𝜅𝑣 ⊕𝜅𝑝 JhidpKVal,𝜅 (𝑣) ⪯𝜅,Tm𝜎 𝛿∀(𝑉)) (12)

and can therefore be easily proved by guarded recursion using Lemma 7.7.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:23

Remark 3. Note the benefit of having the denotational semantics on the left hand side of the relation
in the example above: Unfolding (11) only leads to a single (outer) ⊲𝜅 in (12). Had we used operational
semantics on the left hand side, the unfolding would have been cluttered by additional steps intertwined
with probabilistic choices. On the right hand side, the additional steps disappear by the use of{.

9.2 A Fair Coin from an Unfair Coin
Define bool ≜ 1 + 1 referring to the elements as tt and ff. A coin is a program of the form

choice𝑝 (tt,ff) : bool for 𝑝 : (0, 1). A coin is called fair if 𝑝 = 1

2
.

Given a coin, one can encode a fair coin as follows: Toss the coin twice. If the results are different,

return the first result, otherwise try again. This idea can be encoded as the FPC⊕ term efairp:

efairp ≜ Y(efair′p) : 1→ bool

efair′p ≜ lam 𝑔.lam 𝑧.let 𝑥 = choice𝑝 (tt,ff)
let 𝑦 = choice𝑝 (tt,ff)
if eqbool(𝑥,𝑦) then 𝑔(𝑧) else 𝑥

We now prove that this indeed gives a fair coin.

Theorem 9.2. efairp⟨⟩ is contextually equivalent to choice
1

2 (tt,ff)

Proof. Let𝑊efair,p be the value that Y(efair′p) unfolds to. Unfolding definitions shows that

eval(𝑊efair,p⟨⟩) { (eval(𝑊efair,p⟨⟩) ⊕∀𝑝 𝛿∀tt)⊕∀𝑝 (𝛿∀ff ⊕∀𝑝 eval(𝑊efair,p⟨⟩))
= (𝛿∀tt ⊕∀

1

2

𝛿∀ff) ⊕∀
2𝑝 (1−𝑝) eval(𝑊efair,p⟨⟩)

From this, it follows that eval(𝑊efair,p⟨⟩) {≈ 𝛿∀(tt) ⊕∀
1

2

𝛿∀(ff) as in Example 4.16, and since

eval(efairp⟨⟩) { eval(𝑊efair,p⟨⟩), also choice
1

2 (tt,ff) ⪯Ctx efairp⟨⟩ follows from Theorem 9.1.

On the other hand, to show efairp⟨⟩ ⪯Ctx choice
1

2 (tt,ff), since efairp { 𝑊efair,p, it suffices to

show that J𝑊efair,p⟨⟩K𝜅 ⪯𝜅,Tmbool eval(choice 1

2 (tt,ff)). Computing

J𝑊efair,p⟨⟩K𝜅 = Δ𝜅Jefair′p (Y efair′p)⟨⟩K𝜅

= Δ𝜅Jefair′p𝑊efair,p ⟨⟩K𝜅

= Δ𝜅
((

J𝑊efair,p ⟨⟩K𝜅 ⊕𝜅𝑝 𝛿𝜅 (tt)
)
⊕𝜅𝑝

(
𝛿𝜅 (ff) ⊕𝜅𝑝 (J𝑊efair,p ⟨⟩K𝜅)

))
= Δ𝜅

((
𝛿𝜅 (tt) ⊕𝜅

1

2

𝛿𝜅 (ff)
)
⊕𝜅
2𝑝 (1−𝑝) J𝑊efair,p ⟨⟩K𝜅

)
So that J𝑊efair,p⟨⟩K𝜅 ⪯𝜅,Tmbool eval(choice 1

2 (tt,ff)) is equivalent to

⊲𝜅
(
(𝛿𝜅 (tt) ⊕𝜅

1

2

𝛿𝜅 (ff)) ⊕𝜅
2𝑝 (1−𝑝) J𝑊efair,p ⟨⟩K𝜅 ⪯𝜅,Tmbool eval(choice 1

2 (tt,ff))
)

and can therefore be proved by guarded recursion. □

9.3 RandomWalk
The next example, inspired by [1], is an equivalence of two random walks. We represent a random

walk by its trace, which is a potentially infinite list of integers. In a call-by-value language such

terms are best implemented as lazy lists. We define an FPC⊕ type of these as

LazyL ≜ 𝜇𝑋 .1 + Nat × (1→ 𝑋)
as well as a familiar interface for programming with these in Figure 7.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:24 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

nil : LazyL

nil ≜ fold (inl (⟨⟩))

hd : LazyL→ Nat + 1
hd ≜ lam 𝑙 .case(unfold 𝑙, 𝑥 .inr ⟨⟩, (𝑛, 𝑓).inl𝑛)

tl : LazyL→ LazyL

tl ≜ lam 𝑙 .case(unfold 𝑙, 𝑥 .nil, (𝑛, 𝑓).𝑓 (⟨⟩))

− :: − : Nat→ (1→ LazyL) → LazyL

− :: − ≜ lam 𝑛.lam 𝑓 .fold (inr (𝑛, 𝑓))

Fig. 7. Lazy List Interface

Using these we can define a lazy list processing function 2nd : LazyL→ LazyL, returning a lazy

list that contains every second element of the argument. Define 2nd ≜ Y(𝐺2nd) where

𝐺2nd : (LazyL→ LazyL) → LazyL→ LazyL

𝐺2nd ≜ lam 𝑔.lam 𝑙 .case(unfold (𝑙), 𝑥 .nil, (𝑛, 𝑓).𝑛 :: lam 𝑦.𝑔(tl(𝑓 (⟨⟩))))

For this example, we consider two random walks: a classical random walk R1 : Nat → LazyL,
which in each step takes a step up or down, each with probability

1

2
, and a sped-up version

R2 : Nat→ LazyL, which stays put with probability
1

2
, and otherwise takes two steps either up or

down. Define these as

R1 ≜ Y(𝐺R1
) R2 ≜ Y(𝐺R2

)

where

𝐺R1
≜ lam 𝑔.lam 𝑛.𝑛 :: lam 𝑦.ifz(𝑛, nil, choice 1

2 (𝑔(𝑛 − 1), 𝑔(𝑛 + 1)))

𝐺R2
≜ lam 𝑔.lam 𝑛.𝑛 :: lam 𝑦.ifz(𝑛, nil, choice 1

2 (𝑔(𝑛), choice 1

2 (𝑔(𝑛 − 2), 𝑔(𝑛 + 2))))

Intuitively, R2 is just R1 at double speed. The following theorem makes this intuition precise.

Theorem 9.3. For all 𝑛 : N we have that 2nd(R1 (2𝑛)) ≡Ctx R2 (2𝑛).

Proof (Sketch). Let 𝑉R1
, 𝑉R2

and 𝑉2nd be the values that R1, R2 and 2nd reduce to. It suffices

to show that 𝑉2nd (𝑉R1
(2𝑛)) ≡Ctx 𝑉R2

(2𝑛). We just show J𝑉2nd (𝑉R1
(2𝑛))K𝜅 ⪯𝜅,TmLazyL eval(𝑉R2

(2𝑛)) by
guarded recursion, omitting the other direction, which can be proved similarly. We focus just on

the case of 𝑛 > 0, which is the harder one. Unfolding definitions shows that

J𝑉2nd (𝑉R1
(2𝑛))K𝜅 = (Δ𝜅)3 (𝛿𝜅 (next𝜅 (inr (2𝑛, 𝜆_.𝑊R1

))))

where

𝑊R1
=

(
J𝑉2nd (tl(𝑉R1

(2𝑛−1)))K𝜅 ⊕𝜅
1

2

J𝑉2nd (tl(𝑉R1
(2𝑛+1)))K𝜅

)
Similarly,

eval(𝑉R2
(2𝑛))

{ fold (inr (2𝑛, lam 𝑦.ifz(2𝑛, nil, choice 1

2 (𝑉R2
(2𝑛), choice 1

2 (𝑉R2
(2𝑛−2),𝑉R2

(2𝑛+2))))))

So showing J𝑉2nd (𝑉R1
(2𝑛))K𝜅 ⪯𝜅,TmLazyL eval(𝑉R2

(2𝑛)) easily reduces to showing

⊲𝜅 (𝑊R1
⪯𝜅,TmLazyL eval(choice 1

2 (𝑉R2
(2𝑛), choice 1

2 (𝑉R2
(2𝑛−2),𝑉R2

(2𝑛+2))))) (13)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:25

Since 2𝑛 − 1 > 0, unfolding definitions gives

J𝑉2nd (tl(𝑉R1
(2𝑛−1)))K𝜅 = (Δ𝜅)2

(
J𝑉2nd (𝑉R1

(2𝑛−2))K𝜅 ⊕𝜅
1

2

J𝑉2nd (𝑉R1
(2𝑛))K𝜅

)
J𝑉2nd (tl(𝑉R1

(2𝑛+1)))K𝜅 = (Δ𝜅)2
(
J𝑉2nd (𝑉R1

(2𝑛))K𝜅 ⊕𝜅
1

2

J𝑉2nd (𝑉R1
(2𝑛−2))K𝜅

)
so by Lemma 7.7 (13) is equivalent to

(⊲𝜅)3
©­­«
J𝑉2nd (𝑉R1

(2𝑛))K𝜅 ⊕𝜅
1

2

(
J𝑉2nd (𝑉R1

(2𝑛−2))K𝜅 ⊕𝜅
1

2

J𝑉2nd (𝑉R1
(2𝑛+2))K𝜅

)
⪯𝜅,TmLazyL eval(𝑉R2

(2𝑛)) ⊕∀
1

2

(
eval(𝑉R2

(2𝑛−2)) ⊕∀
1

2

eval(𝑉R2
(2𝑛+2))

) ª®®¬
which follows from the guarded induction hypothesis and Lemma 7.8. □

Remark 4. Note again how working with denotational semantics simplifies this proof. This enables
us to take two steps in the walk defined by𝑉R1

, collect all outcomes, and couple them with the outcomes
of a single step of 𝑉R2

. Other coupling-based logics like [1] require specialized rules to deal with these
two-to-one couplings but in our setting it is just a simple consequence of our definitions.

10 Related Work
We have discussed some related work in the Introduction and throughout the paper; here we discuss

additional related work.

In this paper, we have shown how to use synthetic guarded domain theory (SGDT) to model

FPC⊕ . SGDT has been used in earlier work to model PCF [33], a call-by-name variant of FPC [29],

FPC with general references [36, 37], untyped lambda calculus with nondeterminism [30], guarded

interaction trees [18], and gradual typing [19]. Thus the key new challenge addressed in this paper

is the modelling of probabilistic choice, in combination with recursion, which led us to introduce

(guarded) convex delay algebras.

In previous works on SGDT models of PCF and FPC, the logical relation between syntax and

semantics required a 1-to-1 correspondence between the steps on either side. The previous work

on nondeterminism [30] is in some ways closer to our work: To model the combination of non-

determinism and recursion in the case of may-simulation, it uses a monad defined similarly to D𝜅
,

but for the finite powerset monad, rather than distributions. It also uses a logical relation between

syntax and semantics, which similarly to ours is a refinement relation. The theory developed for D𝜅

here, such as the{ relation, and the lifting of relations using couplings is new. The applications

are also different: Here we use the relation to reason about contextual refinement whereas in op.
cit. it is used for proving congruence of an applicative simulation relation defined on operational

semantics.

The use of step-indexed logical relations to model the combination of probabilistic choice,

recursive types, polymorphism and other expressive language features has also been explored

in [2, 9, 20]. These papers use an explicit account of step-indexing, and rely on non-constructive

mathematics to define their operational semantics and to prove their soundness theorems. Our

approach is constructive, and our use of SGDT eliminates the need for explicit manipulation of

step indices. Moreover, their logical relations are defined purely in operational terms.

Applicative bisimulation for a probabilistic, call-by-value version of PCF is studied in [13]. This

work defines an approximation-based operational semantics, where a term evaluates to a family of

finite distributions over values, each element of the family corresponding to the values observed

after a given finite number of steps. This is reminiscent of our semantics, although in op. cit. the
approximation semantics is then used to define a limit semantics using suprema.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

48:26 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

Probabilistic couplings and liftings have been a popular technique in recent years to reason about

probabilistic programs [5, 6], since they provide a compositional way to lift relations from base

types to distributions over those types. To the best of our knowledge, our presentation is the first

that uses constructive mathematics in the definition of couplings and the proofs of their properties,

e.g. the bind lemma. Our definition of couplings is also asymmetric to account for the fact that the

distribution on the left uses guarded recursion. This is similar in spirit to the left-partial coupling

definition of [20], where asymmetry is used to account for step indexing.

In this paper, we model the probabilistic effects of FPC⊕ using guarded / co-inductive types. In

spirit, this is similar to how effects are being modeled in both coinductive and guarded interaction

trees [18, 44]. Coinductive interaction trees are useful for giving denotational semantics for first-

order programs and are defined using ordinary type theory, whereas guarded interaction trees can

also be applied to give denotational semantics for higher-order programs, but are defined using

a fragment of guarded type theory. Interaction trees have recently been extended to account for

nondeterminism [10] but, to the best of our knowledge, interaction trees have so far not been

extended to account for probabilistic effects.

11 Conclusion and Future Work
We have developed a notion of (guarded) convex delay algebras and shown how to use it to define

and relate operational and denotational semantics for FPC⊕ in guarded type theory. To the best of

our knowledge, this is the first constructive type theoretic account of the semantics of FPC⊕ . The
denotational semantics can be viewed as a shallow embedding of FPC⊕ in constructive type theory,

which can therefore be used directly as a probabilistic programming language. Our examples show

how to use the relation between syntax and semantics for proving contextual equivalence of FPC⊕
programs. The use of denotational semantics for these simplifies proofs by using much fewer steps

than the operational semantics.

Future work includes combining and extending the present work with the account of nondeter-

minism in [30] and to compare the resulting model with the recent classically defined operationally-

based logical relation in [2].

Acknowledgments
This work was supported in part by the Independent Research Fund Denmark grant number

2032-00134B, in part by a Villum Investigator grant (no. 25804), Center for Basic Research in

Program Verification (CPV), from the VILLUM Foundation, and in part by the European Union

(ERC, CHORDS, 101096090). Views and opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or the European Research Council.

Neither the European Union nor the granting authority can be held responsible for them.

References
[1] Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco Gaboardi, and Deepak Garg. 2018. Relational

Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus. In Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer, 214–241. https://doi.org/10.1007/978-3-319-89884-1_8

[2] Alejandro Aguirre and Lars Birkedal. 2023. Step-Indexed Logical Relations for Countable Nondeterminism and

Probabilistic Choice. Proc. ACM Program. Lang. 7, POPL (2023), 33–60. https://doi.org/10.1145/3571195

[3] Robert Atkey and Conor McBride. 2013. Productive coprogramming with guarded recursion. In ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett

and Tarmo Uustalu (Eds.). ACM, 197–208. https://doi.org/10.1145/2500365.2500597

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

https://doi.org/10.1007/978-3-319-89884-1_8
https://doi.org/10.1145/3571195
https://doi.org/10.1145/2500365.2500597

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:27

[4] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. 2017. The clocks are ticking: No more delays!. In

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE
Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005097

[5] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational

Reasoning via Probabilistic Coupling. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9450),
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (Eds.). Springer, 387–401. https://doi.org/10.

1007/978-3-662-48899-7_27

[6] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 90–101. https:

//doi.org/10.1145/1480881.1480894

[7] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, and Bas Spitters. 2020.

Modal dependent type theory and dependent right adjoints. Math. Struct. Comput. Sci. 30, 2 (2020), 118–138. https:

//doi.org/10.1017/S0960129519000197

[8] Lars Birkedal and Rasmus Ejlers Møgelberg. 2013. Intensional Type Theory with Guarded Recursive Types qua Fixed

Points on Universes. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA,
USA, June 25-28, 2013. IEEE Computer Society, 213–222. https://doi.org/10.1109/LICS.2013.27

[9] Ales Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Foundations of Software Science
and Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer
Science, Vol. 9034), Andrew M. Pitts (Ed.). Springer, 279–294. https://doi.org/10.1007/978-3-662-46678-0_18

[10] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing

Nondeterministic, Recursive, and Impure Programs in Coq. Proc. ACM Program. Lang. 7, POPL (2023), 1770–1800.

https://doi.org/10.1145/3571254

[11] Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Foundations of Software Science and Computation Structures
- 21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10803),
Christel Baier and Ugo Dal Lago (Eds.). Springer, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14

[12] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubical Type Theory: A Constructive

Interpretation of the Univalence Axiom. FLAP 4, 10 (2017), 3127–3170. http://collegepublications.co.uk/ifcolog/?00019

[13] Raphaëlle Crubillé and Ugo Dal Lago. 2014. On Probabilistic Applicative Bisimulation and Call-by-Value 𝜆-Calculi.

In Programming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings
(Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 209–228. https://doi.org/10.1007/978-3-642-

54833-8_12

[14] Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random

Variables and Scoring. In Programming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 368–392.

https://doi.org/10.1007/978-3-662-54434-1_14

[15] Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of higher-order probabilistic programs with conditioning. Proc.
ACM Program. Lang. 4, POPL (2020), 57:1–57:29. https://doi.org/10.1145/3371125

[16] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Full Abstraction for Probabilistic PCF. J. ACM 65, 4

(2018), 23:1–23:44. https://doi.org/10.1145/3164540

[17] Marcelo P. Fiore. 1994. Axiomatic domain theory in categories of partial maps. Ph. D. Dissertation. University of

Edinburgh, UK. https://hdl.handle.net/1842/406

[18] Dan Frumin, Amin Timany, and Lars Birkedal. 2024. Modular Denotational Semantics for Effects with Guarded

Interaction Trees. Proc. ACM Program. Lang. 8, POPL (2024), 332–361. https://doi.org/10.1145/3632854

[19] Eric Giovannini, Tingting Ding, and Max S. New. 2025. Denotational Semantics of Gradual Typing using Synthetic

Guarded Domain Theory. Proc. ACM Program. Lang. 9, POPL (2025). https://doi.org/10.1145/3704863

[20] Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL, Article
26 (jan 2024), 32 pages. https://doi.org/10.1145/3632868

[21] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order

probability theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005137

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1145/3571254
https://doi.org/10.1007/978-3-319-89366-2_14
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1145/3371125
https://doi.org/10.1145/3164540
https://hdl.handle.net/1842/406
https://doi.org/10.1145/3632854
https://doi.org/10.1145/3704863
https://doi.org/10.1145/3632868
https://doi.org/10.1109/LICS.2017.8005137

48:28 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Annebet Zwart, Alejandro Aguirre, and Lars Birkedal

[22] Bart Jacobs. 2010. Convexity, Duality and Effects. In Theoretical Computer Science - 6th IFIP TC 1/WG 2.2 International
Conference, TCS 2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings (IFIP Advances
in Information and Communication Technology, Vol. 323), Cristian S. Calude and Vladimiro Sassone (Eds.). Springer,

1–19. https://doi.org/10.1007/978-3-642-15240-5_1

[23] Patricia Johann, Alex Simpson, and Janis Voigtländer. 2010. A Generic Operational Metatheory for Algebraic Effects.

In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,
United Kingdom. IEEE Computer Society, 209–218. https://doi.org/10.1109/LICS.2010.29

[24] C. Jones and Gordon D. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer

Society, 186–195. https://doi.org/10.1109/LICS.1989.39173

[25] Shin-ya Katsumata and Tetsuya Sato. 2013. Preorders on Monads and Coalgebraic Simulations. In Foundations
of Software Science and Computation Structures, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,

Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,

Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, and Frank Pfenning (Eds.). Vol. 7794. Springer

Berlin Heidelberg, Berlin, Heidelberg, 145–160. https://doi.org/10.1007/978-3-642-37075-5_10

[26] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. 2022. Greatest HITs: Higher inductive

types in coinductive definitions via induction under clocks. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in
Computer Science, Haifa, Israel, August 2 - 5, 2022, Christel Baier and Dana Fisman (Eds.). ACM, 42:1–42:13. https:

//doi.org/10.1145/3531130.3533359

[27] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. 2014. On coinductive equivalences for higher-order probabilistic

functional programs. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 297–308.

https://doi.org/10.1145/2535838.2535872

[28] T. Lindvall. 2002. Lectures on the Coupling Method. Dover Publications, Incorporated.
[29] Rasmus Ejlers Møgelberg and Marco Paviotti. 2019. Denotational semantics of recursive types in synthetic guarded

domain theory. Math. Struct. Comput. Sci. 29, 3 (2019), 465–510. https://doi.org/10.1017/S0960129518000087

[30] Rasmus Ejlers Møgelberg and Andrea Vezzosi. 2021. Two Guarded Recursive Powerdomains for Applicative Simulation.

In Proceedings 37th Conference on Mathematical Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg,
Austria and Online, 30th August - 2nd September, 2021 (EPTCS, Vol. 351), Ana Sokolova (Ed.). 200–217. https://doi.org/

10.4204/EPTCS.351.13

[31] Rasmus Ejlers Møgelberg and Maaike Zwart. 2024. What Monads Can and Cannot Do with a Bit of Extra Time.

In 32nd EACSL Annual Conference on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy (LIPIcs,
Vol. 288), Aniello Murano and Alexandra Silva (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:18.

https://doi.org/10.4230/LIPICS.CSL.2024.39

[32] Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in Computer Science, Santa
Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 255–266. https://doi.org/10.1109/LICS.2000.855774

[33] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A Model of PCF in Guarded Type Theory. In The
31st Conference on the Mathematical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands,
June 22-25, 2015 (Electronic Notes in Theoretical Computer Science, Vol. 319), Dan R. Ghica (Ed.). Elsevier, 333–349.

https://doi.org/10.1016/J.ENTCS.2015.12.020

[34] Andrew M. Pitts. 1996. Relational Properties of Domains. Inf. Comput. 127, 2 (1996), 66–90. https://doi.org/10.1006/

INCO.1996.0052

[35] Gordon D Plotkin. 1985. Denotational semantics with partial functions. Lecture at CSLI Summer School (1985).
[36] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2022. Denotational semantics of general store and polymorphism.

CoRR abs/2210.02169 (2022). https://doi.org/10.48550/ARXIV.2210.02169 arXiv:2210.02169

[37] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2023. Free theorems from univalent reference types. CoRR
abs/2307.16608 (2023). https://doi.org/10.48550/ARXIV.2307.16608 arXiv:2307.16608

[38] Hermann Thorisson. 2000. Coupling, stationarity, and regeneration. Springer-Verlag, New York. xiv+517 pages.

[39] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced Study.

[40] Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proc.
ACM Program. Lang. 3, POPL (2019), 36:1–36:29. https://doi.org/10.1145/3290349

[41] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical agda: a dependently typed programming language

with univalence and higher inductive types. Proc. ACM Program. Lang. 3, ICFP (2019), 87:1–87:29. https://doi.org/10.

1145/3341691

[42] C. Villani. 2008. Optimal Transport: Old and New. Springer Berlin Heidelberg.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

https://doi.org/10.1007/978-3-642-15240-5_1
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1007/978-3-642-37075-5_10
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1145/2535838.2535872
https://doi.org/10.1017/S0960129518000087
https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.4230/LIPICS.CSL.2024.39
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/J.ENTCS.2015.12.020
https://doi.org/10.1006/INCO.1996.0052
https://doi.org/10.1006/INCO.1996.0052
https://doi.org/10.48550/ARXIV.2210.02169
https://arxiv.org/abs/2210.02169
https://doi.org/10.48550/ARXIV.2307.16608
https://arxiv.org/abs/2307.16608
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/3290349
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691

Modelling Recursion and Probabilistic Choice in Guarded Type Theory 48:29

[43] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018),

87:1–87:30. https://doi.org/10.1145/3236782

[44] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),

51:1–51:32. https://doi.org/10.1145/3371119

[45] Yizhou Zhang and Nada Amin. 2022. Reasoning about "reasoning about reasoning": semantics and contextual

equivalence for probabilistic programs with nested queries and recursion. Proc. ACM Program. Lang. 6, POPL (2022),

1–28. https://doi.org/10.1145/3498677

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 48. Publication date: January 2025.

https://doi.org/10.1145/3236782
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3498677

	Abstract
	1 Introduction
	2 Clocked Cubical Type Theory
	2.1 Basic Properties and HITs
	2.2 Guarded Recursion
	2.3 Coinductive Types

	3 Finite Distributions
	4 Convex Delay Algebras
	4.1 Probability of Termination
	4.2 Step Reductions
	4.3 Approximate Step Reductions

	5 Probabilistic FPC
	6 Denotational Semantics
	7 Couplings and Lifting Relations
	8 Relating Syntax and Semantics
	9 Examples
	9.1 A Hesitant Identity Function
	9.2 A Fair Coin from an Unfair Coin
	9.3 Random Walk

	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References

