
Idempotent Resources in Separation Logic

The Heart of core in Iris

Daniel Gratzer, Mathias Adam Møller, and Lars Birkedal

Aarhus University, Aarhus, Denmark
gratzer@cs.au.dk 201704440@post.au.dk birkedal@cs.au.dk

Abstract. We revisit the foundational notion of “resources” used by
separation logics from a categorical and algebraic viewpoint. In particular,
we show that the cameras used by concurrent, higher-order, impredicative
separation logics like Iris as a generalization of partial commutative
monoids can be simplified and clarified and we introduce a category of
cameras in which many vital cameras exhibit simple universal properties.
We do this by observing that an important structure on cameras (the
core operator) can be uniquely constrained and replaced by the property
governing the idempotent elements of the camera. We verify that all
cameras used in practice in Iris satisfy this property and use this insight
to simplify the existing Iris formalization.

1 Introduction

Since its introduction in the late 1990s and early 2000s separation logics [22, 24],
have gone through numerous conceptual revisions and alterations. Modern higher-
order concurrent separation logics such as Iris [18] are now vastly more complex
and built on top of several layers of abstraction in order to account for concurrency
and higher-order reasoning, but the premise is still fundamentally unchanged:
specifications for a program are given by pre- and post-conditions which are some
form of predicate on program state and a “disjoint union” operator on program
state gives rise to a separating conjunction in these specifications.

To manage this complexity, Iris attempts to realize the vast majority of the
program logic purely within a flexible base logic. The result is that base Iris
is a standard higher-order logic supplemented with the connectives of bunched
implication logic, a handful of modalities, and a family of propositions denoting
ownership. The heart of Iris is therefore in its highly abstracted definition of
resource used by ownership propositions. These must be flexible enough to handle
not only program state but also to encode the various features (invariants, state
transition systems, etc.) that program logics utilize to verify programs.

Our goal is to revisit these abstract resources, termed cameras1 in Iris, and
isolate a new property of these structures. We capitalize on this new property
to remove some of the complexity of cameras and obtain a simpler notion of
resource algebras (RAs). We then construct a category of resource algebras and
show that important cameras in Iris admit simple universal properties as RAs.

1 The name derives from an older acronym CMRA which proved inaccurate for Iris 3.0.



2 Gratzer et al.

1.1 From heaps to cameras

The impetus for the more general notion of resource in Iris traces back to
the advent of separation logic [24]. In particular, separation logic’s eponymous
separating conjunction is derived from an important piece of additional structure
carried by program heaps (the most basic realization of program state): a disjoint
union operation. Recall that one may represent heaps as partial maps from
locations (e.g., natural numbers) to values. Given two such heaps h1, h2 with
disjoint domains of definition, one may unambiguously form their union h1 ⊎ h2.
With this to hand, one defines the separating conjunction as follows:

(P ∗Q)h ≜ ∃h1, h2. P h1 ∧Qh2 ∧ h = h1 ⊎ h2

While predicates in the original separation logic were taken over exactly the
data needed to execute a program—i.e., the state of the heap—it was quickly
realized that this was inadequate for realistic programs. Their correctness often
depended upon invariants or conditions that might not be reflected directly in
the memory. While a variety of solutions were proposed, the most elegant was to
simply enlarge the definition of “program state” to include ghost state: objects
which were not strictly necessary to describe the program execution. A simple
example of ghost state is heaps with fractional permissions, which can be used to
account for whether a thread has read or write ownership of a heap location [5].

The unifying feature of this more general ghost state is a partial ‘union’
operation. Whatever ghost state is used, it forms a set M equipped with a partial
commutative and associative operation · (see, e.g., [6, 9, 10, 16]). Our definition of
∗ generalizes to such an M without change2 whereby we can define the primitives
of separation logic over an arbitrary partial commutative monoid M . This extra
generality allows for a more conceptual definition of ghost state.

This story is complicated by higher-order state, concurrency, and other
features. To cope with them, separation logics leverage step-indexing [1]. Rather
than pre- and post-conditions being drawn from (monotone) predicates M →
Prop, they are further indexed by a natural number N×M → Prop. The extra
indexing soundly simulates arbitrary recursion in predicates.

In fact, embracing a small amount of revisionism, one can see all of this as
ordinary separation logic done internally to a particular presheaf topos PSh(ω) [3,
11, 21]. Working internally like this, it becomes natural to regard the partial
commutative monoid as a “step-indexed” set with partial operations i.e., a partial
commutative monoid internally to PSh(ω). With this extra layer of generality,
Jung et al. [18] showed that all the features of a modern concurrent separation
logic could be built on top of ghost state within a higher-order logic.

With this motivation, we give a slightly imprecise definition of an Iris camera:

Definition 1. A camera consists of a (step-indexed) set M , a (step-indexed)
partial multiplication operation (·), and a partial operation |−| which (when
defined) maps m to an idempotent element |m| such that |m| ·m = m.
2 In fact, it is now more recognizable as Day convolution [8]



Idempotent Resources in Separation Logic 3

1.2 Core and duplicable propositions

Unfortunately, the definition of camera is far more complex than the above might
indicate. As a result, it is difficult to give a high-level definition of cameras without
eliding important details and it is challenging to articulate why the camera axioms
are in any way complete.3 One manifestation of this poor behavior is the lack of
a suitable category of cameras: there is no well-behaved notion of morphism of
cameras and even simple constructions like the product of two cameras M1 ×M2

lack any universal property which could give a more conceptual description.
Some of the complexity is not, strictly speaking, mathematical. For instance,

representing partial operations and step-indexing in a proof assistant is known to
be arduous and the definition of camera is tuned to make it as easy as possible
to realize in Coq at the cost of more uniform behavior. However, a central aspect
of the generalization of cameras over partial commutative monoids is to replace
the unit element ϵ with a core operation |−| which is both complex and slightly
ad-hoc. As it stands, requiring the existence of this operator is a major obstacle
towards a good category of cameras.

To properly situate the definition of core and motivate our proposed replace-
ment for it, we once more turn to traditional separation logic. In this setting,
there is a comonadic modality □ defined by:

(□P )h ≜ P (∅)

The □ modality occurs frequently when working within separation logic: it
isolates those specifications for which separating conjunction coincides with
ordinary conjunction such that, e.g., □P can be duplicated to □P ∗□P . In Iris,
for instance, □ is crucial for specifying features like invariants as well as for
embedding ordinary propositions into the program logic. In the simple setting
of traditional separation logic, □ can actually be characterized in a number of
distinct ways, any of which could be used to generalize □ to arbitrary cameras:

– □ is defined by evaluating at the unit of ⊎.
– □ is the “always” comonad from Kripke models of modal logic.
– □ is the unique operation preserving ⊤, ∧, and ∃ such that □(ℓ ↪→ v) = ⊥.
– □ is defined by evaluating at the unique idempotent with respect to ⊎.

In order to lift □ to an arbitrary camera M , the definition of a camera more-
or-less hard-codes the necessary structure for the fourth definition; the axioms
of |−| are exactly those needed to ensure that P 7→ P ◦ |−| (modulo partiality)
gives rise to a □ modality.

Even this description hides some complexity. Bizjak and Birkedal [4] observed
that absent step-indexing, there is a bijection between core structures and well-
behaved □ modalities. However, this (1) does not extend to the step-indexed
case and (2) offers no insight as to which of the many □ modalities should be
chosen. In particular, when working with Heap there was a single clear choice of
□ modality with a variety of different characterizations. In contrast, for a general
camera there are many distinct choices of core inducing distinct □ modalities.

3 Indeed, they differ between versions of Iris!



4 Gratzer et al.

1.3 The maximal idempotent axiom

In this work, we simplify the definition of cameras by removing the core operation
from their specification entirely. In its place, we instead impose a single additional
property on our cameras insisting that for each a ∈M , there exists a maximal
idempotent below a or no idempotents at all. To disambiguate, we term the
resulting structure a resource algebra. In other words, rather than requiring each
resource algebra to come equipped with a partial assignment of elements to
idempotents below them, we require that there is always a ‘best’ such assignment
which picks out the largest possible idempotent. This choice in turn yields a □
modality uniquely defined as the largest modality satisfying the expected axioms.

This substantially simplifies the definition of a resource algebra: we exchange
one operation and four axioms for this single new axiom. More than this, however,
the removal of core makes it possible to give a satisfactory category of resource
algebras RA. Given that cameras are nearly partial commutative monoids, it
was long suspected that they should organize into a well-behaved category. In
particular, it was conjectured that various examples of cameras used in Iris
(sums, products, etc.) ought to enjoy universal properties within this category.
We confirm this conjecture and observe that all of the cameras by Iris can be
realized as resource algebras and that many common cameras induce resource
algebras arising from adjoints or universal constructions within RA.

Our development of the theory of resource algebras takes place entirely
within the internal language of PSh(ω) and, consequently, does not mention
step-indexing at all. In fact, our proofs are designed to apply also to transfinite
versions of Iris (based on presheaves over larger ordinals) or separation logics
without any step-indexing at all. The only cost for this generality is the need to
work within a constructive setting.

Remark 1. The importance of maximum idempotent elements to isolate a uni-
versal core was noted independently by Dardinier et al. [7] in the context of
automatic verification. We defer a more detailed comparison of till Section 7.

1.4 Contributions

We contribute a simpler and more abstract definition of “resources” for concurrent
separation logics like Iris. We do this by removing a structure from Iris’s definition
of camera and replacing it with a new axiom (the maximal idempotent axiom),
thereby obtaining the new notion of a resource algebra. We show the following:

– Every camera used in Iris satisfies the maximal idempotent axiom and
therefore induces a resource algebra.

– Every resource algebra induces a universal □ modality.
– Resource algebras assemble into a well-behaved category RA in which many

important resource algebras enjoy simple universal properties.

All of our results are carried out within a version of extensional type theory and
apply not just to step-indexing over ω but to transfinite separation logics as well.



Idempotent Resources in Separation Logic 5

Finally, we show how to adapt the Iris formalization in Coq as it stands today
to partially benefit from these results. In so doing, we also note various places
where expediency of formalization has complicated the definition of cameras and
give a precise account of the trade-offs these induce.

Acknowledgments This work was supported in part by a Villum Investigator
grant (no. 25804), Center for Basic Research in Program Verification (CPV),
from the VILLUM Foundation. This work was co-funded by the European Union
(ERC, CHORDS, 101096090). Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

Data Availability Statement

An environment with the tools and data used for the experimental evaluation in
the current study is available at 10.5281/zenodo.14765017 [12].

2 A brief reprise of PSh(ω)

For much of this paper (Sections 3 to 5) we work internally to the topos of trees
PSh(ω). In this section, we review the basic properties of this internal language.

2.1 Type theory within PSh(ω)

To begin with, we recall that PSh(ω) is a presheaf topos and therefore supports
a rich internal language: a model of extensional dependent type theory with all
the standard connectives, including a hierarchy of universes (Ui) [13, 14]. Among
others, included in these are various inductive types such as the type of natural
numbers, lists, and so on. We note that as we are dealing with extensional equality,
both function extensionality (funext) and unicity of identity proofs (UIP) hold. As
is standard, we largely ignore size issues and simply write U. Also included is a type
of propositions Prop closed under all the standard logical connectives, including
impredicative quantification. There is a function Prf : Prop→ U which sends a
proposition to the type of its proofs such that Prf(ϕ) contains at most one element.
Finally, Prop satisfies propositional extensionality: Prf(ϕ) ∼= Prf(ψ) ⇐⇒ ϕ = ψ
where ∼= refers to the standard notion of isomorphism of types.

Rather than explicitly adding all the necessary logical connectives to Prop,
we realize them all at once through the addition of an “inverse” of sorts to Prf
sending a type A : Ui to the propositional truncation [A] : Prop. The defining
characteristic of propositional truncation is that if B is a type with at most one
element, then A → B ∼= Prf([A]) → B. Consequently, Prf([A]) ∼= A if A is a
type containing at most one element e.g., if A = Prf(ϕ). One can then show, for
instance, that logical entailment ϕ→ ψ can be defined as [Prf(ϕ)→ Prf(ψ)].

https://doi.org/10.5281/zenodo.14765017


6 Gratzer et al.

Finally, the internal language supports the axioms of guarded recursion (a
later modality ▷, Löb induction, etc.). Surprisingly, this structure is not relevant
to our discussion of resource algebras and so we refer the reader to Birkedal et al.
[3] for details and an explanation of the semantics of the internal language.

2.2 Partial maps within PSh(ω)

For a first example of working within the internal language of PSh(ω) and in
preparation for Section 3, we define the notion of a partial map. A näıve first guess
might be to say that a partial map from A ⇀ B consists of an ordinary function
A → 1 + B. While this definition suffices in ‘ordinary’ external mathematics,
it is too strict when working internally as we are. Indeed, this definition only
captures functions whose domain of definition is decidable and we will frequently
be interested in partial functions f where f(a) ↓ is an arbitrary proposition and
therefore—since PSh(ω) does not satisfy excluded middle—typically undecidable.

We instead use the partial map classifier following Rosolini [25]:

Definition 2. If A : U then the partial map classifier A? is
∑
ϕ:Prop Prf(ϕ)→ A.

A map f : A→ B? encodes a partial map from A to B. Note that f consists
of (1) a map f0 : A → Prop indicating where f is defined and (2) a map
f1 : (a : A)→ Prf(f0 a)→ B giving the value of f when it is defined.

Definition 3. We define the type of partial maps A ⇀ B to be A→ B?

Lemma 1. −? is a monad whose unit and join operations are defined as follows:

ret : A→ A?

ret(x) ≜ (⊤, λ . x)

join : A?? → A?

join(ϕ, λz1. (ψ(z1), λz2. ã(z1, z2))) ≜
(∑

∃z1:ϕ. ψ(z1), λ (z1, z2).ã(z1, z2)
)

We use standard monadic notation (x← a; b(x)) to manipulate A? and write
f? : A? → B? for the functorial action.

Definition 4. We define the approximation partial order (ϕ, a) ⊑ (ψ, b) : Prop
on A? as ∃f : Prf(ϕ)→ Prf(ψ). (z : Prf(ϕ))→ a z = b(f z).

3 Resource Algebras and the Maximal Idempotent Axiom

We now analyze the abstract definition of resources using the internal language.
While this definition is closely related to Iris’s cameras, we avoid several maneuvers
used by Iris to optimize for formalization in order to take full advantage of the
internal language. A full comparison is provided in Section 6. We show how
various portions of the definition may be replaced and folded into a single new
axiom we term the maximal idempotent axiom.



Idempotent Resources in Separation Logic 7

3.1 Partial commutative semigroups and predicates

We begin with the basic notion of a type equipped with a partial multiplication:

Definition 5. A partial commutative semigroup (PCS) consists of a type A and
a partial map (·) : A×A ⇀ A satisfying the following conditions:

1. If a, b : A then a · b = b · a : A?

2. If a, b, c : A then x← (a · b);x · c = x← (b · c); a · x : A?

In light of (1) and (2), we may unambiguously write a · b · c.

Lemma 2. If A is a PCS then a ≤ b ≜ a = b ∨ ∃c : A. a · c = ret b is a preorder.

As mentioned in the introduction, the semantics of separation logics like Iris
can be constructed within monotone predicates on a PCS (A, ·):

A
mon−−→ Prop ≜ {P : A→ Prop | ∀a ≤ b. P (a)→ P (b)}

We will not spell out how all the connectives of higher-order logic are inter-
preted into A

mon−−→ Prop, but we record the definition of ∗ for intuition:

(P ∗Q) a ≜ ∃a0, a1 : A, a0 · a1 = ret(a) ∧ P (a0) ∧Q(a1)

3.2 Core structures

The classical definition of a camera is a PCS with a core operation:

Definition 6. If (A, ·) is a PCS, a core structure on A is a map |−| : A→ 1+A
satisfying the following conditions:

1. If |a| = in2(a
′) then a′ · a = ret a.

2. If |a| = in2(a
′) then |a′| = in2(a

′).
3. If a ≤ b then |a| ≤ |b|

For the last point, we order 1 +A such that in1(⋆) is the minimum element.

Definition 7. A camera is a PCS equipped with a core structure.4

As mentioned in the introduction, any core structure induces a comonadic
modality □ on monotone predicates A

mon−−→ Prop:

□P ≜ λa→

{
⊥ |a| = in1(⋆)

P (a′) |a| = in2(a
′)

Lemma 3. If |−| is a core structure then the induced □ modality is monotone,
comonadic (□P → P and □□P ⇐⇒ □P ), and commutes with ∃, ▷, and
satisfies the following: (□P ) ∧Q ⇐⇒ (□P ) ∗Q
4 Jung et al. [18], required an additional axiom to force ▷ to commute with ∗. We have
followed e.g. Spies et al. [26] and removed this requirement to allow for more models.



8 Gratzer et al.

For the purposes of separation logic, it is the last property that is most vital.
It allows a user of separation logic to freely exchange separating and ordinary
conjunction when manipulating □P and thereby allows one to e.g., duplicate
□P into □P ∗□P and similar. Intuitively, □P is the closest replacement of P
which satisfies this property. Unfortunately, this idea is complicated by the fact
that there are often great many distinct core structures which one may choose to
equip (A, ·) with, and they induce distinct modalities. It is thus far from clear
which core structure (if any) actually forces □P to realize the above description.

This situation is in contrast to the motivating example with monotone predi-
cates on heaps where the □ modality could be characterized by several universal
properties. Our goal is to isolate a property of core which fully constrains its
definition to give the largest possible □ modality. That is, we wish to find a core
structure |−| so that if |−|′ is another core structure then ∀P.□|−|′P → □|−|P .

We begin by massaging Definition 6 into a form which is easier to work
with. If |−| is a core structure and |a| = in2(a

′) then a′ is an idempotent
element (by 1 and 2). In light of 3, we may therefore view |−| as a monotone
assignment A → 1 + Idem(A) and, more specifically, an assignment (a : A) →
{x : 1 + Idem(A) | x ≤ in2(a)}.

Lemma 4. A core structure on (A, ·) is equivalent to a monotone map (a : A)→
{x : 1 + Idem(A) | x ≤ in2(a)}.

A great many such monotone maps are possible for most PCSs. For instance,
the constant map λa → in1(⋆) is always available and if A has a global unit ϵ,
then λa→ in2(ϵ) is also a valid choice. As core structures are particular monotone
maps between preorders, they themselves inherit a preorder defined pointwise.

Lemma 5. The assignment of core structures to □ modalities is monotone: if
|−| and |−|′ are two core structures such that |−| ≤ |−|′ then □|−|P → □|−|′P .

We note that we have have already encountered the unique minimal core
structure for any PCS: the assignment λa→ in1(⋆) which discards all information
of a. Unfolding, this core structure induces the □ modality which sends every
proposition to ⊥, which is clearly the smallest possible modality. Much more
useful is the maximal □ modality.

In order to obtain the largest possible □ modality, it suffices to construct
a core structure which is maximal. In particular, it would suffice to ensure |−|
sends a to the largest possible idempotent element contained within a and which
is undefined only if no idempotent element exists. Notice that a priori there may
be distinct maximal core structures as A is merely pre-ordered, but every PCS is
partially-ordered on idempotent elements, in particular:

Lemma 6. If i, j are idempotents such that i ≤ j and j ≤ i then i = j.

Proof. By assumption so there exists i′ and j′ such that i·i′ = ret j and j ·j′ = ret i.
Since both i and j are idempotent, this tells us that j · i = ret i and i · j = ret j.
Commutativity then tells us that i = j.



Idempotent Resources in Separation Logic 9

In particular, core structures are partially-ordered and (using pointwise mul-
tiplication) form a join semi-lattice. We therefore conclude the following:

Corollary 1. Maximal core structures are unique.

Unfortunately, there is no guarantee that a maximal core structure need exist:

Lemma 7. There exists a PCS for which there is no maximal core structure.

Proof. Consider the PCS on A = N+1 = {0 . . .∞} where (1) n ·m = max(n,m)
(2) n · ∞ =∞ · n =∞ and (3) ∞ ·∞ is undefined. Note that Idem(A) consists
of all elements of A except ∞.

To define a core structure on A, note that if |∞| = in2(n), then |m| ≤ in2(n)
for all m by (3) and if |∞| = in1(⋆) then |m| = in1(⋆). It follows that any core
structure |−| where |∞| = in2(n) must be smaller than the core structure |−|n+1

defined by |∞|n+1 = in2(n+ 1) and |m|n+1 = in2(min(n+ 1,m)). This yields an
ascending chain of core structures |−|1 < |−|2 . . . for which there is no upper
bound.

Fortunately, maximal core structures do exist in a wide variety of circum-
stances. For instance, it was necessary that our above counterexample involved
an infinite number of idempotent elements.

Lemma 8. If for each a : A, {x : 1 + Idem(A) | x ≤ in2(a)} is equivalent to a
finite type N≤n for some n, then A has a maximal core structure.

Many common PCSs have only a single idempotent element each element e.g.:

Corollary 2. Heap has a maximal core structure: λh→ ϵ.

3.3 The maximal idempotent axiom

We can reformulate the requirement that PCS possess a maximal core structure
into the following property:

Definition 8 (The Maximal Idempotent Axiom). A PCS (A, ·) satisfies
the maximal idempotent (MI) axiom if the following holds for all a : A:

MI(a) ≜ ¬(∃i ≤ a. i idem) ∨ (∃i ≤ a. i idem ∧ ∀j ≤ a.j idem→ j ≤ i)

In other words, below each a : A there either exists a maximal idempotent or
there are no idempotents at all.

A priori, one may worry that the mere existence of a maximal idempotent
below a : A does not suffice to construct a function |−| picking it out. After all,
in general constructing such a function amounts to the axiom of choice and the
lack of excluded middle implies the failure of the axiom of choice internal to
PSh(ω). However, as a topos PSh(ω) does satisfy the axiom of unique choice:
if ∀a : A.∃!b : B.Φ(a, b) then ∃!f : A → B. ∀a : A.Φ(a, f(a)). Since maximal
idempotents are unique, we obtain the following:



10 Gratzer et al.

Theorem 1. If (A, ·) satisfies the MI axiom then A has a maximal core structure.

Lemma 9. If ϕ, ψ : Prop such that ϕ∧ψ = ⊥ then Prf(ϕ ∨ ψ) ∼= Prf(ϕ)+Prf(ψ).

Lemma 10. If A : U and ϕ : A→ Prop such that ∃a : A. ϕ a = ∃!a : A. ϕ a then
Prf(∃a : A. ϕ a) ∼=

∑
a:A Prf(ϕa).

Proof (Theorem 1). Since the total absence of idempotents and the presence of
maximal idempotent are disjoint, Prf(MI(a)) is equal to the following:

(Prf(∃i ≤ a. i idem)→ ⊥) + Prf(∃i ≤ a. i idem ∧ ∀j ≤ a.j idem→ j ≤ i)

Next, since maximal idempotents are unique, the second summand is equivalent
to unique existence, whereby we may replace it with the following:

((i : A)→ i ≤ a→ i idem→ ⊥) +
∑
i≤a i idem× ((j ≤ a)→ j idem→ j ≤ i)

In other words, Prf(∀a : A.MI(a)) is equivalent to a choice function sending each
element of A to the maximal idempotent below A or a proof that there are no
idempotents below A at all. This function is the required maximal core structure.

This addresses a rather mysterious fact about cameras: why are core structures
partial in a different way than ·? In light of the above, we see that a core
structure |−| has decidable support because |a| is undefined just when a contains
no idempotents at all and the MI axiom guarantees that this is decidable.

We now redefine and simplify cameras from their formulation in Iris. Rather
than insisting that a camera be a PCS equipped with a core structure, we instead
ask that it satisfy the MI axiom. This has the simultaneous advantages of (1)
ensuring that the induced core structure is as large as possible while also (2)
merely being a property to check, not an additional structure.

Definition 9. A resource algebra is a PCS satisfying the maximal idempotent
axiom. Write RA for the type of all resource algebras.

To justify this definition, we show that it is not overly restrictive (Section 4)
and that it opens up more conceptual descriptions of existing cameras (Section 5).

4 Examples of cameras

If Definition 9 is to be an adequate replacement for the current definition of
cameras in Iris, it must not rule out examples which are currently used in practice.
Fortunately, every camera currently used in the Iris formalization in Coq satisfies
the MI axiom. For reasons of space, we present only a handful of the most
important resource algebras used in separation logic and illustrate the proofs
that they satisfy the MI axiom. We divide these examples into two categories:
basic stock cameras which are used in a wide variety of constructions and a few
operations on cameras used to build up more complex examples.



Idempotent Resources in Separation Logic 11

4.1 Basic resource algebras

For the basic ‘building block’ resource algebras, Lemma 8 suffices to show that
the relevant PCSs satisfy the MI axiom; in practice, they all have no idempotent
elements, one idempotent element, or every element is idempotent. We illustrate
this with two representative examples.

First, the exclusive resource algebra which is used to encode ownership of
non-duplicable abstract resources:

Lemma 11. If A : U, regard A as a PCS Excl(A) where ·Excl(A) is undefined
everywhere. Excl(A) satisfies the MI axiom.

Proof. Such a camera has no idempotents, so Lemma 8 trivially applies.

For another extreme example, we consider the agreement resource algebra
which is used to enforce global agreement about a particular value. For this,
take a type A : U and regard A as a PCS Ag(A) using the following partial
multiplication operation: a ·Ag(A) a

′ ≜ (a = a′, λ → a).

Lemma 12. For any A : U, Ag(A) satisfies the MI axiom.

Proof. Lemma 8 applies as the only element contained in Idem(A)≤a is a itself.

4.2 Constructions on resource algebras

The power of resource algebras is their composability: given simple resource
algebras like those outlined above, we may stitch them together into more
powerful constructions like Heap. We outline the most important constructions
for combining resource algebras and show that they preserve the MI axiom.

Given two resource algebras A and B we consider pointwise multiplication:

(a, b) ·A×B (a′, b′) ≜ ā← a · a′; b̄← b · b′; ret(ā, b̄)

Lemma 13. If A and B are resource algebras, A×B satisfies the MI axiom.

Proof. Fix a pair (a, b). An idempotent below (a, b) consists of a pair (i, j) of
idempotents i below a and j below b. By the MI axiom of both A and B, it is
decidable whether or not there exists any idempotents below either a or b whence
whether any such pair (i, j) exists. By a further application of the MI axiom, if
such a pair exists, there is a pair of maximal idempotents as required.

Given a resource algebra A, we can construct the resource algebra Opt(A) =
1 + A adjoining a new element to A. This element will act as the unit of
multiplication, meaning the partial multiplication operation will be defined as:

x ·Opt(A) y ≜


ret(y) x = in1(⋆)

ret(x) y = in1(⋆)

in2
?(a ·A a′) x = in2(a), y = in2(a

′)



12 Gratzer et al.

Lemma 14. Opt(A) satisfies the MI axiom.

Proof. Fix x : Opt(A). If x = in1(⋆), then x itself is idempotent and thus the
necessary maximal idempotent. If instead x = in2(a), then the idempotents
below x are either of the form in1(⋆) or in2(i) where i is an idempotent below
a. Accordingly, the maximal idempotent below in2(a) is either the maximal
idempotent below a or in1(⋆) if no such idempotent exists.

For our final example, we describe a more complex construction assembling
a collection of resource algebras together. This ‘direct sum’ operation is used
pervasively in Iris: any real use of Iris is based on this resource algebra to stitch
together all of the resources required the verification of a given program. We
describe it in more generality than it is presented in Iris by allowing for direct
sums to be indexed by a type I with decidable equality.

Fix a family of resource algebras A : (i : I) → RA, let
⊕

i:I A i denote the
type of partial maps (i : I)→ A(i) with decidable and non-empty, finite support.
Representing these in type theory can be somewhat difficult, but our internal
language is strong enough to define quotient types (using Prop). Accordingly, we
realize

⊕
i:I A i as a quotient of the following type:∑

n:N
∑
f :N≤n↪→I(n : N≤n)→ A(f n)

The quotienting relation identifies two triples (n, f, a) and (n′, f ′, a′) just when
n = n′ and there is a bijection σ : N≤n → N≤n such that f = f ′ ◦σ and a = a′ ◦σ.

For convenience, we will write elements of
⊕

i:I A i as {(i0, a0), . . . , (in, an)}
where i0, . . . , in are disjoint elements of I and ak : A ik.

Lemma 15.
⊕

i:I A i is a partial semigroup under pointwise multiplication.

Proof (Sketch). The definition of pointwise multiplication is somewhat involved
and so we only sketch it here. Fix two elements ρ = {(i0, a0), . . . , (in, an)} and
ρ′ = {(j0, b0), . . . , (jm, bm)}. Rearranging the elements of ρ′ if necessary, we
assume that there exists ℓ such that ik = jk if k < ℓ and outside of these pairs,
the sequences Is are disjoint. Note that this requires I to have decidable equality.

We define the ρ ·ρ′ by multiplying together the ℓ elements overlapping between
ρ and ρ′ and, when these are all defined, returning the partial map with these
the results and along with the elements of ρ and ρ′ outside the overlap:

ρ · ρ′ ≜
c0 ← a0 ·A i0 b0;
. . .

cℓ−1 ← aℓ−1 ·A(ℓ−1) bℓ−1;

ret {(i0, c0), . . . (iℓ−1, cℓ−1), (iℓ, aℓ) . . . (in, an), (jℓ, bℓ) . . . (jm, bm)}

Since −? is a commutative monad, the order of these multiplications are irrelevant
and so this process respects the equivalence relation quotienting

⊕
i:I A i.



Idempotent Resources in Separation Logic 13

Theorem 2.
⊕

i:I A i satisfies the MI axiom.

Proof. Fix ρ = {(i0, a0), . . . , (in, an)}. SinceMI(ρ) is a proposition the quotienting
is irrelevant and we ignore it. Next, note that if σ ·σ′ = ret(ρ), then the support of
σ and σ′ must be subsets of the support of ρ. Accordingly, if σ is an idempotent
within ρ, then it consists of a collection of idempotents drawn from A ik below
the corresponding element ak.

Since each A ik is a resource algebra, the MI axiom tells us that there is either
(1) no idempotent below ak or (2) a maximal idempotent a′k below ak. Without
loss of generality, let us assume that ak has a maximal idempotent if and only if
k ≤ m for some m and no idempotent below it k > m.

The maximal idempotent below ρ is then given by σ = {(i0, a′0), . . . , (im, a′m)}.
Indeed, any other idempotent σ′ below ρ must have a smaller support than σ and,
where both are defined, the value of σ′ is smaller than that of σ by construction.

Note that the above depends critically on the fact that the existence of a
maximal idempotent is decidable. We must be able to analyze whether the ik entry
is to be included based on whether or not ak contains a maximal idempotent.

To conclude this section, we describe how one can combine these simpler
resource algebras into more complex constructions needed for realistic program
logics. For instance, the foundational resource algebra representing heaps can
be constructed as follows. Writing Loc and Val to be the types of locations and
(syntactic) values in a hypothetical imperative language, we define the resource
algebra of heaps in this language as follows:

Heap ≜ Opt
(⊕

l:Loc Excl(Val)
)

In this definition in1(⋆) represents the empty heap, and the exclusive resouce
algebra ensures that multiplication of heaps is only defined when the locations of
the relevant heaps are disjoint. In particular, there is no need to check the MI
axiom here: it is automatic since all constructions involved preserve its validity.

5 The Category of Resource Algebras

We now turn to the properties of resource algebras collectively by structuring
them into a category. In particular, we show that many resource algebras that are
important in practice satisfy simple and recognizable universal properties. The
proofs of these facts are not terribly difficult, but this is the point; by isolating
a well-behaved definition of resource algebra these calculations are of the sort
familiar to any category of algebraic structures.

To define the category of resource algebras, we must, of course, decide on
what a morphism of resource algebras should be. Since a resource algebra is a
PCS satisfying an additional property, a first idea is to define the category of
resource algebras to be a full subcategory of partial commutative semigroups.
This is analogous to how, e.g., a morphism of abelian groups is an ordinary
group homomorphism whose domain and codomain happen to be abelian. When



14 Gratzer et al.

formulating morphisms of PCSs, the real wrinkle is partiality; from a categorical
point of view, PCSs are commutative semigroups in the Kleisli category of −?. But
Kleisli categories for a monad are usually poorly behaved and −? is no exception.
The solution is to integrate the partial ordering ⊑ introduced in Section 2:

Definition 10. A morphism of resource algebras f : (A, ·)→ (B, ·) is a function
f : A→ B such that f?(a0 · a1) ⊑ f(a0) · f(a1) when a0, a1 : A.

Informally: a morphism of resource algebras is a morphism between carriers
which commutes with multiplication provided the multiplication is defined in the
domain. Such morphisms are commonly referred to as lax morphisms since we
do not, e.g., require f(a0) · f(a1) to be undefined if a0 · a1 is undefined. As we
shall see, lax morphisms enjoy better categorical properties.

Lemma 16. Resource algebras and morphisms of such form a category RA.

5.1 First steps with RA

We now record a few basic properties of RA:

Lemma 17. RA has finite products and finite coproducts.

Proof. Initial and terminal objects are given by 0 and 1 with the obvious
multiplication maps. We have already encountered Lemma 13 and, since the
construction of coproducts is unsurprising, we content ourselves with showing
that A×B has the expected universal property.

To this end, observe that the projection maps π1 : A × B → A and π2 :
A × B → B are both morphisms of resource algebras. Surprisingly, this is the
most subtle part of the proof and it depends upon the fact that we require
only that π1

?(p · q) ⊑ π1 p · πp q rather than equality. To see that the universal
property is satisfied, we need only show that if C is a resource algebra such that
f : C → A and g : C → B are morphisms, then λc. (f c, g c) is a morphism to
A×B. This is a routine calculation.

The universal property of the direct sum algebra is slightly longer to describe
as it is not a simple limit or colimit. However, in light of the complexity of the
definition of multiplication in

⊕
i:I A i, we note that even though the universal

property is complex, it is significantly more conceptual than the actual definition.

Definition 11. A compatible cocone over A is a family of morphisms (fi : A i→ C)i:I
such that for every finite family of elements a0 : A i0, . . . , an : A in the product
fi0 a0 · . . . · fin an is defined.

Lemma 18. The resource algebra
⊕

i:I A i along with the canonical inclusions
A i→

⊕
i:I A i is the universal compatible cocone over A.

In other words, modulo partiality
⊕

i:I A i is the coproduct of A; it is the
universal way to include each A i inside a single resource algebra in such a way
that multiplications between disjoint elements are permitted.



Idempotent Resources in Separation Logic 15

5.2 The relation between RA and other categories

A number of the resource algebras encountered in Section 4 can be characterized
as adjoints of natural functors between RA and other categories. For instance,
Excl and Ag are both left adjoints to certain functors from RA to the category
of small types and functions between them (denoted TY).

Lemma 19. Excl is left adjoint to the forgetful functor RA→ TY.

Proof. Examining definitions, since multiplication in Excl is always undefined, a
morphism Excl(A)→ B is precisely a map from A to the carrier of B, as required.

A similar argument gives a universal characterization of Ag:

Lemma 20. Ag is left adjoint to the functor Idem : RA → TY that maps a
resource algebra to its set of idempotents.

The final result concerns Opt. As this resource algebra extends an existing
resource algebra with a unit element (i.e., an element ϵ where ϵ · − = ret), it is
reasonable to guess that Opt(A) is the resource algebra “freely generated” by A
along with a unit. To state this precisely, we introduce unital resource algebras:

Definition 12. A unital resource algebra is a resource algebra (A, ·) with a unit
and a unital morphism a morphism of resource algebras preserving the unit.

Definition 13. The category of unital resource algebras is denoted uRA.

Lemma 21. There is a forgetful functor U : uRA → RA and the left adjoint
to this functor is given by Opt.

We note that while the proof of this lemma is straightforward, it is simply false
if the definition of resource algebra included a core structure as data.

For a small example of how all of these universal properties combine, let
us turn to the ‘map of resource algebras’ used to instantiate Iris: Opt

(⊕
iA i

)
.

We can give a concise description of this rather large resource algebra as the
universal method of collecting together the family of resource algebras A and
freely adjoining a unit.

6 From the topos of trees to the Iris formalization

Thus far, we have taken our motivation from Iris and its formalization in Coq but
focused our attention on the better-behaved PSh(ω) and its internal type theory.
While this is ideal for working on paper, Iris and its realization in Coq must also
optimize for the practicalities of formalization with Coq and therefore use only a
subcategory of PSh(ω) and a more ad-hoc replacement for −? in its definition
of cameras. In this section, we discuss the impact of our results in Sections 3
to 5 for Iris and its formalization in Coq. Within this section we disregard the
internal language of PSh(ω) and work externally. For clarity, we refer to cameras
as they appear in the Iris formalization as Iris cameras and reserve the terms
camera and resource algebra for the notions discussed in Section 3.



16 Gratzer et al.

6.1 Cameras in Iris

We begin with a brief summary of Iris. Rather than using all of PSh(ω), Iris’s
basic types are drawn from the full subcategory of total presheaves:

Definition 14. A total presheaf X : PSh(ω) is one whose restriction maps
X(n+ 1)→ X(n) are surjective.

Equivalently, a total presheaf is a set X together with a family of equivalence
relations (≡0) ⊆ (≡1) . . . such that X = limnX/(≡n) i.e., a COFE in Iris par-
lance [18]. Under this encoding, a natural transformation between total presheaves
is a map of sets which respects all the equivalence relations. Total presheaves are
closed under products, sums, exponentials, the partial map classifier, and various
other operations in PSh(ω). However, they are not closed under finite limits, do
not form a locally cartesian closed category, and lack a strong internal language.

To ease formalization, Iris avoids using −? and encodes of partiality indirectly:

Definition 15. A (total) lifted PCS (LPCS) (X, ·,V) is a (total) presheaf X
with an associative and commutative natural transformation · : X ×X → X and
a validity predicate V : X → Prop such that ∀x, y ∈ X(n).Vn(x ·n y) ⊆ Vn(x).5

Intuitively, we have arranged for · to be total by having X also contain sentinel
values. The role of V is then to carve out those elements of X which are genuine
from those merely representing undefined multiplications.

One PCS (M, ·) induces an LPCS by taking (M?, ·̄, π1) where ·̄ :M?×M? →
M? is the Kleisli extension of ·. The reverse is also possible: given (X, ·,V) one
can take the subpresheaf of valid elements along with the partial map induced by
· defined only when x · y is valid. The loop PCS → LPCS → PCS is the identity.

Definition 16. A core structure on a total LPCS (X, ·,V) is a natural transfor-
mation |−| : X → 1 +X satisfying the following properties:

– If x ∈ X(n) and |x| = in2(x
′) then x′ · x = x and |x′| = in2(x

′).
– |−| is monotone with respect to the extension order on X.

In general, a core structure on an LPCS is distinct from a core structure on the
induced PCS due to the presence of invalid elements. However, one can always
extend a core structure on a PCS to a core structure on the induced LPCS.

Definition 17. An Iris camera is a total LPCS equipped with a core structure.

In fact, the definition is more relaxed: a total presheaf can be represented as a
family of equivalence relations on a set (X, (≡)n) satisfying X = limnX/(≡)n. Iris
currently requires only the strictly weaker condition that (

⋂
n(≡n)) = {(x, x) |

x ∈ X} of its cameras to e.g., give a particular definition of the agreement camera.
We will return to this point in Section 6.3.

5 Recall that in PSh(ω) the set Prop(n) is given by down-closed sets of {0 . . . n}.



Idempotent Resources in Separation Logic 17

6.2 Maximal idempotent axiom for Iris cameras

Despite the difference between a core structure on an Iris camera and a core
structure on the induced partial commutative semigroup, one can translate the
definition of the MI axiom into the language Iris cameras:

Definition 18. An Iris camera X satisfies the maximal idempotent axiom if the
following holds for every n and x : X(n) such that n ∈ Vn(x):6

(∀y : X(0). y ≤ x|0 ∧ y ·0 y = y → ⊥)
∨ (∃y : X(n). y ≤ x ∧ y ·n y = y ∧ ∀m ≤ n, z : X(m). z ≤ x|m ∧ z ·m z = z → z ≤ y|m)

We have written e.g., x|m for the functorial action X(m ≤ n)(x).

This definition is mechanically produced by unfolding the internal definition
in PSh(ω) of the maximal idempotent axiom [3]. For instance, PCS satisfies the
MI axiom if and only if the induced LPCS satisfies the above proposition.

Theorem 3. Every Iris camera in the Iris formalization satisfies the MI axiom.

We have proven this by extending the Iris formalization with proofs of the
MI axiom for every Iris camera [12]. More precisely, the accompanying Coq
formalization of this paper modifies the existing Iris formalization in Coq by
(1) removing the core operation from the structure defining cameras and (2)
replacing it with the above translation of the MI axiom. We have then carried
this change through the rest of the formalization by updating every camera used
in the codebase with a proof of the MI axiom. Notably, we did not need to make
significant modifications to other parts of the Iris codebase and no case studies
were affected.

In total then, the theoretical work done in Section 3 has allowed us to remove
explicit constructions in the Iris formalization and replace them with more
conceptual arguments all without requiring any change to the complicated proofs
in separation logic currently carried out within Iris.

Remark 2. As discussed in Section 3, one may as well replace ∨ with + and ∃
with

∑
. When extending the Iris formalization, we have made these substitutions

as Coq’s metatheory is too weak to justify either replacement without axioms.

6.3 Categories of Iris cameras

While the MI axiom can be used to save effort and complexity in the formalization,
the results of Section 5 do not translate so easily. There are several incompatible
possible definitions of morphisms for Iris cameras and none are fully satisfactory.
For instance, morphisms may be themselves total or only defined on valid elements,

6 The reader may be surprised to see y : X(0) rather than X(n). To make this predicate
monotone in n, we must require that it holds whenever y : X(m) for m ≤ n and it is
therefore both necessary and sufficient to check when m = 0.



18 Gratzer et al.

they may preserve validity laxly or strictly, etc. Each of these definitions gives rise
to a category satisfying some, but not all, of the properties of RA. Fundamentally,
the issue is that totalizing a PCS forces us to consider invalid elements.

There exists a well-behaved subclass of LPCSs which organize into a category:
the image of the map (M, ·) 7→ (M?, ·̄, π1). However, important Iris cameras do
not land in this class of LPCSs because e.g., their underlying types are discrete.

For a concrete example of how this state of affairs complicates research in Iris,
consider the resource algebra Ag(A) from Section 4. It induces an Iris camera

by passing to the induced LPCS Âg(A) = Ag(A)? which satisfies the desiderata
of the agreement Iris camera [18, Section 4.3]. A closely related construction
appeared in Jung et al. [17], but was criticized for being exceptionally difficult to
define [18]; this suggests an advantage of our categorical approach which yields

Âg(A) as the composition of a number of simple and canonical results.

Rather than Âg(A), Jung et al. [18] use a more ad-hoc construction Ag′(A) as
it is easier to formalize. However, Ag′(A) is not a total presheaf: we do not have
Ag′(A) = limn Ag

′(A)/(≡)n because of the presence of ‘junk’ elements which
are never valid. This motivated practitioners to stop requiring that Iris cameras
satisfy the completeness condition. However, these junk elements ensure that
Ag′(A) is not the totalization of a PCS and it is therefore not among those LPCSs
which organize into a well-behaved category. Consequently, we have no good
universal property describing Ag′(A).

From our point of view, however, the issue is not with Âg(A)—it has the
expected universal property—but with the insistence on lifted PCSs. For instance,
while Ag′(A) is easier to deal with than Ag(A)?, it is still more complex than
the underlying type of Ag(A): A! Strikingly, Ag(A) is simpler to define than
Ag′(A) and the motivating advantage besides simplicity recommending Ag′(A)

over Âg(A)—a technical property involving the interaction between Ag′(A) and
the later modality—follows without any additional effort for the resource algebra
Ag(A). More generally, if one works with resource algebras instead of Iris cam-
eras, the underlying types are simplified, the multiplication operation is more
transparent, and the results enjoy universal properties.

Fortunately, most of the payoff of our investigation of resource algebras is
contained in Theorem 3; for formalization purposes, it is not necessary to have a
well-behaved category of Iris cameras, even if one is useful for discovering and
explaining particular examples. We therefore view Section 5 as evidence that
future iterations of Iris and similar separation logics would benefit from using a
(1) broader class of presheaves and (2) using PCSs over LPCSs.

7 Related Work

A great deal of effort has focused on the logical underpinnings of (concurrent)
separation logics and our work fits into this tradition. The logical core of separation
logic was developed under the name bunched implication logic [15, 23] and
subsequently generalized by Biering et al. [2] to account for higher-order separation
logics. The importance of partial commutative monoids in separation logic was



Idempotent Resources in Separation Logic 19

apparent in these models and PCMs were subsequently featured prominently in
concurrent separation logics [6, 9, 10, 16]. Early versions of Iris [19] also included
partial commutative monoids, but later replaced them with cameras [17, 18, 20].

Directly related is the work by Bizjak and Birkedal [4] which analyzes the
behavior of □ modalities in terms of the core structures which induce them. They
show that there is a bijection between □ modalities and core structures in the
non-step-indexed setting and a weaker correspondence in a constructive setting.
We have used this as inspiration for our approach to uniquely define core as
the operation inducing the largest possible □ modality. They also elucidate the
connection between PSh(ω) and the model of Iris [18].

Also closely related is the work of Dardinier et al. [7]. In Appendix A of this
work, the authors define a subclass of partial commutative monoids wherein each
element a :M satisfies the additional property that {b | b ≤ a ∧ b · b = b} is finite
and non-empty. They then observe that in such cases, there is a unique largest
core operation on M which they then use in their separation logic. Interestingly,
their motivation for introducing this property was not to obtain a better behaved
category of PCMs, but rather to facilitate automation by ensuring resources could
be decomposed into duplicable and non-duplicable components. their condition is
less general than the MI axiom: it applies only to discrete resources and requires
the conditions of Lemma 8. However, in the future we hope to explore further
how the MI axiom and the work of Dardinier et al. [7] interact, in particular,
whether the latter can be extended to a step-indexed setting in this manner.

Finally, we note that our observation that total presheaves can be limiting
when extending the model of Iris was also noted by Spies et al. [26] who found
several technical issues generalizing total presheaves to a transfinite setting.

8 Conclusion and Future Work

A key aspect of modern separation logics is how resources are modeled. In this
paper we have introduced a novel notion of resource algebra, which differs in a
subtle but crucial way from the camera definition used in Iris, by omitting the
core operation and replacing it by a property, the maximal idempotent axiom.
We have demonstrated that the new definition improves upon the earlier one in
the sense that it induces a universal □ modality and a well-behaved category RA
of resource algebras. Moreover, we have shown that many of the known resource
algebra constructions from Iris can be adapted to our new definition of resource
algebra and that they satisfy universal properties. Finally, we have also shown
that all the Iris cameras satisfy the maximal idempotent axiom.

Future work includes extending the Coq implementation of Iris to use the
full category of presheaves rather than just a subcategory thereof, and thence to
adopt our notion of resource algebra to such an implementation.



20 Gratzer et al.

References

[1] Appel, A.W., McAllester, D.: An indexed model of recursive types for
foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems 23(5), 657–683 (2001)

[2] Biering, B., Birkedal, L., Torp-Smith, N.: Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst. 29(5),
24–es (Aug 2007), https://doi.org/10.1145/1275497.1275499

[3] Birkedal, L., Møgelberg, R., Schwinghammer, J., Støvring, K.: First steps
in synthetic guarded domain theory: step-indexing in the topos of trees.
Logical Methods in Computer Science 8(4) (2012)

[4] Bizjak, A., Birkedal, L.: On models of higher-order separation logic. Elec-
tronic Notes in Theoretical Computer Science 336, 57–78 (04 2018), http:
//dx.doi.org/10.1016/j.entcs.2018.03.016

[5] Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission
accounting in separation logic. In: Palsberg, J., Abadi, M. (eds.) Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California, USA, Jan-
uary 12-14, 2005. pp. 259–270. ACM (2005), https://doi.org/10.1145/
1040305.1040327

[6] Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation
logic. In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
10-12 July 2007, Wroclaw, Poland, Proceedings. pp. 366–378. IEEE Computer
Society (2007), https://doi.org/10.1109/LICS.2007.30

[7] Dardinier, T., Parthasarathy, G., Müller, P.: Verification-preserving inlin-
ing in automatic separation logic verifiers. Proceedings of the ACM on
Programming Languages 7(OOPSLA1), 789–818 (Apr 2023)

[8] Day, B.: On closed categories of functors. In: MacLane, S., Applegate, H.,
Barr, M., Day, B., Dubuc, E., Phreilambud, Pultr, A., Street, R., Tierney,
M., Swierczkowski, S. (eds.) Reports of the Midwest Category Seminar IV.
pp. 1–38. Springer Berlin Heidelberg, Berlin, Heidelberg (1970)

[9] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.:
Views: compositional reasoning for concurrent programs. In: Giacobazzi, R.,
Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome, Italy - January 23
- 25, 2013. pp. 287–300. ACM (2013), https://doi.org/10.1145/2429069.
2429104

[10] Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras
and share accounting. In: Hu, Z. (ed.) Programming Languages and Systems,
7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5904, pp. 161–177.
Springer (2009), https://doi.org/10.1007/978-3-642-10672-9_13

[11] Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations.
Logical Methods in Computer Science Volume 7, Issue 2 (06 2011)

[12] Gratzer, D., Møller, M.A., Birkedal, L.: Coq formalization accompanying
“Idempotent Resources in Separation Logic” (2025), https://doi.org/10.
5281/zenodo.14765017

https://doi.org/10.1145/1275497.1275499
http://dx.doi.org/10.1016/j.entcs.2018.03.016
http://dx.doi.org/10.1016/j.entcs.2018.03.016
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.5281/zenodo.14765017
https://doi.org/10.5281/zenodo.14765017


Idempotent Resources in Separation Logic 21

[13] Hofmann, M.: Syntax and Semantics of Dependent Types. In: Pitts, A.M., Dy-
bjer, P. (eds.) Semantics and Logics of Computation, pp. 79–130. Cambridge
University Press (1997), https://www.tcs.ifi.lmu.de/mitarbeiter/

martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf

[14] Hofmann, M., Streicher, T.: Lifting Grothendieck universes (1997), https:
//www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf,
unpublished note

[15] Ishtiaq, S.S., O’Hearn, P.W.: Bi as an assertion language for mutable data
structures. In: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. POPL01, vol. 7, p. 14–26. ACM
(01 2001), http://dx.doi.org/10.1145/360204.375719

[16] Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Seidl, H. (ed.) Pro-
gramming Languages and Systems - 21st European Symposium on Program-
ming, ESOP 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7211, pp. 377–
396. Springer (2012), https://doi.org/10.1007/978-3-642-28869-2_19

[17] Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state.
SIGPLAN Not. 51(9), 256–269 (09 2016)

[18] Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.:
Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. Journal of Functional Programming 28 (2018)

[19] Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. SIGPLAN Not. 50(1), 637–650 (01 2015)

[20] Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D., Birkedal,
L.: The Essence of Higher-Order Concurrent Separation Logic, p.
696–723. Springer Berlin Heidelberg (2017), http://dx.doi.org/10.1007/
978-3-662-54434-1_26

[21] Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic : a first introduction
to topos theory. Universitext, Springer (1992)

[22] O’Hearn, P., Reynolds, J., Yang, H.: Local Reasoning about Programs
that Alter Data Structures, p. 1–19. Springer Berlin Heidelberg (2001),
http://dx.doi.org/10.1007/3-540-44802-0_1

[23] O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin
of Symbolic Logic 5(2), 215–244 (06 1999), http://dx.doi.org/10.2307/
421090

[24] Reynolds, J.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science
(2002)

[25] Rosolini, G.: Continuity and effectiveness in topoi. Ph.D. thesis, University
of Oxford (1986)

[26] Spies, S., Gäher, L., Gratzer, D., Tassarotti, J., Krebbers, R., Dreyer, D.,
Birkedal, L.: Transfinite Iris: Resolving an Existential Dilemma of Step-
Indexed Separation Logic, p. 80–95. Association for Computing Machinery,
New York, NY, USA (2021), https://doi.org/10.1145/3453483.3454031

https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
http://dx.doi.org/10.1145/360204.375719
https://doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-662-54434-1_26
http://dx.doi.org/10.1007/978-3-662-54434-1_26
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.2307/421090
http://dx.doi.org/10.2307/421090
https://doi.org/10.1145/3453483.3454031

	Idempotent Resources in Separation Logic

