
Error Credits: Resourceful Reasoning about Error Bounds for

Higher-Order Probabilistic Programs

ALEJANDRO AGUIRRE, Aarhus University, Denmark

PHILIPP G. HASELWARTER, Aarhus University, Denmark

MARKUS DE MEDEIROS, New York University, USA

KWING HEI LI, Aarhus University, Denmark

SIMON ODDERSHEDE GREGERSEN∗, New York University, USA

JOSEPH TASSAROTTI, New York University, USA

LARS BIRKEDAL, Aarhus University, Denmark

Probabilistic programs often trade accuracy for efficiency, and thus may, with a small probability, return

an incorrect result. It is important to obtain precise bounds for the probability of these errors, but existing

verification approaches have limitations that lead to error probability bounds that are excessively coarse, or

only apply to first-order programs. In this paper we present Eris, a higher-order separation logic for proving

error probability bounds for probabilistic programs written in an expressive higher-order language.

Our key novelty is the introduction of error credits, a separation logic resource that tracks an upper bound

on the probability that a program returns an erroneous result. By representing error bounds as a resource, we

recover the benefits of separation logic, including compositionality, modularity, and dependency between

errors and program terms, allowing for more precise specifications. Moreover, we enable novel reasoning

principles such as expectation-preserving error composition, amortized error reasoning, and error induction.

We illustrate the advantages of our approach by proving amortized error bounds on a range of examples,

including collision probabilities in hash functions, which allow us to write more modular specifications for

data structures that use them as clients. We also use our logic to prove correctness and almost-sure termination

of rejection sampling algorithms. All of our results have been mechanized in the Coq proof assistant using the

Iris separation logic framework and the Coquelicot real analysis library.

CCS Concepts: • Theory of computation→ Separation logic; Logic and verification; Probabilistic

computation; Program verification; • Mathematics of computing→ Probabilistic algorithms.

Additional Key Words and Phrases: error bounds, error credits, almost-sure termination

ACM Reference Format:

Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen,

Joseph Tassarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for

Higher-Order Probabilistic Programs. Proc. ACM Program. Lang. 8, ICFP, Article 246 (August 2024), 33 pages.

https://doi.org/10.1145/3674635

∗The majority of this work was carried out while the author was affiliated with Aarhus University.

Authors’ Contact Information: Alejandro Aguirre, Aarhus University, Denmark, alejandro@cs.au.dk; Philipp G. Haselwarter,

Aarhus University, Denmark, pgh@cs.au.dk; Markus de Medeiros, New York University, USA, mjd9606@nyu.edu; Kwing Hei

Li, Aarhus University, Denmark, hei.li@cs.au.dk; Simon Oddershede Gregersen, New York University, USA, s.gregersen@

nyu.edu; Joseph Tassarotti, New York University, USA, jt4767@nyu.edu; Lars Birkedal, Aarhus University, Denmark,

birkedal@cs.au.dk.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART246

https://doi.org/10.1145/3674635

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6746-2734
HTTPS://ORCID.ORG/0000-0003-0198-7751
HTTPS://ORCID.ORG/0009-0005-3285-5032
HTTPS://ORCID.ORG/0000-0002-4124-5720
HTTPS://ORCID.ORG/0000-0001-6045-5232
HTTPS://ORCID.ORG/0000-0001-5692-3347
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3674635
https://orcid.org/0000-0001-6746-2734
https://orcid.org/0000-0003-0198-7751
https://orcid.org/0009-0005-3285-5032
https://orcid.org/0000-0002-4124-5720
https://orcid.org/0000-0002-4124-5720
https://orcid.org/0000-0001-6045-5232
https://orcid.org/0000-0001-5692-3347
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3674635

246:2 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

1 Introduction

Randomness is an important tool in the design of efficient algorithms and data structures and
is widely used in many application domains, including cryptography and machine learning. In
many cases, probabilistic programs are only approximately correct because they admit unwanted
behaviors with low probability, usually as a trade-off for better performance.
One major class of randomized algorithms are so-called Monte Carlo algorithms; they admit

wrong results with small probability, but are usually much faster than their deterministic counter-
parts. For example, primality tests such asMiller-Rabin [Miller 1975; Rabin 1980] or Solovay-Strassen
[Solovay and Strassen 1977] are Monte Carlo algorithms: they check the divisibility of a potential
prime by a number of randomly selected candidates and answer in polynomial time with either
“probably prime” (which may happen for composite inputs with low probability) or with “certainly
composite”. The other major class are Las Vegas algorithms. These never return wrong results,
but their running time is a random variable which may take high values but generally with low
probability. For example, a rejection sampler searching for a “good” sample in a large sample space
might give up after a bounded number of iterations if no good sample can be found in time (Monte
Carlo) or continue searching indefinitely (Las Vegas).

The trade-off between efficiency and accuracy/termination is typically justified by observing that
the unwanted behavior occurs only with small probability. Establishing bounds on the probability
of these errors (from now on, “error bounds”) is therefore an important prerequisite for the use of
Monte Carlo and Las Vegas algorithms. However, probabilistic reasoning is often counterintuitive
and when combined with reasoning about the complex state space of probabilistic programs, it
quickly becomes infeasible to manually establish error bounds for even moderately complicated
programs. To address this problem, probabilistic program logics offer a rigorous way to establish
trust in the correctness of randomized programs. For randomized first-order WHILE programs,
the approximate Hoare logic (aHL) of Barthe et al. [2016b] provides a convenient way to over-
approximate the error behavior of an algorithm. Formally, aHL judgments are annotated with
an “error budget” Y. The judgment ⊢Y {%} 2 {&} means that when the precondition % holds, the
probability that the postcondition & is violated after executing 2 is at most Y. The logic supports
local reasoning through union bounds:1 the error of a sequence of commands 21; 22 is bounded by
Y1 + Y2 if 21 (resp. 22) has error Y1 (resp. Y2) when considered in isolation. This principle is formalized
in the rule for sequential composition:

⊢Y1 {%} 21 {&} ⊢Y2 {&} 22 {'}

⊢Y1+Y2 {%} 21; 22 {'}
aHL seq

Subsequent work [Aguirre et al. 2021; Sato et al. 2019] develops a higher-order union bound logic
(HO-UBL) for a monadic presentation of a probabilistic λ-calculus without recursion.

However, by baking the error bounds into the judgmental structure of the logic rather than
treating them as ordinary propositions, these works on approximate correctness forego some of
the ability to reason about errors in a modular way. For instance, an error bound in aHL [Barthe
et al. 2016b] cannot depend on a program term, and HO-UBL [Aguirre et al. 2021, §4.1] cannot
prove the expected approximate higher-order specifications for simple functions such as List.iter
because the error is a part of the judgement, and not a first class proposition which may itself occur
in, e.g., a pre- or postcondition.
Furthermore, reasoning about composition via union bounds over-approximates error and

can produce excessively coarse bounds when errors are not independent. Specifically, the union

1The principle behind union bounds is also known as “Boole’s inequality”.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:3

bound for two events � and � bounds the probability Pr[� ∨ �] = Pr[�] + Pr[�] − Pr[� ∧ �] by
Pr[�] + Pr[�], thereby losing precision when Pr[� ∧ �] is large.

In this paper, we present Eris: a higher-order separation logic with support for advanced reasoning
principles for proving bounds on the probabilities of errors for programs written in λ

rand
ref

, an
expressive ML-like language with random sampling, full recursion, higher-order functions, and
higher-order store. Inspired by time credits [Atkey 2011; Charguéraud and Pottier 2019; Mével et al.
2019] to reason about cost as a resource, we introduce and develop error credits. Ownership of Y
error credits is a first-class proposition in Eris, written E (Y) (read: “up to Y”), and proving an Eris
specification ⊢ {% ∗ E (Y)} 4 {&} intuitively means: “if % holds then the probability of 4 crashing or
returning a result that violates & is at most Y”.

The resource approach affords Eris great flexibility: if we own an error credit E (Y), we can choose
to spend it however suits our proof. We can “pay” for an operation which fails with probability Y,
store it in an invariant describing a probabilistic data structure, frame it away during a function
call to keep it for later, or split it into any number of credits E (Y1) , . . . , E (Y=) so long as we stay
below the initial error budget, i.e.

∑=
8=1 Y8 ≤ Y.

We now proceed to outline how Eris addresses the two limitations of prior work mentioned
above (lack of modularity and conservative error bounds), and afterwards we explain how the error
credits of Eris also support a novel form of reasoning about amortized error bounds for randomized
data structures. Finally, we give an overview of how error credits in a total correctness version of
Eris can be used to prove almost-sure termination of Las Vegas algorithms.

Modular specifications of higher-order programs. Eris can be used to give modular specifi-
cations to higher-order functions. For a concrete example, consider the specification below for a
(parallel) iterator function List.iter, which is just the standard specification one would prove in a
non-probabilistic setting. In the precondition, the first line states that the argument ; is program-
level representation for the mathematical sequence of values GB . Then, the second line assumes a
specification for the function 4 to be iterated over the list: for each argument G , 4 takes % (G) as a
precondition and returns& (G) as a postcondition. The last line states that the precondition % holds
for each G in the list GB . Finally, the postcondition states that & holds for each G in GB .

isList GB ; ∗
∀G . {% (G)} 4 G {& (G)} ∗

∗G∈GB % (G)

List.iter 4 ;

{

∗
G∈GB

& (G)

}

By instantiating the higher-order specification, we can reason in a setting in which the specifi-
cation of 4 only holds up to some error bound as shown below. Now, the second line states that
assuming that the precondition '(G) holds, the postcondition & (G) will hold except with some
error probability E(G). Notably, the error can depend on the value of the argument G . The third
line requires that the user of the List.iter has have enough error credits to “pay” for each call to 4 .

isList GB ; ∗

∀G .
{
'(G) ∗ E (E(G))

}
4 G {& (G)} ∗

∗G∈GB
(
'(G) ∗ E (E(G))

)

List.iter 4 ;

{

∗
G∈GB

& (G)

}

It is noteworthy that by treating error as a resource, the version with error credits can be derived
from the standard version by instantiating % (G) to be '(G) ∗ E (E(G)). The specification of List.iter
does not need to be reproven and the probabilistic version just becomes a special case.

More precise error bounds via expectation-preserving composition. In addition to bringing
union-bound reasoning in the style of Aguirre et al. [2021]; Barthe et al. [2016b]; Sato et al. [2019] to

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:4 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

a richer programming language, Eris supports a novel form of reasoning about errors in expectation,
which leads to more precise error bounds. This feature hinges on two observations.

The first observation is a simple but useful consequence of treating errors bounds as separation
logic resources: as mentioned above, error bounds can depend on values of computations. Concretely,
consider the following instantiation of the so-called bind rule:

⊢ {% ∗ E (Y1)} 41 {G . E (E2 (G)) ∗ &} ⊢ ∀G . {& ∗ E (E2 (G))} 42 {'}

⊢ {% ∗ E (Y1)} let G = 41 in 42 {'}
ht-bind-exp

The rule expresses that starting with Y1 credits to begin with, if all evaluations of 41 leave enough
credits E2 (G) to verify the continuation ', then Y1 credits suffice to verify the entire let expression.
Recall that the G . in the postcondition of 41 acts as a binder that captures the return value of the
computation. By this rule, Eris supports value-dependent error composition: in different branches of
42 we can spend different amounts of credits depending on G , giving us a more precise error bound
than the maximum error across all cases. We present a concrete example of this phenomenon in §3.
The second observation is that, whenever the program takes a step and we initially have Y1

credits, then we can split our Y1 error credits across all possible branches as a weighted sum
according to the probability of each branch. For example, if we sample 8 uniformly from the set
{0, . . . , # }, and moreover we know that any continuation needs E2 (8) credits, then it suffices to

have E[E2] =
∑#
8=0 E2 (8)/(# + 1) credits at the start. This is captured formally in the proof rule

for the random sampling operation shown below:

∑#
8=0

E2 (8)

+ 1
= Y1

⊢ {E (Y1)} rand# {=. E (E2 (=))}
ht-rand-exp

To put the two observations to use, let us consider a concrete example of a composite computation
for which we get more precise error bounds than would be possible in previous work:

{
∀G . {Y} 4 0 {True} ∗

E
(
Y ·

2

)
}

let = = rand in

let ; = List.make 0 = in List.iter 4 ;
{True}

Here we intend List.make 0 = to construct a list of zeros of length =, where = is sampled uniformly
from the set {0, . . . , }, and that 4 is a function to be iterated, such that it with the argument 0
requires Y credits to execute safely (i.e. without crashing). Using the ht-bind-exp rule, we can then
prove that the composed program executes safely if we have Y ·

2
credits in our precondition and

set E2 (=) = = · Y in the postcondition of rand . By the specification of List.iter we will need E (Y)
for every element of the list we iterate over, that is E (Y · =) for a list of length =. Note that Y ·

2
is

precisely the expected value of E2, and in combination, the two observations mean that we obtain
a form of expectation-preserving composition. We further discuss these rules in §3.

Amortized error bounds. By representing error bounds as a resource, Eris not only addresses
the limitations of prior work mentioned above, but also supports reasoning about amortized error
bounds for operations of randomized data structures. Inspired by the work on type-based resource
analysis of Hofmann and Jost [2003], Atkey [2011] pioneered the use of “time credits” to reason
about amortized time complexity in separation logic, and the idea was subsequently extended
and formalized in different separation logics [Charguéraud and Pottier 2019; Mével et al. 2019].
Our use of error credits in turn allows us to give modular, amortized specifications of randomized
data structures which hide implementation details such as the timing of “costly” (i.e. error-prone)
internal operations. In §4 we present several case studies that demonstrate how Eris supports
modular reasoning about amortized error bounds.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:5

Almost-sure termination using error credits. So far, we have implicitly considered a partial
correctness interpretation of the Eris Hoare triples. In particular, this means that a divergent
program trivially satisfies any Hoare triple; in Eris this can be proven using so-called guarded
recursion/Löb induction. This proof principle is sound in Eris because the semantics of Hoare
triples is defined using a guarded fixed point. Now, an interesting observation is that we can easily
make a “total-correctness” version of Eris called ErisC by instead defining the semantics of Hoare
triples as a least fixed point. Because of the approximate up-to-error interpretation of Hoare triples
this yields an “approximate total-correctness” interpretation: a Hoare triple with Y credits in the
precondition bounds the probability of never reaching a value satisfying the postcondition, which
includes both the possibility of not satisfying the postcondition and the possibility of diverging. In
particular, the probability of termination is at least 1− Y. In turn, if we can show a total Hoare triple
for an arbitrary error bound Y, then we can conclude that it holds when Y becomes vanishingly
small and thus that the program almost-surely terminates, i.e. it terminates with probability 1. We
state and prove these properties more formally in §5 and §6; the soundness of this approach relies
on a continuity argument for the semantics. To the best of our knowledge, this argument and the
approach of showing almost-sure termination via error credits is novel. We demonstrate in §5.2 how
it can be used to prove correctness of several Las Vegas algorithms, including rejection samplers.

Contributions. To summarize, we provide:
• The first probabilistic higher-order separation logic, Eris, for modular approximate reasoning
(up-to-errors) about probabilistic programs written in λ

rand
ref

, a randomized higher-order
language with higher-order references.
• A resourceful account of errors which allows for more precise accounting of error bounds via
value-dependent and expectation-preserving composition, and for reasoning about a richer
class of properties, in particular amortized error bounds.
• A total correctness version of Eris, which can be used to establish lower bounds on probabilities
of program behaviors and thus to prove almost-sure termination.
• A substantial collection of case studies which demonstrate how the proof principles mentioned
work in practice.
• All of the results in this paper have been mechanized (see [Aguirre et al. 2024]) in the Coq
proof assistant, building on the Iris separation logic framework [Jung et al. 2016, 2018, 2015a;
Krebbers et al. 2017] and the Coquelicot real analysis library [Boldo et al. 2015].

Outline. In §2 we recall some preliminaries and define the operational semantics of λrand
ref

. We
then introduce Eris in §3. We demonstrate how to use Eris on a range of case studies, focusing on
amortized error bounds, in §4. Afterwards, in §5 we describe how a total version ErisC of Eris can
be used to reason about almost-sure termination via error credits; the section includes a number
of case studies (and more can be found in the long version of the paper2). Then we present the
model of Eris in §6 and sketch how the model is used to prove soundness and adequacy of the
logics. Finally, we discuss related work in §7 and conclude and discuss future work in §8.

2 Preliminaries and the Language λ
rand
ref

In §2.1 we first recall elements of discrete probability theory required to define the semantics of our
probabilistic language λrand

ref
and introduce the definitions we use to express approximate reasoning.

We subsequently define the syntax and operational semantics of λrand
ref

in §2.2.

2A full version of the paper with appendix can be found at https://arxiv.org/pdf/2404.14223

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

https://arxiv.org/pdf/2404.14223

246:6 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

2.1 Probabilities and Programs

As a first approximation, one might expect the execution of a randomized program 4 to produce a
(discrete) probability distribution on values. However, since programs may not terminate, programs
might not induce proper distributions, but rather subdistributions, whose total mass is upper-bounded
by 1, but may be lower.

Definition 1 (Mass). Let R≥0 denote the non-negative real numbers. For a countable set - , the
mass of a function 5 : - → R≥0 is given by |5 | =

∑
G∈- 5 (G) if this sum is finite.

Definition 2 (Subdistribution). A (discrete) probability subdistribution on a countable set -
is a function ` : - → [0, 1] such that |` | ≤ 1. We say that ` is a proper probability distribution if
|` | = 1. We write D(-) for the set of all subdistributions on - .

We simply write distribution to mean “discrete probability subdistribution” in the remainder of
the paper. Unless otherwise specified, the variable ` denotes a distribution, and - or . a countable
set, typically the set of values, expressions, or configurations of λrand

ref
.

Lemma 3 (Probability Monad). Let ` ∈ D(-), G ∈ - , and 5 : - → D(.). Then

(1) bind(5 , `) (~) ≜
∑
G∈- ` (G) · 5 (G) (~)

(2) ret(G) (G ′) ≜

{
1 if G = G ′

0 otherwise

gives a monadic structure to D. We write ` ≫= 5 for bind(5 , `).

Definition 4 (Restriction). Let % be a predicate on - . The restriction of ` to % is given by:

` |% (G) =

{
` (G) if % (G) holds,

0 otherwise.

Definition 5 (Probability of a Predicate). The probability of a predicate % with respect to `,
written as Pr` [%], is the total probability mass of ` satisfying % , i.e. Pr` [%] = |` |% |.

2.2 Language Definition and Operational Semantics

The syntax of λrand
ref

, the language we consider in this paper, is defined by the grammar below.

E,F ∈Val ::= I ∈ Z | 1 ∈ B | () | ℓ ∈ Loc | rec f x = 4 | (E,F) | inl E | inr E

4 ∈ Expr ::= E | x | rec f x = 4 | 41 42 | 41 + 42 | 41 − 42 | . . . | if 4 then 41 else 42 |

(41, 42) | fst 4 | snd 4 | inl(4) | inr(4) | match 4 with inl E ⇒ 41 | inrF ⇒ 42 end |

allocn 41 42 | ! 4 | 41 ← 42 | rand 4

 ∈ Ectx ::= − | 4 | E | allocn | ! | 4 ← | ← E | rand | . . .

f ∈ State ≜ (Loc
fin
−⇀Val) d ∈ Cfg ≜ Expr × State

The term language is mostly standard: allocn 41 42 allocates a new array of length 41 with each cell
containing the value returned by 42, ! 4 dereferences the location 4 evaluates to, and 41 ← 42 assigns
the result of evaluating 42 to the location that 41 evaluates to. We introduce syntactic sugar for
lambda abstractions _G . 4 defined as rec _ G = 4 , let-bindings let G = 41 in 42 defined as (_G. 42) 41,
sequencing 41; 42 defined as let _ = 41 in 42, and references ref 4 defined as allocn 4 1. We write ; [1]
as sugar for offsetting location ; by 1, defined as (; + 1).
Our language matches that of Clutch [Gregersen et al. 2024], modulo the minor difference that

we add arrays.3 States in λ
rand
ref

are finite maps from memory locations to values.

3As in Clutch, we support presampling tapes, but since they are not used until §5, we relegate this discussion to §5.2.3.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:7

To define full program execution, we define step(d) ∈ D(Cfg), the distribution induced by
the single step reduction of configuration d ∈ Cfg. The semantics of step is standard: all non-
probabilistic constructs reduce deterministically as usual, e.g., step(if true then 41 else 42, f) =
ret(41, f), and the probabilistic choice operator rand# reduces uniformly at random:

step(rand#, f) (=, f) =

{
1

#+1 for = ∈ {0, 1, . . . , # },

0 otherwise.

The Boolean operation flip is syntactic sugar for (rand 1 == 1).
With the single step reduction step defined, we now define a stratified execution probability

exec= : Cfg→ D(Val) by induction on =:

exec= (4, f) ≜

0 if 4 ∉Val and = = 0,

ret(4) if 4 ∈Val,

step(4, f) ≫= exec(=−1) otherwise.

where 0 denotes the everywhere-zero distribution. The probability that a full execution, starting
from configuration d , reaches a value E is taken as the limit of its stratified approximations, which
exists by monotonicity and boundedness:

exec(d) (E) ≜ lim=→∞ exec= (d) (E)

We simply write exec 4 as notation for exec(4, f) if exec(4, f) is the same for all states f .
As an example, consider the program 4 ≜ if flip&& flip then 42 else Ω, where Ω is a diverging

term and && denotes logical conjunction. If we execute 4 , we either obtain the value 42 in a few
steps (both flips return true with probability 0.5 × 0.5 = 0.25), or we do not obtain a value at all
otherwise. In other words, exec 4 induces the subdistribution {42 ↦→ 0.25, _ ↦→ 0} : Val→ [0, 1] .

3 The Eris Logic

In this section we introduce the Eris logic. We first present the propositions of Eris, and then to
provide some intuition for the program logic proof rules we present the adequacy theorem, which
expresses what one can conclude by proving a Hoare triple in Eris. The adequacy theorem itself is
only proved later (§6.2) when we introduce the semantic model of Eris. After the adequacy theorem,
we then present a selection of the program logic rules of Eris.

Eris is based on the Iris separation logic framework [Jung et al. 2018] and inherits all of the
basic propositions and their associated proof rules. An excerpt of Eris propositions is shown below,
including the later modality ⊲, the persistence modality � and the points-to connective ℓ ↦→ E ,
which asserts ownership of the location ℓ and its content E :

%,& ∈ iProp ::= True | False | % ∧& | % ∨& | % ⇒ & | ∀G . % | ∃G . % | % ∗ & | % ∗ & |

� % | ⊲ % | ℓ ↦→ E | E (Y) | {%} 4 {&} | . . .

The main novelty of Eris is the program logic {%} 4 {&} and the new E (Y) assertion which
denotes ownership of Y error credits. Error credits satisfy the following rules:

E (Y1) ∗ E (Y2) ⊣⊢ E (Y1 + Y2) E (Y1) ∗ (Y2 < Y1) ⊢ E (Y2) E (1) ⊢ False

From the point of view of a user of the logic, this interface (and the rule ht-rand-exp below) is all
they need to know about credits. The first rule expresses that ownership of Y1 + Y2 error credits
is the same as ownership of Y1 credits and ownership of Y2 credits. The second rule says that it is
sound to throw away credits that we own. Finally, the last rule says that if we own 1 full error credit,
then we can immediately conclude a contradiction. Intuitively, ownership of E (1) corresponds to
proving a statement holds with probability at least 0, which is trivially true.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:8 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

We define the semantics of the program logic in §6. The adequacy theorem shown below captures
what a specification with error credits means in terms of probabilities and the operational semantics.

Theorem 6 (Adeqacy). If ⊢ {E (Y)} 4 {q} then Prexec4 [¬q] ≤ Y. Moreover, the probability of 4
getting stuck is at most Y.

The adequacy theorem states that if we prove {E (Y)} 4 {q} in Eris, for any meta-logic post-
condition q , then the final distribution obtained from running 4 does not satisfy q with at most
probability Y. It also states that 4 is safe with probability at least 1 − Y.
As mentioned in §1, Eris is a partial correctness logic, which means that a diverging program

satisfies any specification, and diverging traces of 4 will also be considered correct. Hence Y is an
upper bound on the probability of terminating and not satisfying q . Later on, we will present ErisC ,
a total correctness version of Eris, which allows us to establish lower bounds on the probability of
terminating and satisfying q .
Although our definition of Hoare triples is new, the program logic rules for the deterministic

fragment of λrand
ref

are essentially standard, e.g.,

ht-frame

⊢ {%} 4 {&}

⊢ {% ∗ '} 4 {& ∗ '}

ht-bind

⊢ {%} 4 {E .&} ⊢ ∀E . {&} [E] {'}

⊢ {%} [4] {'}

ht-load

ℓ ↦→ F ⊢ % (F)

⊢ {ℓ ↦→ F} ! ℓ {E . % (E)}

ht-rec

∀F. {%} (rec 5 G = 4) F {&} ⊢ {%} 4 [E/G] [(rec 5 G = 4)/5] {&}

⊢ {%} (rec 5 G = 4) E {&}

Note in particular that Eris includes the standard rule ht-rec for reasoning about recursive func-
tions.

We do not have a specialized rule for composing errors for composite computations as in previous
works. The error is just a resource which, as mentioned in §1, allows us to derive an aHL-style
composition rule as well as the value-dependent composition rule shown in §1 from the resource
rules of credits and the ht-bind and ht-frame rules. These derived rules are shown below.

⊢ {% ∗ E (Y1)} 4 {E .&} ⊢ ∀E . {& ∗ E (Y2)} [E] {'}

⊢ {% ∗ E (Y1 + Y2)} [4] {'}
ht-bind-simpl

⊢ {% ∗ E (Y1)} 41 {G . E (E2 (G)) ∗ &} ⊢ ∀G . {& ∗ E (E2 (G))} 42 {'}

⊢ {% ∗ E (Y1)} let G = 41 in 42 {'}
ht-bind-exp

Proof rules for sampling. The only rules that make direct use of error credits are our novel
rules involving sampling. As mentioned in §1, Eris includes a general rule for sampling, which
takes the expected number of error credits into account. When taking a probabilistic step, this
allows us to make the error depend on the result of the step. Suppose that we sample 8 uniformly
from the set {0, . . . , # } and, moreover, that we know that any continuation needs E2 (8) credits,
where E2 : {0, . . . , # } → [0, 1]. Then it suffices to have E[E2] at the start, since it is the expected
number of error credits that our proof will need. We can also interpret this principle forwards:
whenever we take a step, we can split our Y error credits across all possible branches as a weighted
sum according to the probability of each branch. Formally, this is captured in the following rule:

∑#
8=0

E2 (8)

+ 1
= Y1

⊢ {E (Y1)} rand# {= . E (E2 (=))}
ht-rand-exp

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:9

let = = rand 3 in

if = ≤ 1 then

true

else

let : = rand 1 in

if (= + : ≤ 2) then

true

elif (= + : = 3) then

false

else

Ω

4 ≜

4′ ≜

4

Y?=
2
8 , YC=

3
8

4
8 : q

1
2

4′ [=:=2]

Y? = YC=
1
2

1
8 : q

1
2

1
8 : ¬q

1
2

1
4

4′ [=:=3]

Y?=
1
2 , YC=1

1
8 : ¬q

1
2

1
8 : ⇑

1
2

1
4

Fig. 1. Expected error analysis, partial and total.

In practice, we often want to avoid the generality of this rule as it requires explicit accounting of
error credits for every possible outcome. We derive rules for applications that only require a more
coarse-grained analysis. For instance, when sampling from {0, . . . , # }, we can guarantee that the
result of our sampling will not be in a list of error values GB by using the following derived rule:

⊢ {E (length(GB)/(# + 1))} rand# {= . = ∉ GB}
ht-rand-err-list

In order to derive the rule, it suffices to apply ht-rand-exp using

E2 (=) ≜ if (= ∈ GB) then 1 else 0

and immediately discard all outcomes in GB using E (1) ⊢ ⊥.

Example. Consider the program 4 and its probabilistic execution tree shown in Figure 1. The
program first samples a natural= at random from 0 to 3, returning true if it chooses 0 or 1. Otherwise
the sub-program 4′ samples a random bit : and branches on the sum of = + : : when = + : ≤ 2

the program returns true, when = + : = 3 the program returns false, and otherwise the program
diverges (denoted by Ω).
We will now show how to use Eris to show that 4 returns true up to some error bound. Before

we present the proof, let us take a step back and ask ourselves: What specification can we hope to
show for 4? If we consider all the possible executions of 4 , we can determine that it returns a value
that satisfies q with probability 5

8
, returns a value that does not satisfy q with probability 1

4
, and

loops forever with probability 1
8
. Therefore, we should be able to prove the Hoare triple:

{
E
(
1
4

)}
4 {q}

To prove this triple, we first prove a triple for the subexpression 4′:
{
(= = 3 ∨ = = 2) ∗ E

(
1
2

)}
4′ {q}

This Hoare triple is not difficult to prove; during the rand 1 step, we use the ht-rand-err-list rule
to spend E

(
1
2

)
and “avoid” values that eventually lead to undesirable outcomes, e.g. returning false.

To be more specific, for the case where = = 2, we avoid sampling 1 as that branch eventually reduces
to false. Similarly, for the case where = = 3, we avoid sampling 0. After verifying the sub-program
4′, we can now turn to verifying the overall program 4 . Notice that after assigning a random value

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:10 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

to =, the number of error credits that we need for the continuation depends on =. This dependency
is captured by the E2 function defined below:

E2 (=) =

{
0 G < 2
1
2

G = 2 ∨ G = 3

Since
∑
E2 (8)/4 = 1/4 we apply the ht-rand-exp rule to conclude

{
E
(
1
4

)}
rand 3 {=. E2 (=)} and

by using ht-bind-exp we complete the proof.
To summarize, this example demonstrates how we can use the proof rules of Eris to distribute

error credits across many branches in a fine-grained manner and establish a strict expected error
bound. Moreover, the error analysis in the proof is modular in the sense that we prove the properties
of the sub-program 4′ without taking into account the context in which it is used.

4 Case Studies

In this section we present a series of case studies that showcase the features and reasoning principles
introduced by Eris. Due to the representation of errors as a resource, Eris allows us to do precise,
value-dependent reasoning about error bounds for operations on randomized data structures.
However, when using these randomized data structures as a client, value dependent specifications
often reveal too many details about the internal state of the data structure and its implementation.
Here we also show how to do amortized error reasoning which, analogously to bounds on amortized
running time, assigns a uniform error cost to every operation on the data structure despite the real
error cost varying over time.

4.1 Dynamic Vectors under a Faulty Allocator

A quintessential example of amortized time complexity reasoning is that of a vector with dynamic
resizing, see [Cormen et al. 2009]. We assume that on initialization we will allocate a memory block
of size # , which allows us to do # insertions (each of cost 1) into the vector. For the (# + 1)-th
insertion however, we allocate a new block of memory of size 2# and copy the contents of the
vector into the new block. This operation incurs a cost of # + 1, paying # to copy the initial #
elements into the new memory block, and 1 for the actual insertion. Using amortized cost reasoning
we can argue that each insertion has amortized cost 3: 1 for the insertion itself, 1 to pay for the first
time it gets copied, and 1 to pay to copy another element that was inserted and moved previously.

We will use a similar intuition to introduce amortized error reasoning. Here we consider a faulty
memory allocator which has a small probability Y of failing on each write operation. Specifically,
we assume that the allocator offers two methods extend and store with specifications:

{E (= · Y) ∗ ; ↦→
∗ EB} extend = ; {; ′ . ; ′ ↦→∗ (EB ++ replicate(=, ()))}

{E (Y) ∗ ; ↦→
∗ EB ∗ = < length(EB)} store ; = E {; ↦→∗ (EB [= := E])}

Here, ↦→∗ EB denotes ownership of a points-to connective for each element of the list EB . Provided
we own ; ↦→∗ EB , we can get a new, extended memory block starting at a new location ; ′ containing
the old array with = new empty locations (containing ()) appended. This incurs an error cost of

E (= · Y). We can also use the store operation to write to any position = within EB and update its
value, again by incurring an error cost of E (Y). Consider now the following code for the pushback
method which adds an element E to the end of the vector vec. It is parametrized by two methods

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:11

ext and str for extending and storing:

pushback ext str vec E ≜ let (;, B, A) = vec in

str ; B E ;

if B + 1 == A then (ext A ;, B + 1, 2 · A)

else (;, B + 1, A)

A vector is a tuple (;, B, A) of a location ; pointing to the start of the vector and two integers B, A
denoting the current size of the vector and the current size of the allocated block, respectively. On
insertion we store value E at position B , and if we reach the end of the current allocated space we
resize it so that the new block has size 2 · A .

The representation predicate for the vector looks as follows:

vec_spec vec vs ≜ ∃;, B, A , GB, ?. EB = (;, B, A) ∗ E (?) ∗ ; ↦→
∗ (EB ++ GB) ∗

B < A ∗ B = length(EB) ∗ A = length(EB) + length(GB) ∗

? + 2 · Y · length(GB) = A · Y

Here, vec_spec vec vs should be read as “vec is a vector containing the values vs”. Internally, the
representation predicate contains the starting location of the vector ; , its current size B , the size of
the allocated space A and a list of dummy values GB . Crucially, it also stores a reserve of ? error
credits. We also know that there are length(GB) insertions remaining until resizing, and on each we
will leave 2Y credits to spare. Altogether, this suffices until the next resizing, which has cost A · Y.

With this representation predicate, we can prove the following specification for pushback.

{vec_spec vec vs ∗ E (3 · Y)} pushback extend store vec v {vec′, vec_spec vec′ vs ++ [v]}

Ignoring the error credits for the moment, this is a natural specification: if we have a vector
containing vs and we append v, we get a vector containing vs ++ [v]. We just give a quick sketch of
the proof, focusing on the accounting of credits, as the rest is standard separation logic reasoning.
First, we split E (3 · Y) into E (Y) ∗ E (2 · Y), using the first Y credits to pay for the call to store. From
the definition of the representation predicate we get E (?), and we can split the proof into two cases
depending on whether B + 1 < A or B + 1 = A . In the first case, which steps into the else branch of
the conditional, we store back E (2 · Y + ?) into the representation predicate. It is easy to see that

? + 2 · Y + 2 · Y · (length(GB) − 1) = A · Y

since we will overwrite the first dummy location of GB . In the second case, we step into the then
branch to resize. Here we know from the representation predicate that length(GB) = 1 since there
is only one dummy location left to be overwritten. Therefore, the representation predicate implies

? + 2 · Y = A · Y

We own exactly E (?) ∗ E (2 · Y), which we use to pay for the extend operation with cost E (A · Y).
At the end, we store 0 error credits into the representation predicate. This completes the proof.

4.2 Amortized Error for Collision-Free Hash Functions

Wenow implement amodel of an idealized hash function under the uniform hash assumption [Bellare
and Rogaway 1993], i.e., a hash function ℎ from a set of keys to values + that behaves as if, for
each key : , the hash ℎ() is randomly sampled from a uniform distribution over + independently
of all other keys. We implement the model using a mutable map ;<, which serves as a cache of

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:12 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

hashes computed so far. If the key : has already been hashed we return the value stored in ;<(:).
Otherwise, we sample a fresh value uniformly from + = {0, . . . , =}, store it in ;<(:), and return it.

compute_hash ;< E ≜ match get ;< E with

Some(1) ⇒ 1

| None ⇒ let 1 = rand= in

set ;< E 1;

1

end

To reason about the correctness of many data structures, we often assume that a hash function is
collision-free in the sense that for the finite number of times we query the hash function, different
input keys will return different hash values. In reality collisions may occur, but when the size of +
is magnitudes larger than the number of times we use the hash function it is common to postulate
that the hash function will remain collision-free, up to some small error.

To be precise, suppose we have queried hfun ≜ compute_hash ;< a total of B times, each with a
distinct input, and that the map is still collision-free (that is, we have observed B different values).
If we apply the hash function to a completely new input, in order to maintain the collision-free
property the hash function needs to “avoid” sampling any of the previous B hash outputs. We can
reason about this by means of the ht-rand-err-list rule, meaning we would need to pay E

(
B
=+1

)

when choosing the new hash. We can encode this as a specification for our hash function in Eris:
{
= ∉ dom< ∗ cf _hashfun ;< < + ∗ E

(
size(<)
=+1

)}
hfun = {E . cf _hashfun ;< (<[=← E]) + }

The predicate cf _hashfun ;<<+ states that the mutable map ;< tracks the finite partial function
< : N ⇀ {0, . . . ,+ } represented as a finite map, and furthermore states that< is injective (i.e. there
are no collisions). After querying the hash function for an unhashed key =, it will return a value E
and update the mutable map to track the finite map<[=← E], which is again injective.
One limitation of the above specification is that the error requirement for each hash operation

is proportional to the size of the map. This leads to worse modularity, since a client of this data
structure needs to know how many queries have been performed before, which may be challenging
e.g., in the presence of concurrency where multiple clients may share the same hash function.

One possible solution is to fix a maximum global number of hash queries MAX and amortize the
error over all those queries, so that for each query, the error one needs to pay is a fixed constant
that is not dependent on the inner map. As with the previous example, we will implement this
using error credits.
Starting from an empty map, if we bound the number of queries to beMAX, the total number

of error credits used for theMAX queries is
∑MAX−1
8=0

8
=+1 =

(MAX−1)∗MAX
2(=+1) . We will require that the

client always incurs the mean error (MAX−1)∗MAX
2(=+1)∗MAX

=
(MAX−1)
2(=+1) . Let YMAX =

(MAX−1)
2(=+1) . Updating our

specification,
{

size(<) < MAX ∗ = ∉ dom< ∗
amort_cf _hashfun ;< < + ∗ E (YMAX)

}
hfun = {E . amort_cf _hashfun ;< (<[=← E]) + }

In Eris, this new specification is derivable from the original non-amortized specification. We
accomplish this by defining the abstract predicate amort_cf _hashfun to not only contain the
cf _hashfun resource, but also a reserve of extra error credits which the clients paid in excess for
the first half of the hash operations (similar to the dynamic vector example). For the second half of
the hash operations, when the mean error YMAX is insufficient to apply the original specification,
we draw the additional error credits from the reserve in amort_cf _hashfun. By using error credits,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:13

we provide a simpler interface to our initial specification which alleviates the error accounting
burden from clients of amort_cf _hashfun.

4.3 Collision-Free Resizing Hash Functions

We can go one step further and implement a collision-free hash function with constant amortized
insertion error, but without imposing any a priori limit on the number of insertions. Of course with
a fixed set + of possible hash values (as in the implementation above), collisions are eventually
unavoidable. Instead, we will keep the probability of collision low by resizing the sample space
once a threshold of inserted elements is reached. One way to think of this model is to assume that
the hash function gets values over a much larger sample space, but initially we only look at the
first =, and every time we resize we look at the (= + 1)-th bit.

As in the previous example, the hash is sampled lazily. In addition to a mutable map< the hash
function will keep track of three quantities + , (, and '. Here + represents the size of the value
space of our hash function, which are nonnegative integers over {0, . . . ,+ }. The value (represents
the current size of the domain of the hash function, and ' represents a threshold on the amount of
stored values after which the hash will resize. That is, once (reaches ', we will update the hash so
that ' becomes 2 · ' and+ becomes 2 ·+ . Initially+ , (, ' are set to some default values+0, 0, '0. We
will prove that overall, the hash will remain collision-free with an amortized error of (3 ·'0)/(4 ·+0)
per insertion, no matter the number of insertions.4 For instance, to keep the amortized error below
210 we can initially set +0 = 210 · '0.
The code for querying the hash function is shown below:

hash_rs ℎ5 F ≜ let (;<, E, B, A) = ℎ5 in

match get ;< F with

Some(1) ⇒ (1, ℎ5)
| None ⇒ let 1 = rand (E − 1) in

set ;< F 1;

if B + 1 = A then (1, (;<, 2 · E, B + 1, 2 · A))
else (1, (;<, E, B + 1, A))

end

Note that, the code is analogous to the non-resizing hash besides tracking the size: in the case
where B + 1 = A we double the value of both E and A . The specification uses the following predicate:

cf _hash_rs hf < E B A ≜ ∃;<, ?. ℎ5 = (;<, E, B, A) ∗ E (?) (1)

? + (AE0; − BE0;) · ((3 · '0)/(4 ·+0)) ≥
∑A−1
8=B 8/E ∗ (2)

cf _hashfun ;< < E ∗ (. . .) (3)

We explain the representation predicate line by line. The first line contains the internal represen-
tation of the hash function as a tuple, and a reserve of ? error credits. The second line imposes a
condition on ? , namely that the current number of credits in the reserve plus the credits we will get
until the next resizing is enough to pay for all of the error of the insertions until the next resizing.
Note that when there are B elements in the image of the hash function and we sample uniformly
over {0, . . . , E − 1}, the error we will have to pay is E (B/E). The third line states that ;< points to
a list that represents the partial map<, and that there are no collisions. Finally, the rest of the
predicate contains some constraints on the sizes E, B, A that we omit for brevity. In this specification

4Of course, even with this constant error cost, if we execute a large enough number of insertions we will eventually have

consumed over 1 error credit. The advantage of this specification is that it will enables us to do more modular proofs, since

the cost will be constant independently of the internal state of the hash function.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:14 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

we have decided to expose E , B and A to the client as we will use those values in the next section,
however it is also possible to hide these values from the client when those details are not needed.
We prove three specifications for hash_rs, depending on the initial conditions. If we query an

element that was already in the domain of the hash function, we just get back its hash value,
without the need for spending error credits:

{
<[F] = Some 1 ∗
cf _hash_rs 5 < E B A

}
hash_rs 5 F

{
(1′, 5 ′) .

1′ = 1 ∗
cf _hash_rs 5 ′ < E B A

}

If we query for an element that is not in the domain we will have to sample it in a collision-
free manner, at a cost of E (B/E). From the precondition we have E ((3 · A0)/(4 · E0)), and from the
representation predicate we can get the reserve E (?). We can derive that this is enough to pay
for E (B/E) from condition (2) by an uninteresting, albeit nontrivial, calculation. Since the code
branches depending on whether B + 1 is equal to A , we have the following specification:

{
<[F] = None ∗ (B + 1 ≤ A) ∗ cf _hash_rs 5 < E B A ∗ E

(
3A0
4E0

)}

hash_rs 5 F
{
(1, 5 ′).

(B + 1 < A ∗ cf _hash_rs 5 ′ <[F := 1] E (B + 1) A) ∨
(B + 1 = A ∗ cf _hash_rs 5 ′ <[F := 1] (2 · E) (B + 1) (2 · A))

}

In both cases we will have to reestablish the representation predicate. In particular, we will have
to store the remaining credits back into the reserve, and prove that condition (2) is still valid (i.e.,
that we will have enough credits to pay for future insertions). This follows again by arithmetic
calculations.

4.4 Collision-Free Resizing Hash Map

Hash maps (or hash tables) are one of the most ubiquitous data structures in programming, since
they can represent large sets with efficient insertion, deletion, and lookup. Their efficiency relies
on having a low number of collisions, so that each location on the table contains a small number of
values. As the number of collisions increases, and thus the performance of the hash map worsens,
it is often beneficial to resize the table, redistributing the hashed values and freeing up space for
new insertions.

In order to be able to reason about the efficiency of hash maps, we need to compute the probability
of a hash collision. Computing this probability over a sequence of insertions can be cumbersome,
as it depends on the current size of the hash map and the number of elements it contains. As a
consequence, it can lead to less modular specifications for programs that use hash maps inside
their components.

We will use the dynamically-resizing hash function defined above to implement a collision-free
dynamically-resizing hash map, and specify it with an amortized cost for insertion. Namely we will
use an array of size E , in which B entries are filled with a hashed value and the rest are uninitialized.
Once we fill in A elements, we resize the table to have size 2E and we set A to 2A . New hash elements
are sampled in a collision-free manner following the specification shown in the previous sections,
thus ensuring that the hash map is also collision-free. We can then prove the following specification5

for inserting a valueF into a hash map ℎ<:

{isHashmap ℎ< =B ∗ E ((3 · '0)/(4 ·+0))} insert ℎ< F {ℎ<′ . isHashmap ℎ<′ (=B ∪ {F})}

Recall here that +0 is the initial capacity of the hash table, and '0 is the threshold on which we
will first resize. The representation predicate isHashmap ℎ< =B should be understood as “ℎ< is

5The code for this example and the definition of the representation predicate can be found in Appendix B

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:15

a collision-free hash map representing the set (of natural numbers) =B”. Crucially, this predicate
does not keep track of error credits as all of the error accounting is done through the cf _hash_rs
predicate, which is used as a client within isHashmap. This specification states that an insertion
of an elementF fail with probability at most (3 · '0)/(4 ·+0). There are two cases in proving this
specification: either F was already in the hash map (and therefore =B = =B ∪ {F}) or it is a new
element. The former case is immediate; if it is a new element, we can use E ((3 · '0)/(4 ·+0)) to
sample a fresh value from the hash function using the specifications proven in the previous section.
This ensures that the location in the table corresponding to that index is uninitialized. Since the
hash map resizes at the same time as the hash function does, this establishes our specification no
matter how many insertions have been performed before.

4.5 Amortized Hash Functions and Merkle Trees

A Merkle tree [Merkle 1987] is a data structure that relies on a hash function. It is used to ensure
the authenticity and validity of data received from a potentially unreliable and malicious source
and used widely in, e.g., distributed file systems [Benet 2014] and databases [DeCandia et al. 2007].
A Merkle tree is a binary tree whose nodes contain pairs consisting of a value and a label. For

leaves, the label is the hash of the value stored in the leaf. In the case of inner nodes, the label
corresponds to the hash of the concatenation of the labels of its children. We call the label of the
root of a Merkle tree a root hash. Merkle trees are interesting because they support constructing a
cryptographic proof certificate that a value is in a leaf of the tree. These proofs can be validated by
a client who only knows the root hash of the tree.

To construct a proof that a value E is in the tree, we start from the leaf ; containing the value E ,
The proof starts with the hash of the sibling of ; . We then traverse up from the leaf ; to the root
along the ancestors of ; , appending to the proof the hash annotations of the siblings of each ancestor
we traverse. A client who has the root hash ℎ can check the proof by effectively computing a list
fold over the proof, successively hashing each element of the proof against an accumulated hash.
The client then checks whether the result of the fold matches the root hash ℎ; if it matches, the
proof is deemed valid, and otherwise it is rejected as invalid.

Why is this proof checking procedure sound? For an invalid proof to be (incorrectly) validated by
a checker, the invalid proof must contain values that cause a colliding hash value to be computed
during the checker’s list fold. Thus, if an adversary cannot find a collision, they cannot maliciously
convince a checker with an invalid proof. In particular, if the hash is treated as a uniform random
function, and the total number of distinct hashes ever computed is relatively small (e.g., because
of constraints on the adversary’s computational power), the probability that the proof checking
procedure will accept an invalid proof is very small. In this example, we prove such an error bound
under the assumption of a bound on the total number of hashes ever computed.
We use the fixed-size amortized hash with values in 0, . . . , 2+ −1 to implement a library for

Merkle trees. Given a possible leaf value and a purported proof, together with an error credit of

E (YMAX · height (tree)) in the precondition, the specification for the proof checker will ensure that
when a proof is invalid the checker will return false (i.e., the checker is sound up to this probability
of error). The amortization of the hash simplifies the specification of the checker since it incurs a
constant amount of error credits which only depends on the amortized error YMAX and the tree but
not the size of the map in the hash.

The checker function as shown in Figure 2 is implemented using the hash_path helper function,
which recursively computes the potential root hash from the input proof and leaf value. We
represent a proof as a list of tuples following the path from the leaf to the root: each tuple consists
of a boolean flag to determine which child of the current node is on the path to the leaf, and the
hash of the child node that is not on the path. In the base case where the proof is an empty list,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:16 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

hash_path f lproof lleaf ≜

match lproof with

(hd :: tl) ⇒ let (b, hash) = hd in

if b then f ((hash_path f tl lleaf) ∗ 2+ + hash)

else f (hash ∗ 2+ + (hash_path f tl lleaf))
| nil ⇒ f lleaf

end

checker root_hash f ≜

_lproof, lleaf .

let hp = hash_path f lproof lleaf in

root_hash == hp

Fig. 2. A proof checker for Merkle trees.

we arrive at the leaf of the Merkle tree, and we return the hash of our input leaf value. In the
intermediate step, where we arrive at a branch of the tree, we recursively compute the potential
hash value of the branch containing the leaf node and bit-wise concatenate it with the hash found
in the head element of our proof. We then return the hash of this concatenated number.
Our simplified specification for the checker is displayed below:

isList ; lproof ∗
tree_valid tree< ∗

amort_cf _hashfun f < ∗
size(<) + height (tree) <= MAX ∗

E (YMAX · height (tree))

checker root_hash f lproof v

1.

if 1
then tree_leaf _proof _match tree v lproof ∗ . . .
else not_tree_leaf _proof _match tree v lproof ∗ . . .

Line-by-line, the precondition here says that:

(1) the value lproof is represented by the abstract mathematical list ; ,
(2) the Merkle tree tree is built correctly according to the hash map<,
(3) the function f encodes the amortized hash function under the map<,
(4) the size of< plus the height of the tree is smaller or equal to MAX,
(5) we have credits equal to amortized error multiplied by the height of the tree.

The postcondition states that the Boolean returned by checker soundly represents the inclusion
of E in the tree. We impose the inequality of the size of the map< in the beginning since checker
runs the hash function exactly height (tree) times (recall that there is a total limit on the number of
distinct hashes that can be computed).

How are the error credits used to derive this specification? As long as the hash function remains
collision-free throughout the checking procedure then any corrupted data will modify all hashes
above it in the tree—in particular, it will change the root hash. Therefore, we will spend error
credits at each of the height (tree) hashes computed by checker to preserve collision-freedom

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:17

4

q ¬q ⇑

5
8

2
8

1
8

partial error

total error

Fig. 3. Partial and total approximate correctness contrasted.

throughout the checking process. We remark that if we chose to use a non-amortized hash for the
implementation of the Merkle tree library, the amount of error credits paid as one traverses the
tree may change if a new value is ever encountered, leading to a more convoluted specification.

4.6 Further Case Studies

For reasons of space, we omit other case studies, which can be found in the long version of the
paper. In particular, we include an example that uses the Merkle tree as a client to store data into
an unreliable storage system and prove that, with high probability, it can be used to detect data
corruption.

5 Almost-Sure Termination via Error Credits

In this section, we introduce ErisC , an approximate total-correctness version of Eris, and show how it
can be used to prove almost-sure termination via reasoning about error credits. Before we embark
on the technical development, we consider for a second time the example from Figure 1, which
illustrates the distinction between partial and total correctness interpretations of approximate
reasoning up to some error. A summary of the example is depicted in Figure 3.
In §3 we showed that for the program 4 in Figure 1, we can show the specification Hoare triple{
E
(
Y?
)}
4 {G . G = true} for Y? =

2
8
=

1
4
in Eris, intuitively because the program terminates with

a result not satisfying the postcondition (false) with probability 1
4
. Note that the probability of

non-termination (1
8
) is not included in the error, since non-termination is considered acceptable by

the partial-correctness interpretation of Eris.
In ErisC on the other hand, one cannot satisfy a Hoare triple by not terminating, and thus YC =

3
8

is needed to show an approximate total Hoare triple ⟨E (YC)⟩ 4 ⟨G . G = true⟩ (we use angle brackets
when we want to emphasize that we are stating a Hoare triple in ErisC). The proof of this Hoare
triple in ErisC is very similar to the Eris proof for 4 in §3, only changing the distribution of error
credits at each sample so that our additional starting credit can discharge the nonterminating
branch (specifically, YC = 1 in the rightmost branch of Figure 1).

Stepping back from the example, we can make a simple but crucial observation: if the total error
necessary for showing a Hoare triple ⟨E (Y)⟩ 4 ⟨%⟩ (for any postcondition %) can be proven for any
arbitrary (but positive) Y, then we can make the probability of divergence vanishingly small, and 4
must be almost-surely terminating.

In this section, we show how to make this argument precise and then demonstrate how it yields
an approach for showing almost-sure termination via error credits, which allows us to prove
correctness of Las Vegas algorithms.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:18 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

5.1 The ErisC Logic, Adequacy, and Almost-Sure Termination

It is important to note that all the proof rules of Eris shown earlier are still sound for ErisC , with
the exception of ht-rec. Note in particular that ht-rec could be applied to the diverging function
rec 5 G = 5 G , which is unsound in the total-correctness setting. To reason about recursive programs
in ErisC we can instead use a novel technique we call induction on the error amplification. We will
see examples below of how this principle works.

The meaning of a Hoare triple in ErisC is given by its adequacy theorem, which states that given
a program 4 , if from the assumption E (Y) we can prove a metalogical postcondition q , then the
program will terminate and satisfy q with at least probability 1 − Y:

Theorem 7 (Total Adeqacy). If ⊢ ⟨E (Y)⟩ 4 ⟨q⟩ then Prexec (4,f) [q] ≥ 1 − Y for any state f .

Since the logic is total this also implies that the probability of the program crashing is bounded
from above by Y. By a continuity argument in the meta logic (outlined in §6), we then obtain the
following theorem.

Theorem 8 (Almost-Sure Termination). Let Y ≥ 0. If for all Y′ > Y, ⊢ ⟨E (Y′)⟩ 4 ⟨q⟩ then
Prexec (4,f) [q] ≥ 1 − Y for any state f .

If we pick Y = 0, this theorem allows us to conclude almost-sure termination of 4 by proving
⊢ ⟨E (Y′)⟩ 4 ⟨q⟩ for any Y′ > 0. Note that we here quantify over Y′ in the meta-logic; the ErisC portion
of this argument freely assumes ownership over some arbitrary positive E (Y′).

5.2 Case Studies

We now present case studies of how we can prove almost-sure termination via error credits. In the
first case study we demonstrate how we can prove a Hoare triple in ErisC by a form of induction
on error credits. The second case study presents a technique to upper-bound the probability of
excessively long runs of a program. In the third case study we present a novel planner proof rule,
which can separate credit arithmetic from concrete program steps, and we show how to use it to
prove correctness of general rejection samplers. Finally, we revisit an example due to McIver et al.
[2018], and show how error credits can be used to provide a simple proof that it is almost surely
terminating.

5.2.1 Induction by Error Amplification. A variety of Las Vegas algorithms employ a “sample
and retry” approach, whereby a sampler program produces a possibly undesirable value and a
checker program forces the sampler to retry until it produces an acceptable value. In a partial-
correctness logic, it is trivial to prove that such algorithms return acceptable values when they
terminate (using ht-rec in Eris). However, it is more challenging to bound the probability that
they fail to terminate.
Rejection samplers are one common example of this kind of algorithm. Rejection samplers

simulate complex probability distributions using sequences of samples from simpler distributions,
by strategically rejecting sequences which do not correspond to values in the target distribution.
Consider the implementation of a typical rejection sampling scheme (RSamp B 2) with sampler
program B and checker program 2 below.

RSamp ≜ _s. _c. let try = (rec try _ = let v = s () in if (c v) then v else try ()) in try ()

As an archetypical example, we can emulate samples from {0, 1, . . . , # } using a uniform sampler of
size" > # ≥ 1 by providing the sampler us" ≜ (__. rand") and checker uc# ≜ (_v. v ≤ #).
Let us show that this uniform rejection sampler (RSamp us" uc#) terminates almost surely.

Using Theorem 8, it suffices to show, for arbitrary nonnegative Y,

⟨E (Y)⟩ RSamp us" uc# ⟨True⟩ . (4)

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:19

In proving this, we need to reason about the recursion in RSamp. Since we no longer have
ht-rec, we will have to use some form of induction, yet there appears to be no argument to induct
on. The solution is a technique we call induction by error amplification. We first show how the
principle works in detail, then derive rules that makes its use more practical. Note that using
expectation-preserving composition, for any Y′ we are able to prove

⟨E (Y
′)⟩ us" ⟨E . E (� (E) · Y

′)⟩ where � (E) ≜

{
0 0 ≤ E ≤ #
"+1
"−# # < E

since 1
"+1

∑"
8=0 � (8) = 1. In other words, each sampling attempt either produces a value which

the checker will certainly accept, or scales our error credit by a factor of "+1
"−# > 1. This means

that we can grow our error credit geometrically in the cases where a sample does not immediately
terminate, and we need only repeat this procedure 3 (Y) = ⌈− log("+1)/("−#) (Y)⌉ times: either
some sampling attempt will succeed, or they all fail and we will have amplified the original error
to E (1), from which we obtain a proof of False. Starting with any Y > 0, induction over 3 (Y) allows
us to prove (4), completing the proof. While this proof technique appears to be novel among total
correctness logics, under the hood it closely mirrors a standard analysis in probability theory where
one shows that longer and longer traces are increasingly unlikely, and concludes by taking a limit.
This induction principle is abstractly captured by the rule below:

ind-err-amp

Y > 0 : > 1 ∀Y′ . (E (: · Y
′) ∗ %) ∗ E (Y

′) ⊢ %

E (Y) ⊢ %

The rule requires us to (1) own a positive amount of error credits Y and (2) choose an amplification
factor: > 1. Using the rule gives us an arbitrary initial amount of error credits E (Y′) and an inductive
hypothesis for which we need to pay E (: · Y′). Soundness of the rule is proven by induction on the
number of times we need to scale Y by : until we accumulate E (1), i.e. ⌈− log: (Y)⌉.
Note that while this principle holds for an arbitrary proposition % , it only ever makes sense

to use it when reasoning about programs, because otherwise we have no way of amplifying our
error credits. To reason about recursive functions in the total correctness logic, we can derive the
following rule as a consequence:

ht-rec-err

Y > 0 : > 1

∀Y′ . (∀F. ⟨% ∗ E (: · Y
′)⟩ (rec 5 G = 4) F ⟨&⟩) ⊢ ⟨% ∗ E (Y

′)⟩ 4 [E/G] [(rec 5 G = 4)/5] ⟨&⟩

⊢ ⟨% ∗ E (Y)⟩ (rec 5 G = 4) E ⟨&⟩

Turning again to our example, we can prove Equation (4) in an arguably simpler manner by
applying ht-rec-err and setting : =

"+1
"−# . This reduces to proving, for an arbitrary Y′,

⟨E (: · Y
′)⟩ try () ⟨True⟩ ⊢ ⟨E (Y

′)⟩ let v = us" in if (uc# v) then v else try () ⟨True⟩

Following the credit splitting strategy above, after sampling from us" we will either have a value v
that passes the check uc# , or we will amplify our error credits to E (: · Y′) and go to the recursive
case, in which case we can conclude immediately by instantiating the inductive hypothesis.

5.2.2 Reasoning about Tail Bounds. Another property one may want to prove about a rejection
sampler is that long runs only happen with low probability. The explicit proof of termination in
the example above using induction on 3 (Y) is implicitly proving an upper bound on the probability
of a run taking longer than 3 (Y) steps. Indeed, we can make this concrete by instrumenting the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:20 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

rejection sampler with a counter, and make it fail once a limit count is reached.

RSampbd ≜ _s. _c. _m. let rec try = =

if = ≤ 0 then None

else (let v = s () in if (c v) then Some v else try (= − 1)))8=

try<

We can now prove the triple below:
〈
E

((
"−#
"+1

)=)〉
RSampbd us" uc# = ⟨E . ∃F. E = SomeF⟩ .

Since the sampler will only return something of the shape Some F if it succeeds in = tries or

fewer,
(
"−#
"+1

)=
is an upper bound on the probability of the sampler of taking more than = tries

to produce a valid sample. We can prove this specification by a simple (Coq-level) induction on
=. The case = = 0 is trivial, because we begin the proof with E (1). In the inductive case, after the
probabilistic sampling, we will either terminate or amplify our error by "+1

"−# , as in the previous
case study, and then we can apply the inductive hypothesis.
The caveat of this approach is that the reasoning about the runtime is entirely intrinsic. Our

adequacy theorem does not allow us to derive from the proof of a Hoare triple a statement about
the concrete runtime of our programs, but we believe that we can achieve this via an integration of
(deterministic) time credits [Mével et al. 2019] into this setting.

5.2.3 Presampling Tapes. In order to extract a more general proof rule from our credit amplifi-
cation argument, it is useful to separate the credit accounting steps from the symbolic execution
of a program. Because the amount of error credits after an expectation-preserving composition
can depend on the value sampled, this necessitates some way to express the outcome of random
sampling events ahead of time. Luckily, the presampling tapes by Gregersen et al. [2024] provide
this mechanism exactly. In this section we first briefly recall the semantics of λrand

ref
with tapes as well

as the proof rules for a] ↩→ (#, ®=) proposition, which expresses ownership of a presampling tape.
In the next section we show how to use them to get a general proof rule for credit amplification.
For more details on presampling tapes, we refer the reader to loc. cit., where tapes were originally
introduced and used to sample in an asynchronous manner.
To introduce presampling tapes in λ

rand
ref

, we extend the syntax of the language as follows.

4 ∈ Expr ::= . . . | tape 4 | rand 41 42

E,F ∈Val ::= . . . |] ∈ Label

f ∈ State ≜ (Loc
fin
−⇀Val) × (Label

fin
−⇀ Tape)

C ∈ Tape ≜ {(#, ®=) | # ∈ N ∧ ®= ∈ N∗≤# }

In addition to the heap, a state in λ
rand
ref

with presampling also contains a map from tape labels to

presampling tapes. Tapes are formally pairs (#, ®=) of an upper bound # ∈ N and a finite sequence
®= of natural numbers less than or equal to # . Tape allocation via tape 4 returns a fresh label] and
extends the state with a new empty tape n with bound # if 4 evaluates to # ∈ N. Sampling from
a tape with label] via rand#] either deterministically pops the first element from the list ®= or
uniformly samples a new integer between 0 and # .
From the point of view of the ErisC logic, a presampling tape behaves somewhat similarly to

standard heap location. Like in Clutch, the proposition] ↩→ (#, ®=) asserts ownership of a tape
labelled] with bound # and contents ®=. We can allocate an empty tape n with a specified bound.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:21

⊢ ⟨True⟩ tape(#) ⟨].] ↩→ (#, n)⟩
alloc-tape

Sampling from a non-empty tape consumes the first value of the list.

⊢ ⟨] ↩→ (#,= · ®=)⟩ rand#] ⟨G . G = = ∗] ↩→ (#, ®=)⟩
load-tape

Note that there are no primitives in λ
rand
ref

for directly writing to or adding values to tapes and values
are only added to tapes via ghost operations that appear purely at the logical level of an Eris proof.

⊢ ⟨] ↩→ (#, ®= · =)⟩ 4 ⟨%⟩ 0 ≤ = ≤ #

⊢ ⟨] ↩→ (#, ®=)⟩ 4 ⟨%⟩
presample

Crucially, Eris extends the above proof rules for tapes taken from [Gregersen et al. 2024] with the
following additional rule, connecting error credits in expectation to presampling via tapes.

∑#
8=0
E2 (8)
#+1 = Y1 ∀=. ⊢ ⟨] ↩→ (#, ®= · =) ∗ E (E2 (=))⟩ 4 ⟨%⟩

⊢ ⟨] ↩→ (#, ®=) ∗ E (Y1)⟩ 4 ⟨%⟩
presample-exp

Similarly to ht-rand-exp, this rule allows us to sample a random integer =, write it to a tape, and
get E2 (=) error credits, assuming that our initial amount of error credits Y1 is the expected value of
E2 (=). Since no execution step is taken, this allows us to disentangle credit arithmetic from the
operational semantics of the program. Analogous rules also hold in the partial version of the logic,
but the interaction between tapes and error credits is particularly useful for total correctness.

5.2.4 The Planner Rule. Equipped with the ability to perform credit reasoning and symbolic
execution separately, we can now derive an induction principle for ErisC which eliminates the
need to perform fine-grained credit arithmetic as in §5.2.1. Our proof rule is directly inspired by
the “planner” method by Arons et al. [2003]. Arons et al. establish a proof system wherein to
prove termination, one can reason as if a sequence of randomized choices will yield some prover-
selected sequence of outputs infinitely often (as justified by the Borel-Cantelli lemma from classical
probability theory). Expressed in ErisC , we have the following planner rule:

0 < Y ∀B . |I (B) | ≤ !

⊢ ⟨∃~B.] ↩→ (#, GB ++ ~B ++ I (GB ++ ~B))⟩ 4 ⟨q⟩

⊢ ⟨] ↩→ (#, GB) ∗ E (Y)⟩ 4 ⟨q⟩
presample-planner

The rule states that if we have a tape with contents GB and any positive amount of error credits
Y, then we can update our tape with some unknown sequence of “garbage” samples ~B in order
to ensure it includes a prover-selected target sequence I (GB ++ ~B) at the end. Generalizing Arons
et al.’s planner rule, our version allows the target sequence to be a function I of the current state of
the tape, provided that the length of the target word has a fixed upper bound ! (and consequently,
cannot become arbitrarily unlikely). After invoking the planner rule, a prover can consume the
samples in GB ++ ~B using a regular induction on lists, eventually ending up in their desired tape
state] ↩→ (#, I (GB ++ ~B)).
The planner rule is derivable entirely within ErisC using the rules we have already seen. The

proof proceeds by induction by error amplification, and most of the proof is directly analogous to
the argument in §5.2.1. The key step lies in proving the following amplification lemma which, for a
particular constant #,F > 1 (dependent on # and |F |), allows us to either sample a target wordF

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:22 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

onto a tape, or sample a garbage string 9 and scale our error credit by a factor of #,F :

⊢
〈
∃ 9 .] ↩→ (#, ®= ++ 9) ∗ E

(
 #,F · Y

)〉
4 ⟨q⟩ ⊢ ⟨] ↩→ (#, ®= ++F)⟩ 4 ⟨q⟩

⊢ ⟨] ↩→ (#, ®=) ∗ E (Y)⟩ 4 ⟨q⟩

Proving this involves |I (®=) | applications of presample-exp. We provide the details, including the
amplification constant #,F , in Appendix C.

Example. To demonstrate how the planner rule can eliminate the credit accounting in induction
by error amplification, we will prove that a Poisson trial almost surely terminates. A Poisson trial is
a random process, whose value comes from counting how many independent attempts a random
variable takes before meeting some criteria. We can implement a Poisson trial that flips pairs of fair
coins until they are both heads as an instantiation of a rejection sampler (:

cs; ≜ __. ; ← (! ; + 1); (rand 1, rand 1) cp; ≜ _E. E == (1, 1)

Note that the sampler here both maintains internal state (counting the number of trials) and uses
multiple calls to rand. We seek to show

⟨E (Y) ∗ 0 < Y ∗ ; ↦→ 0⟩ (cs; cp; ⟨True⟩ .

Starting with any tape] ↩→ (#, GB), we invoke the planner rule with E (Y) and the target function

I (B) =

{
[1, 1] |B | is even,

[0, 1, 1] otherwise.
(5)

This results in a tape of the form] ↩→ (1, GB ++ 9 ++ [1, 1]) where 9 has even length. By induction
over 9 , we consume the entire garbage section of the tape, with each invocation of cs; pulling off
the two samples. Either the garbage section will happen to contain some spurious [1, 1] sample,
in which case the program terminates, or we step through the entire garbage section and end up
with tape] ↩→ (1, [1, 1]) which will also cause termination. We obtain our almost-sure termination
result using Theorem 8, as our initial error credit was arbitrarily small.

5.2.5 The Escaping Spline. In this case study, we revisit Example 5.4 from [McIver et al. 2018],
which presents a so-called escaping spline. This consists in a random walk over the non-negative
integers. An agent is at a position indicated by an integer = and on every step it chooses prob-
abilistically between stopping, or moving to = + 1. However, the bias changes with the current
position =, the probability it chooses to stop is 1

=+1 . Our goal is to show that, despite the probability
of choosing to stop decreasing as time goes on, this walk is almost surely terminating, no matter
the initial position. We can implement the walk by the following program:

rec spline n = let G = rand= in

if G = 0 then () else spline (= + 1)

Using our total correctness logic, and Theorem 8, it suffices to show, for any arbitrary positive Y,
and any initial position =,

⊢ ⟨E (Y)⟩ spline = ⟨True⟩ (6)

The crucial part of the proof is the following auxiliary result, proven by induction on :

⊢
〈
E

(=

= + : + 1

)〉
spline = ⟨True⟩

for all =. In the case : = 0 we own E
(
=
=+1

)
, which is precisely what we need in position = to ensure

we choose to stop. For the successor case, we own E
(

=
=+(:+1)+1

)
. Here we can apply ht-rand-exp

to ensure we either jump to 0 or we jump to = + 1 and scale our credits by =+1
=
, which leaves us

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:23

with E
(

=+1
=+1+:+1

)
. This is what we require to apply our inductive hypothesis at position = + 1, and

finish the proof of this lemma.
Going back to proving Equation (6), since our initial budget E (Y) is strictly positive, and the

sequence =
=+:+1 over : gets arbitrarily small, we can always pick a such that =

=+ +1 < Y, and then

weaken our assumption to E
(

=
=+ +1

)
and conclude by applying the auxiliary lemma above.

To contrast with our proof, McIver et al. introduce a specialized rule to prove that this and
other complex examples terminate almost surely. Within our setting, error credits and (meta-logic)
induction can be used directly, with no need for additional rules. It is not clear if their other case
studies can also be proven AST using error credits, or if their termination rule can be encoded in
terms of error credits.

5.2.6 Additional Case Studies. While the planner rule is a versatile technique for proving
almost-sure termination, it is not the only way to abstract induction by error amplification.
In particular, when the “target sample” has complex dependencies on program state it may

be cumbersome to explicitly produce a target sample function I. In the long version we outline
an alternative approach for proving almost-sure termination, which leverages a higher-order
specification to directly express a relationship between the behavior of a sampler, checker, and error
credit values. We then apply this specification to show that WalkSAT, a randomized SAT solver
whose behavior is highly dependent on state, almost surely recognizes satisfiable 3SAT formulas.

6 Semantic Model and Soundness

We now turn our attention to the semantic model of Eris, which we use to prove soundness of the
proof rules for Eris and to prove the adequacy theorem presented in §3.

Following standard practice [Jung et al. 2018], we define Eris Hoare triples in terms of a weakest
precondition predicate

{%} 4 {&} ≜ �(% ∗ wp 4 {&})

where the persistence modality � ensures that the predicate can be duplicated. However, our
definition of the weakest precondition predicate wp 4 {&} is novel. The definition is shown below.
We omit from the definition the parts pertaining to how the Iris logic handles modifications to
resources via “update modalities”, since these details would distract from the definition and are
completely standard. The full definition can be found in Appendix A.1.

wp 41 {Φ} ≜ (41 ∈Val ∧ Φ(41))

∨ (41 ∉Val ∧ ∀f1, Y1 . ((f1) ∗ E• (Y1) ∗

GLM(41, f1, Y1, (_ 42, f2, Y2 . ⊲(((f2) ∗ E• (Y2) ∗ wp 42 {Φ})))

The overall structure of this definition is similar to the weakest precondition for a non-probabilistic
language [Jung et al. 2018, §6.3]. In particular, wp 41 {Φ} is defined by guarded recursion. The
first clause of the disjunction indicates that the weakest precondition for a value simply means
that the postcondition Φ(41) must be satisfied. The second clause of the disjunction deals with the
non-value case. It requires that the state interpretation ((f) is valid, which connects the logical
points-to connectives to the physical state of the program. Both the heap and the presampling
tapes are handled in this way, using the standard interpretation of state as partial finite maps from
locations (resp. labels) to values (resp. presampled values) [Gregersen et al. 2024; Jung et al. 2018].
The weakest precondition gives meaning to ownership of the error resource E (Y) through the

error interpretation E• (Y1). Just like for the state interpretation, the error interpretation E• (Y1)
connects the logical connective for error credits E (Y) to the errors during program execution. Error
credits are defined using the authoritative resource algebra [Jung et al. 2018, 2015b] over the positive
real numbers with addition and the natural order, whose valid elements are the numbers in the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:24 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

half-open interval [0, 1). The definition of the error credit resource is thus similar to that of later
credits [Spies et al. 2022], but instead of Auth(N, +) we use Auth(R+0 , +) with validity restricted to
elements strictly smaller than 1. The proposition E (Y) asserts ownership of a fragmental element
of the resource algebra, while E• (Y) stands for the authoritative view. The error rules from §3
then follow directly from the definition of the error credit resource together with the rules for the
authoritative resource algebra.
The novel part of our definition of weakest precondition (besides the addition of the error

interpretation) is that the recursive appearance of the weakest precondition is wrapped in the
graded lifting modality GLM. The exact way in which GLM connects the operational semantics to
errors will be explained in the next section. For now, we focus on its intuitive use in the weakest
precondition. Think of (41, f1) as the starting configuration and of Y1 as the current error budget.
Through GLM, we quantify over the configurations we may step to according to the operational
semantics as (42, f2), and Y2 stands for the left-over error budget. The final part of the definition
then indicates that the state and error interpretations with respect to f2 and Y2 have to be satisfied,
and that the weakest precondition has to hold recursively for Y2 and Φ. Crucially, this recursive
appeal to the weakest precondition occurs under the later modality ⊲. This is what allows us to
take the guarded fixed point of wp (which, in turn, allows us to prove soundness of the recursion
rule ht-rec).

For ErisC , the only difference is that we omit the ⊲ modality in the definition of weakest precon-
dition and instead define the predicate by the least fixed point (this is well-defined since wp only
occurs positively inside its own definition).

6.1 The Graded Li�ing Modality

We now turn our attention to the graded lifting modality GLM(41, f1, Y, /). Eris uses the graded
lifting modality to construct approximate predicate liftings of the graded predicate on configurations
/ with respect to the distributions induced by the execution of (41, f1). As we shall see, to prove
the modality, the initial error budget Y may be shared between the modality and / . Our use of the
graded lifting modality in the weakest precondition bears similarity with the coupling modality of
Clutch [Gregersen et al. 2024], which was used to construct couplings between the execution of a
specification program and its refinement, but the definition of our modality itself is rather different.
To focus the discussion on the most interesting aspects of the modality, we first present a

simplified version step-simple that only supports reasoning about uniform error bounds. We then
show how to modify the definition to enable expected error bound reasoning in step-exp. The full
definition, which additionally supports expected error reasoning for presampling tapes, can be
found in Appendix A.2.
The simplified version is specified by the following rule (which should be read as a definition,

expressing that the GLM(41, f1, Y, /) predicate in the conclusion holds if the separating conjunction
of the premises above the line holds):

red(41, f1) Y1 + Y2 ≤ Y Prstep(41,f1) [¬'] ≤ Y1 ∀42, f2. '(42, f2) ∗ / (42, f2, Y2)

GLM(41, f1, Y, /)
step-simple

The intuitive meaning of step-simple is that we can split the starting error budget Y into Y1 + Y2
and then likewise split the reasoning about the behaviour of the program into reasoning about the
first step and about the rest of the execution separately. The error bounds can then be composed to
yield a bound on the execution of the whole program.

On a technical level, the first premise of step-simple ensures that the program does not get stuck
(red is short for reducible). The second premise states that the error budget can be split into two
parts Y1 and Y2 provided their sum does not exceed Y. The inequality gives some flexibility in error

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:25

accounting by allowing one to “weaken” the error bound: it is always sound to leave error budget
unused. The user of the rule then picks an auxiliary intermediate predicate on configurations '.
The premise Prstep(41,f1) [¬'] ≤ Y1 states that the configurations (42, f2) which (41, f1) can reduce
to in one step do not violate ' with error more than Y1, i.e., Prstep(41,f1) [¬'] ≤ Y1. Finally, the last
premise requires a proof of / for configurations (42, f2) with error budget Y2, but in that proof we
may now assume that '(42, f2) is satisfied, since we “paid” for this assumption with Y1.

Error in expectation. The rule step-simple imposes a constant bound on the error credit Y2
that is left available for the correctness proof of the remainder of the program (42, f2). However, as
we saw in the examples on expected error analysis, some expressions 42 may need more or less
error credit than others. This intuition is realized via the next rule.

red(d1) Prstep(d1) [¬'] ≤ Y1 ∃A . ∀d2. E2 (d2) ≤ A

Y1 +
∑
d2∈Cfg step(d1) (d2) · E2 (d2) ≤ Y

∀d2 . '(42, f2) ∗ E2 (d2) ≥ 1 ∨ / (d2, (E2 (d2)))

GLM(d1, Y, /)
step-exp

The first two premises serve the same purpose as in step-simple, and the third premise is a purely
technical side-condition that guarantees that the sum in premise four exists. The novelty in step-

exp is that instead of a fixed error for the “rest of the program”, we have a configuration-indexed
family of errors E2. Premise four states that the error budget Y can be split into Y1 and, for each d2
the starting configuration d1 can step to, E2 (d2) error credits, so long as the weighted sum of the
errors multiplied by the probability of attaining each d2 is below Y. This weighted sum is, of course,
nothing other than the expectation of the random variable E2 over the distribution step(d1). The
last premise is similar to that of step-simple, except that step-exp of course uses the rescaled error
E2 (d2). Another detail that was omitted from the simple rule is that we include a clause that allows
us to conclude immediately if the remaining error budget exceeds 1.

6.2 Soundness, Adequacy, and Almost-Sure Termination

Using ourmodel of weakest preconditions and Hoare triples, we can prove soundness of the program
logic proof rules. For reasons of space, we refer the reader to the accompanying Coq formalization
for details. The adequacy theorem for Hoare triples follows directly from the corresponding theorem
for the weakest precondition:

Theorem 9 (Limit WP adeqacy). If E (Y) ⊢ wp 4 {q} then ∀f. Prexec(4,f) [¬q] ≤ Y

Since exec is continuous in the sense that (∀=. Prexec= (4,f) [q] ≤ G) =⇒ Prexec (4,f) [q] ≤ G ,
it suffices to prove the corresponding statement about finite executions of arbitrary length. By
applying the standard soundness theorem of the Iris base logic, we can thus restrict our attention
to showing that ⊢ ⊲= Prexec= (4,f) [¬q] ≤ Y holds. The proof then proceeds by induction on the step
index =. The inductive step for this argument hinges on the following lemma:

GLM(d1, Y1, (_(d2, Y2), ⊲
=+1 (Prexec= (d2) [¬q] ≤ Y2))) ⊢ ⊲

=+1 (Prexec=+1 (d1) [¬q] ≤ Y1)

Intuitively, this says that the graded lifting modality can be composed with an error bound for an
=-step execution of the program d1 to obtain an error bound on the execution of d1 for (= + 1) steps.
This should come as no surprise, since GLM requires the existence of an error bound on a single
execution step. The key lemma that allows this composition is then the corresponding lemma for
composing error bounds along monadic composition:

Lemma 10. Let ` ∈ D(�), and let 5 be an �-indexed family of distributions, and let E2 be a family
of errors. If Pr` [¬q] ≤ Y and ∃G . ∀0. 0 ≤ E2 (0) ≤ G and (∀0. q (0) =⇒ Pr5 (0) [¬k] ≤ E2 (0)),
then Pr`≫=5 [¬k] ≤ Y1 +

∑
0∈� ` (0) · E2 (0).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:26 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

This lemma in turn is proven by carefully re-arranging the terms of the sums obtained from the
definition of the bind of the probability monad.

Finally, the almost-sure termination theorem for ErisC (Theorem 8) is proved by (1) proving the
total adequacy theorem in much the same manner as the partial adequacy theorem (except that no
later modalities are involved) and (2) by the completeness of the real numbers, in the sense that for
any G,~ ∈ R, if ∀Y > 0. G − Y ≤ ~ then G ≤ ~.

7 Related Work

Accuracy of probabilistic programs. Our logic is inspired by aHL [Barthe et al. 2016b], which
introduced the idea of using a grading on Hoare triples that indicates the probability of the program
failing to satisfy the specification, and then adding those errors through the sequence rule. This work
considered an imperative probabilistic While language and used their approach to reason about
accuracy of differentially private mechanisms. These ideas were then extended to the higher-order
setting first by Sato et al. [2019], who consider a probabilistic lambda calculus with terminating
recursion, and then by Aguirre et al. [2021], who add global first-order state via a state monad.
Compared to them, we consider full recursion and higher-order state with dynamic allocation, and
we validate new proof principles, including expected error composition and value dependent error.

Expectation preserving composition of error can be related to expectation-based logics, such as
Batz et al. [2019]; Kaminski et al. [2016]; Morgan et al. [1996], where predicates are real-valued
random variables. These logics are presented via weakest-precondition-style predicate transform-
ers, and the weakest precondition of a sampling statement is precisely the expected value of its
postcondition, similar to how credits are transformed in our ht-rand-exp rule. These logics can
also be used to reason about approximate correctness, but they target first-order imperative lan-
guages. Recently, these techniques were applied in Batz et al. [2023] to reason about amortized
expected time complexity of probabilistic programs. Various weakest pre-expectation-based logics
also support techniques for proving almost-sure termination [Kaminski 2019, Chapter 6]. In a
variant of one of these logics, McIver et al. [2018] present a powerful rule for proving almost-sure
termination of probabilistic programs that are out of scope of other techniques. While it is unclear
if it is possible to encode this general principle using error credits, we have used ErisC to prove that
their Example 5.4 is AST. The recently presented Caesar [Schröer et al. 2023] provides SMT-based
support for verification in expectation-based logics.

Other approaches have tried to automate the computation of the probability that a program fails
to satisfy a postcondition [Chakarov and Sankaranarayanan 2013; Smith et al. 2019; Wang et al.
2021]. These exploit different techniques of probability theory and programming language theory,
such as martingales, concentration inequalities, approximants of fixed points, etc.

Approximate reasoning for probabilistic programs is also useful in the relational setting. Barthe
et al. [2016a] introduce approximate couplings, which can be applied to prove different notions of
approximate equivalence or differential privacy, in the setting of first-order imperative programs.
Aguirre et al. [2021] also show that these techniques can be extended to the higher-order setting
with global state. Also in the relational setting, the line of work on Rely [Carbin et al. 2013] considers
two kinds of approximate properties: the probability that a program executes correctly, and the
accuracy of the result itself.

Credit-based reasoning and resource analysis. There is a long line of work on automated
amortized resource analysis [Hoffmann and Jost 2022; Hofmann and Jost 2003], which uses a
substructural type system that associates a potential (a kind of stored credit) with a data structure.
Recent work has extended this approach to probabilistic programs [Das et al. 2023; Ngo et al. 2018;

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:27

Wang et al. 2020] to prove bounds on expected costs. Analogously to our expected error rules, their
typing rules for sampling instructions allow to average the potential across all possible outcomes.
Atkey [2011] proposes a realization of ARAA-style potentials as a separation logic resource,

via a notion of credit. This idea was adapted to _ref and implemented in Coq by Charguéraud and
Pottier [2019], and later brought to Iris [Mével et al. 2019; Pottier et al. 2024]. Error credits follow a
parallel story, namely realizing aHL-style error annotations on triples as a separation logic resource
and exploring the gains on expressive power we obtain. However, there are no further similarities
between the implementations of error credits and time credits. In particular, the semantics of the
languages, the property being tracked and the approach to proving soundness are all different.

Probabilities and separation logic. A number of works in recent years have focused on the
interactions between separation logic and probabilities. Gregersen et al. [2024] introduced Clutch,
upon which we build. They present a separation logic to reason about higher-order probabilistic
programs, focusing on relational properties and in particular contextual equivalence. Batz et al.
[2019] present an expectation-based version of separation logic, which can be used to prove error
bounds for first-order pointer programs.
Polaris [Tassarotti and Harper 2019] is a concurrent program logic based on Iris for proving a

coupling between a randomized program and a more abstract model. The soundness theorem for
Polaris allows bounds on probabilities and expectations in the model to be translated into bounds
on the program across schedulers.

Other works focus on reinterpreting the notion of separating conjunction in separation logic to
represent probabilistic independence. This line of work originated with Barthe et al. [2020], and
different variants have been developed (Bao et al. [2022]; Li et al. [2023]). These works also focus
on first-order programs. In our work, the separating conjunction has the standard meaning, it is
only Hoare triples as whole that have a probabilistic interpretation. Exploring a deeper connection
between our logic and separation logics for independence would be an interesting follow-up.

8 Conclusions and Future Work

In this paper we presented Eris, which develops the idea of representing error as a resource to
enable novel reasoning principles for approximation bounds that lead to more modular and precise
specifications compared to prior work, including almost sure termination of probabilistic algorithms.

There are multiple directions for future work. Firstly, it would be interesting to extend Eris to a
concurrent language, to support reasoning about approximate randomized concurrent algorithms.
Secondly, the idea of expected error composition should apply to other kinds of separation logic
resources, such as time credits, and could be used to reason about expected time complexity
of higher-order probabilistic programs. Thirdly, by integrating ideas from separation logics for
probabilistic independence, we could encode concentration bounds that exploit this independence
and thereby obtain more precise error bounds. Finally, we believe our ideas should also apply to
the relational setting, where the error credits could be used to prove approximate couplings, and
have interesting applications to security and differential privacy.

Acknowledgments

This work was supported in part by the National Science Foundation, grant no. 2225441, the
Carlsberg Foundation, grant no. CF23-0791, a Villum Investigator grant, no. 25804, Center for Basic
Research in Program Verification (CPV), from the VILLUM Foundation, and the European Union
(ERC, CHORDS, 101096090). Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:28 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

A Appendix: Full Definition of the Weakest Precondition and Graded Li�ing Modality

The definitions of the weakest precondition and of the graded lifting modality as presented in §6
contain some simplifications for the sake of pedagogy. We now restate the definitions in full detail.

A.1 The Weakest Precondition in Detail

The full definition of the weakest precondition differs from the one presented in §6 in that it also
contains the invariant mask annotation and fancy update modality of Iris.

wpE 41 {Φ} ≜ (41 ∈Val ∧ |⇛EΦ(41)) ∨

(41 ∉Val ∧ ∀f1, Y1. ((f1) ∗ E• (Y1) ∗ |⇛E ∅

GLM (41, f1, Y1, (_ 42, f2, Y2 . ⊲ |⇛∅ E (((f2) ∗ E• (Y2) ∗ wpE 42 {Φ})))

Just as before, the full definition of the total weakest precondition is obtained by omitting the later
modality on the last line, and by taking the least instead of the guarded fixed point of the recursive
definition.

A.2 The Graded Li�ing Modality in Detail

In §6.1, we presented a simplified version of the graded lifting modality which does not support
presampling tapes. The full definition of GLM contains two clauses: step-exp for expected error
lifting of program steps and statestep-exp for the presampling analog.
The rules in this section should be read as defining GLM as an inductive predicate, i.e. as the

least fixed point of the closure system associated to the rules.

Adding presampling tapes. The presampling ghost operations on tapes are realized through
an auxiliary state steps relation state_step : Label × State→ D(State). If] is the label associated to
an (allocated) tape with bound # , then state_step] (f1) denotes the distribution on states obtained
by appending a uniformly randomly sampled value between 0 and # to the end of tape]:

state_step] (f1) (f2) =

{
1

#+1 if f2 = f1 [] → (#, ®= · =)] and f1 (]) = (#, ®=) and = ≤ #,

0 otherwise.

We can now extend the graded lifting modality to allow taking state steps. Just as we did with
step-simple, we will first discuss a simplified rule that does not support reasoning about errors in
expectation. In practice, this rule is derivable from the rule statestep-exp below.

Y1 + Y2 ≤ Y Prstate_step] (f1) [¬'] ≤ Y1 ∀f2. '(f2) ∗ GLM(41, f2, Y2, /)

GLM(41, f1, Y, /)
statestep-simple

The user of the rule can, once again, split the error budget Y between a first step and the remainder
of the program. In statestep-simple, however, the first step is a state step, i.e. a purely logical step
in the ghost state. The recursive occurrence of GLM in the last premise of statestep-simple allows
the user of the modality to perform a number of state steps before eventually proving the base case
of the modality, namely step-exp.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:29

Finally, we can combine the idea of reasoning of expected-error reasoning with state steps via
the following rule.

red(41, f1) Prstate_step] (f1) [¬'] ≤ Y1 ∃A . ∀d2 . E2 (d2) ≤ A

Y1 +
∑

f2∈State

state_step(41, f1) (41, f2) · E2 (41, f2) ≤ Y

∀f2 . '(f2) ∗ E2 (41, f2) ≥ 1 ∨ GLM(41, f2, E2 (41, f2))

GLM(41, f1, Y, /)
statestep-exp

This rule is used, for instance, to derive the program logic rule presample-exp.

B Appendix: Additional Details for Collision-Free Hash Map

We include the code for the insertion function for a collision-free, resizing hash map, as studied
in §4.4. A hash map is represented as a tuple (;, ℎ5 , E, B, A), where ; is an array containing the physical
representation of the map, ℎ5 is a (collision-free) hash function as shown in §4.3, E is the current
size of the array containing the hash map, B is the number of initialized entries and A is the size
threshold before resizing:

insert hmF ≜ let (;, ℎ5 , E, B, A) = hm in

let (1, ℎ5 ′) = hash_rs ℎ5 F in

letF ′ = ! ; [1] in

ifF ′ = () then

; [1] ← F

if B + 1 = A then

let ; ′ = resize ; E E in

(; ′, ℎ5 ′, 2 ∗ E, B + 1, 2 ∗ A)

else (;, ℎ5 ′, E, B + 1, A)

else (;, ℎ5 ′, E, B, A)

Note in particular that if we try to insert an elementF and there is another elementF ′ with the
same hash, thenF will not get inserted into the table. However, the specification of hash_rs ensures
that this will not happen if we have ownership of E ((3 · '0)/(4 ·+0)).

The core part of the representation predicate for the hash map is shown below:

isHashmap ℎ< =B ≜ ∃;, ℎ5 , E, B, A ,<, C1; .(ℎ< = (;, ℎ5 , E, B, A))∗

; ↦→∗ C1; ∗ ((filterUnits C1;) ≡ =B)∗

cf _hash_rs ℎ5 < E B A∗

(∀(8,F : N).<[F] = 8 ↔ C1; [8] = F)∗

(∀8 < E, 8 ∉ img< → C1; [8] = ()) ∗ (. . .)

This should be read as “ℎ< is a hash map representing the set (of natural numbers) =B”. The hash
map contains a table C1; whose contents are either natural numbers or unit, and the set of natural
numbers it contains is exactly =B . The index at which every element is located is controlled by a
collision-free hash function ℎ5 , that tracks a partial map<. Thus the table will contain an element
F at index 8 if and only if< mapsF to 8 .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

246:30 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

C Appendix: Expectation-Preserving Composition on Words

While ht-rand-exp and presample-exp can move error credits between the outcomes of a single
random event, in order to prove the planner rule we need to move error credits out of the sequence of
events which sample an entire target word. Defining a suitable sequence of expectation-preserving
composition steps to accomplish this can be subtle: sampling any prefix of our target word should
decrease our error credit, but sampling a prefix of the target followed by an erroneous sample
should yield an amplification on our initial credit amount.
Let ®F be a word of length ! > 0 in the alphabet [0, #]. For 0 ≤ 8 ≤ !, define the constants

ecAmp#,! ≜ 1 +
1

(# + 1)! − 1
ecRem#,! (8) ≜ 1 −

(# + 1)8 − 1

(# + 1)! − 1

so that 0 ≤ ecRem#,! (8) < 1 < ecAmp#,! . Suppose we want to amplify some positive amount

of credit Y against ®F ; that is we seek to either sample all of ®F , or obtain extra error credits. For
0 ≤ 8 < !, define the error distribution functions

�Y# ,! (8, 2) ≜

{
ecRem#,! (8 + 1) · Y 2 = ®F [8]

ecAmp#,! · Y otherwise

Starting with E
(
ecRem#,! (8) · Y

)
the function �Y

,!
(8, _) is mean-preserving, since

#∑

2=0

�Y# ,! (8, 2) = ecRem#,! (8 + 1) · n + # · ecAmp#,! · Y

=

(
(# + 1) (# + 1)! − (# + 1)8+1

(# + 1)! − 1

)
· Y

= (# + 1) · ecRem#,! (8) · Y

Now we can redistribute the error credit out of the event where we sample ®F and distribute
it evenly into all other cases, using ! − 1 steps of advanced composition. Starting with 8 = 0,
at the beginning of the 8th sample we have will have correctly sampled the first 8 characters
of ®F and own E

(
ecRem#,! (8) · Y

)
. At step 8 , perform expectation preserving composition using

the error function �Y
,!
(8, _). Each composition either correctly samples the next character of ®F

and decreases the error credit supply to E
(
ecRem#,! (8 + 1) · Y

)
, or increases it to E

(
ecAmp#,! · Y

)
.

Note that E
(
ecRem#,! (0) · Y

)
= E (Y) for the initial case, and E

(
ecRem#,! (!) · Y

)
= E (0) once ®F is

completely sampled. In aggregate, this sequence of proof steps will either result in sampling ®F or
increasing our error credit by a factor of ecAmp#,! .

Implemented using presample-exp, this procedure proves the amplification lemma from §5.2.4:
〈
∃®9 .] ↩→ (#, ®= ++ ®9) ∗ E

(
ecAmp#,! · Y

)〉
4 ⟨q⟩ ⟨] ↩→ (#, ®= ++ ®F)⟩ 4 ⟨q⟩

⟨] ↩→ (#, ®=) ∗ E (Y)⟩ 4 ⟨q⟩

Finally, it will be convenient to define a lower bound on the amount of extra credit generated
each time our chain of advanced composition fails to sample ®F : ecExc#,! ≜ ecAmp#,! − 1. Since
ecRem#,! (8) < 1 for all 0 ≤ 8 ≤ !, we can prove that

E

(
ecAmp#,!

)
∗ E

(
ecRem#,! (8)

)
∗ E

(
ecExc#,!

)
(7)

In other words, when we fail to sample ®F using this technique we have at least enough credit to
try again, plus an additional E

(
ecExc#,! · Y

)
.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:31

References

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata, and Tetsuya Sato. 2021. Higher-order

probabilistic adversarial computations: categorical semantics and program logics. Proc. ACM Program. Lang. 5, ICFP

(2021), 1–30. https://doi.org/10.1145/3473598

Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph

Tassarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic

Programs - Coq Artifact. https://doi.org/10.5281/zenodo.11489778

Tamarah Arons, Amir Pnueli, and Lenore D. Zuck. 2003. Parameterized Verification by Probabilistic Abstraction. In

Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of

the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings

(Lecture Notes in Computer Science, Vol. 2620), Andrew D. Gordon (Ed.). Springer, 87–102. https://doi.org/10.1007/3-540-

36576-1_6

Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science Volume 7,

Issue 2 (June 2011). https://doi.org/10.2168/LMCS-7(2:17)2011

Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A separation logic for negative dependence. Proc. ACM

Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498719

Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016a. Advanced

Probabilistic Couplings for Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

Andrew C. Myers, and Shai Halevi (Eds.). ACM, 55–67. https://doi.org/10.1145/2976749.2978391

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016b. A Program Logic for Union

Bounds. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss-Dagstuhl -

Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2016.107

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. A probabilistic separation logic. Proc. ACM Program. Lang. 4, POPL (2020),

55:1–55:30. https://doi.org/10.1145/3371123

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29. https://doi.org/10.1145/3290347

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2023. A Calculus for

Amortized Expected Runtimes. Proc. ACM Program. Lang. 7, POPL (2023), 1957–1986. https://doi.org/10.1145/3571260

Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.

In CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA,

November 3-5, 1993, Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM,

62–73. https://doi.org/10.1145/168588.168596

Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. CoRR abs/1407.3561 (2014). arXiv:1407.3561

http://arxiv.org/abs/1407.3561

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A User-Friendly Library of Real Analysis for

Coq. Math. Comput. Sci. 9, 1 (2015), 41–62. https://doi.org/10.1007/S11786-014-0181-1

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that execute on

unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery,

New York, NY, USA, 33–52. https://doi.org/10.1145/2509136.2509546

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer

Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 511–526. https:

//doi.org/10.1007/978-3-642-39799-8_34

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning 62, 3 (March 2019), 331–365.

https://doi.org/10.1007/s10817-017-9431-7

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition.

MIT Press. http://mitpress.mit.edu/books/introduction-algorithms

Ankush Das, Di Wang, and Jan Hoffmann. 2023. Probabilistic Resource-Aware Session Types. Proc. ACM Program. Lang. 7,

POPL (2023), 1925–1956. https://doi.org/10.1145/3571259

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s highly available key-

value store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Steven-

son, Washington, USA, October 14-17, 2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.). ACM, 205–220.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

https://doi.org/10.1145/3473598
https://doi.org/10.5281/zenodo.11489778
https://doi.org/10.1007/3-540-36576-1_6
https://doi.org/10.1007/3-540-36576-1_6
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1145/3498719
https://doi.org/10.1145/2976749.2978391
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3571260
https://doi.org/10.1145/168588.168596
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://doi.org/10.1007/S11786-014-0181-1
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/s10817-017-9431-7
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3571259

246:32 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassaro�i, and L. Birkedal

https://doi.org/10.1145/1294261.1294281

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL, Article 26

(2024). https://doi.org/10.1145/3632868

Jan Hoffmann and Steffen Jost. 2022. Two decades of automatic amortized resource analysis. Math. Struct. Comput. Sci. 32, 6

(2022), 729–759. https://doi.org/10.1017/S0960129521000487

Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space usage for first-order functional programs. In

Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New

Orleans, Louisisana, USA, January 15-17, 2003, Alex Aiken and Greg Morrisett (Eds.). ACM, 185–197. https://doi.org/10.

1145/604131.604148

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. SIGPLAN Not. 51, 9 (sep

2016), 256–269. https://doi.org/10.1145/3022670.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015a. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In ACM-SIGACT Symposium on Principles of

Programming Languages. https://api.semanticscholar.org/CorpusID:1174404

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015b. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

637–650. https://doi.org/10.1145/2676726.2676980

Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. Ph. D. Dissertation.

RWTH Aachen University, Germany. http://publications.rwth-aachen.de/record/755408

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems - 25th European

Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9632), Peter

Thiemann (Ed.). Springer, 364–389. https://doi.org/10.1007/978-3-662-49498-1_15

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.

3009855

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM

Program. Lang. 7, PLDI (2023), 148–171. https://doi.org/10.1145/3591226

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption Function. In Advances in Cryptology -

CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA,

August 16-20, 1987, Proceedings (Lecture Notes in Computer Science, Vol. 293), Carl Pomerance (Ed.). Springer, 369–378.

https://doi.org/10.1007/3-540-48184-2_32

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming

Languages and Systems (Lecture Notes in Computer Science), Luís Caires (Ed.). Springer International Publishing, Cham,

3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Gary L. Miller. 1975. Riemann’s Hypothesis and tests for primality. In Proceedings of the Seventh Annual ACM Symposium on

Theory of Computing (Albuquerque, New Mexico, USA) (STOC ’75). Association for Computing Machinery, New York,

NY, USA, 234–239. https://doi.org/10.1145/800116.803773

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.

Lang. Syst. 18, 3 (1996), 325–353. https://doi.org/10.1145/229542.229547

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 496–512. https:

//doi.org/10.1145/3192366.3192394

François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével. 2024. Thunks and Debits in Separation Logic

with Time Credits. Proc. ACM Program. Lang. 8, POPL (2024), 1482–1508. https://doi.org/10.1145/3632892

Michael O Rabin. 1980. Probabilistic algorithm for testing primality. Journal of Number Theory 12, 1 (Feb. 1980), 128–138.

https://doi.org/10.1016/0022-314x(80)90084-0

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/3632868
https://doi.org/10.1017/S0960129521000487
https://doi.org/10.1145/604131.604148
https://doi.org/10.1145/604131.604148
https://doi.org/10.1145/3022670.2951943
https://doi.org/10.1017/S0956796818000151
https://api.semanticscholar.org/CorpusID:1174404
https://doi.org/10.1145/2676726.2676980
http://publications.rwth-aachen.de/record/755408
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3158121
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1145/800116.803773
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3632892
https://doi.org/10.1016/0022-314x(80)90084-0

Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:33

Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu. 2019. Formal Verifica-

tion of Higher-Order Probabilistic Programs: Reasoning about Approximation, Convergence, Bayesian Inference, and

Optimization. Proc. ACM Program. Lang. 3, POPL (2019), 38:1–38:30. https://doi.org/10.1145/3290351

Philipp Schröer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2023. A Deductive

Verification Infrastructure for Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 2052–2082. https:

//doi.org/10.1145/3622870

Calvin Smith, Justin Hsu, and Aws Albarghouthi. 2019. Trace abstraction modulo probability. Proc. ACM Program. Lang. 3,

POPL (2019), 39:1–39:31. https://doi.org/10.1145/3290352

R. Solovay and V. Strassen. 1977. A Fast Monte-Carlo Test for Primality. SIAM J. Comput. 6, 1 (1977), 84–85. https:

//doi.org/10.1137/0206006

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022.

Later credits: resourceful reasoning for the later modality. Proc. ACM Program. Lang. 6, ICFP (2022), 283–311. https:

//doi.org/10.1145/3547631

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.

Lang. 3, POPL (2019), 64:1–64:30. https://doi.org/10.1145/3290377

Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising expectations: automating expected cost analysis with types.

Proc. ACM Program. Lang. 4, ICFP (2020), 110:1–110:31. https://doi.org/10.1145/3408992

Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative Analysis of

Assertion Violations in Probabilistic Programs. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY,

USA, 1171–1186. https://doi.org/10.1145/3453483.3454102

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.

https://doi.org/10.1145/3290351
https://doi.org/10.1145/3622870
https://doi.org/10.1145/3622870
https://doi.org/10.1145/3290352
https://doi.org/10.1137/0206006
https://doi.org/10.1137/0206006
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3453483.3454102

	Abstract
	1 Introduction
	2 Preliminaries and the Language λ_(μ,ref,rand)
	2.1 Probabilities and Programs
	2.2 Language Definition and Operational Semantics

	3 The Eris Logic
	4 Case Studies
	4.1 Dynamic Vectors under a Faulty Allocator
	4.2 Amortized Error for Collision-Free Hash Functions
	4.3 Collision-Free Resizing Hash Functions
	4.4 Collision-Free Resizing Hash Map
	4.5 Amortized Hash Functions and Merkle Trees
	4.6 Further Case Studies

	5 Almost-Sure Termination via Error Credits
	5.1 The Erist Logic, Adequacy, and Almost-Sure Termination
	5.2 Case Studies

	6 Semantic Model and Soundness
	6.1 The Graded Lifting Modality
	6.2 Soundness, Adequacy, and Almost-Sure Termination

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	A Appendix: Full Definition of the Weakest Precondition and Graded Lifting Modality
	A.1 The Weakest Precondition in Detail
	A.2 The Graded Lifting Modality in Detail

	B Appendix: Additional Details for Collision-Free Hash Map
	C Appendix: Expectation-Preserving Composition on Words
	References

