
RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR

FINE-GRAINED CONCURRENCY AND LOGICAL ATOMICITY

DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

University of Groningen and Radboud University
e-mail address: d.frumin@rug.nl

Radboud University and Delft University of Technology
e-mail address: mail@robbertkrebbers.nl

Aarhus University
e-mail address: birkedal@cs.au.dk

Abstract. We present a new version of ReLoC: a relational separation logic for proving
refinements of programs with higher-order state, fine-grained concurrency, polymorphism
and recursive types. The core of ReLoC is its refinement judgment e - e′ : τ , which states
that a program e refines a program e′ at type τ . ReLoC provides type-directed structural
rules and symbolic execution rules in separation-logic style for manipulating the judgment,
whereas in prior work on refinements for languages with higher-order state and concurrency,
such proofs were carried out by unfolding the judgment into its definition in the model.
ReLoC’s abstract proof rules make it simpler to carry out refinement proofs, and enable us
to generalize the notion of logically atomic specifications to the relational case, which we
call logically atomic relational specifications.

We build ReLoC on top of the Iris framework for separation logic in Coq, allowing us to
leverage features of Iris to prove soundness of ReLoC, and to carry out refinement proofs
in ReLoC. We implement tactics for interactive proofs in ReLoC, allowing us to mechanize
several case studies in Coq, and thereby demonstrate the practicality of ReLoC.

ReLoC Reloaded extends ReLoC (LICS’18) with various technical improvements, a new
Coq mechanization, and support for Iris’s prophecy variables. The latter allows us to carry
out refinement proofs that involve reasoning about the program’s future. We also expand
ReLoC’s notion of logically atomic relational specifications with a new flavor based on the
HOCAP pattern by Svendsen et al .

1. Introduction

A fundamental question in computer science is when two programs are equivalent? The
“golden standard” of program equivalence is contextual equivalence, stated directly in terms of
the operational semantics. Intuitively, expressions e and e′ are contextually equivalent if no
well-typed client can distinguish them, which formally means that for all well-typed contexts
C, the expression C[e] has same observable behaviors as C[e′]. Contextual equivalence can
be further decomposed into contextual refinement. An expression e contextually refines e′ if,

Key words and phrases: separation logic, concurrency, program refinement, Iris, Coq.

Preprint submitted to
Logical Methods in Computer Science

© Dan Frumin, Robbert Krebbers, and Lars Birkedal
CC© Creative Commons

http://creativecommons.org/about/licenses

2 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

for all contexts C, if C[e] has some observable behavior, then so does C[e′]. Expressions e
and e′ are contextually equivalent iff e contextually refines e′ and vice versa.

Contextual refinement and contextual equivalence have many applications in computer
science. One such application is to specify programs in terms of other programs. For example,
one can specify an implementation of a program module (say, a map) that internally uses
an efficient but complicated data structure (say, a balanced search tree) by stating that it
refines an implementation that internally uses an inefficient but easy to understand data
structure (say, an unordered list). In the context of a typed language that supports data
abstraction, a specification of a program module in terms of refinement shows that clients of
the program module cannot depend on the internal representation of data. This can be seen
as an instance of the representation independence principle [Rey74, Mit86].

In the context of concurrency, contextual refinement is often used to specify a fine-
grained concurrent program module by stating that it contextually refines a coarse-grained
version. This is similar to showing that a fine-grained program module is linearizable
[HW90, FORY10], i.e., each fine-grained operation appears to take place instantaneously. A
simple example is the specification of a fine-grained concurrent counter by a coarse-grained
one, see Figure 1 for the code. The increment operation of the fine-grained version, counteri,
takes an “optimistic” lock-free approach to incrementing the value using a compare-and-set
operation inside a loop. If the value of the counter has been changed (for instance, by some
other thread), then the fine-grained counter reattempts the increment from the beginning.
The increment operation of the coarse-grained version, counters, is performed inside a critical
section guarded by a lock. We can state the desired refinement as follows:

counteri -ctx counters : (unit→ int)× (unit→ int).

Due to the instrumentation of the coarse-grained version with locks, this refinement expresses
that each operation of the fine-grained version takes place instantaneously. We will use the
counter as a simple running example throughout the paper.

Another application of contextual refinement and contextual equivalence is to state
algebraic properties of program constructs. For example, let us consider the non-deterministic
choice operator e1 ⊕ e2, which non-deterministically executes the expression e1 or e2. Using
contextual equivalence, we can state that this operator is commutative (e1 ⊕ e2 'ctx e2 ⊕ e1),
associative (e1 ⊕ (e2 ⊕ e3) 'ctx (e1 ⊕ e2) ⊕ e3), and that sequential composition distributes
over the operator ((e1 ⊕ e2); e3 'ctx (e1; e3) ⊕ (e2; e3)).

Proving contextual refinement and contextual equivalence. Contextual refinement
e -ctx e

′ : τ (and contextual equivalence e 'ctx e
′ : τ) are very strong notions because they

relate the expressions e and e′ in any well-typed context C with a hole of type τ . As a
consequence, proving contextual refinement and equivalence directly is challenging—one
has to consider arbitrary contexts C, which are only known to be well-typed. Contextual
refinement and equivalence are therefore typically proved indirectly using approaches based
on bisimulations (e.g., [Gor99, Pit00, KW06, SP07]) or logical relations (e.g., [Pit05, Ahm06,
DAB09, BST12, TTA+13]). In the present paper we focus on approaches based on logical
relations because they scale well to increasingly rich programming languages with features
such as impredicative polymorphism, recursive types, higher-order state, and fine-grained
concurrency.

In the approaches based on logical relations, the key is a notion of logical refinement,
notation e - e′ : τ . Logical refinement is defined by structural recursion over the type τ ,

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 3

Fine-grained grained version (i.e., the implementation):

read , λc. ! c

inci , rec inc c = let n = ! c in

if CAS(c, n, 1 + n) then n else inc c

counteri , let c = ref(0) in ((λ(). read c), (λ(). inci c))

Coarse-grained version (i.e., the specification):

incs , λc l. acquire l; let n = ! c in c ← (1 + n); release l; n

counters , let l = newlock () in let c = ref(0) in ((λ(). read c), (λ(). incs c l))

Figure 1. A fine-grained and coarse-grained concurrent counter. (Note that
the read operation is shared by both.)

rather than by quantification over all contexts. The soundness theorem of logical relations
states that logical refinement implies contextual refinement, i.e., that e - e′ : τ implies
e -ctx e

′ : τ . As a result, proving contextual refinement can be reduced to proving logical
refinement, which is generally much easier.

Unfortunately, it is difficult to construct a suitable notion of logical refinement when
considering language features like recursive types and higher-order state. In the presence
of (general) recursive types, no structurally-recursive definition over the type exists, and
in the presence of higher-order references, one needs some notion of recursively-defined
worlds [BRS+11]. The technique of step-indexing [AAV02, Ahm04] has been used to stratify
the definitions using recursion over a natural number, called the step-index, which corresponds
to the number of computation steps performed by the program.

Step-indexing has shown to be very effective by a large body of work on step-indexed
logical relations, e.g., [NDR11, HD11, BST12, ÇPG16, RG18]. However, definitions and
proofs are intricate because step-indices appear practically everywhere—they even appear
in definitions and proofs related to language features (say, products or sums) for which
step-indexing is orthogonal. Dreyer et al . thus proposed the “logical approach” to logical
relations [DAB09, DNRB10] to hide step-indices by abstracting and internalizing them in a
modal logic using the later modality (.) [AMRV07]. Turon et al . [TTA+13, TDB13] further
developed the logical approach by using separation logic [ORY01, O’H07, Bro07] to abstract
over program states and to handle (fine-grained) concurrency.

More recently, Krebbers et al . [KTB17] and Timany [Tim18] defined a logical relation
for program refinement based on the work of Turon et al . in the state-of-the-art higher-order
concurrent separation logic Iris [JKJ+18, JSS+15, JKBD16, KJB+17]. Iris supports impred-
icative invariants [SB14] and used-defined ghost state, which can be used to streamline the
definition of the logical relation, and to carry out proofs of challenging program refinements.
The meta theory of Iris is mechanized in the Coq proof assistant, and Iris comes equipped
with a proof mode [KTB17, KJJ+18]—an extensive set of Coq tactics for separation logic
proofs—which allowed them to mechanize all their results in Coq.

4 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Problem statement and key idea. To prove refinements of complicated program modules
in a scalable fashion, it is important to decompose refinement proofs into smaller refinements
that can be proved in isolation. As a simple example, let us consider the refinement of the
fine-grained and coarse-grained concurrent counter from Figure 1:

counteri -ctx counters : (unit→ int)× (unit→ int).

We wish to decompose the proof of this refinement into refinements for the read and increment
operations. Naively, one might consider proving contextual refinements for these operations.
Unfortunately, such contextual refinements do not hold—they only hold conditionally under
the assumption that the internal state in both of the implementations is related (including
the state of the lock used by the coarse-grained version).

Instead of performing composition at the level of contextual refinement, our key idea is
to perform composition at the level of logical refinement. By generalizing logical refinement
to become an internal (i.e., first-class) notion in (the Iris) separation logic, we can use the
connectives of separation logic to express conditional refinements. Logical refinements for
the operations of the concurrent counter are as follows:

Icnt −∗ (λ(). read ci) - (λ(). read cs) : unit→ int

Icnt −∗ (λ(). inci ci) - (λ(). incs cs lk) : unit→ int.

We use the magic wand (−∗, also known as separating implication) to make these refinements

conditional under the invariant Icnt (expressed using Iris’s invariant connective I), which is

defined as Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk , false). The invariant Icnt intuitively
expresses that in between function calls, the values of both counters are equal, and the lock
(used in the coarse-grained implementation) is in unlocked state. With logical refinements
for the individual operations at hand, we can compose them into the logical refinement
counteri - counters : (unit→ int)× (unit→ int), which using soundness gives us the desired
contextual refinement counteri -ctx counters : (unit→ int)× (unit→ int).

Treating logical refinement as an internal notion in separation logic succinctly distin-
guishes our work from prior work. In prior work on refinements for rich languages, e.g.,
the aforementioned work by Turon et al . [TTA+13, TDB13], Krebbers et al . [KTB17], and
Timany [Tim18], logical refinement is an external notion (i.e., a proposition in ordinary
mathematics, rather than in separation logic), which means that one cannot concisely state
refinements that are conditional on the program state. To state and prove such refinements,
one needs to unfold the definition of the logical refinement into the model.

Apart from being able to decompose refinement proofs, internalizing logical refinement
gives us a number of other tangible benefits. First, it allows us to develop type-directed
structural rules and symbolic execution rules for proving logical refinements. Our symbolic
execution rules closely resemble the typical rules for symbolic execution in separation logic,
but come in two forms: for the program on the left-hand side and right-hand side of the
refinement, making it possible to write concise proofs.

Second, by internalizing logical refinement we can state logical refinements that apply
to the situation when the expression on the one side of the refinement contains a program
subject to specification, while the expression on the other side is arbitrary. We call such
specifications relational specifications. Relational specifications take the ability to decompose
refinement proofs one step further. As a simple example, let us consider the example from
Figure 1, where we proved that a fine-grained concurrent counter refines a coarse-grained
version. This refinement is insufficient if we want to prove that a program module that

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 5

uses internally the fine-grained counter (say, a ticket lock) refines another module that does
not use the coarse-grained counter (say, a spin lock). However, we can instead formulate a
relational specification for the program module that is proven just once, and derive different
logical (and thus by soundness, contextual) refinements from it.

A key challenge in stating relational specifications for operations is to concisely capture
that they behave as-if they were atomic, i.e., they appear to take place instantaneously.
There has been a long line of work on logically atomic specifications to reason about atomicity
in the context of Hoare-style logics [JP11, SBP13, dRPDG14, JSS+15, JLP+20]. We show
that such logically atomic specifications generalize to the relational case, and call them
logically atomic relational specifications. Concretely, we introduce relational specification
patterns based on da Rocha Pinto et al .’s TaDA-style [dRPDG14] and Svendsen et al .’s
HOCAP-style [SBP13] logically atomic specifications.

The ReLoC logic. Based on the previously described key ideas, we develop a relational
separation logic called ReLoC. ReLoC is built on top of Iris, allowing the user to leverage
the features of Iris such as invariants, (higher-order) ghost state, and prophecy variables.
Invariants and ghost state state are powerful mechanisms that support reasoning about
concurrent programs through used-defined protocols. Prophecy variables [AL91, JLP+20]
allow for speculative reasoning about the future state of concurrent programs. In Iris they
come in the form of ghost variables whose value can be referenced before they are specified,
thus allowing one to “prophesize” their potential value. We show how these features can be
used in ReLoC to prove challenging refinements.

We have implemented ReLoC as a shallow embedding on top of Iris in Coq [KTB17,
KJJ+18]. In addition to mechanizing all meta-theoretic results of ReLoC, like its soundness
theorem, we have implemented new tactics that support mechanized interactive reasoning
about program refinements in ReLoC in a practical and modular way. To our knowledge,
ReLoC is the first fully mechanized relational logic enabling reasoning about contextual
refinements of programs in a fine-grained concurrent higher-order imperative programming
language. The mechanization can be found at [FKB21a].

Contributions and structure of the paper.

• We present a relational logic ReLoC for reasoning about contextual refinements of fine-
grained concurrent higher-order imperative programs. We present our target programming
language (Section 2), an overview of ReLoC (Section 3), and a detailed description of its
type-directed structural rules and symbolic execution rules (Section 4).
• We introduce relational specification patterns based on TaDA [dRPDG14] and HOCAP-

style [SBP13] logically atomic specifications (Section 5).
• We show how to integrate prophecy variables into ReLoC, thereby enabling speculative

reasoning in proofs of program refinements (Section 6).
• We describe the logical relations model of ReLoC in Iris (Section 7).
• We describe the mechanization of ReLoC in Coq, and explain how we support mechanized

interactive reasoning in ReLoC in a practical and modular way (Section 8).

We discuss further related work in Section 9 and conclude in Section 10.
In addition to the case studies presented in this paper, we have also verified a collection

of refinements of concurrent programs from the literature. We give a brief overview of these
examples in Section 10.1; and the proofs can be found in the accompanying Coq sources.

6 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

τ ∈ Type ::= α | unit | bool | int | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | ∀α.τ | ∃α.τ | µα.τ | ref τ

v ∈Val ::= i | ` | true | false | (v1, v2) | inl(v) | inr(v) | rec f x = e i ∈ Z, ` ∈ Loc

| Λ.e | pack v | fold v

e ∈ Expr ::= x | v | if e then e1 else e2 | (e1, e2) | πi(e) | inl(e) | inr(e) i ∈ {1, 2}
| (match ewith inl(x)→ e1 | inr(x)→ e2) | e1(e2) | e〈〉
| pack(e) | unpack e1 in x. e2 | fold e | unfold e

| ref(e) | ! e | e1 ← e2 | CAS(e1, e2, e3) | fork {e} | . . .

Figure 2. The syntax of the HeapLang language.

Differences with the conference version of this paper. In the conference version
of this paper [FKB18] we described the first version of ReLoC. This paper extends the
conference paper in two ways. First, we introduce ReLoC Reloaded (in this paper referred to
as just ReLoC), which has several new features, especially in terms its Coq mechanization.
Second, we have expanded the presentation of, as well as the material covered by, the paper
significantly. Concretely, ReLoC Reloaded has the following new features compared to its
original version:

• ReLoC Reloaded’s primitive refinement judgment e - e′ : τ is defined for closed expressions
(i.e., without free variables), and the version for open expressions (i.e., with free variables)
is a derived notion (see Definition 4.4).
• ReLoC Reloaded’s underlying programming language is HeapLang—the default language

of Iris’s Coq mechanization. By having a tight integration of ReLoC with Iris’s Coq
ecosystem we managed to reuse more Coq code and integrate novel Iris features.
• One such feature that we have integrated into ReLoC Reloaded is the support for prophecy

variables (Section 6), which was recently added to Iris [JLP+20].

Compared to the conference paper, we have significantly expanded Sections 2, 4 and 8,
and added Sections 6, 7 and 10.2, which are completely new. We have extended Section 5
with HOCAP-style specifications, which we put into action by verifying a refinement between
a ticket lock and a spin lock in Section 5.5.

2. The programming language

We consider a typed version of HeapLang, the default language that is shipped with Iris’s
Coq development [Iri20]. HeapLang is a call-by-value λ-calculus, with higher-order references,
fork-based unstructured concurrency, and atomic operations for fine-grained concurrency,
equipped with System-F-style types. The syntax is shown in Figure 2. We let α range over a
countably infinite set TVar of type variables, which can be bound by the universal type ∀α.τ ,
existential type ∃α.τ , and recursive type µα.τ . We omit the usual Boolean and arithmetic
operations such as addition, multiplication, equality, negation.

Most of the operations are standard, so we only discuss some subtleties. Type abstraction
Λ.e, type application e〈〉, and the pack/unpack constructs for packing/unpacking existential
types do not contain type annotations, following e.g., [Ahm06]. The fold/unfold constructs
are used to fold/unfold iso-recursive types. The language includes standard operation on
references ref(e) for allocation, ! e for dereferencing, and e1 ← e2 for assignment. The atomic

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 7

compare-and-set operation CAS(e1, e2, e3) checks if the value stored at the location e1 is
equal to e2, and, if so, sets the value at e1 to e3. The fork {e} construct creates a new
thread, which will execute the expression e.

Syntactic sugar. We use syntactic sugar to define non-recursive functions, let-bindings, and
sequential composition. We let (λx. e) , (rec x = e) and (let x = e1 in e2) , ((λx. e2) e1)

and (e1; e2) , (let = e1 in e2). The underscore denotes an anonymous binder, i.e., a fresh
variable that is unused in the body of the binding expression.

Type system. Typing judgments take the form Ξ | Γ ` e : τ , where Γ is a context assigning
types to program variables, and Ξ is a context of type variables. The inference rules for the
typing judgments are standard; a selection of representative rules is given in Figure 3. The
typing rule for the compare-and-set (CAS) operation has a side-condition EqType(τ), which
ensures that a compare-and-set can only be performed on word-sized data types, i.e., the
unit, Boolean, integer, and reference type.

Operational semantics. The operational semantics involves three reduction relations: pure
head reduction →pure, thread-local head reduction −→h, and thread-pool reduction −→tp, see
Figure 3 for the rules. Head reduction −→h is lifted to thread-pool reduction −→tp using
standard call-by-value evaluation contexts (in the style of Felleisen and Hieb [FH92]):

K ∈ ECtx ::= [•] | e1(K) | K(v2) | e1 ← K | K ← v2 | . . .
Thread-pool reduction −→tp is defined on configurations ρ = (~e, σ) consisting of a state σ
(a finite partial map from locations to values) and a thread-pool ~e (a list of expressions
corresponding to the threads) by interleaving, i.e., by picking a thread and executing it,
thread-locally, for one step. The only special case is fork {e}, which spawns a thread e, and
reduces itself to the unit value ().

Contextual refinement. The notion of contextual refinement that we use is standard (see,
e.g., [Pit05] or [Har16, Chapters 46 & 47]). It formalizes the situation when the set of
observations that can be made about the first program is a subset of observations that can
be made about the second program. An observation about a program are made using a
program context C, which is a program with a hole:

C ∈ Ctx ::= � | rec f x = C | C(e2) | e1(C) | Λ.C | C〈〉 | . . .
Since we are in a typed setting, we consider only typed contexts. A program context is
well-typed, denoted as C : (Ξ | Γ ` τ)⇒ (Ξ′ | Γ′ ` τ ′), if for any term Ξ | Γ ` t : τ we have
Ξ′ | Γ′ ` C[t] : τ ′. The typing relation on contexts is standard, and can be derived from the
typing rules in Figure 3.

We then define contextual refinement as follows. An expression e1 contextually refines
an expression e2 at type τ , denoted as Ξ | Γ ` e1 -ctx e2 : τ , if no well-typed program context
C resulting in a closed program can distinguish the two:

Ξ | Γ ` e1 -ctx e2 : τ , ∀τ ′ (C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` τ ′)) v ~ef σ.
(C[e1], ∅) −→∗tp (v :: ~ef , σ) =⇒

∃v′ ~e′f σ
′. (C[e2], ∅) −→∗tp (v′ :: ~e′f , σ

′).

Contextual equivalence Ξ | Γ ` e1 'ctx e2 : τ is defined as the symmetric closure of contextual
refinement, i.e., (Ξ | Γ ` e1 -ctx e2 : τ) ∧ (Ξ | Γ ` e2 -ctx e1 : τ).

8 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Selected typing rules:
var-typed

Γ(x) = τ

Ξ | Γ ` x : τ

proj-typed
Ξ | Γ ` e : τ1 × τ2 i ∈ {1, 2}

Ξ | Γ ` πi(e) : τi

rec-typed
Ξ | x : τ1, f : τ1 → τ2,Γ ` e : τ2

Ξ | Γ ` rec f x = e : τ1 → τ2

tlam-typed
Ξ, α | Γ ` e : τ

Ξ | Γ ` Λ.e : ∀α.τ

tapp-typed
Ξ | Γ ` e : ∀α.τ Ξ ` τ ′

Ξ | Γ ` e〈〉 : τ [τ ′/α]

tpack-typed
Ξ | Γ ` e : τ [τ ′/α]

Ξ | Γ ` pack e : ∃α.τ

tunpack-typed
Ξ | Γ ` e1 : ∃α.τ1 α,Ξ | x : τ1,Γ ` e2 : τ2 α is not free in Γ or τ2

Ξ | Γ ` unpack e1 in x. e2 : τ2

fold-typed
Ξ | Γ ` e : τ [µτ/α]

Ξ | Γ ` fold e : µα.τ

unfold-typed
Ξ | Γ ` e : µα.τ

Ξ | Γ ` unfold e : τ [µα.τ/α]

alloc-typed
Ξ | Γ ` e : τ

Ξ | Γ ` ref(e) : ref τ

load-typed
Ξ | Γ ` e : ref τ

Ξ | Γ ` ! e : τ

store-typed
Ξ | Γ ` e1 : ref τ Ξ | Γ ` e2 : τ

Ξ | Γ ` e1 ← e2 : unit

cas-typed
Ξ | Γ ` e1 : ref τ Ξ | Γ ` e2 : τ Ξ | Γ ` e3 : τ EqType(τ)

Ξ | Γ ` CAS(e1, e2, e3) : bool

fork-typed
Ξ | Γ ` e : unit

Ξ | Γ ` fork {e} : unit

Selected rules of pure reduction e1 →pure e2 and thread-local call-by-value
head-reduction (e, σ) −→h (e′, σ′):

proj

πi (v1, v2)→pure vi

beta

(rec f x = e) v →pure e[v/x][rec f x = e/f]
tbeta

(Λ.e)〈〉 →pure e

unpack

unpack (pack v) in x. e→pure e[v/x]
unfold

unfold (fold v)→pure v

pure
e1 →pure e2

(e1, σ) −→h (e2, σ)

alloc
σ(`) = ⊥

(ref(v), σ) −→h (`, σ[`← v])

deref
σ(`) = v

(! `, σ) −→h (v, σ)

store
σ(`) = v

(`← v′, σ) −→h ((), σ
[
`← v′

]
)

cas-fail
σ(`) 6= v1

(CAS(`, v1, v2), σ) −→h (false, σ)

cas-suc
σ(`) = v1

(CAS(`, v1, v2), σ) −→h (true, σ[`← v2])

Thread-pool reduction (~e, σ) −→tp (~e′, σ′):

(e, σ) −→h (e′, σ′)

(~e1 K[e] ~e2, σ) −→tp (~e1 K[e′] ~e2, σ
′)

(~e1 K[fork {e}] ~e2, σ) −→tp (~e1 K[()] ~e2 e, σ)

Figure 3. The type system and operational semantics of HeapLang.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 9

Note that contextual refinement only takes termination into account, and does not
require the resulting values v and v′ to be equal. Demanding the equality on the resulting
values would make contextual refinement too strong. For example, the terms (λx. x + 1)
and (λx. 1 + x) of function type would not be deemed contextually equivalent, because they
terminate to syntactically different values in the empty program context.

There are, however, equivalent formulations of contextual refinement which equate the
resulting values v and v′. In order to do that, it is necessary to restrict the typed context
C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` τ ′) to those for which τ ′ is a directly observable type, like Booleans
or integers. For example, we could have used the following equivalent1 definition (a variation
of true-adequate contextual equivalence from [Pit05, Exercise 7.5.10]):

∀(C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` bool)) ~ef σ.

(C[e1], ∅) −→∗tp (true :: ~ef , σ) =⇒ ∃ ~e′f σ
′. (C[e2], ∅) −→∗tp (true :: ~e′f , σ

′).

3. A tour of ReLoC

This section gives a tour of ReLoC by demonstrating its key logical connectives and proof rules.
We first describe ReLoC’s grammar, soundness statement, and rule format (Section 3.1).
After that, we put ReLoC to action by proving contextual refinements of two program modules.
The first is a bit module, which demonstrates ReLoC’s type-directed structural rules and
symbolic execution rules for reasoning about pure programs (Section 3.3). The second is
the concurrent counter module from Section 1, which involves reasoning about internal
state and concurrency. Specifically we demonstrate how ReLoC is used to reason about
stateful programs using symbolic execution (Section 3.4.1), concurrency using invariants
(Section 3.4.2), and recursive functions and loops using Löb induction (Section 3.4.3).

3.1. Grammar and soundness. ReLoC is based on higher-order intuitionistic separation
logic, and the grammar of its propositions is:

P,Q ∈ iProp ::= True | False | ∀x. P | ∃x. P | P ∧Q | P ∨Q | P =⇒ Q

| P ∗Q | P −∗ Q | ` 7→i v | ` 7→s v | (∆ |=E e1 - e2 : τ)

| JτK∆(v1, v2) | P N | .P | �P | |VE1 E2P | . . .
ReLoC is an extension of Iris and therefore includes all connectives of Iris, in particular,

the later modality ., persistence modality �, update modality |VE1 E2 , and invariant assertion

P
N

. We introduce these connectives in passing throughout this section. Some of these
connectives are annotated by invariant masks E ⊆ InvName and invariant names N ∈
InvName, which are needed for bookkeeping related to Iris’s invariant mechanism. Until
we introduce invariants in Section 3.4.2, we will omit these annotations. Similarly, we will
ignore the later modality . until we explain it in Section 3.4.3.

An essential difference to vanilla Iris is that ReLoC has internal (or first-class) refinement
judgments ∆ |= e1 - e2 : τ , which should be read as “the expression e1 refines the expression
e2 at type τ”. Just like contextual refinement, the refinement judgment in ReLoC is indexed
by a type τ . The judgment contains an environment ∆ which assigns interpretations to type

1Proving that this definition is equivalent to the one presented earlier is not a very complicated, albeit
laborious, task. See the Coq mechanization for the formal proof.

10 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

variables. These interpretations are given by an Iris relation of type Val×Val→ iProp. One
such kind of relation, the value interpretation relation JτK∆(−,−) :Val×Val→ iProp (for
each syntactic type τ of HeapLang) will be discussed in Section 4. We elide the contexts ∆
in refinement judgments whenever they are empty.

The intuitive meaning of ∆ |= e1 - e2 : τ is that e1 is safe, and all of its behaviors can
be simulated by e2. It is a simulation in the sense that any execution step of e1 can be
matched by a (possibly empty) sequence of execution steps of e2. Borrowing the terminology
from languages with non-determinism, we think of e1 as being demonic and e2 as being
angelic. That is, the non-deterministic choices of e1 (e.g., scheduling of forked-off threads)
are selected by an external demon; whereas for the non-deterministic choices of e2, an angle
blesses the person proving the refinement with an ability to select a choice themselves.

Since we often use refinement judgments to specify programs, we refer to the left-hand
side e1 as the implementation, and to right-hand side e2 as the specification. The intuitive
meaning is formally reflected by the soundness theorem w.r.t. contextual refinement.

Theorem 3.1 (Soundness). If the refinement judgment ∅ |= e1 - e2 : τ is derivable in
ReLoC, then ∅ | ∅ ` e1 -ctx e2 : τ .

In this section we only consider closed programs e1 and e2; we will see how ReLoC (and
its soundness theorem) generalize to open terms in Section 4.4.

Like ordinary separation logic, ReLoC has heap assertions. Since ReLoC is relational,
these come in two forms: ` 7→i v and ` 7→s v, which signify ownership of a location ` with
value v on the implementation and specification side, respectively.

Contrary to earlier work on logical refinements in Iris, e.g., [KTB17, Tim18], refinement
judgments ∆ |= e1 - e2 : τ in ReLoC are first-class propositions. As such, we can combine
them in arbitrary ways with the other logical connectives, and state conditional refinements.
For example, the proposition

(`1 7→i v1 ∗ `2 7→s v2 ∗∆ |= e′1 - e
′
2 : σ) −∗ ∆ |= e1 - e2 : τ, (3.1)

states that the e1 refines e2, under the assumption of another refinement and that certain
locations have specified values in the heap. Having conditional refinements is crucial for
modularity, as it allows us to formulate and prove refinements of individual methods of
a data structure under the assumptions provided by the internal invariant of the data
structure. The fact that refinement judgments are first class also plays an important role in
the presentation of ReLoC’s proof rules.

3.2. Derivability and inference rules. As standard in logic, Iris/ReLoC has a derivability
relation P ` Q. We say that Q is derivable if True ` Q. In many situations, we use magic
wand −∗ instead of the derivability relation `, because we have the standard deduction
property:

P ` Q −∗ R iff P ∗Q ` R
Most of the inference rules we present can be internalized as ReLoC propositions by a magic
wand or a derivability relation between the separating conjunction of the antecedents and

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 11

the consequent. We thus use the following notations:

P1 · · · Pn

Q
is notation for (P1 ∗ · · · ∗ Pn) −∗ Q,

P

Q
is notation for (P −∗ Q) ∧ (Q −∗ P).

For instance, the conditional refinement in Formula (3.1) is presented as the following
inference rule:

`1 7→i v1 `2 7→s v2 ∆ |= e′1 - e
′
2 : σ

∆ |= e1 - e2 : τ

In rules like this, it is useful to think of premises `1 7→i v1 and `2 7→s v2 as side conditions,
and of the premise ∆ |= e′1 - e

′
2 : σ as the new goal that you get when you apply the rule.

This backwards-style reasoning integrates well in the Coq proof assistant; we discuss it more
in detail in Section 8.

We use the derivability relation ` explicitly to state rules that cannot be internalized,

e.g.,
` P
` Q

states that if P is derivable, then Q is derivable. This is weaker than
P

Q
, which

denotes that Q can be derived from P , i.e., P ` Q.

3.3. Example: Contextual equivalance of a bit module. We demonstrate the basic
usage of ReLoC by using its type-directed structural and symbolic execution rules to prove
contextual equivalence of two implementations of a simple program module (representation
independence). The module we consider represents a single bit data structure—it contains
an initial value for the bit, an operation for flipping the bit, and an operation for converting
the values of the abstract type to Booleans. We use an existential type (i.e., abstract type)
to hide the representation type and thus the type of the module:

TBit , ∃α.α× (α→ α)× (α→ bool).

Perhaps the simplest implementation of the bit interface is the one that uses Booleans
for the internal state:

bitbool : TBit , pack(true, (λb. ¬b), (λb. b)).
The second implementation models a bit by a number from the set {0, 1}:

flipnat : int→ int , λn. if (n = 0) then 1 else 0

bitnat : TBit , pack(1, flipnat, (λn. n = 1)).

Before we explain how the contextual equivalence of these two implementation is formally
proved in ReLoC, let us informally discuss why these implementations are equivalent. Note
that the underlying types (int and bool) are not isomorphic. This, however, is not going
to be a problem, because the underlying types are hidden/existentially abstracted in the
module signature. As a consequence of that, a (well-typed) client has to be polymorphic in
the type α, and can thus only create and modify values of α through the functions provided
by the module. A client that uses the bitnat module can only construct integers 0 and 1
(using the initial value and applying the flip function a number of times). Thus, requiring
an isomorphism between the underlying types is too strict—for example, we do not care

12 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Value interpretation rules:

val-var
∆(α)(v1, v2)

JαK∆(v1, v2)

val-unit
v1 = v2 = ()

JunitK∆(v1, v2)

val-bool
∃b ∈ B. v1 = v2 = b

JboolK∆(v1, v2)

val-int
∃n ∈ Z. v1 = v2 = n

JintK∆(v1, v2)

Type-directed structural rules:

rel-return
JτK∆(v1, v2)

∆ |= v1 - v2 : τ

rel-pair
∆ |= e1 - e2 : τ ∆ |= e′1 - e

′
2 : σ

∆ |= (e1, e
′
1) - (e2, e

′
2) : τ × σ

rel-pack
∀v1, v2. persistent(R(v1, v2)) [α := R] ,∆ |= e1 - e2 : τ

∆ |= pack e1 - pack e2 : ∃α.τ

rel-rec
�
(
∀v1, v2. JτK∆(v1, v2) −∗ (∆ |= (rec f1 x1 = e1) v1 - (rec f2 x2 = e2) v2 : σ)

)
∆ |= (rec f1 x1 = e1) - (rec f2 x2 = e2) : τ → σ

Symbolic execution rules:

rel-pure-l
e1 →pure e

′
1 .(∆ |= K[e′1] - e2 : τ)

∆ |= K[e1] - e2 : τ

rel-pure-r
e2 →pure e

′
2 ∆ |=E e1 - K[e′2] : τ

∆ |=E e1 - K[e2] : τ

rel-alloc-l’
∀`. ` 7→i v −∗ ∆ |= K[`] - e2 : τ

∆ |= K[ref(v)] - e2 : τ

rel-alloc-r
∀`. ` 7→s v −∗ ∆ |=E e1 - K[`] : τ

∆ |=E e1 - K[ref(v)] : τ

rel-load-l-inv

P
N (

.P ∗ closeInvN (P)
)
−∗ ∃v. ` 7→i v ∗ .

(
` 7→i v −∗ ∆ |=>\N K[v] - e2 : τ

)
∆ |= K[! `] - e2 : τ

rel-load-r
` 7→s v ` 7→s v −∗ ∆ |=E e1 - K[v] : τ

∆ |=E e1 - K[! `] : τ

rel-store-r
` 7→s − ` 7→s v −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[`← v] : τ

rel-cas-l-inv

P
N

.P ∗ closeInvN (P) −∗

∃v. ` 7→i v ∗ .

((
v = v1 ∗ ` 7→i v2 −∗ ∆ |=>\N K[true] - e2 : τ

)
∧(

v 6= v1 ∗ ` 7→i v −∗ ∆ |=>\N K[false] - e2 : τ
))

∆ |= K[CAS(`, v1, v2)] - e2 : τ

Invariants rules:

rel-inv-alloc

.P P
N −∗ ∆ |= e1 - e2 : τ

∆ |= e1 - e2 : τ

rel-inv-restore
closeInvN (P) .P ∆ |=E e1 - e2 : τ

∆ |=E\N e1 - e2 : τ

Figure 4. Selected rules of ReLoC.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 13

what Boolean value an integer 7 might correspond to, because the number 7 can never be
constructed using the functions provided by bitnat.

This intuitive reasoning signals the key idea behind the representation independence
principle [Mit86], which states that in order to prove that two modules are equivalent,
it suffices to pick a relation between the underlying types and demonstrate that all the
methods preserve this relation. For this example, a sensible candidate for such a relation
is {(true, 1), (false, 0)}. Note that our relation does not include any integers other than 0
or 1, because as we previously explained, a well-typed client of bitnat cannot construct other
integers. With the relation at hand, the informal proof is as follows. The initial values
offered by the modules are related. The flip function preserves this relation. The function
that converts “bits” to Booleans sends related values to the same Boolean.

We will now demonstrate how to carry out this argument formally in ReLoC. Specifically,
we prove the following refinement using the rules in Figure 4:

bitbool - bitnat : TBit

The other direction can be proved in a similar way, which using soundness (Theorem 3.1),
gives us the contextual equivalence bitbool 'ctx bitnat : TBit.

From a high-level point of view, the proof of this example involves applying ReLoC’s
type-directed structural rules following the structure of TBit. At the leaves of the proof, we
continue with ReLoC’s symbolic execution rules to perform computation steps.

Since TBit is an existential type, and both bitbool and bitnat are pack’s, we start off by
applying the type-directed structural rule rel-pack. For that we need to pick a relation
R, which will be the interpretation for the type variable α, and should link together the
underlying representations of bits in bitbool and bitnat. We define the relation R as follows:

R(b, n) , (b = true ∧ n = 1) ∨ (b = false ∧ n = 0).

Starting with the initial goal bitbool - bitnat : TBit, we apply rel-pack. As a side-condition,
we have to prove that R is persistent for any v1, v2, written as persistent(R(v1, v2)), intuitively
meaning that the proposition R(v1, v2) does not assert ownership of any resources. We
discuss persistent propositions in more detail in Sections 3.4.2 and 4.2, and for now we just
note that the relation R is indeed persistent. After application of the rel-pack rule the goal
becomes:

[α := R] |= (true, (λb.¬b), (λb. b)) - (1, flipnat, (λn. n = 1)) : α× (α→ α)× (α→ bool).

By repeatedly applying the type-directed structural rule rel-pair we get three new goals:

(1) [α := R] |= true - 1 : α;
(2) [α := R] |= (λb. ¬b) - flipnat : α→ α;
(3) [α := R] |= (λb. b) - (λn. n = 1) : α→ bool.

For the first goal, we can use the rules rel-return and val-var, leaving us with the obligation
R(true, 1), which holds by the definition of R.

For the second and the third goal we need to prove refinements of two closures, for
which we use the type-directed structural rule rel-rec. Let us look at the third goal in
detail. After the application of rel-rec we have to show:

�
(
∀v1, v2. JαK[α:=R](v1, v2) −∗ [α := R] |= (λb. b) v1 - (λn. n = 1) v2 : bool

)
.

The goal is wrapped in Iris’s persistence modality �, which turns any proposition into a
persistent one. Once again, we postpone the details about the persistence modality until

14 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Sections 3.4.2 and 4.2, and only remark that here we are allowed to prove the goal without
the � modality. Using this information, and the rule val-var we reduce our goal to show:

R(v1, v2) −∗ [α := R] |= (λb. b) v1 - (λn. n = 1) v2 : bool,

for arbitrary v1, v2. We then unfold the definition of R and observe that we need to
distinguish two cases: (1) v1 = true and v2 = 1; (2) v1 = false and v2 = 0. Suppose we are
in the first case (the second case is similar). We have to show:

[α := R] |= (λb. b) true - (λn. n = 1) 1 : bool.

At this point we apply ReLoC’s symbolic execution rules: we symbolically reduce both the
left-hand and the right-hand side of the refinement. For this we use the rules rel-pure-l

and rel-pure-r (the later modalities (.) in these rules can be ignored for now, they will be
explained in Section 3.4.3). These rules perform pure reductions, i.e., reductions that do
not depend on the heaps. In our case we have a β-reduction on the left-hand side, and a
β-reduction and an evaluation of the binary operation (equality testing) on the right-hand
side:

(λb. b) true→pure true (λn. n = 1) 1→pure (1 = 1)→pure true.

After the repeated application of the said rules we arrive at a goal

[α := R] |= true - true : bool,

which we discharge by rel-return and val-bool. This completes the proof of the refinement.

3.4. Example: Contextual refinement of a concurrent counter. The previous exam-
ple showcased how ReLoC can be used to show contextual refinement and equivalence of
pure program modules. In this subsection we prove contextual refinement of the fine-grained
concurrent counter in Figure 1 from Section 1 by showing that it refines the coarse-grained
counter. Specifically, we prove the following refinement:

counteri -ctx counters : (unit→ int)× (unit→ int).

Using soundness (Theorem 3.1), this contextual refinement can be reduced to proving the
refinement judgment counteri - counters : (unit→ int)× (unit→ int) in ReLoC.

The previous example demonstrated the basic usage of symbolic execution rules of ReLoC.
Those symbolic execution rules were confined to the pure fragment of the programming
language. In this example we show how to use ReLoC’s symbolic execution rules for stateful
computations and concurrency primitives. In addition to the type-directed structural rules
and symbolic execution rules, the proof will require the usage of invariants for linking
together the values of the two counters. We will use selected ReLoC rules from Figure 4. To
symbolically execute the operations on locks that appear in counters, we will also make use
of the relational specification for locks in Figure 5. The lock specification is stated in terms
of an abstract predicate isLocks(lk , false) (resp., isLocks(lk , true)) stating that lk is a lock
which is unlocked (resp., locked). The relational specification for locks can then be seen as
consisting of symbolic execution rules that manipulate that abstract predicate.2 We will see
in Section 5.1.1 that these specifications can be proven for a simple spin lock.

2Because this specification is for the “angelic” right-hand side, it does not express mutual exclusion as it
is common for separation logic specifications. We explain this by contrasting the specification with the one
for the left-hand side in Section 5.1.2.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 15

newlock-r
∀lk . isLocks(lk , false) −∗ ∆ |=E e1 - K[lk] : τ

∆ |=E e1 - K[newlock ()] : τ

acquire-r

isLocks(lk , false) isLocks(lk , true) −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[acquire lk] : τ

release-r
isLocks(lk , b) isLocks(lk , false) −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[release lk] : τ

Figure 5. Right-hand side relational specification for locks.

3.4.1. Symbolic execution. Recall that performing symbolic execution means reducing the
left-hand or right-hand side of the refinement according to the computational rules. We
have already seen the usage of rel-pure-l, which allows us to perform pure computations.
For this example we also use stateful symbolic execution rules in Figure 4. To start with the
refinement proof, we apply the stateful symbolic execution rule rel-alloc-l’ to the left-hand
side to obtain:

ci 7→i 0 −∗ ((λ(). read ci), (λ(). inci ci)) - counters : (unit→ int)× (unit→ int).

Note that after the application of the rule we gain access to the resource ci 7→i 0 representing
the value of the counter on the left-hand side. Subsequently, using the symbolic execution
rules rel-pure-r, rel-alloc-r and newlock-r on the right-hand side the goal becomes:

ci 7→i 0 ∗ cs 7→s 0 ∗ isLocks(lk , false) −∗
((λ(). read ci), (λ(). inci ci)) - (λ(). read cs), (λ(). incs cs lk)) : (unit→ int)× (unit→ int).

In addition to gaining the resource cs 7→s 0, representing the value of the right-hand side
counter, we get access to the abstract predicate isLocks(lk , false), which keeps track of the
state of the lock lk on the right-hand side.

ReLoC’s symbolic execution rules are inspired by the “backwards”-style Hoare rules
of [IO01] and the weakest-precondition rules in Iris [KJB+17, JKJ+18].

3.4.2. Invariants and persistent propositions. At this point we wish to prove a refinement of
two closures. By the rule rel-pair it would suffice to prove that both closures refine each
other. However, if we were to apply rel-pair, we would be forced to split our resources in
two: the resources needed for the refinement proof of the read function, and the resources
needed for the refinement proof of the increment function. But both of those operations
require access to the counter locations ci 7→i − and cs 7→s −. To circumvent this issue we
put said resources in a global invariant P , which allows P to be shared between different
parts of the program (and between different threads). In our running example, we establish

the invariant Icnt
N

(using rel-inv-alloc), where:

Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk , false).

16 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

The invariant Icnt
N

not only allows us to share access to ci and cs, but also ensures that
the values of the respective counters match up. For our invariant we pick any fresh invariant
name N ∈ InvName (more on the invariant names below).

Invariants P are persistent : once established, they will remain valid for the rest of the
verification. This differentiates them from ephemeral propositions like ` 7→i v and ` 7→s v,
which could be invalidated in the future by actions of the program or proof.

The notion of being persistent is expressed in ReLoC (and Iris) by means of the
persistence modality �. The purpose of �P is to say that P holds without asserting any
ephemeral propositions. The most important rules for the � modality are �P = �P ∗�P
and �P −∗ P , which allow to freely duplicate �P and finally get P out. We say that P
is persistent, written as persistent(P), if P ` �P ; otherwise, we say that P is ephemeral.

To prove �P , one can only use persistent resources like P , and not ephemeral resources
like ` 7→i v. We refer to stripping off the persistence modality in the context of persistent
hypotheses as introducing the � modality. We make that precise and give rules for the �
modality in Section 4.3.

Once the invariant Icnt for our running example has been established, we can duplicate
it, and apply rel-pair to obtain two goals:

Icnt −∗ (λ(). read ci) - (λ(). read cs) : unit→ int

Icnt −∗ (λ(). inci ci) - (λ(). incs cs lk) : unit→ int.

We first describe how to prove the refinement of read. As λx. e is syntactic sugar for
rec x = e, we can apply rel-rec at the function type unit→ int and obtain the new goal:

Icnt −∗ �
(
∀v v′. JunitK∆(v, v′) −∗ (λ(). ! ci) v - (λ(). ! cs) v

′ : int
)
.

By val-unit, we obtain that JunitK∆(v, v′) implies v = v′ = (). Moreover, since Icnt is
our only hypothesis, and it is persistent, we can strip off the � modality, arriving at the
following goal:

Icnt −∗ (λ(). ! ci) () - (λ(). ! cs) () : int.

Accessing invariants. The fact that invariants are persistent (and thus can be duplicated,

i.e., P = P ∗ P) comes with a cost—once a proposition P has been turned into an

invariant P , one is only allowed to access P during a single atomic execution step on the
left-hand side. This restriction is crucial as the scheduling of threads on the left-hand side is
demonic. When proving a refinement, we have to consider all possible interleavings of threads.
If we were to be able to access an invariant for the duration of multiple steps, another thread
could be scheduled in between, and observe that the invariant was temporarily broken.

Scheduling on the right-hand side, however, is angelic. That is, when proving a refinement,
we have the ability to select the choice of scheduling. As a consequence, ReLoC allows us to
execute multiple steps on the right-hand side while accessing an invariant.

Let us take a look at the way accessing invariants in ReLoC works. We do so by
continuing the proof of our running example (after introducing � and performing pure
symbolic execution steps):

Icnt −∗ ! ci - ! cs : int.

At this point we would like to access the locations ci and cs stored in the invariant Icnt .
For this we use the rule rel-load-l-inv in Figure 4.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 17

This rule is quite a mouthful, so let us first take a look at its shape before going into
detail about the mask annotations and later modalities .. The essence of rel-load-l-inv is
that it provides temporary access to the resources P guarded by the invariant. In addition,
it provides the invariant closing resource closeInvN (P), which can restore the invariant
(using the rule rel-inv-restore). The resources P can be used to prove ` 7→i v, which is
needed to justify the symbolic execution step on the left. Afterwards, we are left with the
goal ∆ |=>\N K[v] - e2 : τ . We typically do not immediately restore the invariant (using
rel-inv-restore), but first use the resources P to perform matching symbolic execution
steps on the right.

In our example, by applying rel-load-l-inv, we obtain ci 7→i n and cs 7→s n and
isLocks(lk , false), for some n ∈ N, reducing our goal to |=>\N n - ! cs : int. We then use
rel-load-r to reduce our goal to |=>\N n - n : int. Because these steps did not change the
heap, rel-inv-restore’s premises for closing the invariant are trivially met. The refinement
proof is then concluded by applying the structural rules rel-return and val-int.

Let us take a look at the rules rel-load-l-inv and rel-inv-restore in more detail. A
crucial aspect of these rules is that they ensure that access to the invariant P

N
is temporary,

i.e., that P is only used during a single symbolic execution step on the left-hand side (but
possibly several steps on the right), and that the same invariant cannot be opened twice.

This is achieved by tagging each invariant P
N

with a name N ∈ InvName, and by keeping
track of which invariants have been accessed. The latter is done in a way similar to Iris—like
Iris’s Hoare triples {P} e {Q}E , our refinement judgments ∆ |=E e1 - e2 : τ are annotated
with a mask E ⊆ InvName of accessible invariants. By default all invariants are accessible,
so we write ∆ |= e1 - e2 : τ for ∆ |=> e1 - e2 : τ , where > is the set of all invariant names.

An invariant namespace is a (non-empty) list of strings or values: InvName = List(String+
Val). When opening an invariant and removing it from a mask, we coerce an invariant
namespace N into a mask by taking its upwards extension N ↑ = {N .x1.xn | n ∈ N, xi ∈
String +Val}. Abusing the notation, we write E \ N for E \ N ↑.

When accessing an invariant, e.g., using rel-load-l-inv or rel-cas-l-inv, its namespace
is removed from the mask annotation of the judgment. The removal of the namespace
from the mask guarantees that invariants are only used for a single execution step on the
left-hand side. After all, all rules for symbolic execution on the left-hand side require a >
mask, whereas those for the right-hand side allow for an arbitrary mask. The only way of
performing a subsequent step on the left-hand side is thus by first restoring the mask to >,
which can only be done by restoring the invariants that have been accessed (using the rule
rel-inv-restore).

One may wonder why refinement judgments are annotated with a mask instead of a
Boolean that indicates if an invariant has been opened. As we will show in Section 4, ReLoC
allows one to access multiple invariants simultaneously. To avoid reentrancy—which means
accessing the same invariant twice in a nested fashion—we need to know exactly which
invariants are opened.

An additional aspect to note is that invariants P
N

in ReLoC (and Iris) are impred-
icative [SB14, JKJ+18]. This means that P is allowed to contain other invariant assertions

Q
N ′

or even refinement judgments e - t : τ . As a consequence, to ensure soundness of
the logic, all rules for invariants only provide access to .P , i.e., P “guarded” by the later
modality .. When invariants are not used impredicatively (i.e., invariants over so called

18 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

timeless propositions, which include connectives of first-order logic and heap assertions),
these modalities can be soundly omitted.

3.4.3. Later modality and Löb induction. The later modality . is not only used for resolving
the impredicativity issues, but also for handling general recursion. As is custom in logics
based on step-indexing [AM01], such as Iris, the later modality . and Löb induction are
used to reason about recursive functions. Specifically, Iris provides the following rules for .:

.-intro
P

.P

.-mono
P ` Q

.P ` .Q

Löb
.P ` P
` P

In our example, this means that by Löb induction (rule Löb), we may prove inci ci -
incs cs lk : int, under the assumption of the induction hypothesis .(inci ci - incs cs lk : int).
The induction hypothesis is ‘guarded’ by a ., and can only be used after we have performed
a step of symbolic execution on the left-hand side. That is why the symbolic execution rules
for the left-hand side contain the later modality in the premises. Let us see how it works in
the example. We use rel-pure-l to arrive at:

.(inci ci - incs cs lk : int) −∗

.(let c = ! ci in if CAS(ci, c, 1 + c) then c else inci ci - incs cs lk : int).

By monotonicity (rule .-mono), we can now remove . both from the induction hypothesis
and from the goal. Subsequently, we symbolically execute the load operation using the
invariant, just like in the previous section, reaching the goal

if CAS(ci, n, 1 + n) then n else inci ci - incs cs lk : int

for some n ∈ N. To symbolically execute the compare-and-set (CAS), we use rel-cas-l-inv.
By this rule, we have to consider two outcomes, depending on whether the original value of
the counter has changed between the load and compare-and-set operations or not.

(1) Suppose that the value of the counter ci has changed. In that case the compare-and-set
operation fails and we are left with

ci 7→i m ∗ cs 7→s m ∗ isLocks(lk , false) −∗
|=>\N if false then n else inci ci - incs cs lk : int

for some m 6= n. Because the symbolic heap has not been changed, we can easily restore
the invariant and execute the if false then . . . else . . . to obtain inci ci - incs cs lk : int,
which is exactly our induction hypothesis.

(2) If the value has not changed, then the compare-and-set succeeds and we are left with
the new goal:

ci 7→i (1 + n) ∗ cs 7→s n ∗ isLocks(lk , false) −∗
|=>\N if true then n else inci ci - incs cs lk : int.

At this point we use the symbolic execution rules rel-store-r, rel-load-r and the lock
specifications from Figure 5 to symbolically execute the right-hand side of the refinement
and update the resources to match:

ci 7→i (1 + n) ∗ cs 7→s (1 + n) ∗ isLocks(lk , false) −∗
|=>\N if true then n else inci ci - n : int.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 19

We can then restore the invariant and symbolically execute the left-hand side to finish
the proof.

Note that the point in the proof when we symbolically execute incs cs lk on the right-hand
side corresponds to the linearization point of inci.

This concludes the proof of the counter refinement. For the purposes of the proof, we
have used some derived rules and principles in ReLoC. In the next section we will present
an overview of primitive rules—the very core of ReLoC—and show how they can be used to
recover the kind of intuitive reasoning we employed in this section.

4. A closer look at ReLoC

We now explain some of the more technical details of ReLoC, and show how the principles
that we have used in Section 3 can be obtained from ReLoC’s primitive proof rules. First, we
describe how to work with invariants using Iris’s update modality |V (Section 4.1). Then we
explain the role and rules of persistent propositions (Section 4.2), and go through a selection
of ReLoC’s primitive proof rules and explain how the symbolic execution and structural
rules can be derived from them (Section 4.3). Finally, we demonstrate how ReLoC’s rules
can be used to prove the fundamental property : if we can derive a typing judgment ` e : τ ,
then e refines itself, i.e., e - e : τ . To prove the fundamental property, we need to generalize
the relational judgment to open terms, and prove the structural rules for open terms as well
(Section 4.4).

A selection of ReLoC’s primitive proof rules are shown in Figure 6.

4.1. Invariants and the update modality. The rules for invariants in Figure 4 in Sec-
tion 3.4.2 are fairly restrictive, e.g., they allow us to open at most one invariant at the same
time. Moreover, several of those rules, e.g., rel-load-l-inv and rel-cas-l-inv, mix together
symbolic execution and invariant manipulation. We now present ReLoC’s more primitive
proof rules, which integrate Iris’s flexible mechanism for invariants and ghost state, and
which can be used to derive rules such as like rel-load-l-inv and rel-cas-l-inv.

Invariants and ghost state in Iris are controlled via the update modality |VE1 E2P . The

intuition behind |VE1 E2P is to express that under the assumption that the invariants in E1

are accessible initially, one can obtain P , and end up in the situation where the invariants
in E2 are accessible. Thus, for showing P we can open the invariants from E1 and have to
restore the invariants from E2 (the invariants from E1 \ E2 may remain open). Furthermore,
this modality allows one to perform changes to Iris’s ghost state via frame preserving updates ;
for a description of those we refer the reader to [JKJ+18].

The key rules of the update modality are:

|V-intro

P

|VE E P

|V-mono

P ` Q
|VE1 E2P ` |VE1 E2Q

|V-idemp

|VE1 E2 |VE2 E3P

|VE1 E3P

|V-sep

P ∗ |VE1 E2Q

|VE1 E2 (P ∗Q)

These rules say that the update modality is a monad, which is indexed (due to the masks),
and strong (due to rule |V-sep). In ReLoC (and Iris) proofs, we often need to eliminate
update modalities in the proof context, which is allowed if the goal is an update modality

20 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Value interpretation rules:

val-var
∆(α)(v1, v2)

JαK∆(v1, v2)

val-unit
v1 = v2 = ()

JunitK∆(v1, v2)

val-bool
∃b ∈ B. v1 = v2 = b

JboolK∆(v1, v2)

val-int
∃n ∈ Z. v1 = v2 = n

JintK∆(v1, v2)

val-prod
∃v1, v2, w1, w2. v = (v1, v2) ∗ w = (w1, w2) ∗ JτK∆(v1, w1) ∗ JσK∆(v2, w2)

Jτ × σK∆(v, w)

val-arr
�(∀w1w2. JτK∆(w1, w2) −∗ ∆ |= v1 w1 - v2 w2 : σ)

Jτ → σK∆(v1, v2)

Monadic rules:

rel-return
JτK∆(v1, v2)

∆ |= v1 - v2 : τ

rel-bind

∆ |= e1 - e2 : τ

∀v1 v2. JτK∆(v1, v2) −∗
∆ |= K1[v1] - K2[v2] : σ

∆ |= K1[e1] - K2[e2] : σ

Type-directed structural rules:
rel-fork

∆ |= e1 - e2 : unit

∆ |= fork {e1} - fork {e2} : unit

Symbolic execution rules:

rel-load-l

|V> E (∃v. ` 7→i v ∗ .
(
` 7→i v −∗ ∆ |=E K[v] - e2 : τ

))
∆ |= K[! `] - e2 : τ

rel-store-l

|V> E (` 7→i − ∗ .
(
` 7→i v −∗ ∆ |=E K[()] - e2 : τ

))
∆ |= K[`← v] - e2 : τ

rel-cas-l

|V> E

(
∃v′. ` 7→i v

′ ∗ .
(
v′ 6= v1 −∗ .(` 7→i v

′ −∗ ∆ |=E K[false] - e2 : τ)
)
∧

.
(
v′ = v1 −∗ .(` 7→i v2 −∗ ∆ |=E K[true] - e2 : τ)

))
∆ |= K[CAS(`, v1, v2)] - e2 : τ

Invariants rules (inv-alloc and inv-access are inherited from Iris):

rel-upd

|VE1 E2 ∆ |=E2 e1 - e2 : τ

∆ |=E1 e2 - e2 : τ

inv-alloc
.P

|VE P
N

inv-access

N ⊆ E P
N

|VE E\N .P ∗ (.P ≡−∗E\N E True)

Figure 6. Selected primitive rules of ReLoC.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 21

with corresponding source mask. This is expressed by the following derived rule:

|V-elim

|VE1 E2P P −∗ |VE2 E3Q

|VE1 E3Q

This rule is derivable from |V-mono, and |V-idemp.
Before we will describe the rules of the update modality related to invariants, let us

describe some syntactic sugar that we inherit from Iris. We write |VE P for |VE E P , and |VP
for |V>P , where > is the set of all invariant names. Moreover, since the update modality is

often combined with the magic wand, we write P ≡−∗E1 E2 Q for P −∗ |VE1 E2Q, and follow
the same conventions for omitting masks on ≡−∗ as used for |V.

ReLoC’s main rule for interacting with the update modality is rel-upd. It allows to
eliminate an update modality around a refinement judgment. To get an idea of how this
rule is used, let us take a look at the primitive rule inv-alloc for allocating an invariant.
The derived rule rel-inv-alloc in Figure 4 is a composition of rel-upd with Iris’s rules
|V-elim and inv-alloc.

By combining rel-upd with Iris’s rules |V-elim and inv-access for accessing invariants,

one can turn an invariant P
N

into its content P , together with a way of restoring the

invariant .P ≡−∗E\N E True. It is important to notice that by using the combination of
these rules, the mask on the refinement judgment changes from E into E \N . This prohibits
access to the invariant N until it has been restored—thus preventing reentrancy. Restoring
the invariant is done by using the rule rel-upd with the premise .P ≡−∗E\N E True. This
requires one to give up P , and in turn transforms the mask of the judgment back into E .
Note that one can use inv-access multiple times to open multiple invariants.

Invariants and symbolic execution. Opening invariants through rel-upd and inv-access as
described above is fairly limited. Once we open an invariant, the mask at the refinement
judgment changes from > into >\N , which prevents any symbolic execution on the left-hand
side. The rules for symbolic execution on that side require the mask to be >. As we discussed
in Section 3.4.2 already, this restriction to the > mask on left-hand side rules is crucial. It is
unsound to perform multiple symbolic execution steps on the left while an invariant is open.
To see why this is the case, consider the following refinement:

(λx. let n = !x in x← n+ 1;n) - inci : ref int→ int

This refinement does not hold because the two programs can be distinguished by the context:

let c = ref(0) in let f = [•] in fork {f c} ; fc.

The left-hand side is basically the coarse-grained increment operation incs without the lock
protection. Thus, the function on the left-hand side does not guarantee thread-safety: the
value of the passed reference can change unpredictably if the function is invoked in parallel
with itself. By contrast, the inci always increments the counter monotonically.

If we were allowed to perform multiple symbolic execution rules on the left-hand side,
then we could have proven the above refinement, using an invariant of ∃n. cs 7→s n ∗ ci 7→i n .

In order to support symbolic execution with invariants, ReLoC provides additional rules
to simultaneously access an invariant and perform a single atomic symbolic execution step
on the left-hand side. Examples of such rules are rel-load-l, rel-store-l and rel-cas-l.

22 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

We can now explain the derived rule rel-load-l-inv in terms of the primitive rules.
The proposition .P ≡−∗E\N E True is used for closing the invariant N because it changes the

mask from E \ N to E . Thus closeInvN (P) , (.P ≡−∗>\N > True). To prove rel-load-l-inv

from Figure 4, we apply rel-load-l to obtain the goal:

|V> >\N (∃v. ` 7→i v ∗ .
(
` 7→i v −∗ ∆ |=>\N K[v] - e : τ

))
.

We then use inv-access and |V-elim to get the premise of rel-load-l-inv. In the same way
rel-cas-l-inv can be derived from rel-cas-l. Finally, the closing rule rel-inv-restore is a
consequence of the definition of closeInvN (P) and rel-upd.

Using ReLoC’s primitive symbolic execution rules such as rel-load-l, rel-store-l and
rel-cas-l one can also derive the following weaker, but perhaps more intuitive, symbolic
execution rule:

rel-store-l’
` 7→i v .

(
` 7→i w −∗ ∆ |= K[()] - e2 : τ

)
∆ |= K[`← w] - e2 : τ

Since these rules have a > mask, they can only be used when no invariants have been
opened. Recall that by contrast, the symbolic execution rules for the right-hand side, such
as rel-load-r, rel-store-r in Figure 4, which are of a similar shape, can be performed even
with invariants open because they allow the mask to be arbitrary.

4.2. The persistence modality. Recall from Section 3.4.2 that a proposition P is persis-
tent, written as persistent(P), if P ` �P , where � is Iris’s persistence modality. The �
modality plays an important role in ReLoC because it makes it possible to express that
if two expressions are related, they remain related forever. For example, the persistence
modality plays a crucial role in the rule rel-rec in Figure 4—it ensures that ephemeral
resources (such as heap assertions) are not used for the verification of the closure’s body.
After all, closures can be invoked arbitrarily many times at different points in time (possibly
concurrently), and hence it is impossible to guarantee that ephemeral resources will still be
available when the closure is called. For example, without the � modality in the premise of
rel-rec one would be able to prove the following unsound refinement:

let ` = ref(0) in λ(). `← 1 + ! `; ! ` - λ(). 1 : unit→ int.

One would use rel-alloc-l’ to obtain the heap assertion ` 7→i 0, and subsequently use
that assertion to verify the body of the closure. Fortunately, the � modality in rel-rec

prevails—` 7→i 0 is ephemeral, not persistent, so cannot be moved under a �.
In Section 3.4.2 we gave an idea of the core rules of the persistence modality. Let us

now take a look at the rules in more detail:
�-dup
�P ∗�P

�P

�-elim
�P
P

�-mono
P ` Q

�P ` �Q

�-idemp
�P
��P

�-sep
�P ∗�Q
�(P ∗Q)

The rules �-dup and �-elim say that the �P is duplicable, and one can get P out. The rule
�-idemp says that �P itself is persistent. The rules �-elim, �-mono and �-idemp say that
� is in fact a co-monad. Finally, � commutes with most logical connectives, for example,
the separating conjunction, as expressed by �-sep.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 23

If we wish to prove �Q under the assumptions P1, . . . , Pn, where each Pi is persistent,
then we can introduce the � modality and prove Q from P1, . . . , Pn:

�-intro
persistent(P1) . . . persistent(Pn) P1 ∗ · · · ∗ Pn ` Q

P1 ∗ · · · ∗ Pn ` �Q
This rule is derivable from the definition of persistent(−), �-sep, and �-mono.

Note that persistent(P) is defined through the validity relation P ` �P ; i.e., it is a
meta-logical notion (in terms of the mechanization, persistent(P) is a Coq-level predicate,
not an Iris-level predicate). As such, the rule above does not fit the description we have
given to the inference rules in Section 3.1. Rather, it should be seen as a family of inference
rules indexed by meta-level propositions persistent(P1), . . . , persistent(Pn).

4.3. Value interpretation and monadic rules. In addition to the refinement judgment
∆ |= e1 - e2 : τ , which relates expressions e1 and e2, ReLoC provides the value interpretation
JτK∆(v1, v2), which relates values v1 and v2. The rule rel-return expresses that JτK∆(v1, v2)
implies ∆ |= v2 - v2 : τ . However, the inverse direction does not hold, JτK∆(v1, v2) is strictly
stronger than ∆ |= v1 - v2 : τ as its rules (in Figure 6) are bidirectional, whereas those
for the expression judgment are unidirectional. The bidirectionality is crucial for the rule
rel-rec in Figure 4, as it contains JτK∆(v1, v2) in negative position—i.e., as a client of
rel-rec one gets JτK∆(v1, v2) as an assumption and hence needs to eliminate it.

We want the value interpretation JτK∆(v1, v2) to be persistent, because our type system
is not substructural, i.e., types denote knowledge, but not ownership of data. For example,
in typing the expression e1 ← e2 with store-typed, we use the same context Γ for type
checking both e1 and e2. In order to semantically validate such rules, we want the proposi-
tions JτK∆(v1, v2) to be duplicable. To that end, we require all the interpretations in the
context ∆ to be persistent. That is why the rule rel-pack in Figure 4 has a side-condition
∀v1, v2. persistent(R(v1, v2)).

The value interpretation also appears in the monadic rules rel-return and rel-bind in
Figure 6. These rules are used to derive all type-directed structural rules of ReLoC, with
the exception of rel-fork, which is the sole primitive type-directed structural rule. As an
example, consider the type-directed structural rule for the first projection π1.

Lemma 4.1. The following rule is derivable:

∆ |= e1 - e2 : τ × σ
∆ |= π1(e1) - π1(e2) : τ

Proof. By rel-bind it suffices to show:

• ∆ |= e1 - e2 : τ × σ, but this is exactly our assumption;
• for any v, w: Jτ × σK∆(v, w) −∗ ∆ |= π1(v) - π1(w) : τ .

By val-prod we have values vi, wi for i ∈ {1, 2} such that v = (v1, v2) and w = (w1, w2)
and JτK∆(v1, w1) ∗ JσK∆(v2, w2). Using rel-pure-l and rel-pure-r we reduce the goal
∆ |= π1(v1, v2) - π1(w1, w2) : τ to ∆ |= v1 - w1 : τ . At this point we apply rel-return.

24 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

4.4. Fundamental theorem and refinements of open terms. The type-directed struc-
tural rules3 are also used for proving the following theorem, which is a standard result for
logical relation models of type systems:

Theorem 4.2 (Fundamental theorem for closed terms). If expression e is well typed, i.e.,
` e : τ , then e refines itself, i.e., the judgment e - e : τ is derivable in ReLoC.

We wish to prove this theorem by induction on the typing derivation. But in order to
make it work, we need to generalize the theorem to open terms (e.g., in order to deal with
the rec-typed case). Consequently, we need to generalize ReLoC’s refinement judgment
∆ | Γ |= e1 - e2 : τ to open terms e1 and e2 whose free variables are bound by the typing
context Γ. To define the refinement judgment for open terms, we first define a standard
notion of a closing substitution.

Definition 4.3. A mapping γ :Var →Val ×Val is a closing substitution w.r.t. the typing
environment Γ, notation JΓK∗∆(γ), if

∀(x, τ) ∈ Γ. JτK∆(γ1(x), γ2(x)),

where γi(x) = πi(γ(x)) is the i-th projection of γ(x).

Definition 4.4. The refinement judgment ∆ | Γ |= e1 - e2 : τ for open terms is defined as:

∆ | Γ |= e1 - e2 : τ , ∀γ. JΓK∗∆(γ) −∗ ∆ |= γ1(e1) - γ2(e2) : τ.

Using the refinement judgment for open terms we can now state versions of the type-
directed structural rules for open terms. For example:

∆ | x : τ,Γ |= e1 - e2 : σ

∆ | Γ |= λx. e1 - λx. e2 : τ → σ

This rule can be proven by unfolding the definition of the refinement judgment for open
terms and proceeding as in Lemma 4.1. Finally, we can state and prove the generalized
version of the fundamental theorem for open terms:

Theorem 4.5 (Fundamental theorem for open terms). If Ξ | Γ ` e : τ , then ∆ | Γ |= e - e : τ
is derivable in ReLoC, for all ∆ which contain the variables from Ξ.

Proof. By induction on the typing derivation, using the versions of the type-directed struc-
tural rules for open terms.

With the refinement judgments generalized to open terms, we can state and the general-
ized version of Theorem 3.1 for open terms, which we prove in Section 7.5.

Theorem 4.6 (Soundness for open terms). Let Ξ be a type environment. Suppose that
refinement judgment ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for all ∆ which contain the
variables from Ξ. Then Ξ | Γ ` e1 -ctx e2 : τ .

3Our type-directed structural rules are often called compatibility lemmas in the logical relation literature.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 25

5. Relational specifications in ReLoC

Due to its first-class refinement judgments, ReLoC can be used to give relational specifications
to programs. Similar to Hoare triples, relational specifications abstract away from a program’s
implementation by expressing its behavior in terms of a pre- and postcondition. Relational
specifications apply to the situation when the expression on the one side of the refinement
contains a program subject to specification, while the expression on the other side is arbitrary.
In Figure 5 in Section 3 we saw an example of a right-hand side relational specifications for
locks, which we then used to verify a counter module.

We start this section by describing the general format of non-atomic relational spec-
ifications (Section 5.1). Non-atomic relational specifications are sufficient to give strong
specifications for the right-hand left, but due to the demonic nature of the left-hand side,
we often need stronger specifications for the left-hand side (Section 5.2). We therefore
introduce logically atomic relation specifications, which generalize da Rocha Pinto et al .’s
TaDA-style specifications [dRPDG14] (Section 5.3) and Svendsen et al .’s HOCAP-style
specifications [SBP13] (Section 5.4) from the Hoare-logic setting to the relational setting.
Finally, we show how to use logically atomic specifications to verify a ticket lock (Section 5.5).

5.1. Non-atomic relational specifications.

5.1.1. Right-hand side relational specifications. Consider the following implementation of a
lock, which we refer to as a spin lock :

newlock , λ(). ref(false)

acquire , λ`. if CAS(`, false, true) then () else acquire `

release , λ`. `← false

For this specific implementation, we can prove the rules in Figure 5 in Section 3.4 by defining
the lock predicates as follows:

isLocks(lk , b) , lk ∈ Loc ∗ lk 7→s b.

The rules for locks in Figure 5 follow a certain pattern. For an expression e2 that, under
precondition P , reduces to v, with postcondition Q(x, v), we have the following rule:

P ∀x, v. Q(x, v) −∗ ∆ |=E e1 - K[v] : τ

∆ |=E e1 - K[e2] : τ

The postcondition Q : X ×Val→ iProp also depends on a type X, provided by the provider
of the rule. This rule pattern can be considered a relational version of a Hoare triple for a
program on the right-hand side of the refinement judgment.

5.1.2. Left-hand side relational specifications. We can formulate a similar pattern for pro-
grams on the left-hand side of the refinement judgment:

P ∀x, v. Q(x, v) −∗ ∆ |= K[v] - e2 : τ

∆ |= K[e1] - e2 : τ

Using this pattern we can state and prove a relational version of the standard separation
logic specification for locks, which is shown in Figure 7. This specification makes use of the
lock predicate isLocki(γ, lk , R), which states that lk protects the resources described by the

26 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

newlock-l
R ∀lk , γ. isLocki(γ, lk , R) −∗ K[lk] - e2 : τ

K[newlock ()] - e2 : τ

is-lock-pers
isLocki(γ, lk , R)

� isLocki(γ, lk , R)

acquire-l

isLocki(γ, lk , R) (lockedi(γ) −∗ R −∗ K[()] - e2 : τ)

K[acquire lk] - e2 : τ

release-l
isLocki(γ, lk , R) lockedi(γ) R K[()] - e2 : τ

K[release lk] - e2 : τ

Figure 7. Left-hand side relational specification for locks.

proposition R. When creating a lock using newlock, the resources R have to be given up,
and the persistent lock predicate isLocki(γ, lk , R) is given in return. A thread that acquires
a lock by calling acquire gets access to R for the duration of the critical section, and has to
give R back when calling release. The token lockedi(γ), where γ is a ghost name associated
to the lock, makes sure that a lock can only be released when it has been acquired. To prove
the left-hand side specification for the spin lock, we define the lock predicate isLocki(γ, lk , R)
following the usual definition in Iris:

isLocki(γ, lk , R) , lk ∈ Loc ∗ (lk 7→i false ∗ lockedi(γ) ∗R) ∨ (lk 7→i true)
Nlock

This definition uses an Iris invariant to express that the lock is either unlocked (lk 7→i false),
in which case it holds the token lockedi(γ) and the resources R, or locked (lk 7→i true), in
which case it holds no resources, since those are held by the thread that acquired the lock.
The token lockedi(γ) is an exclusive resource that is obtained from Iris’s ghost theory.

5.1.3. Left- versus right-hand side relational specifications. As we have seen in the specifica-
tions for the lock, there is an asymmetry between the left- and right-hand side specifications.
The left-hand side specification of acquire (acquire-l) can be used regardless of whether
the lock is unlocked, whereas the right-hand specification (acquire-r) can be used solely
if the lock is unlocked (i.e., if isLocks(lk , false)). This is due to the demonic nature of the
left-hand side and the angelic nature of the right-hand side. For acquire on the left-hand
side, we have to consider an arbitrary execution, whereas for acquire on the right-hand side
we have to provide an execution ourselves. That is, for acquire on the right-hand side we
have to show that it actually acquires the lock and reduces to (), which is only possible
when the lock is unlocked. For this reason we use the predicate isLocks(lk , b), which tracks
the state b of the lock.

5.2. The need for logically atomic specifications. Recall from Section 4.1 that for any
primitive (stateful) operation we have a symbolic execution rule that allows the client to
access shared resourced stored in an invariant. For example, the rule rel-store-l for the
store operation is as follows:

|V> E (` 7→i − ∗ .
(
` 7→i v −∗ ∆ |=E K[()] - e2 : τ

))
∆ |= K[`← v] - e2 : τ

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 27

Concretely, the update modality |V> E in the premise of this rule allows users to use inv-

access to access an invariant for the duration of the operation. The mask E in the refinement
judgment ∆ |=E K[()] - e2 : τ (that appears in the premise of the rule) forces the user
to close the invariant at the end of the duration of the operation. The ability to open an
invariant is sound because operations such as store are physically atomic—i.e., they reduce
in one step. As a consequence of being physically atomic, other threads cannot observe that
the invariant has been broken during the execution of the operation.

In contrast, methods of a concurrent program module are typically composed of several
operations and hence they are not physically atomic. For example, consider the increment
function inci of the fine-grained counter module from Figure 1:

inci , rec inc c = let n = ! c in

if CAS(c, n, 1 + n) then n else inc c

This function is a compound expression that does not reduce to a value in a single step.
Nevertheless, during the execution of this function there is a single instant at which the
whole operation actually appears to take the effect—namely the successful reduction of the
compare-and-set operation (CAS). This instant is called the linearization point. What it
means is that, for an outside observer, the method inci behaves as if it was atomic, and we
wish to express that in this function’s relational specification.

This phenomenon is called logical atomicity in the literature, and has been studied
extensively in the context of Hoare-style logics [JP11, dRPDG14, SBP13, JSS+15, JLP+20].
In the upcoming subsections we will how to generalize the concept of logical atomicity to
the relational setting, and how that gives rise to logically atomic relational specifications.
Concretely, we generalize da Rocha Pinto et al .’s TaDA-style specifications [dRPDG14]
(Section 5.3) and Svendsen et al .’s HOCAP-style specifications [SBP13] (Section 5.4) from
the Hoare-logic setting to the relational setting. Establishing the formal comparison between
the two styles is out of the scope of this paper. Rather, we demonstrate that both approaches
can be applied to the context of relational specifications.

5.3. TaDA-style relational specifications.

5.3.1. Formulating TaDA-style specifications. We take inspiration from the encoding of
TaDA-style logically atomic Hoare triples in Iris [JSS+15] and assign the following logically
atomic relational specification to inci:

inc-i-l-tada

� |V> E ∃n. c 7→i n ∗

((
c 7→i n ≡−∗E > True

)
∧(

c 7→i (n+ 1) −∗ |=E K[n] - e : τ
))

K[inci c] - e : τ

Contrary to the non-atomic specification, we do not have c 7→i n as a premise of the
rule directly, but instead the premise contains a way of obtaining c 7→i n. The typical way
of obtaining c 7→i n is by accessing an invariant, which is formally done by using the update

modality |V> E in the premise combined with inv-access from Figure 6.

28 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

To justify the remaining part of the premise of the rule we need to take a closer took at
the behavior of inci c, whose implementation (Figure 1) we recall to be as follows:

inci , rec inc c = let n = ! c in

if CAS(c, n, 1 + n) then n else inc c

The compare-and-set operation (CAS) can either succeed or fail. If it succeeds, then we
have managed to update our resources to c 7→i (n+ 1), and we can proceed with proving
|=E K[n] - e : τ under that premise. This explains the (c 7→i (n+ 1) −∗ |=E K[n] - e : τ)

clause. If, however, the compare-and-set fails, then we need to be able to restart the whole
computation of inci c. For that we must be able to return c 7→i n to the invariant. Hence
the (c 7→i n ≡−∗E > True) clause. (The same clause is used for performing operations that do
not modify the state, such as dereferencing.)

Finally, we know that the computation can either succeed or be restarted—but not both.
We have to accommodate for both situations, just not at the same time. Hence the last
two clauses described here are connected by an intuitionistic conjunction (∧), instead of the
separating conjunction (∗).

5.3.2. Using TaDA-style specifications. We use the logically atomic relational specification
inc-i-l-tada to prove the refinement that we have seen in Section 3.4.2. The new proof is
more modular since it does not appeal to the definition of inci. The refinement that we want
to prove is as follows:

Icnt
N −∗ inci ci - incs cs l : int

Recall that Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk , false). To prove this goal, we use
inc-i-l-tada. After introducing the persistence modality (using �-intro, which is allowed,
because there are no ephemeral assumptions in our context), this gives the following new

goal (under the assumption Icnt
N

):

|V> >\N ∃n. ci 7→i n ∗

((
ci 7→i n ≡−∗>\N > True

)
∧(

ci 7→i (n+ 1) −∗ |=>\N n - incs cs l : int
))

At this point we can open up the invariant Icnt (using inv-access), and thereby introduce the
update modality. The contents of the invariant provides us with a witness for the existential
quantifier and allows us to discharge c 7→i n. We are left with proving the conjunction:(

ci 7→i n ≡−∗>\N > True
)
∧

(
ci 7→i (n+ 1) −∗ |=>\N n - incs cs l : int

)
under the assumption of the unused resources isLocks(l, false) and cs 7→s n from the invariant,

and the invariant closing resource . Icnt ≡−∗>\N > True.
The first conjunct corresponds to the case in which we close the invariant without

modifying anything in our current context (i.e., the compare-and-set has failed). It follows
directly from the invariant closing resource. It thus remains to prove the second conjunct (i.e.,
the compare-and-set has succeeded), which means we should prove |=>\N n - incs cs l : int

under the assumptions ci 7→i (n+1) and isLocks(l, false) and cs 7→s n and . Icnt ≡−∗>\N > True.
At this point we finish the proof by symbolically executing incs cs l on the right-hand side
before closing the invariant using invariant closing resource.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 29

5.3.3. General format of TaDA-style specifications. The general format of logically atomic
rules for logical refinements is the following:

R � |V> E ∃x. P (x) ∗

((
P (x) ≡−∗E > True

)
∧(

∀v. Q(x, v) ∗R −∗ |=E K[v] - e2 : τ
))

K[e1] - e2 : τ

Here, P : X → iProp is a predicate describing consumed resources, and Q : X ×Val→ iProp
is a predicate describing produced resources, both dependent on a type X supplied by the
provider of the rule (e.g., a library that exports the program e1). This parameter X is
selected on per-specification basis. For example, for the counter module X is going to be
the type of natural numbers.

We include a frame R, which can be chosen by the client, for the following reason. The
second premise of the rule resides below a persistence modality. Whenever we prove a goal
of the form �P we must prove P using only persistent resources, and thus have to throw
all the ephemeral resources away (see �-intro in Section 4.2). However, we do not want to
throw away all the ephemeral resources that we have for eternity (as they might be needed
to close invariants afterwards or to proceed otherwise with the proof), so we give them up
only temporarily, by collecting them in R.

5.3.4. Proving TaDA-style specifications. Following the general scheme, we now state and
prove the TaDA-style specification of our increment function:

inc-i-l-tada-gen

R |V> E �∃n. c 7→i n ∗

((
c 7→i n ≡−∗E > True

)
∧(

c 7→i (n+ 1) ∗R −∗ |=E K[n] - e : τ
))

K[inci c] - e : τ

To prove this specification, we proceed by Löb induction and symbolic execution. At
the point when we need to symbolically dereference c we apply rel-load-l. We then use
the update that we have as a premise of the specification to obtain c 7→i n for some n. After
providing c 7→i n for the load operation, we use the first conjunct c 7→i n∗ ≡−∗E > True to
restore the mask on the refinement judgment.

After that we have to symbolically execute the compare-and-set operation; we apply
rel-cas-l and use the update that we have as a premise again to obtain c 7→i m for some m,
as needed for rel-cas-l. If m 6= n, then the compare-and-set operation has failed, and we can
restart the proof first by restoring the mask on the refinement judgment (using the closing
update), and then using the Löb induction hypothesis. If m = n, then the compare-and-set
operation has succeeded, and the points-to connective is updated to c 7→i (n+ 1). Then we
can use the second conjunct c 7→i (n + 1) ∗ R −∗ |=E K[n] - e : τ to arrive at the exact
conclusion that we need: |=E K[n] - e : τ .

5.4. HOCAP-style relational specifications. We now present another form of logically
atomic relational specifications—HOCAP-style logical atomic relational specifications, which
are based on the logically atomic specifications by Svendsen et al . [SBP13] in the eponymous
logic. Contrary to TaDA-style specifications, which come in a precisely specified format
(Section 5.3.3), HOCAP-style specifications do not have a precise format. This provides the
flexibility that not only can they be used to represent linearization points, but they can

30 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Rules for abstract predicates:

cnt-agree
cntAuthγ(n) cntγ(q,m)

n = m

cnt-agree’
cntγ(q1, n) cntγ(q2,m)

n = m

cnt-combine
cntγ(q1, n) ∗ cntγ(q2, n)

cntγ(q1 + q2, n)

cnt-update
cntAuthγ(n) cntγ(1,m)

|VcntAuthγ(k) ∗ cntγ(1, k)

Cnt-persistent
isCntγ(c,N)

� isCntγ(c,N)

Relational specification:

new-i-l-hocap
∀c γ. isCntγ(c,N) ∗ cntγ(1, n) −∗ K[c] - e2 : τ

K[ref(n)] - e2 : τ

inc-i-l-hocap
E ∩ N ↑ = ∅ isCntγ(c,N)

(∀n. cntAuthγ(n) ≡−∗>\N >\N\E cntAuthγ(n+ 1) ∗ |=>\E K[n] - e2 : τ)

K[inci c] - e2 : τ

read-i-l-hocap
E ∩ N ↑ = ∅ isCntγ(c,N)

(∀n. cntAuthγ(n) ≡−∗>\N >\N\E cntAuthγ(n) ∗ |=>\E K[n] - e2 : τ)

K[read c] - e2 : τ

Figure 8. HOCAP-style logically atomic relational specification for a fine-
grained concurrent counter.

also be used to represent arbitrary observable interactions with the abstract state. This
flexibility allows us to give strong specifications to non-linearizable methods (Section 5.4.4),
which we use in the ticket lock refinement proof (Section 5.5).

5.4.1. Formulating HOCAP-style specifications. Let us consider the HOCAP-style spec-
ification in Figure 8 for the fine-grained concurrent counter from Figure 1 in Section 1.
Contrary to the TaDA-style specification, the HOCAP-style specification does not expose
the underlying state of the counter (i.e., ` 7→i n) directly, but instead provides an abstract
view of the state through abstract predicates.

The persistent predicate isCntγ(c,N) asserts that the value c represents a counter. The
specification is parameterized by a namespace N for the internal invariants associated with
the specification. The ghost name γ is used to link c with the predicates cntγ(q, n) and
cntAuthγ(n), which describe the abstract state of the counter. The predicate cntγ(q, n)
provides the client view of the abstract state of the counter. It is similar to the fractional
heap points-to connective from separation logic—it associates a value (a natural number
n) to the counter, and can be split and combined according to the fractional component q
(cnt-agree’, cnt-combine). The predicate cntAuthγ(m) provides the module view of the

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 31

abstract state of the counter. It agrees with the client view (cnt-agree) and can be used
together with cntγ(1, n) to update the value associated to the counter (cnt-update).

Ownership of the module view predicate cntAuthγ(m) is given to the user only during the
execution of the counter operations. Consider, for example, the specification inc-i-l-hocap

for the atomic increment function inci. From the client’s point of view, there is only one
place where inci observably interacts with the abstract state of the counter, namely during
its linearization point. For this point of access, the user has to provide the update:

cntAuthγ(n) ≡−∗>\N >\N\E cntAuthγ(n+ 1) ∗ |=>\E K[n] - e2 : τ.

The user is given the module view cntAuthγ(n) of the counter, and has to update it to
cntAuthγ(n+1). For that, the user has to appeal to cnt-update and has to provide cntγ(q, n)
themselves (either as an immediate resource or from an invariant in E , which can be opened
thanks to the update modality). After the abstract state is updated, the user has to prove
the refinement judgment |=>\E K[n] - e2 : τ . Similar to the TaDA-style specifications, the
mask on the refinement is set to > \ E , allowing the user to perform some reasoning on the
right-hand side before closing all the invariants from E .

5.4.2. Using HOCAP-style specifications. We use the HOCAP-style logically atomic rela-
tional specification from Figure 8 to prove the refinement that we have seen in Section 3.4.2:

counteri - counters : (unit→ int)× (unit→ int).

Since the HOCAP-style specifications are stated in terms of abstract predicates, instead of
the ` 7→i n connective, we need a slightly different invariant than the one we used for the
proof using the TaDA-style specification in Section 5.3.2, namely:

isCntγ(ci,N.cnt) ∗ ∃n ∈ N. cntγ(1, n) ∗ cs 7→s n ∗ isLocks(lk , false)
N.inv

.

After having established this invariant, the refinement proofs for the increment and read
methods proceed similar to the corresponding TaDA-style proofs (Section 5.3.2), except that
in the increment case the user has to use cnt-update alongside inc-i-l-hocap in order to
update the ghost state cntγ(1, n) accordingly. We do not give the proof here, and direct the
reader to the accompanying Coq mechanization.

In Section 5.5 we will another example of a client using the HOCAP-style specification
for the counter.

5.4.3. Proving HOCAP-style specifications. We discuss how to prove that the implementation
of the fine-grained counter meets the HOCAP-style specifications. To do so, we first use
Iris’s ghost theory to define the predicates cntγ(q, n) and cntAuthγ(n) (the details of this
definition are omitted). We then define the predicate isCntγ(c,N), which provides the
internal invariant of the module:

isCntγ(c,N) , c ∈ Loc ∗ ∃n ∈ N. c 7→i n ∗ cntAuthγ(n)
N

This invariant states that the physical value n of c corresponds to the logical value n of
the predicate cntAuthγ(n). To see how this invariant is used, let us consider the proof of
inc-i-l-hocap for the inci operation. Since inci is defined recursively, we prove this rule
by Löb induction. We proceed by symbolically executing the left-hand side, accessing the
invariant N to dereference c for some value n. It then remains to show:

if CAS(c, n, 1 + n) then n else inci c - e2 : τ.

32 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

At this point we use the atomic symbolic execution rule for compare-and-set rel-cas-l (with

E = N). We introduce the update modality |V> >\N we obtain by accessing the invariant
N using Iris’s strong invariant access rule inv-access-strong, which is needed because we
need to access invariants in a non-well-bracketed way:

inv-access-strong
N ↑ ⊆ E

P
N ≡−∗E E\N .P ∗ (∀E ′. . P ≡−∗E ′ E ′∪N True)

It remains to consider two cases. If the compare-and-set (CAS) has failed, we close the
invariant (by setting E ′ = > \ N) and appeal to the induction hypothesis. If the compare-
and-set has succeeded, we are left to show the following:

· · · ∗ c 7→i (n+ 1) ∗ cntAuthγ(n) −∗ |=>\N n - e2 : τ.

We first use the update ≡−∗>\N >\N\E that is provided by the premise of the rule to update
cntAuthγ(n) into cntAuthγ(n+ 1). This moreover provides a proof of |=>\E n - e2 : τ . At
this point our goal becomes |=>\N\E n - e2 : τ . We close the invariant N (by setting
E ′ = > \N \ E) and restore the mask on the refinement proposition in our goal, resulting in

|=>\E n - e2 : τ , which is exactly what we obtained from the update ≡−∗>\N >\N\E .

5.4.4. HOCAP-style specifications for non-linearizable operations. Using HOCAP-style spec-
ifications we can also specify operations that are not linearizable. Consider the following
“weak increment” function that we can add to the counter module:

wkincr , λc. c ← (! c + 1)

The function increments the value in the location c non-atomically. What kind of specification
can we give to wkincr? To answer this we have to examine what the update ≡−∗ represents
in the HOCAP-style specifications. In the previous examples with linearizable functions, the
updates represented observations about the abstract state that the clients could make, and
they corresponded to the linearization points. But there is no reason why we should pin
them to linearization points only. Rather, we can let the update correspond to any operation
that is observable through the abstract state. In wkincr there are two points where such
operations happen, which we can represent through two nested updates:
cnt-wk-incr-l

E ∩ N ↑ = ∅ isCntγ(c,N)

∀n. cntAuthγ(n) ≡−∗>\N cntAuthγ(n) ∗ (∀m. cntAuthγ(m) ≡−∗>\N >\N\E

cntAuthγ(n+ 1) ∗ |=>\E K[()] - e2 : τ)

K[wkincr c] - e2 : τ

The first update binds the value n, which is obtained from the initial read operation ! c. In
the conclusion of this update the client needs to return the cntAuthγ(n) predicate, as in the
specification read-i-l-hocap. In addition to that predicate, the client has to provide the
second update, in which cntAuthγ(m) has to be updated to cntAuthγ(n+ 1), corresponding
to the assignment c ← n + 1. The value m corresponds to the intermediate state of the
counter, which might have changed in between the dereferencing of c and the assignment to
it. The presence of two updates differentiates methods that have a linearization point, such
as inci, and non-linearizable methods, such as wkincr.

In the next section we will see how a client might use the specification cnt-wk-incr-l.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 33

newlockTL , λ(). (ref(0), ref(0))

acquireTL , λ(lo, ln). let n = inci ln in wait loop n lo

wait loop , λn lo. if (n = read lo) then () else wait loop n lo

releaseTL , λ(lo, ln).wkincr lo

Figure 9. Ticket lock implementation.

5.5. Ticket lock refinement from HOCAP-style specs. We show how our HOCAP-
style relational specifications for the fine-grained concurrent counter (Figure 8) is used to
prove that a ticket lock refines a spin lock (or, rather, that a ticket lock refines any lock
satisfying the specification in Figure 5). The proof in this section demonstrates several
important features of ReLoC. First, it demonstrates compositionality of proofs in ReLoC
both by employing relational specifications for the left- and right-hand sides, and by reducing
the refinement proof of a program module into separate reusable refinement proofs of the
module functions. Second, the proof highlights the integration of Iris ghost state to facilitate
CAP-style [DDG+10] reasoning with abstract predicates.

A ticket lock [MS91, Section 2.2] is a ticket-based data structure for mutual exclusion,
which is fair—threads racing to enter a critical section will gain access to it in the order of
arrival at the critical section. The implementation of the ticket lock is given in Figure 9.
The two locations associated with the lock, lo and ln, point to the identifiers of the current
owner of the lock, and to the total number of issued tickets, respectively. When a thread
wants to enter a critical section using the acquireTL function, it first requests a new ticket
(by atomically increasing the value of ln using the inci function), and then spins until the
value of the current owner of the lock matches the ticket number (using wait loop).

The function releaseTL uses the weak increment wkincr (Section 5.4.4) on the location
lo. It does not need to use an atomic increment (i.e., inci), because, if the lock is used in a
well-bracketed manner, only the owner of the lock will be calling the releaseTL function.

Concretely, the refinement that we wish to show is the following:

pack(newlockTL, acquireTL, releaseTL) -

pack(newlock, acquire, release) : ∃α. (unit→ α)× (α→ unit)× (α→ unit).

Here, newlock, acquire and release are any operations that satisfy the relational specification
from Figure 5 (for example, the spin lock from Section 5.1.1).

Proof outline. To prove the refinement above we employ our general strategy for proving
refinements for stateful program modules in ReLoC:

(1) We define an invariant lockInv linking together the underlying representations of each
individual pair of locks, which we use to define a witness for the existential type α.

(2) We prove the refinements for each method in the signature.
(3) Finally, we combine those proofs together into a module refinement proof. This is what

we refer to as a component-wise refinement proof.

We stress that to carry out the proof we neither need to refer to the implementation of
the fine-grained concurrent counter (on the left-hand side), nor to the implementation of the

34 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

newIssuedTickets

|V∃γ. issuedTicketsγ(0)

issueNewTicket
issuedTicketsγ(m)

|VissuedTicketsγ(m+ 1) ∗ ticketγ(m)

ticket-nondup
ticketγ(n) ticketγ(n)

False

Figure 10. The ticket ghost theory.

spin lock (on the right-hand side). Rather, we only refer to the HOCAP-style specification
for the fine-grained counter and the relational specification for the spin lock.

Proof of the refinement. To match up the physical representation of tickets in the lock we
use Iris’s ghost theory to define abstract predicates tracking the tickets. We will use two
ghost predicates: issuedTicketsγ(m) saying that m tickets have been issued in total, and
ticketγ(n) representing the n-th ticket. The predicates satisfy the rules in Figure 10.

To prove the refinement of lock modules, we need to pick a relation (serving as the
interpretation for the witness α of the existential type) that links the two modules together.
We use the the relation lockInt defined as follows:

lockInvγ(γo, γn, lk) , ∃(o n : N) (b : B). cntγo(1, o) ∗ cntγn(1, n) ∗ isLocks(lk , b) ∗
issuedTicketsγ(n) ∗ (ticketγ(o) ∨ b = false)

lockInt((lo, ln), lk) , ∃γo, γn, γ. isCntγo(lo,N.o) ∗ isCntγn(ln,N.n)∗
lockInvγ(γo, γn, lk)

N.inv

Here, (lo, ln) is the ticket lock on the left-hand side, and lk is the specification lock on the
right-hand side. The lockInt relation states that lo and ln are concurrent counters with ghost
names γo and γn, that satisfy the invariant lockInv. This invariant describes the relation
between the values representing two locks. It states that the values of the counters lo and
ln are o and n, respectively, and that exactly n tickets have been issued. Furthermore, the
right-hand side lock lk is locked iff the ticket ticketγ(o) of the current owner of the lock is in
the invariant; that is, ticketγ(o) was given up by a thread that acquired the lock.

Using rel-pack we subdivide the main refinement proof into three refinements for the
functions that constitute the lock module:

(1) [α := lockInt] |= newlockTL - newlock : unit→ α;
(2) [α := lockInt] |= acquireTL - acquire : α→ unit;
(3) [α := lockInt] |= releaseTL - release : α→ unit.

Proposition 5.1. [α := lockInt] |= newlockTL - newlock : unit→ α.

Proof. By rule rel-rec it suffices to show [α := lockInt] |= newlockTL () - newlock () : α.
By applying the symbolic execution rules and new-i-l-hocap we are left with the goal:

isCntγn(ln,N.n) ∗ isCntγo(lo,N.o) ∗
cntγo(1, 0) ∗ cntγn(1, 0) ∗ isLocks(lk , false) −∗ [α := lockInt] |= (lo, ln) - lk : α.

From the premises we can allocate the invariant lockInvγ(γo, γn, lk), and obtain lockInt((lo, ln), lk).
We finish the proof with rel-return.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 35

To prove the acquireTL refinement we need the following helper lemma.

Lemma 5.2. ticketγ(m) ` [α := lockInt] |= wait loop m lo - acquire lk : unit, provided we

have lockInvγ(γo, γn, lk)
N.inv

.

Proof. We prove the refinement by Löb induction and symbolic execution. After some pure
symbolic executions steps we are left with the goal:

[α := lockInt] |= if (m = read lo) then () else wait loop m lo - acquire lk : unit.

We then apply read-i-l-hocap, after which it remains to prove

cntAuthγo(o) ≡−∗E ′ E ′\N cntAuthγo(o) ∗
[α := lockInt] |= if (m = o) then () else wait loop m lo - acquire lk : unit.

for any number o. In case m 6= o, we symbolically execute the left-hand side and ap-
peal to the induction hypothesis. In case m = o, we proceed by accessing the invariant

lockInvγ(γo, γn, lk)
N.inv

. Note that it cannot be the case that b = true, because then we
would have two copies of ticketγ(o): one from the assumption of the lemma and one from the
invariant. Thus, the case b = true can be eliminated by ticket-nondup. Then it must be
the case that b = false. In that case we have isLocks(lk , false) and we can apply acquire-r

to update it to isLocks(lk , true), changing the right-hand side to ().
We finish by closing the invariant, picking this time b = true and storing the ticketγ(o)

from the assumption of the lemma in the invariant.

Proposition 5.3. [α := lockInt] |= acquireTL - acquire : α→ unit.

Proof. We use rel-rec and symbolic execution rules, and then inc-i-l-hocap and Lemma 5.2.
When we apply inc-i-l-hocap, we use the update to issue a new ticket using issueNewTicket.
This ticket will be used for the assumption of Lemma 5.2.

Proposition 5.4. [α := lockInt] |= releaseTL - release : α→ unit.

Proof. We use rel-rec, and then symbolic execution and cnt-wk-incr-l, after which the
new goal becomes

cntAuthγo(n) ≡−∗E ′ cntAuthγo(n) ∗ (∀m. cntAuthγo(m) ≡−∗E ′ E ′\N

cntAuthγo(n+ 1) ∗ |=>\N () - release lk : τ)

for an arbitrary n. By framing cntAuthγo(n), it suffices to show

cntAuthγo(m) ≡−∗E ′ E ′\N cntAuthγo(n+ 1) ∗ |=>\N () - release lk : τ

for an arbitrary m. We utilize this update by accessing the invariant and getting access to
cntγo(1, o). Using this proposition and cntAuthγo(m) we apply cnt-update to get

cntγo(1, n+ 1) ∗ cntAuthγo(n+ 1).

We frame the second separating conjunct, and use release-r to reduce the right-hand side
to (). Finally we close the invariant and finish the proof with rel-return.

36 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

6. Speculative reasoning using prophecy variables

In addition to Iris’s ordinary ghost state mechanism, which allows to reason about the history
of a program, Iris has recently been extended with a mechanism for speculative reasoning
based on prophecy variables, which allows to reason about the future of a program [AL91,
JLP+20]. A prophecy variable is a ghost variable that can reference a value that is determined
in the future of a program’s execution. While the program that is subject to verification
cannot make use of the value of a prophecy variable itself—they are ghost variables—the
value can be used in proofs, e.g., to speculatively choose a reduction step in the right-hand
program. In this section we show how Iris’s mechanism for prophecy variables is integrated
into ReLoC and can be put to action to prove challenging refinements.

We start this section by illustrating the need for prophecy variables with a motivational
example (Section 6.1). We then introduce the proof rules for prophecy variables in ReLoC
(Section 6.2), and use them to verify the motivational example (Section 6.3). We finish
with another example demonstrating the applicability of prophecy variables to algebraic
reasoning for concurrent programs (Section 6.4).

6.1. Motivational example. The ghost state mechanism of Iris that we have seen so far
has allowed us to reason about the history of the program’s execution. However, in some
cases that is not enough, and it is required to take the future of the program’s execution into
account. As a simple motivating example let, us consider the implementations new coin and
new coin lazy of a coin module in Figure 11. They both implement a virtual coin that can
be flipped (using the first closure) and whose value can be read (using the second closure),
but there is an important difference. The eager version (new coin) calculates the flipped
value in the flip function immediately—using the rand function in Figure 12, which gives a
non-deterministic Boolean value—and the read function just reads that value. In contrast,
the lazy version (new coin lazy) does not perform any non-deterministic calculations in its
flip operation flip lazy. Instead, it sets the value of the coin to “undetermined” (i.e., None),
and postpones the actual calculation to the read lazy function.

While these two implementations are rather different, they are contextually equivalent—
for clients of the module it is not observable if the coin is flipped eagerly or lazily. To prove
that, we wish to establish the following refinements in ReLoC:

new coin - new coin lazy : (unit→ unit)× (unit→ bool)

new coin lazy - new coin : (unit→ unit)× (unit→ bool)

The first refinement can be proved with the tools that we have already described. We
start by symbolically executing both implementations, obtaining references c and cl to the
internal state of the eager coin and lazy coin, respectively. We then establish the following
invariant linking together the two internal states:

∃(b : B). c 7→i b ∗ (cl 7→s None ∨ cl 7→s Some(b)) .

This invariant can be easily shown to be preserved during the flip - flip lazy refinement proof.
During the read - read lazy refinement proof we can choose which value rand () reduces to
based on the current value of c, using rel-rand-r.

However, we cannot prove the second refinement with the same strategy. The problem
is that during the flip lazy - flip refinement we reset the value of cl (on the left-hand side)
to None, and then we have to establish a simulation on the right-hand side by picking a

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 37

The eager and lazy implementation:

new coin , let c = ref(false) in

((λ(). flip c), (λ(). read c))

new coin lazy , let c = ref(Some(false)) in

((λ(). flip lazy c), (λ(). read lazy c))

flip , λc. c← rand () flip lazy , λc. c← None

read , λc. ! c read lazy , λc.match ! cwith

| Some(v)→ v

| None→
let x = rand () in

if CAS(c,None, x)

then x else read lazy c ()

The instrumented lazy implementation with prophecy variables:

̂new coin lazy , let c = ref(Some(false)) in

let p = newproph in

let lk = newlock () in

((λ(). ̂flip lazy c lk), (λ(). ̂read lazy c lk p))

̂flip lazy , λc lk . acquire lk ; c← None; release lk

̂read lazy , λc lk p. acquire lk ;

let r = match ! cwith

| Some(v)→ v

| None→
let x = rand () in

c← Some(x); resolve p to x; x

in release lk ; r

Figure 11. The implementations of the coin module.

rand , λ(). let y = ref(false) in

fork {y ← true} ;

! y

rel-rand-l
∀b ∈ B. (K[b] - t : τ)

K[rand ()] - t : τ

rel-rand-r
b ∈ B e - K[b] : τ

e - K[rand ()] : τ

Figure 12. The implementation and relational specification of the rand function.

value for rand () that will be assigned to c. But this value has to be the same value that is
picked by rand () in read lazy. Thus we have to pick a value “from the future”.

To facilitate this style of reasoning, prophecy variables have been introduced into Iris
[JLP+20]. Originally, prophecy variables were used to prove refinements between state
machines [AL91]. Lately they have been used in Iris for establishing linearizability of
concurrent data structures without a fixed linearization point. In the rest of this section we
show how we integrated prophecy variables into ReLoC.

38 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

rel-newproph-l
∀~v p. proph(p,~v) −∗ ∆ |= K[p] - e2 : τ

∆ |= K[newproph] - e2 : τ

rel-resolveproph-l

|V> E ∃~v. proph(p,~v) ∗
(
∀~w. (~v = w :: ~w) ∗ proph(p, ~w) −∗ ∆ |=E K[()] - e2 : τ

)
∆ |= K[resolve p to w] - e2 : τ

rel-newproph-r
∀p. (∆ |=E e1 - K[p] : τ)

∆ |=E e1 - K[newproph] : τ

rel-resolveproph-r
∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[resolve p to w] : τ

Figure 13. The ReLoC proof rules for prophecy variables.

6.2. Prophecy instructions and proof rules. While Iris’s ordinary ghost state mech-
anism only appears at the level of the logic, prophecy variables appear as instrumented
instructions in the source program.4 The instruction newproph creates a new prophecy
variable. The instruction resolve p to v resolves a prophecy variable p to a value v.

The symbolic execution rules for the prophecy instructions are given in Figure 13. In the
right-hand side, the prophecy instructions are no-ops and therefore do not have any pre- or
post-conditions. Prophecy instructions that appear on the left-hand side, however, operate
on additional ghost state, and thus have pre- and postconditions. The ghost predicate
proph(p,~v) says that the prophecy variable p will be resolved, in the future, with values from
the vector ~v. Initially, a prophecy variable created with newproph has an arbitrary vector ~v
associated with it. Only after symbolically executing resolve p to w we learn that this vector
~v contains w at the head position. The trick behind the prophecy variables ghost state is
that we can already refer to the head element of ~v before resolving it to some w. We will
see how to use this in establishing the refinement between the lazy coin and the eager coin
in the next section. Note that the rules for the left-hand side are written in logically atomic
style: compare, for example, rel-resolveproph-l and rel-store-l.

To see how the instrumented instructions for prophecy variables are used, suppose we
want to prove a contextual refinement e1 -ctx e2 : τ that involves speculative reasoning. We
first prove a refinement ê1 - e2 : τ , where ê1 is a version of e1 instrumented with prophecy
variables, and then prove e1 - ê1 : τ to show that the prophecy variables can be erased.
By soundness of ReLoC and transitivity of contextual refinement, this gives a contextual
refinement e1 -ctx e2 : τ that refers only to the original programs.

6.3. Proving the coin refinement. To prove the refinement new coin lazy - new coin :
(unit → unit) × (unit → bool) from Section 6.1 we instrument the lazy implementation
new coin lazy with prophecy variables so we can speculate on the outcome of rand in read lazy.

The instrumented implementation ̂new coin lazy is shown in Figure 12. In addition to
prophecy variables, we also instrumented the implementation with locks to ensure that there
is no interference between updating the reference c and resolving the prophecy variable p.

4The semantics of HeapLang has to be instrumented to support prophecy variables, we refer the reader to
[JLP+20, Section 3] for details.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 39

With the instrumented program at hand, we will prove the chain of refinements:

new coin lazy - ̂new coin lazy : (unit→ unit)× (unit→ bool)

̂new coin lazy - new coin : (unit→ unit)× (unit→ bool).

Via ReLoC’s soundness theorem, we can compose these refinements at the level of contextual
refinement to obtain:

new coin lazy -ctx new coin : (unit→ unit)× (unit→ bool).

Note that that we only use the instrumented implementation ̂new coin lazy for the interme-
diate step, which means that prophecy variables and locks do not appear at all in the final
statement above. The approach of using prophecies as an intermediate step works not just
for closed programs, but also for open programs, as it does not rely on an erasure theorem
[JLP+20, Section 3.5]. Moreover, as the example demonstrates, it allows us to make use of
locks in the instrumented program.5.

The first refinement (new coin lazy - ̂new coin lazy) is easy to prove, we simply use the
no-op symbolic execution rules for prophecies on the right-hand side (Figure 13). The second

refinement (̂new coin lazy - new coin) is where the mechanism of prophecy variables comes

to help. We symbolically execute the allocation parts of ̂new coin lazy and new coin. We
then use the relational specification for locks (Section 5.1.2) with the following lock invariant:

∃~v. proph(p,~v) ∗
(
(cl 7→i None ∗ c 7→s (hd ~v)) ∨ (∃(b : B). cl 7→i Some(b) ∗ c 7→s b)

)
.

This invariant says that if the value of the lazy coin is None, then the value of the eager
coin is determined by the prophecy variable p. There are two main implications of this:

(1) In the refinement between ̂flip lazy and flip, the invariant can be (re)established, because
we can pick the value of rand () on the right-hand side to be the head element of ~v—the
future value of the lazy coin is already bound at this point.

(2) In the refinement between ̂read lazy and read (specifically, in the None branch), we obtain
a non-deterministic Boolean x from symbolically executing rand () on the left-hand side,
and we update the value of cl to be x. Moreover, we resolve the prophecy variable p to
x, which gives us much desired information: the head element of ~v was x all along! This
information allows us to transition from the left disjunct to the right disjunct in the
invariant and complete the proof.

6.4. Algebraic reasoning about non-deterministic choice. In this section we give
another example of the use of prophecy variables: we verify several algebraic properties
of non-deterministic choice modulo contextual equivalence. (In)equational theories of the
non-deterministic choice operator were previously considered in the context of domain theory,
where non-determinism is usually modeled using power domains [Plo76, Smy76], and in the
context of algebraic effects [SV20, JSV10]. Power domains and the denotational semantics
approach does not seem to scale easily to languages with concurrency and higher-order
store. An operational approach to equational theory of a programming language with
non-determinism was considered in [BBS13] using step-indexed logical relations. There
the authors show several contextual equivalences involving non-determinism, both finite

5Atomic prophecy resolution was introduced in [JLP+20] as an alternative to locks to deal with atomicity
of prophecy resolution.

40 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

(e.g., picking a Boolean) and countable (e.g., picking a natural number). In this subsection,
we provide conceptually simple proofs for contextual equivalences involving finite non-
determinism only. However, we were also able to prove that non-deterministic choice and
sequential composition distribute over each other. Proving this crucially relies on speculative
reasoning which we formalize using prophecy variables.

We do not have a non-deterministic choice operation built-in the language, but we can
define it using the rand function from Section 6.1. The operation or non-deterministically
executes one of its thunked arguments:

or t1 t2 , if rand () then t1 () else t2 ()

We write e1 ⊕ e2 for or (λ(). e1) (λ(). e2). The expression e1 ⊕ e2 thus non-deterministically
reduces to either e1 or e2. From the rules for the rand function (Figure 12), we derive the
following symbolic execution rules for ⊕:

rel-or-l
(∆ |= K[e1] - t : τ) ∧ (∆ |= K[e2] - t : τ)

∆ |= K[e1 ⊕ e2] - t : τ

rel-or-r-1
∆ |=E t - K[e1] : τ

∆ |=E t - K[e1 ⊕ e2] : τ

rel-or-r-2
∆ |=E t - K[e2] : τ

∆ |=E t - K[e1 ⊕ e2] : τ

The rules for ⊕ are reminiscent of the rules for disjunction (∨) in sequent calculus. To
symbolically execute ⊕ on the left-hand side (c.f. to eliminate ∨) it is necessary to establish
refinements for both operands (c.f. to consider both disjuncts), and to symbolically execute
⊕ on the right-hand side (c.f. to introduce ∨) it suffices to establish a refinement for one of
the operands (c.f. prove one of the disjuncts).

Assume that e1, e2, e3 are closed programs of type τ . Then using rel-or-r-1, rel-or-r-2,
and rel-or-l, we prove the following equivalences:

e1 'ctx e1 ⊕ e1 : τ e1 ⊕ e2 'ctx e2 ⊕ e1 : τ e1 'ctx e1 ⊕ diverge : τ

e1 ⊕ (e2 ⊕ e3) 'ctx (e1 ⊕ e2) ⊕ e3 : τ (e1 ⊕ e2); e3 'ctx (e1; e3) ⊕ (e2; e3) : τ

The equational theory that we obtain here is similar to the one obtained from the Hoare
power domain, as e1 ⊕ diverge (where diverge is an infinite loop) is identified with e1. The
last equation states that non-deterministic choice distributes over sequential composition,
and is standard in, e.g., process calculi. What is less standard is the following equation,
which is not validated by models based on bisimulation:

e1; (e2 ⊕ e3) 'ctx (e1; e2) ⊕ (e1; e3) : τ.

This equation, however, holds in Kleene algebra-like models [HMSW11, Koz94]. If we think
about proving this equation using the symbolic execution rules for ⊕, then we can observe
that proving the refinement in right-to-left direction

(e1; e2) ⊕ (e1; e3) - e1; (e2 ⊕ e3) : τ

is possible, and, by rel-or-l, it boils down to proving two refinements:

e1; e2 - e1; (e2 ⊕ e3) : τ e1; e3 - e1; (e2 ⊕ e3) : τ.

However, proving the refinement in left-to-right direction is harder:

e1; (e2 ⊕ e3) - (e1; e2) ⊕ (e1; e3) : τ.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 41

If we want to use the symbolic execution rules for ⊕, we have to “synchronize” both sides on
e1. To do that, we have to pick a branch for ⊕ on the right-hand side before we get to use
rel-or-l on the left-hand side, but we do not know ahead of time which branch to pick. To
resolve this dependency, we use a prophecy variable to speculate on which branch e2 ⊕ e3

will be taken on the left-hand side, and use the value of this prophecy variable to choose the
appropriate branch of (e1; e2) ⊕ (e1; e3) on the right-hand side.

The intermediate program that is instrumented with prophecy variables is as follows:

let p = newproph in

e1;
(
(resolve p to 0; e2) ⊕ (resolve p to 1; e3)

)
We can easily verify that the original program e1; (e2 ⊕ e3) refines the instrumented one.
To verify that the instrumented program refines (e1; e2) ⊕ (e1; e3) we symbolically execute
newproph and obtain a predicate proph(p,~v) associating a vector of future values ~v to the
newly created prophecy variable p. Then we examine the head element w of the prophecy
values ~v. If w is 0, then we apply rel-or-r-1, otherwise we apply rel-or-r-2. Without loss
of generality, suppose that w is 0; that is, ~v = 0 :: ~w for some tail ~w. First we “synchronize”
the refinement proof on e1 on both sides. Then we apply rel-or-l. Because the premises of
rel-or-l are joined by intuitionistic conjunction ∧, we can use the resource proph(p,~v) for
verifying both refinements:

proph(p, 0 :: ~v′) −∗ resolve p to 0; e2 - e2 : τ

proph(p, 0 :: ~v′) −∗ resolve p to 1; e3 - e2 : τ

The first refinement is reduced to e2 - e2 : τ , which follows from the fundamental property
(Theorem 4.5) and the assumption that e2 is well-typed. To prove the second refinement
we symbolically execute resolve p to 1 on the left-hand side, at which point we reach a
contradiction 0 = 1.

7. The logical relations model of ReLoC

ReLoC extends Iris with logical connectives and corresponding proof rules for reasoning
about refinements. In this section we show how this is achieved by modeling the connectives
of ReLoC through a shallow embedding in Iris and proving the logical rules of ReLoC as mere
lemmas in Iris. We describe how the refinement judgment e1 - e2 : τ is modeled through
Iris’s weakest preconditions and a ghost thread pool construction (Section 7.1) combined with
a binary logical relation JτK∆ that describes when values are related (Section 7.2). We then
summarize how the ReLoC proof rules (Section 7.4) and soundness theorem (Section 7.5)
are proved. The key definitions of the ReLoC model are shown in Figure 14.

The construction of our model generalizes prior work by Turon et al . [TTA+13, TDB13],
which culminated in the CaReSL logic, and was subsequently mechanized in Iris by Krebbers
et al . [KTB17] and Timany [Tim18]. We discuss the differences in Section 7.3.

7.1. The refinement judgment. Recall from Section 3.1 that the intuitive meaning of
the refinement proposition e1 - e2 : τ is that any behavior of e1 can be simulated by some

42 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Refinement judgments:

∆ |=E e1 - e2 : τ , ∀i,K. specCtx −∗ i Z⇒K[e2] ≡−∗E >

wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1, v2)}

Interpretation of types:

JαK∆ , λ(v1, v2).∆(α)(v1, v2)

JunitK∆ , λ(v1, v2). v1 = v2 = ()

JboolK∆ , λ(v1, v2). (v1 = v2 = true) ∨ (v1 = v2 = false)

JintK∆ , λ(v1, v2). ∃n ∈ Z. v1 = v2 = n

Jτ × σK∆ , λ(v1, v2). ∃w1, w2, w
′
1, w

′
2. v1 = (w1, w2) ∗ v2 = (w′1, w

′
2) ∗

JτK∆(w1, w
′
1) ∗ JσK∆(w2, w

′
2)

Jτ + σK∆ , λ(v1, v2). ∃w1, w2. (v1 = inl(w1) ∗ v2 = inl(w2) ∗ JτK∆(w1, w2)) ∨
(v1 = inr(w1) ∗ v2 = inr(w2) ∗ JσK∆(w1, w2))

Jτ → σK∆ , λ(v1, v2). � (∀w1, w2. JτK∆(w1, w2) −∗ (∆ |= v1 w1 - v2 w2 : σ))

J∀α. τK∆ , λ(v1, v2). �
(
∀Φ ∈Val×Val→ iProp�. ([α := Φ] ,∆ |= v1〈〉 - v2〈〉 : τ)

)
J∃α. τK∆ , λ(v1, v2). ∃Φ ∈Val×Val→ iProp�. JτK[α:=Φ],∆(v1, v2)

Jµα. τK∆ , µΦ. λ(v1, v2). ∃w1, w2. v1 = fold(w1) ∗ v2 = fold(w2) ∗ .JτK[α:=Φ],∆(w1, w2)

Jref τK∆ , λ(v1, v2). ∃`1, `2 ∈ Loc. v1 = `1 ∗ v2 = `2 ∗
∃w1, w2. `1 7→i w1 ∗ `2 7→s w2 ∗ JτK∆(w1, w2)

(`1,`2)

Figure 14. The model of ReLoC in Iris.

behavior of e2. This intuitive idea is modeled in Iris as follows:

∆ |=E e1 - e2 : τ , ∀i,K. specCtx −∗ i Z⇒K[e2] ≡−∗E >

wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1, v2)}
This definition is quite a mouthful, so let us go over it piece by piece. First, it involves

Iris’s weakest precondition connective wp e {Φ}, which gives the weakest precondition under
which execution of e is safe, and when e returns with value v, the postcondition Φ(v) holds.
Second, it involves the ghost thread pool connective i Z⇒ e, which is defined through Iris’s
ghost theory, and states that the i-th ghost thread is executing a program e. Putting these
pieces together (ignoring specCtx and ≡−∗E > for now), this definition states that if a (ghost)
thread i is executing right-hand side e2, and left-hand side e1 reduces to some value v1, then
a corresponding execution can be made so that (ghost) thread i is executing right-hand
side v2. The result values v1 and v2 of the left-hand and right-hand side should be related
via the value interpretation JτK∆(v1, v2), which we model in Section 7.2 via a logical relation.
The quantification over K closes the definition under evaluation contexts. The expression e1

on the left-hand side does not need to be closed under evaluation contexts because weakest
preconditions enjoy the rule: wp e {w.wp K[w] {Φ}} −∗ wp K[e] {Φ}.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 43

step-pure
specCtx i Z⇒ e e→pure e

′

|VE i Z⇒ e′

step-alloc
specCtx i Z⇒K[ref(v)]

|VE ∃`. i Z⇒K[`] ∗ ` 7→s v

step-store
specCtx i Z⇒K[`← w] ` 7→s v

|VE i Z⇒K[()] ∗ ` 7→s w

step-fork
specCtx i Z⇒K[fork {e}]

|VE ∃j. i Z⇒K[()] ∗ j Z⇒ e

Figure 15. Selected rules for the ghost thread pool.

The ghost thread pool predicates satisfy a number of symbolic execution rules corre-
sponding to executions in the operational semantics. A selection of these rules is given
in Figure 15. The specCtx proposition is an Iris invariant that ties together the thread
pool connectives i Z⇒ e and the heap assertions ` 7→s v with a matching execution on the
right-hand side. We will explain the role of specCtx in Section 7.5.

We should emphasize that the combination of the weakest precondition and the ghost
thread pool in the definition of ∆ |=E e1 - e2 : τ model the demonic nature of e1 and the an-
gelic nature of e2. To prove the weakest precondition wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1, v2)}
one has to consider all behaviors of e1, but has to establish only a single matching execution
for e2 by using the appropriate rules for the ghost thread pool.

7.2. The logical relation. The interpretation of types JτK∆(v1, v2), as defined in Figure 14,
expresses when two values v1 and v2 are related at type τ (in context ∆). The definition of
JτK∆(v1, v2) follows the usual structure of a logical relation, it is defined recursively on the
structure of the type τ and uses the corresponding logical connectives via the Curry-Howard
isomorphism. For example, products are defined via (separating) conjunction, sums are
defined via disjunction, functions are defined via (separating) implication, universal types
are defined via universal quantification, etc.

The interpretation of recursive types and reference types are somewhat more interesting,
as they make use of Iris-specific connectives. The interpretation of the recursive type µα. τ
makes use of Iris’s guarded fixed point operator µx. t, which is used to define recursive
predicates without a restriction of the variance of the recursive occurrence x in t, but requires
x to appear in guarded position, i.e., under the later modality . [JKJ+18, Section 5.6]. To
define the interpretation of the reference type ref τ , we use the invariant

∃w1, w2. `1 7→i w1 ∗ `2 7→s w2 ∗ JτK∆(w1, w2)
(`1,`2)

,

which states that whatever values are stored in `1 and `2 are always related at type JτK∆.
The persistence modality � in the interpretation for function types and universal types

is used to ensure that the type interpretation is persistent and prevents the kind of issues
described in Section 4.2. Similarly, in the interpretation of the universal and existential
types we quantify over a persistent predicate Φ ∈Val×Val→ iProp�, where iProp� is the
subset of Iris propositions that is persistent.

44 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

7.3. Differences with prior work. The definition of the refinement ∆ |=E e1 - e2 : τ and
value interpretation JτK∆(v1, v2) generalize the versions by Krebbers et al . [KTB17] and
Timany et al . [Tim18], which in turn adapted ghost thread pools by Turon et al . [TTA+13,
TDB13] by modeling these in Iris. The main novelty is that our refinement judgment
∆ |=E e1 - e2 : τ is a first-class Iris proposition, instead of a meta-logical proposition. As
we have demonstrated throughout this paper, this modification is simple, albeit crucial for
writing conditional refinements and to obtain high-level proof rules for refinements.

Furthermore, to obtain high-level proof rules for invariants, we have equipped the
refinement judgment with a mask E , which keeps track of the invariants that may be opened.
To give the appropriate semantics to the mask E , our definition involves the update modality
≡−∗E >. Note that the definition by Krebbers et al . [KTB17] and Timany [Tim18] is logically

equivalent to ` ∆ |=> e1 - e2 : τ , where the derivability relation ` of Iris is used to turn the
judgment into a meta theoretical proposition, and the mask is set to >.

7.4. Deriving the primitive rules. In Section 4.3 we have demonstrated that ReLoC’s
primitive monadic (rel-return and rel-bind) and symbolic execution rules can be used
to derive ReLoC’s high-level proof rules, such as its type-directed structural rules. In this
section, we indicate how ReLoC’s primitive rules are proved by unfolding the definition
of the refinement judgment. We prove the symbolic execution rules through the following
auxiliary rules, which allow us to lift Iris’s rules for weakest preconditions and the ghost
thread pool rules (Figure 15) to the refinement judgment:

rel-wp-l
wp> e1 {v1. K[v1] - e2 : τ}

K[e1] - e2 : τ

rel-wp-atomic-l

|V> EwpE e1 {v1. |=E K[v1] - e2 : τ} atomic(e1)

K[e1] - e2 : τ

rel-step-r
∀j,K ′. specCtx ∗ j Z⇒K ′[K[e2]] ≡−∗E ∃v2. j Z⇒K ′[K[v2]] ∗ |=E e1 - K[v2] : τ

|=E e1 - K[e2] : τ

The rule rel-wp-l says that we can “take out” an expression e1 in context K on the left-hand
side, and reason about it using Iris’s weakest precondition. The rule rel-wp-atomic-l is
similar, but it also allows for opening an invariant around e1, in case e1 is atomic.6 The rule
rel-step-r says that if we have an expression e2 on the right-hand side in an evaluation
context K, and we can reduce e2 to a value v2, using the ghost thread pool rules, then we
can reduce the refinement proposition to |=E e1 - K[v2] : τ .

7.5. Soundness. Utilizing the definitions in this section, we outline the proof of the sound-
ness theorem (Theorem 4.6), which says that ReLoC’s refinement judgment is sound w.r.t. con-
textual refinement. Formally, if ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for any ∆ with
Ξ ⊆ dom(∆), then Ξ | Γ ` e1 -ctx e2 : τ . To prove this theorem we make use of two
key lemmas: adequacy of the refinement judgment (Theorem 7.1), and the fact that the
refinement judgment is a precongruence (Lemma 7.2).

Theorem 7.1 (Adequacy of ReLoC). If ` ∆ |= e1 - e2 : τ is derivable in ReLoC, and
(e1, σ) −→∗tp (v1 :: ~ef 1, σ

′
1), then there exists v2, ~ef 2, and σ′2 such that (e2, σ) −→∗tp (v2 :: ~ef 2, σ

′
2).

6Iris’s weakest precondition connective wpE e {Φ} is also equipped with a mask to keep track of which
invariants may be opened. This was the inspiration for the mask annotation at ReLoC’s refinement judgment.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 45

Lemma 7.2. Let C be a well-typed context C : (Ξ | Γ ` τ)⇒ (Ξ′ | Γ′ ` τ ′), then we have

�(∀∆.∆ | Γ |= e1 - e2 : τ) −∗ (∀∆′.∆′ | Γ′ |= C[e1] - C[e2] : τ ′)

where ∆ and ∆′ contain at least the type variables in Ξ and Ξ′, respectively.

Lemma 7.2 is proved by induction on C making using of ReLoC’s type-directed structural
rules (Section 4.4). The proof of Theorem 7.1 is rather involved, so before we discuss that,
let us see how we prove the soundness theorem by putting these two lemmas together.

Proof of Theorem 4.6 (Soundness for open terms). Let Ξ be a type environment, and sup-
pose that ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for any ∆ with Ξ ⊆ dom(∆). To prove
Ξ | Γ ` e1 -ctx e2 : τ , suppose we have typed context C : (Ξ | Γ ` τ) ⇒ (∅ | ∅ ` τ ′), and
reduction (C[e1], ∅) −→∗tp (v1 :: ~ef 1, σ1). By Lemma 7.2, we have C[e1] - C[e2] : τ ′. Then,
by Theorem 7.1, we get that (C[e2], ∅) −→∗tp (v2 :: ~ef 2, σ2) for some v2, ~ef 2 and σ2, which
concludes the proof.

Proof of Theorem 7.1 (Adequacy of ReLoC). Suppose that ∆ |= e1 - e2 : τ is derivable in
ReLoC, and we have (e1, σ) −→∗tp (v1 :: ~ef 1, σ

′
1). Now we should exhibit v2, ~ef 2, and σ′2 such

that (e2, σ) −→∗tp (v2 :: ~ef 2, σ
′
2). The high-level structure of the proof is as follows. First, we

allocate the thread pool invariant specCtx and 0 Z⇒ e2 for the main-thread of the right-hand
side. Second, by definition of the refinement judgment, we obtain a weakest precondition
wp e1 {v1. ∃v2. 0 Z⇒ v2 ∗ JτK∆(v1, v2)}. Third, by opening specCtx and using adequacy of
Iris’s weakest preconditions, we obtain (e2, σ) −→∗tp (v2 :: ~ef 2, σ

′
2).

Carrying out these steps in detail—notably, setting up the required ghost theory for
the ghost thread pool—involves some intricate reasoning using Iris features that are out of
scope for this paper. We thus refer the interested reader to the Coq mechanization, and
only highlight the key part—the definition of the thread pool invariant specCtx:

specCtx , ∃~e0, σ0. ∃~e, σ. spec inv(~e, σ) ∗ (~e0, σ0) −→∗tp (~e, σ)
NReLoC

.

The invariant asserts that given an initial configuration (~e0, σ0) for the right-hand side (which
we set to be (e2, σ) when allocating the invariant), the configuration (~e, σ) can be reached
via the reduction (~e0, σ0) −→∗tp (~e, σ). Here, spec inv(~e, σ) is a connective defined using Iris’s
ghost theory that keeps track of the configuration of the ghost thread pool and ensures it is
consistent with the Z⇒ and 7→s connectives. The latter is essential, as it allows us to conclude
from spec inv(~e, σ) and 0 Z⇒ v2 (as given by the post condition of the weakest precondition
in the definition of the refinement judgment) that ~e is equal to v2 :: ~ef 2 for some ~ef 2. By
definition of the invariant specCtx, this gives us a reduction (e2, σ) −→∗tp (v2 :: ~ef 2, σ

′
2) for the

right-hand side, which is needed to conclude the third step of the proof.

8. The Coq mechanization of ReLoC

The Coq mechanization of ReLoC provides a soundness proof of ReLoC and infrastructure to
carry out interactive tactic-based refinement proofs. It is built on top of the mechanization
of Iris in Coq [Iri20] and the Iris Proof Mode/MoSeL framework for tactic-based proofs in
separation logic [KTB17, KJJ+18]. In this section we examine the way ReLoC’s language
and type system are defined (Section 8.1), and how the ReLoC logic is defined on top of that
(Section 8.2). We then describe ReLoC’s tactic support for interactive refinement proofs,

46 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

which allows us to seamlessly carry out proofs in Coq similar to those we have seen in this
paper (Section 8.3). Finally, we give an overview of the source code (Section 8.4).

8.1. The programming language. Iris is a programming language independent frame-
work, which means that it can be instantiated with a programming language of choice. In
this paper, we do not make use of this generality, and use HeapLang—the default language
shipped with Iris’s Coq development, which is essentially an untyped version of the language
we considered in Section 2. HeapLang is represented via a deep embedding and comes with
a set of notations so that programs can be written in Coq-style syntax. For example, the
Boolean implementation bitbool of the bit module from Section 3.3 is written as follows:

Definition bit_bool : expr :=

(#true, (λ: "b", ∼"b"), (λ: "b", "b")).

Binders in HeapLang are represented as strings, which makes it possible to write programs
in a human-readable way. This works well in practice because expression-level substitution
only acts on closed terms, and thus does not need to be capture avoiding.

We equip HeapLang with a type system in the usual way—types type are defined as an
inductive data type, and the typing judgment typed is defined as an inductive relation:

Inductive type :=

| TVar : var → type

| TProd : type → type → type

| TArrow : type → type → type

| TExists : {bind 1 of type} → type

| (* ... *).

Inductive typed : stringmap type → expr → type → Prop :=

| Var_typed Γ x τ :

Γ !! x = Some τ → (Γ `t Var x : τ)

| Pair_typed Γ e1 e2 τ1 τ2 :

(Γ `t e1 : τ1) → (Γ `t e2 : τ2) → (Γ `t (e1, e2) : τ1 * τ2)

| Fst_typed Γ e τ1 τ2 :

(Γ `t e : τ1 * τ2) → (Γ `t Fst e : τ1)

| (* ... *).

We use the notation Γ `t e : τ for typed Γ e τ , and overload the standard Coq notations
for types, e.g., we use the notation τ1 ∗ τ2 for TProd τ1 τ2 and τ1→ τ2 for TArrow τ1 τ2. Since
type-level substitution acts on (potentially) open terms, and therefore needs to be capture
avoiding, we use De Bruijn indices to represent type-level binders through the Autosubst
Coq library [STS15]. For example, the type TBit , ∃α.α × (α → α) × (α → bool) from
Section 3.3 is represented in Coq as follows (# is notation for TVar):

Definition bitτ : type := ∃: #0 * (#0 → #0) * (#0 → TBool).

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 47

8.2. The ReLoC logic. Recall from Section 7 that ReLoC is defined as a shallow definition
in Iris—the ReLoC connectives are definitions in Iris, and the ReLoC proof rules are lemmas
in Iris. In Coq we follow the same approach. At the core of ReLoC we have the definition
lrel of semantic types, i.e., persistent Iris relations over HeapLang values:

Record lrel Σ := LRel {

lrel_car :> val → val → iProp Σ;

lrel_persistent v1 v2 : Persistent (lrel_car v1 v2)

}.

Here, iProp Σ is the type of Iris propositions.7 The record bundles together a relation
together with a proof that it is persistent. The notation :> declares the field lrel_car as
a coercion. In the Coq mechanization of ReLoC we generalize the refinement judgment
∆ |=E e1 - e2 : τ to range over semantic types (lrel) instead of syntactic types (type):

Definition refines (E : coPset) (e1 e2 : expr) (A : lrel Σ) : iProp Σ:=

∀ j K, spec_ctx -∗ j Z⇒ fill K e2 ={E,>}=∗
WP e1 {{ v1, ∃ v2, j Z⇒ fill K (of_val v2) ∗ A v1 v2 }}.

The parameter E corresponds to the mask E , and the semantic type A corresponds to the type
interpretation JτK∆. We use the notation REL e1 << e2 @ E : A for refines E e1 e2 A. This
definition makes use of the ghost thread pool connectives spec_ctx and j Z⇒ e, as discussed
in Section 7.1, and which were originally defined in Coq in [KTB17].

To formalize the refinement judgment on syntactic types, we first define the semantic
interpretation JτK∆, denoted as interp τ ∆ in Coq, which maps syntactic types τ to semantic
types. To define the semantic interpretation, we define semantic type formers, which are
combinators on semantic types corresponding to each syntactic type former. For example,
the semantic product type is defined as follows:

Definition lrel_prod (A B : lrel Σ) : lrel Σ := LRel (λ v1 v2,

∃ w1 w2 w1’ w2’, pv1 = (w1,w1’)%Vq ∧ pv2 = (w2,w2’)%Vq ∧ A w1 w2 ∗ B w1’ w2’).

Here, we use Iris’s notion pϕq to embed Coq propositionsϕ : Prop into Iris, although on paper
we take the equality predicate to be primitive. With the above definitions at hand, we can now
define ReLoC’s refinement judgment ∆ |=E e1 - e2 : τ as REL e1 << e2 @ E : interp τ ∆.

The proof rules. For example, the rule rel-load-r is formalized as the following lemma:

Lemma refines_load_r E K l q v e1 A :

↑ relocN ⊆ E →
l 7→s{q} v -∗
(l 7→s{q} v -∗ REL e1 << fill K (of_val v) @ E : A) -∗
REL e1 << fill K !#l @ E : A.

The lemma states that, under the assumption that relocN↑ ⊆ E (i.e., ReLoC’s internal
invariants are available in the mask E), the following separation logic formula holds:

`
q7−→s v −∗ (`

q7−→s v −∗ |=E t - K[v] : A) −∗ |=E t - K[! `] : A

7The parameter Σ describes the kind of ghost state available in Iris. It is an important but technical detail
that can safely be ignored for the purpose of this paper. An interested reader is directed to [JKJ+18, §4.7].

48 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

This is exactly the internalization of rel-load-r. The other ReLoC proof rules are mechanized
in a similar way.

Soundness. The versions of ReLoC’s soundness theorem for closed (Theorem 3.1) and open
terms (Theorem 4.6) are stated in Coq as follows:

Lemma refines_sound Σ ‘{relocPreG Σ} e1 e2 τ :

(∀ ‘{relocG Σ} ∆, ` REL e1 << e2 : interp τ ∆) →
∅ � e1 -ctx e2 : τ.

Lemma refines_sound_open Σ ‘{relocPreG Σ} Γ e1 e2 τ :

(∀ ‘{relocG Σ} ∆, ` {∆;Γ} � e1 -log e2 : τ) →
Γ � e1 -ctx e2 : τ.

Here, Γ � e1 -ctx e2 : τ is the notion of contextual refinement, {∆;Γ} � e1 -log e2 : τ is the
refinement judgment lifted to open expressions, and ` P expresses that the Iris proposition
P is derivable.

Example proof: refinement of the bit module. In order to prove the contextual refinement
∅ � bit_bool -ctx bit_nat : bitτ from Section 3.3, it suffices to prove the following:

Lemma bit_refinement ∆ : ` REL bit_bool << bit_nat : interp bitτ ∆.

To prove this lemma, we use the relation R, which is the same as the one in Section 3.3, but
wrapped into a semantic type (lrel) to ensure it is persistent:

Definition R : lrel Σ := LRel (λ v1 v2,

(pv1 = #trueq ∧ pv2 = #1q) ∨ (pv1 = #falseq ∧ pv2 = #0q)).

Using the relation R, a Coq proof of the desired refinement is as follows:

Lemma bit_refinement ∆ : ` REL bit_bool << bit_nat : interp bitτ ∆.

Proof.

unfold bitτ; simpl. iApply (refines_exists R). (* apply rel-pack *)

progress repeat iApply refines_pair. (* repeatedly apply rel-pair *)

- rel_values. (* apply rel-return and solve the goal *)

- (* ... *)

Qed.

Finally, we combine bit_refinement with the soundness theorem to get a closed proof of
contextual refinement:

Theorem bit_ctx_refinement : ∅ � bit_bool -ctx bit_nat : bitτ

Proof. auto using (refines_sound relocΣ), bit_refinement. Qed.

It is important to emphasize that the contextual refinements, which we obtain in theorems
like bit_ctx_refinement above, are closed propositions in Coq. The statement (the type) of
bit_ctx_refinement does not refer to ReLoC or Iris. This illustrates that the only parts of
the trusted code base of our development are the notions that are involved in the definition
of contextual refinement, i.e., the operational semantics and the typing of contexts.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 49

-------------------∗
P -∗ (P -∗ Q) -∗ Q

(a) Before executing any tactics.

"H1" : P

"H2" : P -∗ Q

-------------------∗
Q

(b) After iIntros "H1 H2" .

Figure 16. Interactive proof of lemma example in IPM.

8.3. Tactic support for interactive proofs. To prove refinement judgments, like the bit
refinement REL bit_bool << bit_nat : interp bitτ ∆ from the previous section, we can
repeatedly apply the Iris lemmas corresponding to the ReLoC proof rules. However, doing
so directly quickly becomes unwieldy, as the user has to manually provide the resources (like
the precondition l 7→s{q} v of refines_load_r), and manually select the evaluation context
K. For better usability we provide tactic support for symbolic execution.

Interactive separation logic proofs. To explain the tactics for ReLoC that we have defined,
let us first look at the general tactic support in Iris. The Iris Proof Mode (IPM) [KTB17]
and its successor MoSeL [KJJ+18] allow us to carry out separation logic proofs interactively,
in the style of regular tactic-based proofs in Coq. IPM provides a convenient representation
of sequents for separation logic and tactics for manipulating them, allowing for interactive
proof development in the style of regular proofs in Coq. To illustrate this, consider the
following separation logic tautology:

Lemma example (P Q : iProp Σ) : P -∗ (P -∗ Q) -∗ Q.

Proof. iIntros "H1 H2". iApply ("H2" with "H1"). Qed.

The intermediate results can be seen in Figure 16. Applying iIntros "H1 H2" . introduces
the hypothesis P and P -∗ Q into the IPM context, giving them names H1 and H2, respectively.
Then, iApply ("H2" with "H1") . applies the separating implication P -∗ Q to the goal,
using the hypothesis H1 : P as the assumption.

Symbolic execution tactics. In addition to tactics like iIntros and iApply, IPM provides
tactic for symbolic execution in weakest preconditions. We built similar tactics on top of
IPM for symbolic execution in refinement judgments. For example, consider:

Lemma example_load l : l 7→s #0 -∗ REL #2 << (!#l + #2) : lrel_int.

Proof. iIntros "Hl". rel_load_r. rel_pures_r. rel_values. Qed.

The results of rel_load_r and rel_pures_r can be seen in Figure 17. The tactic rel_load_r

symbolically executes the dereferencing operation, and the tactic rel_pures_r symbolically
executes as many pure reduction steps as possible. The tactic rel_values finishes the goal
since both sides are values. Similarly, we built tactics for all other language connectives
(both on the left- and right-hand side). The tactics were developed in a similar way to the
weakest-precondition tactics from IPM, and we refer the reader to [KTB17] for details.

50 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

"Hl" : l 7→s #0

-------------------------------∗
REL #2 << (!#l + #2) : lrel_int

(a) Before applying rel_load_r.

"Hl" : l 7→s #0

------------------------------∗
REL #2 << (#0 + #2) : lrel_int

(b) After applying rel_load_r.

"Hl" : l 7→s #0

-----------------------------∗
REL #2 << #(0 + 2) : lrel_int

(c) After applying rel_pures_r.

Figure 17. Interactive refinement proof of lemma example_load in ReLoC.

8.4. Overview of the source code. The Coq mechanization contains around 10300
lines of code, of which approximately (1) 1315 lines for mechanization of the model of
ReLoC (Section 7), including the adequacy theorem (Theorem 7.1), and the primitive and
derived rules (Section 4); (2) 1200 lines for the tactics (Section 8.3); (3) 1450 lines for the
mechanization of the type system (Section 2), and the soundness theorem for open term
(Theorem 4.6); (4) 6050 lines for the examples and case studies (including the case studies
we describe in the upcoming Sections 10.1 and 10.2); (5) and 140 lines for tests (mainly
regression tests for the tactics).

9. Related work

We described some of the most closely related work in the introduction (Section 1), we now
discuss other related work on logical relations models, relational logics, atomic specifications,
speculative reasoning, and linearizability.

Logical relations models. Logical relations models over denotational and operational se-
mantics have an extensive history. To cover advanced programming language features such
as recursive types and higher-order references, logical relations with step-indexing have
been introduced [AAV02, Ahm04, ADR09, BRS+11]. Step-indexing has shown to be very
effective by a large body of work on step-indexed logical relations models, e.g., [NDR11,
HD11, BST12, ÇPG16, RG18]. However, in these papers step-indices appear explicitly in
the definition of the logical relations model and the proofs about it. In contrast in this
paper we have used the “logical approach” to step-indexed logical relations. This approach,
pioneered by Dreyer et al . in the LSLR logic [DAB09], hides step-indices by abstracting
and internalizing them in a logic using the later modality (.) [AMRV07]. Dreyer et al .
used this approach to construct a binary logical relations model for System F with recur-
sive types [DAB09], and later extended the approach as part of the LADR logic to cover
existential types and references [DNRB10].

The logical approach to logical relations was further refined by Turon et al . [TTA+13,
TDB13], culminating in the CaReSL logic, who showed how Hoare triples and ghost thread
pools can be used to define a binary logical relation for fine-grained concurrency. Subsequently,
a version of this binary logical relation was defined and mechanized in Iris by Krebbers
et al . [KTB17] and Timany [Tim18]. However, in these papers, logical refinement judgments
are meta-logical statements, and because of that, there are no high-level proof rules for

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 51

establishing and combining refinements. Instead, to prove a refinement judgment, the user
of the logic had to unfold the definition of the refinement judgment, and reason directly in
CaReSL or Iris. In this work we provide a generalization that makes refinement judgments
first-class logical statements, which is crucial to reason abstractly about invariants and
formulate atomic specifications. The technical differences are discussed in Section 7.3. Thus
we really make use of the fact that Iris is a higher-order logic—CaReSL is only a second-
order logic and it would not be possible to make refinement judgments first-class in CaReSL
(indeed Iris is not only based on CaReSL, but just as much on the higher-order iCAP logic
of Svendsen and Birkedal [SB14]). We also provide a mechanization in Coq with tactical
support that supports the same backwards reasoning style that is employed for proving
weakest preconditions in Iris [KTB17].

Apart from the directions that we explored in this paper, there has been an abundance of
work on logical relations models in Iris. Binary logical relations models in Iris have been used
for proving contextual equivalence in the context of Haskell’s ST monad [TSKB18], first-class
per-thread continuations [TB19], and types-and-effect systems [KJSB17]. Unary logical
relations models in Iris have been used for proving type safety and data-race freedom of the
Rust type system [JJKD18, DJKD20, JJKD21], type safety of session types [HLKB21], type
safety of Scala’s core calculus DOT [GST+20], and robust safety [SGD17, SGDL20]. Logical
relations in Iris have also been used for showing other relational properties such as termination-
preserving refinement [TJH17], non-interference of concurrent programs [FKB21b], and
recovery refinements (refinements in the presence of potential crashes) [CTKZ19]. Nearly
all of the aforementioned developments have accompanying mechanizations in Coq, and in
some of those mechanizations the authors define their own tactics. They define tactics for
either their version of weakest preconditions or for derived operations, but, to the best of
our knowledge, they do not define tactics for reasoning about the logical relation directly.

Relational logics. Logics for proving relational properties of programs have a long history,
going back to the earlier work of Plotkin and Abadi [PA93]. Since then many relational
logics have been developed addressing various applications, e.g., probabilistic properties in
security [BGZB09, BKOZB12, BDG+13] and cost analysis [ÇBG+17, RBG+18]. Here we
discuss some more recent work on relational logics that are capable of proving program
refinements, with a focus on logics with support for higher-order languages, languages with
mutable state, and languages with concurrency.

Earlier work on relational logics targeted programming languages with mutable state,
but no concurrency. Relational Hoare logic [Ben04] and Relational Separation logic [Yan07]
can be used for reasoning about relational properties for first-order imperative programs,
and they have inspired several extensions, for example to probabilistic languages [BGZB09].

Relational Higher Order Logic (RHOL) [ABG+19] is a recent relational higher-order
logic for reasoning about relational properties of programs using relational refinement types.
The main judgment of RHOL allows one to prove that a relational formula ϕ holds for two
expressions, which do not necessarily have the same type. While it is not directly possible
to reason about expressions with different types in ReLoC, we can relate them by using
a type variable α and a suitable interpretation of α in the environment ∆. The authors
prove soundness of RHOL and show how to embed a number of type systems into it. They
provide proofs of various relational properties such as non-interference and relative cost, as
provided by the systems they embed into RHOL. In our work we consider only one (family
of) relation(s), namely the logical relation for contextual refinement. The programming

52 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

language considered in RHOL is a pure terminating variant of simply-typed PCF, while we
consider a much richer programming language with general references and concurrency.

Liang and Feng developed a relational rely-guarantee style logic [LF13], which can
be used to prove refinement for fine-grained concurrent algorithms (including those with
helping) but, in contrast to ReLoC, it can only be used to reason about first-order programs.

A relational logic for a sequential class-based language with dynamically allocated
objects has been introduced by Banerjee et al . [BNN16]. Their relational logic is based
on region logic [BNR13], a first-order logic, which is amenable to SMT-based automation.
Their relational logic is aimed at proving refinement and non-interference. The approach was
further extended in [NBN19] to cover representation independence proofs using per-modules
invariants and coupling relations. In contrast, we focus on reasoning about refinements,
but also treat concurrent programs and higher-order store, and we provide tool support for
tactic-based interactive verification in Coq.

While not a logic in the strict sense, Relational Hoare Type Theory (RHTT) [NBG13]
is a dependent type theory for specification and verification of relational properties of
higher-order programs with mutable first-order state, capable of expressing information flow
and access control properties. The object programming language of RHTT and the type
system itself are shallowly embedded in Coq.

Atomic specifications. To our knowledge, we are the first to study logically atomic speci-
fications in the relational setting. Logically atomic specifications originate in Hoare-style
program logics. Jacobs and Piessens [JP11] have originally developed a methodology for
specifying logically atomic operations. In their approach, specifications are parameterized
by auxiliary code that is performed at the linearization point. This approach was refined to
what we refer to as HOCAP-style specifications, originally introduced in the context of the
eponymous logic [SBP13], where the role of auxiliary code is filled by view shifts [DBG+13],
which in this paper are given by Iris’s update modality ≡−∗ (Section 5.4). Compared to the
original Jacobs-Piessens approach, in HOCAP-style specifications, the physical state that a
logically atomic function operates on is hidden behind an abstract predicate. Furthermore,
HOCAP-style specifications can also be formulated for non-logically atomic operations, as
we have seen in Section 5.4.4. The HOCAP-style specifications were later adopted in the
iCAP logic [SB14] and Iris logic [BB20, Chapter 11].

Because Jacobs-Piessens and HOCAP-style specifications require parameterizing the
(ghost) functions that are executed at the linearization points, such specifications are often
referred to as higher-order. As an alternative to this higher-order approach, da Rocha
Pinto et al . have introduced the notion of logically atomic triples in their program logic
TaDA [dRPDG14, dRP17]. Logically atomic triples are a first-order construct, built in as a
primitive construct into the logic, which can be used to specify the atomic updates that a
program performs. The atomic triples can be systematically composed in the style of Hoare
logic. A more detailed comparison between the first-order and higher-order approach is
given in [DYdRPG18]. TaDA-style logically atomic triples were adapted for Iris by Jung
et al . [JSS+15, JLP+20]. Specifically, they are encoded as derived constructs, using the
Jacobs-Piessens approach, that satisfy the TaDA-style rules.

Speculative reasoning. To facilitate speculative reasoning, we employ the mechanism for
prophecy variables recently introduced in Iris [JLP+20]. Prophecy variables were first
introduced by Abadi and Lamport [AL91] for the purpose of proving refinements of state

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 53

machines. The idea to use prophecy variables in program logic originates in the rely-guarantee
style logic of Vafeiadis [Vaf08], although his treatment of prophecy variables is informal, and
he appeals to Abadi and Lamport [AL91] for soundness.

Prophecy variables are not the only tool for carrying out speculative reasoning. Both
CaReSL [TDB13] and extended LRG [LF13] are program logics capable of proving refinements
of programs with future-dependent linearization points. Both employ, albeit in different
forms, a mechanism for recording multiple potential logical states of the program. These
multiple states can then be coalesced into a single one, once the linearization point is
determined, and that resulting state is used for establishing the refinement.

Other approaches [KDGP17, DSNB17] for proving linearizability of algorithms with
future-dependent linearization points use Hoare logics with auxiliary state to track the
abstract history of a program as a partial order. The crucial property is that all total
extensions of the partial order result in valid linear histories of the program.

Other work on linearizability. One of the main application of ReLoC is to prove linearizability
of concurrent algorithms, by reducing it to contextual refinements. Proving linearizability
has a long history, and the program logic based approach is not the only one. Other
methods include automated model checking based solutions [LCLS09, VYY09, ČRZ+10,
BDMT10] and static analysis, in particular shape analysis, [ARR+07, BLAM+08, Vaf09].
The model checking approaches in question do not prove linearizability, but automatically
check execution traces for linearizability, bounding the heap or the number of threads.
Indeed, model checking approaches are designed to find bugs in a “push-button” fashion
and can generate counterexample traces. Approaches based on static analysis are usually
sound even for unbounded heaps and threads, but limited to first-order programs.

10. Discussion and conclusion

In this paper we have presented ReLoC—the first mechanized relational logic for proving
refinements of fine-grained concurrent higher-order programs. We have demonstrated that
ReLoC is expressive enough to formally prove contextual refinements of concurrent programs
in a modular way, by employing relational specifications of programs. Moreover, the
mechanization of ReLoC in Coq allows us to carry out tactic-based interactive proofs in
an intuitive way, by using ReLoC’s type-directed structural rules and symbolic execution
rules, coupled with the powerful mechanisms from Iris, such as invariants, ghost state, and
prophecy variables.

In the remainder of this paper we discuss other case studies that we have mechanized
in ReLoC (Section 10.1), discuss the “escape hatch” of ReLoC (Section 10.2) for verifying
programs that cannot be handled by ReLoC, and outline some directions for future work
(Section 10.3).

10.1. Other examples and case studies. In addition to the examples that we have
presented in the paper, we have mechanized a number of examples from the literature on
logical relations in ReLoC in Coq. Below we give a short summary of those examples.

• Linearizability of the Treiber stack [Tre86];
• Refinement of higher-order cell objects from [KW06, ADR09];
• Refinement of a symbol lookup table and a name generation module from [ADR09];

54 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

• Many equivalences from [DNB12], adapted for the concurrent setting, including variations
of the “awkward example” from [PS98], and the “higher-order profiling” example modified
to use the atomic increment function inci;
• Equivalence between different ways of defining the fixed point combinators;
• Equivalence between late-choice and early-choice examples from [TTA+13];
• Algebraic laws for the parallel composition operation and its interaction with non-

deterministic choice and sequential composition, inspired by the work on Concurrent
Kleene Algebra [HMSW11];
• Linearizability of the Michael-Scott queue [MS96], mechanized by Friis Vindum and

Birkedal [VB21].

10.2. The “escape hatch”. The rules of ReLoC are sound, but not complete. In particular,
there are some examples that cannot be verified in ReLoC completely. One class of such
examples that we know of, are refinements of fine-grained concurrent data structures with
external linearization points (as opposed to fixed linearization points or future-dependent
linearization points; see [DD15] for a survey outlining the differences). Such external
linearization points are present, for example, in algorithms that use helping or work-stealing.
Fortunately, ReLoC’s model on top of Iris provides an “escape hatch” that still allows us to
verify some data structures with helping.

In the appendix [FKB21a] we consider an example of such a data-structure: a fine-
grained concurrent stack with helping, a simplified version of the elimination-backoff stack
from [HSY04]. We prove that this stack with helping refines a coarse-grained stack (thus
showing that the stack with helping is linearizable). The stack with helping is interesting
because two threads that perform a push and pop operation concurrently can eliminate
each other, by exchanging data through a side channel, thus reducing the contention for the
top node of the stack. To verify this example we make use of ReLoC’s “escape hatch”—we
unfold the definition of ReLoC’s refinement judgment, and perform an explicit proof in
terms of ReLoC’s model in Iris so we can explicitly manipulate the ghost thread pool. As we
demonstrate, the “escape hatch” does not render ReLoC useless for this example: we still use
ReLoC’s proof rules to carry out the majority of the proof. Only for a small part of the proof
we need to work in the model. This is achieved by encapsulating the elimination mechanism
of the stack, for which we can provide a logically atomic relational specification that is proved
in the model of ReLoC. This specification can then be used through ReLoC’s high-level rules
to verify the complete data structure without further breaking the abstraction.

10.3. Future work. In future work we would like to examine the possibility of a more
principled approach to specifying and verifying algorithms with helping, without having to
reason in the model of ReLoC. In addition, it would be interesting to explore alternative
approaches to speculative reasoning that do not involve prophecy variables. Furthermore,
we would like to study applications of ReLoC to type-directed program transformations (for
example typed closure conversion [AB08]) and message-passing programs (for example, by
integration with the Iris-based Actris logic [HBK20, HLKB21]).

It would also be interesting to see how the ReLoC approach can be used for verifying other
kinds of refinements, for example termination-sensitive refinements [TJH17] or refinements
in the presence of crashes [CTKZ19].

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 55

Acknowledgments

We thank the anonymous reviewers of this paper and the conference version at LICS’18 for
their comments and suggestions. We thank Herman Geuvers and Simon Friis Vindum for
discussions, and Amin Timany for his contributions to the linearizability proof of the stack
with helping.

Dan Frumin was supported by the Dutch Research Council (NWO) under STW project
14319 (Sovereign) and VIDI Project No. 016.Vidi.189.046 (Unifying Correctness for Com-
municating Software). Robbert Krebbers was supported by the Dutch Research Council
(NWO), project 016.Veni.192.259. Lars Birkedal was supported by a Villum Investigator
grant (no. 25804), Center for Basic Research in Program Verification (CPV), from the
VILLUM Foundation and by the ModuRes Sapere Aude Advanced Grant from The Danish
Council for Independent Research for the Natural Sciences (FNU).

References

[AAV02] Amal Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general references
embeddable in higher-order logic. In LICS, pages 75–86, 2002.

[AB08] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiva-
lence. In ICFP, pages 157–168, 2008.

[ABG+19] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. A
relational logic for higher-order programs. Journal of Functional Programming, 29:e16, 2019.

[ADR09] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation indepen-
dence. In POPL, pages 340–353, 2009.

[Ahm04] Amal Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University, 2004.
[Ahm06] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

ESOP, volume 3924 of LNCS, pages 69–83, 2006.
[AL91] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer

Science, 82(2):253–284, 1991.
[AM01] Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational

proof-carrying code. TOPLAS, 23(5):657–683, 2001.
[AMRV07] Andrew W. Appel, Paul-André Melliès, Christopher Richards, and Jérôme Vouillon. A very

modal model of a modern, major, general type system. In POPL, pages 109–122, 2007.
[ARR+07] Daphna Amit, Noam Rinetzky, Thomas Reps, Mooly Sagiv, and Eran Yahav. Comparison

under abstraction for verifying linearizability. In CAV, volume 4590 of LNCS, pages 477–490,
2007.

[BB20] Lars Birkedal and Aleš Bizjak. Lecture notes on iris: Higher-order concurrent separation logic.
https://iris-project.org/tutorial-material.html, 2020.

[BBS13] Lars Birkedal, Aleš Bizjak, and Jan Schwinghammer. Step-indexed relational reasoning for
countable nondeterminism. Logical Methods in Computer Science, 9(4), 2013.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. Easycrypt: A tutorial. In FOSAD, volume 8604 of LNCS, pages 146–166,
2013.

[BDMT10] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: A complete
and automatic linearizability checker. In PLDI, pages 330–340, 2010.

[Ben04] Nick Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In POPL, pages 14–25, 2004.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of
code-based cryptographic proofs. In POPL, pages 90–101, 2009.

[BKOZB12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. In POPL, pages 97–110, 2012.

https://iris-project.org/tutorial-material.html

56 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

[BLAM+08] Josh Berdine, Tal Lev-Ami, Roman Manevich, Ganesan Ramalingam, and Mooly Sagiv. Thread
quantification for concurrent shape analysis. In CAV, volume 5123 of LNCS, pages 399–413,
2008.

[BNN16] Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. Relational logic with framing
and hypotheses. In FSTTCS, volume 65 of LIPIcs, pages 11:1–11:16, 2016.

[BNR13] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Local reasoning for global
invariants, part I: Region logic. JACM, 60(3):18:1–18:56, 2013.

[Bro07] Stephen Brookes. A semantics for concurrent separation logic. TCS, 375(1-3):227–270, 2007.
[BRS+11] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and

Hongseok Yang. Step-indexed Kripke models over recursive worlds. In POPL, pages 119–132,
2011.

[BST12] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. A concurrent logical relation. In CSL,
volume 16 of LIPIcs, pages 107–121, 2012.

[ÇBG+17] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Relational cost
analysis. In POPL, pages 316–329, 2017.

[ÇPG16] Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. A type theory for incremental computa-
tional complexity with control flow changes. In ICFP, pages 132–145, 2016.

[ČRZ+10] Pavol Černý, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur.
Model checking of linearizability of concurrent list implementations. In CAV, volume 6174 of
LNCS, pages 465–479, 2010.

[CTKZ19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying concurrent,
crash-safe systems with perennial. In SOSP, pages 243–258, 2019.

[DAB09] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations. In LICS,
pages 71–80, 2009.

[DBG+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and
Hongseok Yang. Views: Compositional reasoning for concurrent programs. In POPL, pages
287–300, 2013.

[DD15] Brijesh Dongol and John Derrick. Verifying linearizability: A comparative survey. ACM
Computing Surveys, 48(2):19:1–19:43, 2015.

[DDG+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew Parkinson, and Viktor
Vafeiadis. Concurrent abstract predicates. In ECOOP, volume 6183 of LNCS, pages 504–528,
2010.

[DJKD20] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. RustBelt
meets relaxed memory. PACMPL, 4(POPL):34:1–34:29, 2020.

[DNB12] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming, 22(4-5):477–528,
2012.

[DNRB10] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational modal logic for
higher-order stateful ADTs. In POPL, pages 185–198, 2010.

[dRP17] Pedro da Rocha Pinto. Reasoning with time and data abstractions. PhD thesis, Imperial College
London, 2017.

[dRPDG14] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A logic for
time and data abstraction. In ECOOP, volume 8586 of LNCS, pages 207–231, 2014.

[DSNB17] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Con-
current data structures linked in time. In ECOOP, volume 74 of LIPIcs, pages 8:1–8:30,
2017.

[DYdRPG18] Thomas Dinsdale-Young, Pedro da Rocha Pinto, and Philippa Gardner. A perspective on
specifying and verifying concurrent modules. Journal of Logical and Algebraic Methods in
Programming, 98:1–25, August 2018.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[FKB18] Dan Frumin, Robbert Krebbers, and Lars Birkedal. ReLoC: A mechanised relational logic for
fine-grained concurrency. In LICS, pages 442–451, 2018.

[FKB21a] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Appendix and Coq development of ReLoC,
2021. Available at https://iris-project.org/reloc/.

https://iris-project.org/reloc/

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 57

[FKB21b] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Compositional non-interference for fine-
grained concurrent programs, 2021. To appear in Security & Privacy 2021.

[FORY10] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concurrent
objects. Theoretical Computer Science, 411(51-52):4379–4398, 2010.

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theoretical Computer
Science, 228(1-2):5–47, 1999.

[GST+20] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers.
Scala step-by-step: Soundness for DOT with step-indexed logical relations in Iris, 2020.

[Har16] Robert Harper. Practical Foundations for Programming Languages (2nd. Ed.). Cambridge
University Press, 2016.

[HBK20] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. PACMPL, 4(POPL):6:1–6:30, 2020.

[HD11] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly. In
POPL, pages 133–146, 2011.

[HLKB21] Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. Machine-
checked semantic session typing, 2021. To appear at CPP’21.

[HMSW11] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene algebra
and its foundations. The Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
SPAA, pages 206–215, 2004.

[HW90] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition for concurrent
objects. TOPLAS, 12(3):463–492, 1990.

[IO01] Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data structures. In
POPL, pages 14–26, 2001.

[Iri20] Iris team. The Iris Project website and Coq development, 2020. https://iris-project.org/.
[JJKD18] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing

the foundations of the Rust programming language. PACMPL, 2(POPL):66:1–66:34, 2018.
[JJKD21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Safe systems pro-

gramming in Rust: The promise and the challenge, 2021. To appear in CACM.
[JKBD16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In

ICFP, pages 256–269, 2016.
[JKJ+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek

Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:e20, 2018.

[JLP+20] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany,
Derek Dreyer, and Bart Jacobs. The future is ours: prophecy variables in separation logic.
PACMPL, 4(POPL):45:1–45:32, 2020.

[JP11] Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification. In
POPL, pages 271–282, 2011.

[JSS+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In POPL, pages 637–650, 2015.

[JSV10] Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory for
algebraic effects. In LICS, pages 209–218, 2010.

[KDGP17] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson. Proving linearizability
using partial orders. In ESOP, volume 10201 of LNCS, pages 639–667, 2017.

[KJB+17] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent separation logic. In ESOP, volume 10201 of
LNCS, pages 696–723, 2017.

[KJJ+18] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. MoSeL: A general, extensible modal
framework for interactive proofs in separation logic. PACMPL, 2(ICFP):77:1–77:30, 2018.

[KJSB17] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. A relational model of types-
and-effects in higher-order concurrent separation logic. In POPL, pages 218–231, 2017.

58 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

[Koz94] Dexter Kozen. A completeness theorem for kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366–390, 1994.

[KTB17] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order
concurrent separation logic. In POPL, pages 205–217, 2017.

[KW06] Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-order
imperative programs. In POPL, pages 141–152, 2006.

[LCLS09] Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking linearizability via
refinement. In FM, volume 5850 of LNCS, pages 321–337, 2009.

[LF13] Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed lineariza-
tion points. In PLDI, pages 459–470, 2013.

[Mit86] John Mitchell. Representation independence and data abstraction. In POPL, pages 263–276,
1986.

[MS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. TOCS, 9(1):21–65, 1991.

[MS96] Maged Michael and Michael Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC, pages 267–275, 1996.

[NBG13] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent type theory for
verification of information flow and access control policies. TOPLAS, 35(2):6:1–6:41, 2013.

[NBN19] Mohammad Nikouei, Anindya Banerjee, and David A. Naumann. Data Abstraction and
Relational Program Logic. arXiv e-prints, page arXiv:1910.14560, October 2019.

[NDR11] Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. Journal of
Functional Programming, 21(4-5):497–562, 2011.

[O’H07] Peter W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 375(1-3):271–307, 2007.
[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs

that alter data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.
[PA93] Gordon Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In TLCA, volume

664 of LNCS, pages 361–375, 1993.
[Pit00] Andrew M. Pitts. Operational semantics and program equivalence. In APPSEM, volume 2395

of LNCS, pages 378–412, 2000.
[Pit05] Andrew M. Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, Advanced Topics

in Types and Programming Languages, chapter 7, pages 245–289. MIT Press, 2005.
[Plo76] Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452–487,

1976.
[PS98] Andrew M. Pitts and Ian Stark. Operational reasoning for functions with local state. In Higher

Order Operational Techniques in Semantics, pages 227–274. Cambridge University Press, 1998.
[RBG+18] Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. Monadic

refinements for relational cost analysis. PACMPL, 2(POPL):36:1–36:32, 2018.
[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, Proceedings

Colloque sur la Programmation, Paris, volume 19 of LNCS, pages 408–423, 1974.
[RG18] Vineet Rajani and Deepak Garg. Types for information flow control: Labeling granularity and

semantic models. In CSF, pages 233–246. IEEE, 2018.
[SB14] Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In ESOP,

volume 8410 of LNCS, pages 149–168, 2014.
[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Modular reasoning about separation

of concurrent data structures. In ESOP, volume 7792 of LNCS, pages 169–188, 2013.
[SGD17] David Swasey, Deepak Garg, and Derek Dreyer. Robust and compositional verification of

object capability patterns. PACMPL, 1(OOPSLA):89:1–89:26, 2017.
[SGDL20] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. The high-level benefits of

low-level sandboxing. PACMPL, 4(POPL):32:1–32:32, 2020.
[Smy76] Michael Smyth. Powerdomains. In International Symposium on Mathematical Foundations of

Computer Science, pages 537–543. Springer, 1976.
[SP07] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and recursion. JACM,

54(5):26, 2007.
[STS15] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with de Bruijn terms

and parallel substitutions. In ITP, volume 9236 of LNCS, pages 359–374, 2015.

RELOC RELOADED: A MECHANIZED RELATIONAL LOGIC FOR CONCURRENCY 59

[SV20] Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for algebraic
effects. TOPLAS, 42(1):4:1–4:45, 2020.

[TB19] Amin Timany and Lars Birkedal. Mechanized relational verification of concurrent programs
with continuations. PACMPL, 3(ICFP):105:1–105:28, 2019.

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In ICFP, pages 377–390, 2013.

[Tim18] Amin Timany. Contributions in programming languages theory: Logical relations and type
theory. PhD thesis, KU Leuven, 2018.

[TJH17] Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent
termination-preserving refinement. In ESOP, volume 10201 of LNCS, pages 909–936, 2017.

[Tre86] R. Kent Treiber. Systems programming: Coping with parallelism. Technical report, Thomas J.
Watson Research Center, 1986.

[TSKB18] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. A logical relation
for monadic encapsulation of state: proving contextual equivalences in the presence of runST.
PACMPL, 2(POPL):64:1–64:28, 2018.

[TTA+13] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. Logical
relations for fine-grained concurrency. In POPL, pages 343–356, 2013.

[Vaf08] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2008.

[Vaf09] Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCI, volume 5403
of LNCS, pages 335–348, 2009.

[VB21] Simon Friis Vindum and Lars Birkedal. Contextual refinement of the michael-scott queue
(proof pearl), 2021. To appear at CPP’21.

[VYY09] Martin Vechev, Eran Yahav, and Greta Yorsh. Experience with model checking linearizability.
In SPIN, volume 5578 of LNCS, pages 261–278, 2009.

[Yan07] Hongseok Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):308–334,
2007.

This work is licensed under the Creative Commons Attribution License. To view a
copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105,
USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Proving contextual refinement and contextual equivalence
	Problem statement and key idea
	The ReLoC logic
	Contributions and structure of the paper
	Differences with the conference version of this paper

	2. The programming language
	3. A tour of ReLoC
	3.1. Grammar and soundness
	3.2. Derivability and inference rules
	3.3. Example: Contextual equivalance of a bit module
	3.4. Example: Contextual refinement of a concurrent counter

	4. A closer look at ReLoC
	4.1. Invariants and the update modality
	4.2. The persistence modality
	4.3. Value interpretation and monadic rules
	4.4. Fundamental theorem and refinements of open terms

	5. Relational specifications in ReLoC
	5.1. Non-atomic relational specifications
	5.2. The need for logically atomic specifications
	5.3. TaDA-style relational specifications
	5.4. HOCAP-style relational specifications
	5.5. Ticket lock refinement from HOCAP-style specs

	6. Speculative reasoning using prophecy variables
	6.1. Motivational example
	6.2. Prophecy instructions and proof rules
	6.3. Proving the coin refinement
	6.4. Algebraic reasoning about non-deterministic choice

	7. The logical relations model of ReLoC
	7.1. The refinement judgment
	7.2. The logical relation
	7.3. Differences with prior work.
	7.4. Deriving the primitive rules
	7.5. Soundness

	8. The Coq mechanization of ReLoC
	8.1. The programming language
	8.2. The ReLoC logic
	8.3. Tactic support for interactive proofs
	8.4. Overview of the source code.

	9. Related work
	10. Discussion and conclusion
	10.1. Other examples and case studies
	10.2. The ``escape hatch''
	10.3. Future work

	Acknowledgments
	References

